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Abstract. Fingerprint-based authentication has been successfully adopted in a
wide range of applications, including law enforcement and immigration, due to
its numerous advantages over traditional password-based authentication. How-
ever, despite the usability and accuracy of this technology, some significant con-
cerns still exist, which can potentially hinder its further adoption. For instance,
a subject’s fingerprint is permanently associated with an individual and, once
stolen, cannot be replaced, thus compromising biometric-based authentication.
To mitigate this concern, we propose a multi-factor authentication approach that
integrates type 1 and type 3 authentication factors into a fingerprint-based per-
sonal identification number, or FingerPIN. To authenticate, a subject is required
to present a sequence of fingerprints corresponding to the digits of the PIN, based
on a predefined secret mapping between digits and fingers. We conduct a vulner-
ability analysis of the proposed scheme, and demonstrate that it is robust to the
compromise of one or more of the subject’s fingerprints.

1 Introduction

Robust authentication mechanisms are critical to protect the security of data and appli-
cations. While offering a high level of security, biometric-based authentication main-
tains convenience for the user. In particular, fingerprints provide well-known distinc-
tiveness and persistence properties. Biometric technologies are widely adopted in var-
ious government applications such as National ID, border control, and passport con-
trol [18], as well as in forensics and in criminal investigations for the identification
of terrorists and other criminals. Commercial applications include computer network
login, ATMs, credit card and medical records management [7,10]. Fingerprint systems
are currently used for unlocking smartphones (e.g., iPhone 5S) or to engage in financial
transactions and make purchases. However, if compromised, the same characteristics
and advantages of biometrics present a potential threat to the owner of the biometric
markers and risks to the businesses that use biometric data. Biometrics are biologically
unique to the individual, therefore, once compromised, the individual has no recourse
and they are at an increased risk for identity theft.
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Type 1, or knowledge-based, authentication is still the most widely adopted form of
authentication, despite its many weaknesses. Most user create passwords that are easy to
remember, therefore easy to guess or crack through a variety of means including social
engineering and dictionary attacks. When longer or difficult-to-remember passwords
are chosen, users tend to write them down in easily accessible places, effectively defeat-
ing the purpose of using authentication. Furthermore, compromising a single password
may represent a risk for multiple applications, as users tend to reuse the same passwords
across different applications [7].

To address these limitations, organizations are transitioning to multi-factor authen-
tication, requiring users to provide at least two different authentication factors to prove
their identity and be granted access to a system. A type 1 authentication factor (e.g.,
password, PIN) is typically paired with either a type 2 authentication factor (e.g., token)
or a type 3 authentication factor (e.g., fingerprint). In traditional multi-factor authenti-
cation approaches, a user would need to sequentially prove knowledge of the PIN and
validity of their biometrics features by entering the PIN on a keyboard and scanning one
or more fingerprints. We propose a multi-factor authentication scheme that integrates
a type 1 authentication factor (a PIN) and a type 3 authentication factor (fingerprints)
into a fingerprint-based PIN, which we refer to as FingerPIN. In this paper, we push
the boundaries of multi-factor authentication by combining type 1 and type 3 factors in
such a way that a user must simultaneously prove knowledge of the PIN and validity of
their biometrics features by scanning multiple fingers in a sequence determined by the
PIN through a secret mapping between digits and fingers. While such secret mapping
may be difficult to remember and may slow down user authentication, what a user really
needs to recall is the sequence of fingers corresponding to the digits of the PIN, as both
the PIN and the mapping are set once in the enrollment phase and may change infre-
quently. If either the PIN or the mapping changes, the user would need to determine the
new sequence of fingers used for authentication.

The paper is organized as follows. Section 2 discusses related work in multi-factor
authentication involving biometrics. Section 3 presents the proposed authentication
scheme, whereas Sect. 4 presents metrics to evaluate the strength of FingerPIN, along
with an assessment of vulnerabilities in different attack scenarios. Then, Sect. 5 dis-
cusses our experimental results. Finally, Sect. 6 gives some concluding remarks and
indicates possible future research directions.

2 Related Works

Traditional authentication solutions based on passwords or graphical patterns suffer
from credential theft (e.g., through shoulder surfing) [1,16]. Authentication mecha-
nisms involving physiological biometrics (e.g., fingerprints, iris patterns and face) are
less likely to suffer from credential theft. However, different biometric technologies
require different devices having a range of costs. Furthermore, they may limit privacy
for users [2]. Recent studies exploiting biometric features (e.g., a sequence of 2D hand-
writing and corresponding pressure) rely on touch screens for feature extraction and
are not easy to extend to general security access systems [8,9]. In 2014, driven by the
need for increasing robustness against reuse of a fingerprint by a malicious attacker,
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Go et al. proposed a two-factor authentication system involving fingerprint information
and a password [5]. During registration, the users input their fingerprint and a password.
A decimal number is associated to each letter of the password by modular arithmetic.
The fingerprint template is converted to a square of fixed size to generate a standardized
template that is then partitioned into a 3× 3 matrix indexed by a sequence number 1–9.
The generated nine regions are extracted based on the decimal numbers corresponding
to the characters of the password. Partial templates are then relocated into a 3×3matrix
to create a new virtual template from which minutiae points are extracted, which does
not follow the traditional matching operation.

In 2017, Nguyen et al. presented an authentication mechanism in which the user is
asked to draw their PIN through a touch interface instead of typing it on a keypad [19].
This approach offers better security by utilizing drawing traits or behavioral biomet-
rics as an additional authentication factor and it is prone to usability by leveraging
user familiarity with PINs. This scheme was evaluated under stronger threat models but
experiments were carried out on a small set of subjects. Liu et al. proposed the Vib-
Write system that involves novel algorithms to discriminate fine grained finger-input
and that supports three independent passcode secrets including PIN number, lock pat-
tern and gesture features extracted in the frequency domain [8]. However, gesture-based
authentication is not as discriminative as the well-established minutiae-based recog-
nition. Additionally, combining a vibration signal into an authentication procedure is
vulnerable to blind attacks and the vibration signal itself may be easy to imitate and
vulnerable to impersonation attacks.

In 2018, Souza et al. presented an optical authentication technique based on two-
beam interference and chaotic maps used in conjunction with biometrics [15]. The
user registers by recording a biometric template. He then chooses a base image that is
encoded through two-beam interference to produce a phase key that is used to encrypt
the biometric data. A chaotic sequence is generated from the password and used to
scramble this phase key resulting in the possession factor. Cantoni et al. proposed an
authentication scheme that combines behavioral gaze-based biometrics with a PIN. In
particular, eye information is captured by means of an eye tracker when the user enters
a PIN through a virtual keypad displayed on a screen [4]. In 2019, Henderson sug-
gested the benefits of a multi-factor security device that would combine a fingerprinting
sensor and an LED pulse oximeter which would eliminate most if not all threats to fin-
gerprinting authentication technology [6]. A CNN-based anti-spoofing two-tier multi-
factor authentication system was proposed in [14]. Tier I integrates fingerprint, palm
vein print and face recognition to match with the corresponding databases, and Tier II
uses fingerprint, palm vein print and face anti-spoofing convolutional neural networks
(CNN) based models to detect spoofing. In the first stage, the hash of a fingerprint is
compared with the fingerprint database. After a successful match of the fingerprint, a
CNN-based model tests the fingerprint to verify whether it is a spoof or real.

3 The Proposed Authentication Scheme

The proposed authentication scheme combines type 1 and type 3 authentication factors
into a new multi-factor authentication mechanism. We investigate the integration of
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fingerprints and Personal Identification Numbers (PINs), and develop FingerPIN, an
authentication scheme using fingerprint-based PINs: to authenticate, the user is required
to scan multiple fingers in a sequence determined by a secret mapping between the
user’s 10 fingers and digits from 0 to 9, based on the user’s PIN. Adding one digit to
FingerPIN increases the complexity for an attacker significantly more than adding a
digit to a traditional PIN. The two authentication factors are combined in such a way
that the user does not need to remember both the PIN and the secret mapping but only
a specific sequence of fingers, which is as easy to remember as remembering a PIN.

Fig. 1. After enrolling their ten fingerprints, a user chooses 2, 5, 3, 4, 1 as their PIN, which is
converted into the sequence Right Little, Right Ring, Left Ring, Right Middle, Right Thumb.

A finger-digit is a single fingerprint component of the chosen sequence. The map-
ping between digits from 0 to 9 to fingers is set during enrollment. For instance, in the
example of Fig. 1, the user chooses to map their left little finger to 9, left ring to 3, left
middle to 0, and so on. The user then chooses a PIN – 25341 in our example – which
determines the sequence of fingerprints to present for authentication. In our example,
the first digit of the PIN is 2, which is mapped to the right little finger. The following
four digits are mapped to right ring, left ring, right middle, and right thumb respectively.
At authentication time, the user presents the sequence: right little, right ring, left ring,
right middle, and right thumb. Intuitively, since the mapping between digits and fingers
is not predefined, but rather determined by the user, an extra layer of protection is added.
FingerPIN involves the execution of enrollment, registration, and authentication tasks.
The enrollment module is responsible for storing the reference biometric data into the
system database [7]. During this phase, the ten fingerprints of the subject are acquired
by a sensor and a digital representation is produced. This digital representation is further
processed by a feature extractor and a more compact representation, called a template,
is obtained. Multiple templates of an individual are usually stored in order to account
for variations observed in the biometric trait. Furthermore, the templates in the database
may be updated over time. During this phase, the user also defines a mapping between
digits and fingers, which can be changed at any time or with a predefined frequency
for additional security. During registration, the user chooses a PIN, which determines
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the sequence of fingerprints to be used for authentication. During authentication, the
system verifies the identity of a subject based on their FingerPIN. The process com-
pares the biometric data captured from the subject attempting to authenticate with the
biometric templates stored in the system database for that same subject. Authentication
can operate in one of the two following modes.

– Standard Authentication Mode (Mode 1). All the fingerprints composing the Finger-
PIN are sequentially matched, one by one, which makes the time required to verify
the identity linear with the length of the FingerPIN. Consequently, longer Finger-
PINs may impact usability. For instance, in the example of Fig. 1, the PIN chosen
by the user is mapped to the sequence of fingers: right little, right ring, left ring, right
middle, and right thumb. Thus, the user is expected to present their fingerprints in
this exact order.

– Challenge Mode (Mode 2). The system presents a challenge, asking the user to pro-
vide a specific finger-digit of the FingerPIN (e.g., the third finger-digit). The pro-
cessing time does not dependent on the PIN’s length, and the burden on the user is
limited. In the example of Fig. 1, when asked to provide the third finger-digit, the
user is expected to present the fingerprint corresponding to their left ring finger.

4 FingerPIN Vulnerability Analysis

This section discusses the properties of the proposed mechanism and demonstrates its
advantages over traditional multi-factor authentication.

In a brute-force attack against a traditional PIN, a randomly chosen five-digit
sequence is guaranteed to be guessed in 100,000 attempts.

A brute-force attack to a fingerprint system is an indirect attack, e.g., a brute force
attack to the feature extractor input or to the matcher input. A False Match Rate (FMR)
of 0.001% corresponds to the success of 1 out of 100,000 attempts by using a large
number of different fingerprints. Generating or acquiring a large number of biometric
samples is much more difficult and time-consuming than generating a large number of
PINs. The number of attempts to brute-force a single fingerprint is typically in the same
order of magnitude of the number of attempts to brute-force a 5-digit PIN, in addition
to the fact that comparing two fingerprints is computationally more demanding than
comparing two 5-digit numbers.

A brute-force attack against FingerPIN is studied by estimating the probability of
a success in different scenarios, based on the information available to the attacker. In
Scenario 1, the ten fingerprints of the user are unknown to the attacker. In Scenario 2,
one fingerprint template has been stolen by the attacker. In this case, we assume that
the matching during authentication will occur with an accuracy of 100%. In Scenario
3, all the ten fingerprint templates are known to the attacker. Furthermore, for each case
we consider when the secrecy of the mapping is compromised as well. In the following
subsections, we will use k to denote the length of the PIN. We will also assume that the
number of repetitions of a certain fingerprint in the chosen sequence is zero.
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4.1 Scenario 1: Brute-Force Attack with No Fingerprint Compromised

In a brute-force attack, the attacker has no knowledge about any fingerprint of the gen-
uine user. Given a FingerPIN, we compute the probability P (Success) that a sequence
of k arbitrary fingerprints presented by an attacker during a brute-force attack is suc-
cessfully matched against the FingerPIN, allowing the attacker to achieve authentica-
tion. Let P (FMij) be the probability of False Match (FM) of the ith fingerprint used
by the attacker against the ith finger-digit of the FingerPIN, with P (Fij) indicating
the probability that the ith finger-digit maps to digit j, and

∑9
j=0 P (Fij) = 1. When

the system operates in Mode 1, assuming that finger-digits are independent and equally
distributed, P (Success) is given by Eq. 1 below.

P (Success) =
k∏

i=1

P (Successi) =
k∏

i=1

9∑

j=0

P (FMij) · P (Fij) (1)

Regarding the term P (FMij), an empirical estimate of the probability with which
the system incorrectly declares that a biometric sample belongs to the claimed iden-
tity when the sample belongs to a different subject (impostor) can be provided by the
False Match Rate (FMR) [12]. FMR is typically selected based on the level of security
required by the application and the corresponding threshold is set for the system.

It is clear from Equation 1 that the probability of k random fingerprints matching k
finger-digits is much smaller than the probability of k random digits matching a k-digit
PIN. When the attacker does not have any genuine fingerprints available, knowledge of
the secret mapping or the PIN would not help the attacker increase this probability.

4.2 Scenario 2: Brute-Force Attack with One Fingerprint Compromised

In this scenario, one fingerprint of the genuine user has been stolen and a brute-force
attack is attempted. We analyze how the probability P (Success) changes when one fin-
gerprint is compromised. The matching accuracy varies across different instances of an
individual’s fingerprints. A vulnerability in FingerPIN is found when the cross-instance
match score is high for one or multiple fingerprint instances. In this case, the vulnera-
ble instance can potentially be matched to more than one fingerprint which makes the
scheme less secure. Although, in the scientific literature, there is not yet convergence
for the term non-zero effort attack, in this paper it refers to the exploitation of any of the
vulnerability points present in a typical fingerprint system [3,11,13]. Let P (NFMSF

i )
be the probability of Non Zero-Effort Attack Same-Finger False Match (NFMSF ) of
the ith fingerprint in the FingerPIN sequence. Let P (NFMCF

i ) be the probability of
Non Zero-Effort Attack Cross-Finger False Match (NFMCF ) of the ith fingerprint
when the stolen fingerprint is from a different finger than the one chosen in the Finger-
PIN sequence. Let Fs indicate the fingerprint stolen. When the system operates in Mode
1, assuming that finger-digits are independent and equally distributed, P (Success) is
given by Eq. 2 below.

P (Success) =

k∏

i=1

9∑

j=0

(P (Fij , Fsj) · P (NFMSF
j ) + P (Fij , Fs �=j · P (NFMCF

j )) (2)
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Whether the secrecy of the correspondence between fingers and digits is compro-
mised, the probability that a brute-force attack can be simplified as follows:

P (Success) =
k∏

i=1

9∑

j=0

(P (Fsj) · P (NFMSF
j ) + P (Fs �=j · P (NFMCF

j )) (3)

4.3 Scenario 3: Brute-Force Attack with All the Fingerprints Compromised

In this scenario, all the ten fingerprints of the genuine user have been stolen and a brute-
force attack is attempted. The FingerPIN is guaranteed to be guessed in 10k attempts
– corresponding to all possible sequences of length k of the 10 fingerprints – requiring
a total of 10k · k fingerprint comparisons. By contrast, a brute a force attack against
a traditional PIN would require only 10k comparison between k-digit numbers. The
secrecy of the mapping between the digits from 0 to 9 and the subject’s fingers adds
complexity to the scheme, making a brute-force attack more onerous. In fact, even when
all fingerprints have been compromised, the attacker still needs to run a brute-force
attack to compromise the FingerPIN, and every trial involves matching k fingerprints.

5 Experimental Results

5.1 Dataset

The dataset used in our experiments is a subset of the ManTech Innovations Finger-
print Study Phase I collection. It contains fingerprints of 500 subjects acquired using 7
optical sensors. We used images of the ten fingers acquired using the I3 digIDMini sen-
sor. Among the participants, the age group between 20–33 was the largest, accounting
for 60.6% percent of the subjects. With respect to ethnicity, Caucasians accounted for
57.2% of the subjects. There was a nearly equal number of male and female participants
with a 51% to 48% ratio. Every subject provided two sets of rolled fingerprints for both
hands, see sample images in Fig. 2.

Fig. 2. Examples of fingerprint images from the ManTech Phase I collection used in this study

5.2 Evaluation Metrics

For a PIN Number-based scheme, the Attack Success Rate can be computed as the
percentage of correctly verified PIN numbers entered by the attacker during the user
authentication process. It includes the complete PIN sequence verification accuracy



FingerPIN 507

and the PIN digit verification accuracy. Biometric matching performance is assessed
using: (i) False Match Rate (FMR), the proportion of instances where an impostor is
incorrectly labelled as a genuine match with respect to the total number of impostor
comparisons; (ii) False Non-Match Rate (FNMR), the proportion of instances where a
genuine match is incorrectly labelled as an impostor with respect to the total number
of genuine comparisons; and (iii) Detection Error Trade-off (DET) curve, which plots
FMR and FNMR as a function of the decision threshold [7]. The inputs to the matcher
are two fingerprint samples (e.g., gallery and probe images) and the output is a match
score that indicates the proximity of the two samples. A threshold is applied to this
match score to determine if the samples correspond to the same identity.

5.3 Experimental Results

Baseline. Match scores were extracted using Neurotechnology VeriFinger Version
10.01. The quality measures were extracted using the NIST Fingerprint Image Qual-
ity (NFIQ 2.0) software2, see Fig. 3(a) [17]. These distributions shows that right thumb,
left thumb and right index exhibit a better image quality than other fingers.

Fig. 3. (a) NFIQ 2 distribution of the fingers of the right hand. Little fingers exhibit lower image
quality, a similar trend was observed for the left hand as well; (b) Distributions of same-finger
and cross-finger match scores, fingerprints being compared pertain to the same identity

Figure 3(b) shows the probability distributions of the match scores output by com-
paring fingerprints pertaining to the same subject in both cross- and same-finger sce-
narios. In this graph, genuine match scores were generated by comparing same fingers
of the same subject, while impostor scores were obtained by matching different fin-
gers of the same subject. We can notice a relatively small overlap area between the two
distributions. In the scientific literature, an analysis of cross-finger matching when the
identity is the same is rarely carried out. The attack-resistance of a fingerprint system
alone, expressed as the probability of successfully launching a brute-force attack, is 1

1 https://www.neurotechnology.com/verifinger.html.
2 http://www.nist.gov/services-resources/software/development-nfiq-20.

https://www.neurotechnology.com/verifinger.html
http://www.nist.gov/services-resources/software/development-nfiq-20
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out of 100,000 attempts. The baseline fingerprint verification performance alone can
depicted using the Detection Error Trade-off graph for all the ten fingers, see Fig. 4(a)
and Fig. 4(b). For certain fingerprint instances such as left and right little fingers, error
rates are higher. Thus, we wondered if the security of FingerPIN is affected when those
instances are chosen as components of the authentication sequence.

System Performance of Verifying Legitimate User. We discuss experimental results
related to scenarios 1 and 2 in which one or multiple fingerprints used in FingerPIN have
been captured by an attacker. As case study, ten random 5-digit PINs with no repetitions
were generated for every subject. For simplicity, the compromised fingerprint instance
is assumed to be the same for all the authorized users. The FMR of the fingerprint
system is 0.01%. Although such scenarios may seem critical, we found out that the
success rate to break the FingerPIN scheme is very low.

Fig. 4. DET curves for the fingerprints of the left (a) and right (b) hands.

Results are summarized in Table 1. Cross-finger matches refer to comparisons
between different fingerprint instances carrying the same identity and they are high-
lighted in bold. FMCF indicates the proportion of the cross-finger matches wrongly
accepted with respect to all the cross-finger matches. Findings show that with one com-
promised finger-digit, the additional four are able to keep high the level of protection.
When the stolen fingerprint is the right index for all the subjects, only a few cross-
finger false matches occur. The gallery was the right middle in 7 out of 8 false matches,
while it was the left ring only in one case. These matches involved comparison between
fingerprints pertaining to different identities.

Findings showed also that with two compromised finger-digits, the remaining three
can guarantee robustness. When the stolen instance was the right thumb, only three
cross-finger false matches among all the possible combinations were found. In two of
these cases, the galleries were the right index and the left ring of the same subject, while
in the third case the gallery was the left middle finger from a different subject. In this
critical scenario, the proposed scheme would still be secure given the presence of the
fifth component. Similar to the above, when the stolen fingerprint is the right middle
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finger for all the subjects, six cross-finger false matches were found. In two cases the
galleries were right index and right little fingers pertaining to the same subject, while
in four cases the galleries were right index, right ring (twice) and left ring fingers from
different individuals. When the compromised finger-digit is the right ring, the gallery
was the right middle finger in 5 out of 6 cross-finger false matches. When the right
little finger is stolen, results are similar to the scenario previously encountered with the
difference that the galleries are from different subjects. Regarding the fingers of the
left hands, with the left index fingerprint compromised, there were eight occurrences of
cross-finger false matches, in six of them the left middle finger was the gallery. Among
the remaining fingers, the left thumb showed less risk with only one cross-finger found
while the left ring the highest with 14 cross-finger false matches.

Table 1. Security results in Scenario 2: cross-finger false match rate for one stolen fingerprint.

Cross-Finger False MatchFMCF (%)

Stolen Fp Rx Thumb Rx Index Rx Middle Rx Ring Rx Little L Thumb L Index L Middle L Ring L Little

Rx Thumb - 0.0037 - - - - - 0.0037 0.0037 -

Rx Index - - 0.0259 - - - - - 0.0037 -

Rx Middle - 0.0111 - 0.0074 0.0074 - - - 0.0037 -

Rx Ring - - 0.0185 - - - - - - -

Rx Little - 0.0037 - - - - - - 0.0037 -

L Thumb - - 0.0037 - - - - - - -

L Index 0.0037 - 0.222 - - - - - 0.0037 -

L Middle - 0.0074 - - - - 0.0296 - 0.0111 -

L Ring 0.0037 - 0.0074 - - - 0.0111 0.0296 - -

L Little - - - - - - - - - -

For a more user-friendly authentication, the constraint of choosing a sequence with-
out repetitions can be relaxed. For instance, a user is allowed to repeat or not a particular
finger-digit in the sequence. The repetitions are not expected but allowed. For every fin-
gerprint instance, there is no constraint regarding the number of expected repetitions.
The probabilities of repetitions of each stolen fingerprint are summarized in Table 2.
The probability of choosing a given finger-digit five times in the sequence is always
zero. One stolen fingerprint is repeated twice in the FingerPIN sequence in about 7%
of the cases, in which three cross-finger false matches should occur for a brute force
attack to succeed.

Based on a preliminary usability assessment involving our research group, applying
FingerPIN does not require any change in the position of the hand given the acquisition
of the next finger-digit can be done through the same sensing surface. No movement
of the hand is necessary given that the user only need to change finger. In a traditional
PIN, the (same) finger needs to be pressed on different keys of a keyboard requiring
movement of the hand.
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Table 2. Probability of repetitions for a given fingerprint instance.

Stolen Fp P(Rep = 1) P(Rep = 2) P(Rep = 3) P(Rep = 4) P(Rep = 5) P(Rep)

Rx Thumb 0.3300 0.0766 0.0088 4 e−4 0 0.4158

Rx Index 0.3272 0.0732 0.0064 8 e−4 0 0.4076

Rx Middle 0.3326 0.0768 0.0062 4 e−4 0 0.4160

Rx Ring 0.3208 0.0730 0.0104 0 0 0.4042

Rx Little 0.3326 0.0660 0.0062 4 e−4 0 0.4052

L Thumb 0.3324 0.0708 0.0082 4 e−4 0 0.4118

L Index 0.3226 0.0792 0.0086 8 e−4 0 0.4114

L Middle 0.3212 0.0758 0.0076 8 e−4 0 0.4054

L Ring 0.3290 0.0706 0.0084 4 e−4 0 0.4084

L Little 0.3266 0.0712 0.0084 6 e−4 0 0.4068

6 Conclusions

In this paper, we proposed a new approach to multi-factor authentication that integrates
knowledge- and inherence-based authentication factors into a fingerprint-based PIN.
Computing the probabilities for a brute-force attack to succeed, we demonstrated that
FingerPIN is less vulnerable than a PIN or a fingerprint system used alone. The nature
of the information integrated in the proposed authentication scheme challenges an
attacker’s success more than traditional mechanisms. FingerPIN is more secure against
a brute-force attack with and without compromised fingerprints compared to existing
approaches. In scenarios where the attacker steals one fingerprint of the genuine user,
the success rate of a brute-force attack breaking a 5-digit FingerPIN was zero. The
overall probability of cross-finger false match was 0.004% and, only with a maximum
of two fingers pertaining to the same subject. We can conclude that, a 5 finger-digits
scheme guarantees robustness to brute-force attacks even in the presence of one stolen
fingerprint. This result demonstrates how the parallel integration of the two factors con-
sidered in this paper overcomes the limitations of both a PIN mechanism alone as well
as an authentication purely based on fingerprints. In future efforts, we will: i) extend
experiments to additional touch-based fingerprint databases as well as to contactless
fingerprint technologies, ii) integrate additional biometric modalities to further improve
security, iii) extend the analysis to scenarios featuring repetitions of finger-digits in
the chosen FingerPIN sequence, iv) explore the security level of the proposed scheme
when more than one fingerprint is compromised, and v) carry out a large-scale usability
assessment to validate the preliminary evaluation discussed in this work and to explore
potential behavioral patterns with respect to gender, age group and ethnicity.
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