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Abstract—Quickest change detection in a sensor network is
considered where each sensor observes a sequence of random
variables and transmits its local information on the observations
to a fusion center. At an unknown point in time, the distribution
of the observations at all sensors changes. The objective is to
detect the change in distribution as soon as possible, subject to a
false alarm constraint. We consider minimax formulations for this
problem and propose a new approach where transmissions are
ordered and halted when sufficient information is accumulated
at the fusion center. We show that the proposed approach can
achieve the optimal performance equivalent to the centralized
cumulative sum (CUSUM) algorithm while requiring fewer
sensor transmissions. Numerical results for a shift in mean of
independent and identically distributed Gaussian observations
show significant communication savings for the case where the
change seldom occurs which is frequently true in many important
applications.

Index Terms—Communication efficient, CUSUM, minimax,
ordered transmissions, quickest change detection.

I. INTRODUCTION

Significant attention has been devoted to distributed signal
processing in sensor networks for both military and civilian
applications, such as intrusion detection, secure surveillance,
disaster prediction, internet of things, and health monitoring
[1]. A problem of particular importance is the dynamic de-
cision problem in sensor networks to detect the occurrence
of a change. Such a detection problem can be modeled as
a quickest change detection (QCD) problem, see [2]-[4] and
references therein.

The centralized (single sensor) formulation of QCD is well
studied [2] [5]-[7]. In the classical formulation of QCD, a
decision maker monitoring the environment takes a sequence
of observations whose distribution changes at an unknown
point in time. The objective is to detect the change as
quickly as possible subject to false alarm constraints. Based
on the knowledge of the distribution of the change time, two
formulations of QCD, Bayesian and minimax, are proposed,
and the corresponding optimal solutions are described in [2].
In this paper, we focus on the minimax formulation where we
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model the change time as a deterministic but unknown positive
integer and minimize the worst case detection delay subject to
false alarm constraints.

Compared to the centralized QCD model, in the decen-
tralized QCD setting there are multiple distributed sensors
and a common decision maker at a fusion center. Further,
each sensor takes some observations, processes them and
then transmits a summary to the fusion center. At an un-
known change time, the distributions of the observations at
all sensors change simultaneously. Based on the information
received, the fusion center would like to detect the change
as soon as possible subject to false alarm constraints. This
decentralized QCD problem has been well investigated [§]
[9]. Typically, each sensor in the network carries its own
limited energy sources. Hence, communication efficiency is an
important topic in the decentralized QCD problem. Methods
for improving communication efficiency include quantization
and reducing the number of communications, see [4] [10] [11]
and references therein.

One popular approach called censoring has been shown to
be an effective method to improve communication efficiency
where only highly informative data is transmitted in QCD
[4] [11]. Censoring yields transmission savings but always
increases detection delay, unlike the ordered transmission
approach we introduce next.

The work in [12]-[14] employs the idea of ordered trans-
missions for a nonchanging hypothesis testing problem where
sensors with the most informative observations transmit first.
Transmissions can be halted when sufficient information is
accumulated for the fusion center to decide which hypothesis
is true. In this paper, we employ ordering in QCD to save
communications without any impact on detection delay, and
show that the average number of communications saved by
our approach increases at least proportional to the number
of sensors while detection delay is not affected provided a
well-behaved distance measure between the distribution before
the change and the distribution after the change is sufficiently
large.

The remainder of the paper is organized as follows. In
Section II, we present the mathematical formulation of the
quickest change detection problem. Section III reviews the
classical optimal CUSUM algorithm in the context of sensor
networks. We propose and analyze the ordered transmission
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approach in Section IV. Numerical results are provided to
illustrate the gains of our approach in Section V. We draw
our conclusions in Section VI.

II. PROBLEM FORMULATION

We consider a sensor network with K sensors and a fusion
center. Sensor k for £k = 1,2,.., K observes the sequence
{Xn.k}n>1 with n being the time slot index. At an unknown
time slot 7, the distribution of {X,, »}»>1 for all the sensors
changes from fj to f; where fy and f; are the known probabil-
ity density functions (pdfs) before and after the change time,
respectively. Throughout this paper we make the following
assumptions.

Assumption 1: The random variable X, ; is independent
across the time slot index n and sensor index k& conditioned
on the change time 7.

Assumption 2: The distributions of the observations at all
sensors change simultaneously at the change time 7.

The objective is to detect a change as quickly as possible
after the change occurs which implies the goal is to minimize
detection delay if the change occurs. As long as no change is
declared, the sensors will continue observing data. Without a
prior on the distribution of the change time, we employ the
constraint

Eoo(n) = 7 6]

where E,(n) is the average delay when the change does not
occur, and v is a pre-specified constant. If the change occurs,
then there are two formulations to evaluate the detection delay.
The first formulation employs the worst case average detection
delay (WADD) defined in [5] as

WADD(n) = sup ess supE. [(n —7)"|Z._1]  (2)
T>1
where esssup X denotes essential supremum of X, E;
is the expectation when the change occurs at time 7,
A A
(.T)+ = maX{.’L‘,O}, IT—I = (X[l,‘rfl],l7"'7X[1,7'71],K) de—
notes past global information at time slot 7, and Xp; »_1) x 2
(X1,ky -, Xr—1,5) denotes past local information at sensor

k. The other formulation employs the conditional average
detection delay (CADD) which is defined as [7]

CADD(n) = supE,[n — 7|n > 7]. 3)
T>1

Thus, the quickest change detection problem in a minimax set-
ting can be formulated as a constrained optimization problem

min WADD(n) or min CADD(n)
s.t. Ex(n) > 7. %)

In the following sections, we will first review the likelihood ra-
tio procedures to solve (4) and then propose a communication-
efficient approach to achieve the same detection performance
while saving communications.

III. LIKELIHOOD RATIO METHOD

In this section, we review the likelihood ratio procedure in
the quickest change detection problem [3]. The QCD problem
can be modeled as a hypothesis testing problem, given by [3]

Hj : no change occurs
H; : change occurs at some finite time slot 7. (®)]
Note that when the change occurs, all sensors are assumed to

be affected simultaneously as mentioned in Assumption 2.
The log-likelihood ratio (LLR) up to time n for (5) is [3]

LLR,
1 fo (X)) [T, A1 (Xix)
= max [ 6
1<7r?<n 08 H7 1f0( i K]) ©)
b f1(Xix)
:1?£§nzzl & Fo(Xin) )

where X LK) = 2 (X115 -+ Xi1,k7)- The result in (7) is
obtained since the observations between different sensors are
independent.

The corresponding likelihood ratio procedure will raise an
alarm at time

Tyr(b) =inf{n >1:LLR, > b} (8)

where the constant b needs to be chosen properly to satisfy
the false alarm constraint in (1). It turns out that the procedure
in (8) is also called the CUSUM algorithm where the fusion
center declares a change at

Tes(b) =inf{n >1: W, > b} )]
where the CUSUM statistic W,, is defined as
n K
f1(Xik)
Wn = 1<m2€§+1 :Zm;log fO(Xi,k:) (10

In this paper, if the upper index of any summation is smaller
than the lower index, then we define the summation to be zero.
A nice property of the non-negative CUSUM statistic W, is
that it can be computed recursively as

(X,
Wi 1+Zlog e . ;} (11)

with Wy = 0. The above recursion is powerful in online
detection since it requires little memory. At each time slot n
of the CUSUM algorithm, all sensors are required to transmit
their LLRs and the fusion center computes W,, according to
(11). We note that when we employ the CUSUM algorithm
with Wy = 0, WADD(n) in (2) and CADD(n) in (3) are equal
to [2]

W, = max{

WADD(n) = CADD(n) = E; [n — 1] (12)

which means the worst case detection delay occurs at 7 =
1. The result in (12) makes the computation of CADD and
WADD in simulations straightforward.
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The power of the traditional CUSUM test is enhanced
with a larger number of sensors, but this also requires more
communications. Here, we employ ordering to reduce the
number of transmissions while maintaining optimality.

IV. ORDERED TRANSMISSIONS

In this section, we propose a communication-efficient ap-
proach to detect a change in distribution via ordered trans-
missions. The idea is to order and halt the transmissions of
the LLR. Employing the approach described in Algorithm 1,
at each time slot the sensor with the largest LLR magnitude
transmits first and the sensors with smaller LLR magnitudes
possibly transmit later. By sometimes halting transmissions
before all sensors have communicated their LLRs, commu-
nications can be saved while achieving the same detection
delay as the optimal CUSUM algorithm where all sensors
communicate their LLRs to the fusion center.

At each time slot n for n = 1,2, ..., we order transmissions
according to the magnitudes of the LLRs. We denote log ﬁn,l,
..., log I:n x as the nonincreasing rearrangement of the LLRs
{1Og(f1 (Xnk)/fO(Xn,k)) kK=1 for which

’logl:n’l‘ > ‘logﬁntg‘ > .. ‘1ogﬁn)K‘ . (13)
Our ordered-CUSUM transmission approach is summarized in
Algorithm 1. If all transmission propagation delays are known
and timing is synchronized, one can schedule all transmissions
back to the fusion center so they arrive in the correct order.
However, even with inaccurate estimates of propagation delays
or imperfect synchronization, since the fusion center receives
the values to be ordered, the fusion center can put them back
in order correctly as long as the fusion center waits a short
period related to the uncertainty, see [15].

Algorithm 1 ordered-CUSUM.

Input: a positive constant b.
Initialize: n = 0, W, = 0 and a positive number 7'.
1: while W,, < b do
n =n+ 1 (update time slot).
Sensor k computes its LLR for all k =1, ...K.
for k¥’ =1,2,...,K do
log IAML,;@/ is transmitted to the fusion center after
time equal to 7/|log ﬁn7;€/|.
6: / The fusion center computes Wy, = W, _1 +
ZI;=1 log Ly, and t,, 1 = —(K — k’)|log Ly j|-

7 if Wn,k" < tn,L then

8 The fusion center decides W,, = 0.

9: break for loop and go to line 2.

10: else

11: Continue for loop.

12: end if

13: end for

14: The fusion center computes W,, according to (11).

15: end while
16: Declare the change occurs at time slot n.

An advantage of the ordered transmission approach can be
summarized in the following theorem.

Theorem 1: Under Assumptions 1 and 2, if there exists
a time slot n such that W, ,» < ¢, with ¥ < K, then
Algorithm 1 gives the same detection performance as the
optimal full communication CUSUM algorithm (all sensors
transmit their LLRs to the fusion center at each time slot),
while using a smaller number of transmissions.

Proof: During time slot n (see Algorithm 1), when the

fusion center receives a new LLR, it updates ¢,, 7, (a threshold)
according to

tns 2 (K = k) |10g Lu | (14)
and compares it with
A v
Wage S Waor+ ) 10g L. (15)
k=1

Note that the largest possible positive contribution from the
sum of the sensor LLRs that have not yet transmitted is —t,, ..
If Wy < tn,r, then W, has to be zero based on (11),
regardless of the LLRs that have not yet been transmitted.
Hence, even without receiving further transmissions, the fusion
center can implement the optimum CUSUM algorithm at this
time slot n. In fact, if ¥’ < K is true, then Algorithm 1 can
at least save one transmission, thus Algorithm 1 will have
a smaller average number of transmissions than the optimal
CUSUM algorithm. Otherwise they employ the same number
of transmissions. [ ]

One interesting question is whether the communication
saving gains of the ordered transmission approach described
in Algorithm 1 are large or not. To study this, we assume that
there exists a distance measure denoted as s between fp and
f1. This distance measure s satisfies the following fairly mild
assumption.

Assumption 3: For the hypothesis testing problem
considered in (5), we assume that the probability
Pr(log(f1(Xnx)/fo(Xnk)) <O0n <7)—=1ass— oo and
Pr(log(f1(Xnx)/fo(Xnk)) >0n>7) = 1as s — oo for
alk=1,...,. K.

Next we provide the following theorem on the average
number of transmissions saved by Algorithm 1.

Theorem 2: Under Assumptions 1-3, consider the approach
in Algorithm 1 for the quickest change detection problem in
(5). With a sufficiently large s (distance measure), the average
number of transmissions saved over the optimal CUSUM
algorithm increases at least as fast as proportional to K while
the detection delay is not affected.

Proof: The proof of Theorem 2 is omitted due to space
constraints. [ ]
Although Theorem 2 requires a sufficiently large distance
measure s, numerical results indicate that s does not have
to be very large in some cases of interest to observe the event
in Theorem 2.

1) is a global fixed constant. The value of 1 can be made as small as the
system will allow.
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Fig. 1: The worst case average detection delay versus the
distance measure for K = 100 and K = 150.

V. NUMERICAL RESULTS

We first compare the performance of our approach with
CUSUM as a function of the distance measure s between fj
and f;. Recall that CUSUM requires all sensors to transmit
during each time slot. We plot WADD versus the distance mea-
sure in Fig. 1 for the parameters 7 = 1, v = 103, fo = N(0,1)
and f; = N(s,1). Fig. 1 illustrates that our approach has
the same worst average detection delay as CUSUM. It also
illustrates that WADD decreases as s is increased because the
change time becomes easier to detect as s becomes larger.
In Fig. 2, we plot the number of transmissions versus the
distance measure s when the change does not occur. This
indicates that our approach can save a significantly large
number of communications compared to CUSUM. Fig. 1 and
Fig. 2 together show that more sensors can lead to a smaller
WADD at the cost of more transmissions which implies a
basic tradeoff between the number of communications and the
detection delay when the false alarm constraint is fixed.

Fig. 3 shows WADD as a function of the number of
sensors K for our approach and CUSUM for v = 103,
fo =N(0,1) and f1 = N(s,1) with s = 0.2 and s = 0.3.
It indicates that our ordered-CUSUM algorithm provides the
same detection performance as CUSUM. It also illustrates that
WADD decreases as the number of sensors K is increased,
which is reasonable since larger K implies more observations
can be obtained per observation time slot which can help
us detect the change more quickly. The result in Fig. 3 is
consistent with our intuition that a change with a larger
distance measure s is easier to detect which results in a smaller
WADD. With the same parameter setting, Fig. 4 shows that
the average number of communications saved by our approach
increases approximately linearly with K for every value of s.
In addition, Fig. 4 indicates that the rate of increase with K
becomes faster when the distance measure s is increased.
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Fig. 2: Number of communications when the change does not
occur versus the distance measure for K = 100 and K = 150.
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Fig. 3: The worst case average detection delay versus the
number of sensors K for s = 0.2 and s = 0.3.

In Fig. 5, we compare WADD of our approach and CUSUM
as a function of v for 7 = 1, fo = N(0,1) and f; =
N(0.5,1). This illustrates the basic tradeoff between WADD
and . Fig. 6 also indicates that our approach can reduce the
number of communications needed as compared to the number
needed in the optimal CUSUM algorithm.

VI. CONCLUSION

In this paper, a new communication-efficient QCD approach
has been proposed in sensor networks that reduces the number
of transmissions without any impact on detection delay when
compared to the classical CUSUM algorithm. In our approach,
the sensors with more informative observations transmit their
data to the fusion center earlier during each time slot. We have
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Fig. 4: Number of communication saved when the change does
not occur versus the number of sensors K for s = 0.2 and
s =10.3.
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Fig. 5: The worst case average detection delay versus the false
alarm constraint | log~y| for K = 100 and K = 70.

shown that the average number of transmissions saved by our
approach can increase at least as fast as proportional to the
number of sensors when the distance measure between f; and
f1 is sufficiently large.
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