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Abstract—The topic of training machine learning models by
employing multiple gradient-computing workers is attracting
great interest recently. Communication efficiency in such dis-
tributed learning settings is an important consideration, es-
pecially for the case where the needed communications are
expensive in terms of power usage. We develop a new approach
which is efficient in terms of communication transmissions.
In this scheme, only the most informative worker results are
transmitted to reduce the total number of transmissions. Our
ordered gradient approach provably achieves the same order
of convergence rate as gradient descent for nonconvex smooth
loss functions while gradient descent always requires more
communications. Experiments show significant communication
savings compared to the best existing approaches in some cases.

Index Terms—communication efficiency, distributed learning,
ordered transmissions.

I. INTRODUCTION

In this paper, we propose an ordering-based communication-
efficient algorithm to solve the following problem

min
θ∈Rd

L(θ) with L(θ)
∆
=
∑
m∈M

Lm(θ) (1)

where θ ∈ Rd is the parameter vector to be optimized,
L(θ) is the objective function to be minimized, Lm(θ) is
the local objective function for worker m with m ∈ M,
and M = {1, 2, ...,M} is a set to collect the indices of all
workers. The problem in (1) has been successfully applied to
model multi-agent systems [1], distributed learning [2] [3], and
distributed processing in sensor networks [4]. In a distributed
learning scenario, Lm(θ)

∆
=
∑Nm

n=1 `(θ;xn, yn) at worker m
is a sum of the loss functions `(θ;xn, yn) for n = 1, 2, ..., Nm
where xn is the n-th feature vector and yn is the corresponding
label. In order to reduce privacy and security risk, each worker
usually does not transmit its local dataset to the server [5].
Instead, each worker calculates a gradient of its local function,
and only this gradient is communicated to the server. The
server aggregates all gradients and updates the globally shared
parameter vector θ by running gradient-based algorithms. The

The work is supported by the U. S. Army Research Laboratory and
the U. S. Army Research Office under grant number W911NF-17-1-0331,
the National Science Foundation under Grant ECCS-1744129, and a grant
from the Commonwealth of Pennsylvania, Department of Community and
Economic Development, through the Pennsylvania Infrastructure Technology
Alliance (PITA).

learning task is solved after many communications between
workers and the server.

High communication cost in distributed learning can be a
serious bottleneck [5] [6]. Hence, communication efficiency
is an important consideration in distributed learning. Meth-
ods for improving communication efficiency include reducing
the number of communications and compressing gradients
at each worker, see [3] [5], [7] and references therein. It
is worth mentioning that the recent algorithm called LAG-
WK in [3] employs the censoring idea in distributed learning
where workers transmit only highly informative updates. The
communications are skipped when a worker does not have a
sufficiently different gradient from its previously transmitted
one, and the server reuses previously sent but still accurate
gradients, which is very reasonable. Censoring in distributed
learning reduces communications but loses some information
which might be useful. The ordering approach we discuss next
can reduce the loss and provide better performance with fewer
communications in some cases.

Focusing on a different problem, [8]–[10] employ the idea
of ordered transmissions for the hypothesis testing problem
where workers with the most informative observations transmit
first. Transmissions can be halted when sufficient information
is accumulated for the sever to decide which hypothesis is
true. In this paper, we employ ordering in distributed learning
to eliminate some worker-to-server uplink communications
normally needed in the gradient descent (GD) approach.
The resultant gradient-based approach is called the ordered
gradient (OG) approach. OG is guaranteed to achieve the
same order convergence rate as GD for nonconvex smooth
loss functions. We provide numerical results that show that
OG can eliminate communications required by GD and LAG-
WK in some cases.

The paper is organized as follows. We introduce the OG
algorithm in Section II and present the convergence analysis
in Section III. Section IV contains several numerical examples.
We conclude the paper in Section V. Throughout this paper, we
use bold lower case letters to denote column vectors. We use
‖x‖ to denote the `2-norm of x. The notation for transpose
is (·)>. The set of workers that do and do not transmit at
iteration k are denoted by Mk and Mk

c , respectively. We use
|A| to denote the cardinality of the set A.
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II. ORDERED GRADIENT APPROACH

In this section, we describe our OG approach to implement
GD with a smaller number of transmissions. In our approach,
worker m (m = 1, 2, ...,M ) maintains 2 vectors at each
iteration k. The first is a parameter vector θk which is
received from the server at the start of iteration k, and the
other vector is the last gradient that was transmitted from the
worker to the server prior to the start of iteration k, called
∇Lm(θ̂k−1

m ). An important feature of OG is that worker m is
not allowed to transmit the gradient ∇Lm(θk) to the server
if the gradient ∇Lm(θk) is not sufficiently different from the
last gradient it transmitted ∇Lm(θ̂k−1

m ). Define the difference
as δ∇km

∆
= ∇Lm(θk) − ∇Lm(θ̂k−1

m ). To implement the OG
algorithm, at the beginning of iteration k (called time tk)
the server broadcasts θk to all workers and initializes the
set of workers who have transmitted as Mk = ∅. Then
worker m determines a time τ/‖δ∇km‖ to transmit δ∇km to
the server, where the positive number τ can be made as small
as the system will allow. Thus the first worker to transmit will
transmit δ∇k(1) and the second worker to transmit will transmit
δ∇k(2) if it does transmit and this process continues such that

‖δ∇k(1)‖ > ‖δ∇
k
(2)‖ > ... > ‖δ∇k(m)‖ > ... > ‖δ∇k(M)‖ (2)

where (m) is the index of the worker who has the m-th largest
term ‖δ∇k(m)‖, so that the most informative data is transmitted
first. Immediately after transmitting, each worker will update
their transmitted gradient ∇Lm(θ̂km) = ∇Lm(θk) while
others keep their previous values ∇Lm(θ̂km) = ∇Lm(θ̂k−1

m ).
If the server receives a transmission from worker m, the server
will add worker m intoMk. After the OG stopping condition
(described later) is satisfied, the server updates the parameter
using

θk+1 = θk − α∇k with ∇k = ∇k−1 +

|Mk|∑
m=1

δ∇k(m) (3)

where ∇k is equivalent to

∇k = ∇L
(
θk
)
−

M∑
m=|Mk|+1

δ∇k(m) (4)

= ∇L
(
θk
)
−

∑
m∈Mk

c

δ∇km. (5)

This approach reduces the number of communications at
iteration k from M in GD to |Mk| < M in OG. Note that (5)
is obtained from (4) since the corresponding workers belong
to Mk

c .
Note that if we want to increase |Mk

c | to save communi-
cations, then more iterations might be required. The key to
balance this tradeoff between communications and iterations
is to expect OG to have a larger reduction in the objective
function value L(θk) per communication for the k-th update
shown in (3) when compared to GD. Before comparing the
descent amount, we first review the basic descent lemma for
GD [11].

Lemma 1: If L(θ) is L-smooth1 and the step size is α =
1/L, the GD update satisfies

L
(
θk+1

)
− L

(
θk
)
≤ ∆k

GD

(
θk
)
, (6)

where ∆k
GD

(
θk
) ∆

= − 1
2L

∥∥∇L (θk)∥∥2
.

The descent lemma of OG is different from that of GD due
to skipping some communications, as seen in Lemma 2.

Lemma 2: If L(θ) is L-smooth and the step size is α = 1/L,
the OG update yields

L
(
θk+1

)
− L

(
θk
)
≤ ∆k

OG

(
θk
)

(7)

where ∆k
OG(θk)

∆
= − 1

2L

∥∥∇L (θk)∥∥2
+
|Mk

c |
2

2L

∥∥∥δ∇k(|Mk|)

∥∥∥2

.
Proof: Using Lemma 2 in [3] (which does not study OG),

we find

L
(
θk+1

)
−L
(
θk
)
≤−

∥∥∇L (θk)∥∥2

2L
+

∥∥∥∑m∈Mk
c
δ∇km

∥∥∥2

2L
(8)

when we choose α = 1/L in [3]. Ordered transmissions imply∥∥∥ ∑
m∈Mk

c

δ∇km
∥∥∥2

≤ |Mk
c |2 ·

∥∥∥δ∇k(|Mk+1|)

∥∥∥2

≤ |Mk
c |2 ·

∥∥∥δ∇k(|Mk|)

∥∥∥2

. (9)

Plugging (9) into (8) leads to (7).
It is worth mentioning that |M

k
c |

2

2L

∥∥δ∇k(|Mk|)
∥∥2

is the cost
of skipping communications and this cost can be ignored
when the most recent transmission δ∇k(|Mk|) has a very small
magnitude. Note that |Mk

c | in (9) is known at the server since
the server can count the number of transmissions that have
already been received at any given time. In the censoring
approach in [3], the number of transmissions is fixed prior
to observing any data. A desirable criterion for OG to select
Mk is to ensure that OG results in a greater objective function
descent per uplink communication than GD, that is

∆k
OG

(
θk
)

|Mk|
≤

∆k
GD

(
θk
)

M
(10)

which is equivalent to

∥∥∥δ∇k(|Mk|)

∥∥∥2

≤

∥∥∥∇L (θk) ∥∥∥2

M · |Mk
c |

. (11)

Thus when (11) is true, it would be desirable for the worker
transmissions to be halted to end the iteration. However,
the server is unable to check (11) since calculating ∇L(θk)
would require every worker to transmit its information to
the server but the server only receives the first |Mk| worker

1A function L(θ) is L-smooth if there exists a constant L ≥ 0 such that
‖∇L(θ1)−∇L(θ2)‖ ≤ L‖θ1 − θ2‖, ∀ θ1,θ2 [11].
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transmissions. Instead, by employing Young’s inequality2 to
(5), we obtain∥∥∇k∥∥2≤(1 + ρ)

∥∥∇L (θk)∥∥2
+(1 + ρ−1)

∥∥∥ ∑
m∈Mk

c

δ∇km
∥∥∥2

(12)

where ρ is any positive number. The result in (12) implies∥∥∇L (θk)∥∥2 ≥
∥∥∇k∥∥2

1 + ρ
− 1 + ρ−1

1 + ρ

∥∥∥ ∑
m∈Mk

c

δ∇km
∥∥∥2

(13)

≥
∥∥∇k∥∥2

1 + ρ
− 1 + ρ−1

1 + ρ
· |Mk

c |2
∥∥∥δ∇k(|Mk|)

∥∥∥2

(14)

where (14) is obtained since ‖δ∇k(|Mk|)‖ > ‖δ∇
k
m‖ for all

m ∈Mk
c . We can obtain a sufficient condition for (11) if we

replace
∥∥∇L (θk)∥∥2

in (11) with the terms on the right-hand
side of the inequality in (14), which yields,∥∥∥δ∇k(|Mk|)

∥∥∥2

≤
∥∥∇k∥∥2

|Mk
c |
(

(1 + ρ−1)|Mk
c |+ (1 + ρ)M

) . (15)

In order to save more transmissions, the positive parameter ρ
can be chosen based on

min
ρ
|Mk

c |
(

(1 + ρ−1)|Mk
c |+ (1 + ρ)M

)
. (16)

The parameter ρ that minimizes (16) is ρ =
√
|Mk

c |/M .
Finally, we obtain our OG stopping condition which is∥∥∥δ∇k(|Mk|)

∥∥∥2

≤
∥∥∇k∥∥2

M |Mk
c |

1(
1 +

√
|Mk

c |
M

)2 . (17)

Note that we do not use any approximation in our derivation
from (10) to (17) which implies the original criterion in (10)
still holds when we employ (17) to select Mk. At a given
iteration, the right-hand side of (17), that we refer to as the OG
threshold, is updated according to the information the server
has received so far, which is different from censoring [3] where
all workers have the same threshold for a given iteration.

Worker m does not transmit in censoring if [3],

‖δ∇km‖2≤
∑D
d=1 ξd

∥∥θk+1−d−θk−d
∥∥2

α2M2
(18)

and we will call the right-hand side of (18) the censoring
threshold. We point out that our OG threshold contains the
newest approximated gradient ∇k which can not be obtained
at iteration k in the censoring algorithm in (18) but it can be
computed using (3) in OG. This newest information can help
OG outperform censoring when the gradient of the objective
function changes significantly. Compared with the censoring
threshold in (18), the server in OG does not need to tune the
constants {ξd}Dd=1 to decide a proper OG stopping condition
in (17).

2Young’s inequality is ‖a+b‖2 ≤ (1+ρ)‖a‖2+
(
1 + ρ−1

)
‖b‖2 where

ρ is any positive number

To evaluate (17), the server needs to broadcast the current
parameter θk at the start of iteration k. Worker m for all
m = 1, 2, ...,M computes ∇Lm(θk) and transmits δ∇km (if
allowed by (17)) after a time equal to τ/‖δ∇km‖ where the
positive number τ can be made as small as the system will
allow. The server checks the OG stopping condition in (17)
after receiving each transmission. If (17) is satisfied, then the
server immediately updates θk and starts the next iteration
by transmitting θk+1. Any workers who did not yet transmit
will not transmit during iteration k. The OG algorithm is
summarized as Algorithm 1. If all transmission propagation
delays are known and timing is synchronized, one can schedule
all transmissions back to the server so they arrive in the correct
order. However, even with inaccurate estimates of propagation
delays or imperfect synchronization, even with some small
ordering errors, the server can put them back in order correctly
as long as the server waits a short period related to the
uncertainty; see [12].

Algorithm 1 OG.
Input: The step size is α = 1/L, and a positive number τ .
Initialize: θ1, ∇0, {∇Lm(θ̂0

m), ∀m}
1: for k = 1, 2, ...,K do
2: Server broadcasts θk at time tk which is denoted as

the starting time of iteration k.
3: Server sets m = 1 and initializes Mk = ∅.
4: while m ≤ M and the stopping condition (17) is not

satisfied do
5: τ/‖δ∇k(m)‖ seconds after tk, δ∇k(m) is transmitted

to server where (m) is the index of the worker who has
the m-th largest term in (2).

6: Worker (m) updates ∇L(m)(θ̂
k
(m)) = ∇L(m)(θ

k).
7: Server adds worker (m) into Mk.
8: m = m+ 1.
9: end while

10: Server updates via (3).
11: k = k + 1.
12: end for

III. CONVERGENCE AND COMMUNICATION ANALYSIS

In this section we provide convergence analysis of OG under
the following assumption.

Assumption 1: Objective function L(θ) is L-smooth, con-
tinuously differentiable and bounded below by a constant
function (in θ) L∗ ∈ R.

Theorem 1: If Assumption 1 holds and the step size α =
1/L, then the iterates {θk} of OG satisfy

min
1≤k≤K

∥∥∇L (θk)∥∥2
= o(1/K). (19)

Proof: Recall that (17) is a sufficient condition to guar-
antee (10) which implies that

L
(
θk+1

)
− L

(
θk
)
≤ − 1

2L
·
∣∣Mk

∣∣
M

∥∥∇L (θk)∥∥2
. (20)
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Thus, summing over k ∈ {0, 1, 2, ...,K}, we have

1

2L

K∑
k=0

∣∣Mk
∣∣

M

∥∥∇L(θk)
∥∥2 ≤ L

(
θ0
)
− L

(
θK+1

)
. (21)

Since L(θ) is bounded below by a constant L∗, we know that

L
(
θ0
)
− L

(
θK+1

)
≤ L

(
θ0
)
− L∗ <∞. (22)

Combining (21) with (22), it follows that

lim
K→∞

K∑
k=0

∣∣Mk
∣∣

M

∥∥∇L(θk)
∥∥2
<∞ (23)

which implies

lim
k→∞

∣∣Mk
∣∣

M

∥∥∇L(θk)
∥∥2 → 0. (24)

We note that the OG algorithm transmits at least once during
each iteration which implies that

∣∣Mk
∣∣ ≥ 1 for all k. Thus,

we finally obtain

lim
k→∞

∥∥∇L(θk)
∥∥2 → 0. (25)

Employing the result of summable sequences in [13] (Lemma
3), the result in (19) follows.

The result in (25) indicates that the OG algorithm must
converge to a stationary point without requiring a convex
objective function L(θ). Note that Theorem 1 shows that OG
can achieve the same order of convergence rate as GD under
nonconvex smooth cases [11].

From numerical results given in next section, we observe
that OG is powerful for a system with a sufficiently large
number of workers when the data samples are similar among
different workers. With censoring, sufficiently similar data
samples among different workers will cause all workers to
transmit or none of the workers to transmit. If the system
has a large number of workers, many communications will
occur in censoring when all workers violate the censoring
condition whereas OG can reduce the number of transmissions
because of its adaptive stopping rule for different workers at
each iteration.

IV. NUMERICAL RESULTS

In order to illustrate the convergence analysis and demon-
strate communication savings, here we present a few numerical
results for linear regression with the objective function at
worker m being

Lm(θ)
∆
=

Nm∑
n=1

(
yn − x>n θ

)2
(26)

where θ ∈ Rd is the parameter vector, xn is the n-th feature
vector and yn is the corresponding label. To benchmark OG,
we compare it with two methods, the GD method and the
censoring-based GD method (called LAG-WK in [3]). For the
censoring-based GD method, we use (18) with D = 1 and
ξ1 = 0.25 as the censoring threshold. The step size α for GD,
LAG-WK and OG is chosen as 1/L.

We first consider a scenario with one server and nine work-
ers. For worker m, we set yn = 1 for n = 1, 2, ..., Nm and fix
d = Nm = 50. We set X as a diagonal matrix with its diagonal
elements being 200(j − 1)/49 for j = 1, 2, ..., 50. We set
Xm = X+Nm = [x1,x2, ...,xNm

]> where Nm is a random
noise matrix with its elements being independent and standard
normally distributed. Fig. 1 indicates that OG and LAG-WK
require nearly the same number of iterations as GD to achieve
the same objective error. Results in Fig. 1 also indicate that OG
needs fewer number of uplink communications than GD and
LAG-WK and ordering can save transmissions by employing
its adaptive stopping rule. Note that in this case all the workers
have similar data samples.

Next we test performance using a real dataset called
winequality-red [14] in a scenario with a server and 120
workers. We collect the feature vectors in the first 11 columns
of the dataset as a feature matrix X and set the data in the 12th
column of the dataset as the labels yn. We set Xm = X+Nm

with the elements of Nm being independent and standard
normally distributed. Fig. 2 shows that OG and LAG-WK have
nearly the same convergence rate as GD. Results in Fig. 2 also
illustrate that the number of uplink communications required
by OG is significantly smaller than that of LAG-WK for this
case where the system has a large number of workers and each
worker has similar datasets Xm for m = 1, 2, ...,M .

Now we consider a different synthetic data test where
we scale the data at different workers very differently. We
assume a scenario with one server and nine workers where
for each worker m, we use the same method as [3] to
randomly generate feature vectors xn ∈ R50 and labels yn and
rescale the data to mimic the increasing smoothness constants
Lm = (1.3m−1 + 4)2. Fig. 3 shows that OG outperforms
the alternatives in terms of the number of communications
saved while employing a smaller number of iterations than
GD. Additionally, Fig. 4 is obtained by rescaling the data to
mimic the increasing smoothness constants Lm = (1.3m−1)2.
Fig. 3 and Fig. 4 together indicate that the communication
saving gains of OG over LAG-WK are problem specific for the
case where different workers have very different data. Further
investigation will be pursued in future work.

V. CONCLUSION

A new class of communication-efficient distributed learning
algorithms called OG has been described that attempt to
decrease the number of transmissions needed. In OG, each
worker sometimes transmits the difference between its own
current gradient and its last transmitted gradient. OG can
provably achieve the same order convergence rate as GD
for a nonconvex smooth objective function. Numerical results
employing linear regression models have shown that our new
approach can reduce the total number of transmissions to
achieve a targeted objective error when the system has a
large number of workers and data samples are similar among
different workers.
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Fig. 1. Objective error versus number of iterations and communications in the
scenario with 9 workers and uniform smoothness constants between workers.
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Fig. 2. Objective error versus number of iterations and communications in
winequality-red dataset with 120 workers.
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