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ABSTRACT

Clock synchronization is a mechanism for providing a
standard time to various devices across a network. This
monograph provides a comprehensive overview of recent
developments for clock synchronization protocols built on
two-way message exchanges. Several clock synchronization
protocols are available in the literature for distributing time
from high-cost, high-stability clocks (termed masters) to
low-cost, low-stability clocks (termed slaves) via an inter-
connecting network. A number of clock synchronization
protocols are built on two-way message exchanges. These
include the timing protocol for sensor networks (TPSN),
lightweight time synchronization (LTS) protocol, tiny-sync
and mini-sync, network time protocol (NTP) and the IEEE
1588 precision time protocol (PTP). The messages traveling
between the master and slave nodes can encounter several
intermediate switches and routers, accumulating delays at
each node. The main factors contributing to the overall
delay are the fixed propagation and processing delays at
the intermediate nodes along the network path between the
master and slave, as well as the stochastic queuing delays at
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each such node. Popular probability density function (pdf)
models for modeling the stochastic delays include Gaussian,
exponential, gamma, Weibull, and log-normal. Although
these pdf models for the stochastic queuing delays apply
to several scenarios, they might not be suitable in specific
scenarios such as cellular base station synchronization using
mobile backhaul networks and IEEE 1588 in 4G Long Term
Evolution (LTE) networks. Further, there could be possibly
unknown asymmetries between the fixed path delays in the
forward master-to-slave path and the reverse slave-to-master
path. These unknown asymmetries could arise from various
sources, including delay attacks or incorrect modeling. In
this monograph, we present recent developments for clock
synchronization protocols built on the two-way message
exchange. After an introduction to the basic concepts and
mathematical models, the optimum estimators are presented
for estimating the clock skew and offset that are applicable
for any pdf model of the stochastic delays. Robust algo-
rithms that can also handle unknown path asymmetries
are presented next. The focus is on techniques that con-
sider practical, relevant measurement models in order to
guide the reader from physical observations to the actual
synchronization of the clocks at the slave and master.
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1
Introduction

The proper functioning of a distributed network is critically dependent
on the availability of a standard reference time for the various devices
in the network. These devices, typically at different geospatial locations,
usually perform timekeeping locally using clock hardware that exploits
the periodicity of certain physical phenomena, such as the mechanical
resonance of vibrating crystals (in low-cost quartz crystal oscillators), or
electromagnetic transitions within cesium or rubidium atoms (available
in expensive atomic clocks). However, such timekeeping techniques are
subject to errors that can accumulate over large time scales. Further,
the cost, size, and complexity of timekeeping hardware are typically
proportional to clock stability. As a result, there are often scenarios
where it is impractical to locally maintain the clock hardware required to
achieve the desired level of stability due to space or budget constraints.

Clock synchronization is a mechanism for providing a standard
reference time to various devices across a distributed network. It is
critical in modern computer networks because every aspect of managing,
securing, planning, and debugging a network involves determining when
particular events happen. Time provides the standard frame of reference
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4 Introduction

for the various devices on the network. A few key areas where time-
synchronized information can directly affect network operations are:

1. Network Fault Diagnosis and Recovery: Information regarding key
network events are usually stored in switches, routers, and other
dedicated devices. In case of a network fault or crash, the proper
sequence of events can be established, and the root cause can
be quickly identified, only if the timestamps associated with the
recorded events are synchronized.

2. File Timestamps: In a distributed file-sharing system, a master
file is maintained by a Network File Sharing (NFS) server for use
by remote clients. NFS is network time-dependent. Thus, when
presented with duplicate versions of the file, it saves the latest
copy. However, if a client is not synchronized to the network and
produces a timestamp for a remotely accessed file with a time
earlier than the file maintained on the server, the client file, along
with any changes, are discarded [65].

3. Services: Several user services, including billing and financial
services, require highly accurate timestamps.

4. Miscellaneous: Many localization, security, and tracking protocols
in distributed networks also demand the devices to timestamp
their messages and events [74].

One of the most popular mechanisms for achieving standard time
across a network is to use the Global Positioning System (GPS) [51, 63].
Each GPS satellite contains multiple atomic clocks that contribute ac-
curate time data to the GPS signals. GPS receivers decode these signals,
effectively synchronizing each receiver to the atomic clocks. Although
GPS-based timing is very accurate, it may not be feasible to equip every
device in a network with a GPS receiver. Further, GPS-based time syn-
chronization requires line-of-sight between the network device and the
GPS satellite, a condition that might not be possible for some devices
in the network. GPS spoofing is also a serious concern [36, 45, 60, 61].

A popular alternative to GPS-based timing is network time distribu-
tion. Here the time from a high-cost, high-stability clock (termed master)
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is distributed to low-cost, low-stability clocks (termed slaves) via an
interconnecting network. Several clock synchronization protocols based
on network time distribution are available in the literature. For instance,
the network time protocol (NTP) [52] and the IEEE 1588 precision time
protocol (PTP) [32] are widely used in IP networks, while protocols
such as the timing protocol for sensor networks (TPSN) [20], lightweight
time synchronization protocol (LTS) [70], tiny-sync and mini-sync [62],
and reference broadcast time synchronization (RBS) protocol [10] are
used in wireless sensor networks. Network time distribution is often
more cost-effective than GPS-based timing, as it does not require any
dedicated hardware and can often make use of the existing network
resources for synchronizing devices across the network.

Though the time synchronization protocols for network time distri-
bution differ from each other in many aspects, a fundamental mecha-
nism common to a number of clock synchronization protocols including
TPSN [20], LTS [70], tiny-sync and mini-sync [62], and PTP [32], is
the two-way message exchange. This refers to the exchange of messages
between a pair of nodes to achieve clock synchronization. During a
two-way message exchange, a slave node exchanges a series of synchro-
nization packets with a master node over an interconnecting network and
collects timestamps corresponding to the departure and arrival times
of these packets. The slave then attempts to utilize these timestamps
to correct its clock. However, as with any packet-switched network,
the exchanged packets experience difficult to predict (stochastic) de-
lays as they traverse the network. These stochastic delays experienced
by packets can significantly degrade the performance of various clock
synchronization protocols. In this monograph, we present some recent
developments to combat the degrading effects of stochastic delays for
clock synchronization protocols based on two-way message exchange.

While the techniques presented in the monograph apply to many
applications and any clock synchronization protocol based on two-way
message exchanges, we mainly discuss the applications of our results in
the context of IEEE 1588 PTP applied to telecommunication networks.
IEEE 1588 PTP [32] is a popular time synchronization protocol used in
a number of scenarios, including electrical grid networks [18], cellular
base station synchronization in 4G Long Term Evolution (LTE) [24, 25],
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6 Introduction

substation communication networks [33] and industrial control [29]. It
is cost-effective and offers accuracy comparable to GPS-based timing.
Emerging technologies such as fog computing and industrial Internet of
Things (IIoT) networks have identified the IEEE 802.1Q amendment for
Time-Sensitive Networking (TSN) as the standard for time-predictable
networking [46]. TSN employs PTP to provide a global notion of time
over the local area network.

Packet-based time synchronization techniques based on PTP [32]
are being increasingly considered as a viable alternative to GPS-based
time synchronization as a means to provide sub microsecond-level
synchronization between the cellular base stations in 4G LTE mobile
networks [24, 25, 28, 55, 56, 73]. Further, PTP has been explored as
a possible cost effective solution for synchronizing base stations in
5G new radio (NR) cellular networks [26, 27]. Such a high degree of
synchronization accuracy between the cellular base stations (<1.5 µs)
is necessary for 4G LTE/5G NR cellular networks to enable seamless
handovers between cell towers, reduce inter-cell interference, and enable
the use of MIMO techniques to improve capacity [2, 26, 27].

Packet-based synchronization based on PTP is often more cost-
effective than GPS-based time synchronization as it can utilize the
existing mobile backhaul network infrastructure that is used to intercon-
nect cell towers. However, since backhaul networks are typically leased
from commercial internet service providers (ISPs), mobile network op-
erators must share their use with other commercial and residential
users. Background traffic generated by these users often results in size-
able random network delays that hinder packet-based synchronization.
Overcoming this problem is key to the adoption of packet-based syn-
chronization schemes in mobile backhaul networks, especially given that
the synchronization accuracy requirements are only expected to grow
more stringent in the future.
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2
Basic Models

In this section, we first describe the popular affine model for modeling
the clock of a slave node in a network. We then describe the two-way
message exchange employed in the IEEE 1588 precision time protocol
(PTP), Timing protocol for sensor networks (TPSN), and Lightweight
time synchronization protocol (LTS). Finally, we describe the popular
probability density function (pdf) models available in the literature for
modeling the statistical distribution of the stochastic queuing delays.

2.1 Clocks in Networks

Every individual device in a network has a clock. Ideally, the clock of
the device, c(t), should be configured such that c(t) = t, where t is
the standard time reference of the network or the clock time of the
master node. A simple approximation of the clock time at the slave
node, cslave,offset(t), as a function of the clock time of the master node,
is the clock offset model. In this model, we have

cslave,offset(t) = t+ δ, (2.1)

where δ denotes the clock offset between the clocks of the master and
slave node. Many publications [8, 21, 22, 34] have considered this model
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8 Basic Models

which is sometimes suitable, for example with synchronous Ethernet
in LTE backhaul networks [24, 25, 30] when frequency synchronization
is already maintained. Although the clock-offset model is simple, in
cases where frequency synchronization is not already maintained it only
coarsely reflects the actual measured clock behavior. Hence, the accuracy
of clock synchronization algorithms relying on this model is generally
poor when frequency synchronization is not already maintained [14].

The affine clock model is a popular alternative to the clock offset
model for modeling the clock time of the slave node, cslave,aff(t), in terms
of the clock time of the master node, t. In this model, we have

cslave,aff(t) = φt+ δ, (2.2)

where φ denotes the relative clock skew (the frequency offset is (φ− 1))
and δ denotes the clock offset of the slave’s clock time with respect to
the master’s clock time [7, 18, 21–23, 25, 48, 57]. Etzlinger et al. [12, 13]
showed that the affine clock model is significantly more accurate than
the simple clock offset model, where only the presence of a clock offset
is assumed between the master and slave node for cases where frequency
synchronization is not already maintained.

If the clocks at the slave and master node are synchronized, then
cslave(t) = t, where cslave(t) = cslave,offset(t) for the clock offset model and
cslave(t) = cslave,aff(t) for the affine clock model. However, in practice,
these clocks are not synchronized, implying a synchronization error
e(t) = |cslave(t) − t| that can grow over large timescales. Also, over
large time scales, the clock parameters slowly change due to various
reasons, including temperature, atmospheric pressure, voltage changes,
and aging hardware [71, 74]. Hence, even if the clock of the slave node
is perfectly tuned initially, the clock can drift away from the ideal time
due to the inherent imperfections in a clock oscillator [74], which in
turn means the relative clock offset and skew might change with time.
Hence, it is necessary for devices in the network to perform periodic
clock synchronization to adjust the clock parameters to ensure that the
timing error does not become significantly large.
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2.2. Synchronization via Two-Way Message Exchanges 9

Figure 2.1: Two-way synchronization between a master and slave.

2.2 Synchronization via Two-Way Message Exchanges

Two-way message exchange is a classical mechanism for synchronizing
two devices in a packet-switched network. Examples of clock synchroniza-
tion protocols that employ this approach include TPSN [20], LTS [70],
tiny-sync and mini-sync [62], and PTP [32]. Let us denote the relative
clock skew and offset of the slave node relative to its master clock by φ
and δ, respectively. We now describe the underlying two-way message
exchange mechanism in PTP. During the two-way message exchange
in PTP (see Figure 2.1), the following series of packet exchanges are
performed between the master and slave to determine φ and δ:

1. The master initiates the message exchange by sending a SYNC
packet to the slave at time t1. The value of t1 is later communicated
to the slave via a FOLLOW_UP message.

2. The slave records the time of reception of the SYNC message
as t2. The relationship between t1 and t2 is given by

t2 = φ(t1 + dms) + δ, (2.3)
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10 Basic Models

where dms is the end-to-end (ETE) network delay between the
master and the slave.

3. The slave sends a DELAY_REQ message to the master, recording
the time of transmission as t3.

4. The master records the time of arrival of the DELAY_REQ packet
as t4. The relationship between t3 and t4 is given by

t3 = φ(t4 − dsm) + δ, (2.4)

where dsm is the ETE delay between the slave and the master.
The value of t4 is sent to the slave using a DELAY_RESP packet.

Thus, four timestamps {t1, t2, t3, t4} are available to the slave at the
end of each two-way message exchange.

2.3 Packet Delay Models

The packets traveling between the master and the slave hop across
several intermediate nodes (switches or routers), that are typically part
of a larger network that is shared among multiple users (see Figure 2.2
for an example).

Hence each intermediate switch concurrently services background
traffic generated by other network users, in addition to synchronization
traffic. The ETE delay for a timing packet is the sum of a fixed deter-
ministic delay component and stochastic delay component. The fixed

Figure 2.2: Example of a four switch network with cross and traffic flows. Red
lines indicate network links, blue lines indicate the direction of background traffic
flows, and green line represents the direction of synchronization traffic flows from
the master to slave.
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2.3. Packet Delay Models 11

delay component corresponds to constant propagation and processing
delays, while the stochastic delays occur due to contention for service
with background traffic. Hence, the ETE delays can be modeled as

dms = d1 + w1; (2.5)
dsm = d2 + w2, (2.6)

where d1 and d2 denote the deterministic delays in the forward master-
to-slave path and the reverse slave-to-master path, respectively, while
w1 and w2 represent the stochastic queuing delays. The statistical
distribution of the stochastic delays, w1 and w2, depend on various
network parameters (e.g., network status and traffic); therefore, no
single delay model can be found to fit for every case [74]. Some popular
pdf models for modeling the stochastic queuing delays are described
next.

2.3.1 Gaussian Delay Model for Stochastic Delays

The Gaussian delay model assumes that the stochastic queuing delays
follow a Gaussian distribution with zero mean, i.e.,

fwk(w) = 1√
2πσ2

k

exp
(
w2

2σ2
k

)
, (2.7)

where σ2
k denotes the variance of the Gaussian random variable for

k = 1, 2. If the exact distribution of the stochastic queuing delays is
unknown, the Gaussian pdf delay model is sometimes justified by the
Central Limit Theorem (CLT), which states that the pdf of the sum
of a large number of independent and identically distributed (i.i.d)
random variables asymptotically approaches that of a Gaussian random
variable [74]. The Gaussian pdf model for the stochastic queuing delays
has been considered in [10, 48, 57].

2.3.2 Exponential Pdf Delay Model for Stochastic Delays

Another popular pdf model for stochastic delays is the exponential delay
model. This model assumes that the stochastic queuing delays follow
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12 Basic Models

an exponential distribution, i.e.,

fwk(w) = 1
λk

exp
(
− w
λk

)
, (2.8)

for k = 1, 2. In (2.8), λk denotes the rate parameter of the exponential
distribution. The exponential random variable is suitable for modeling
the delay for point-to-point connections in an M/M/1 queue [1]. The
exponential pdf delay model for the stochastic queuing delays has been
considered in [7, 8, 11, 34, 49].

2.3.3 General Pdf Delay Model for Stochastic Delays

Although the exponential and Gaussian pdf delay models apply to
several scenarios, they might not be suitable in certain specific scenarios.
For instance, consider the case of the application of PTP to telecommu-
nication networks. Here, as opposed to the Gaussian and exponential
random variables, the stochastic delays w1 and w2 are non-negative
random variables with a finite maximum value. The finite maximum
value assumption is reasonable since synchronization packet is typically
assigned higher priority than packets of background traffic, hence the
worst-case queuing delay is bounded for a finite number of switches
between the master and the slave [21, 23]. The empirical pdf (and
the corresponding cumulative density function (cdf)) of the stochastic
delays for a reasonable model of this scenario were obtained in [21–23].
To obtain these pdfs, a gigabit Ethernet network consisting of a cascade
of 10 switches between the master and slave nodes was considered. Each
switch is assumed to be a store-and-forward switch that implements
strict priority queuing. With regard to the distribution of packet sizes in
background traffic, Traffic Model 1 (TM1) and Traffic Model 2 (TM2)
from the ITU-T recommendation G.8261 [67], as specified in Table 2.1,
were employed.

The inter-arrival times between packets in all background traffic
flow are assumed to follow an exponential distribution. The percentage
of the link capacity consumed by background traffic is referred to as
the load. The rate parameter of each exponential distribution can be
set accordingly in order to achieve a particular load (see [21–23]). The
empirical pdf (and the corresponding cdf) for TM1 and TM2 under
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2.3. Packet Delay Models 13

Table 2.1: Models for composition of background traffic packets

Traffic Model Packet Sizes (in Bytes) % of Total Load

TM1 {64, 576, 1518} {80%, 5%, 15%}
TM2 {64, 576, 1518} {30%, 10%, 60%}

various loads are shown in Figures 2.3 and 2.4, respectively. As seen
from Figures 2.3 and 2.4, the Gaussian or the exponential delay models
do not seem suitable for all network scenarios (especially at low or
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Figure 2.3: Empirical pdf and cdf of queuing delays under various loads for TM1
assuming 10 switches between the master and slave node. (a) pdf under loads 20%
and 40%. (b) pdf under loads 60% and 80%. (c) cdf under loads 20% and 40%. (d) cdf
under loads 60% and 80%.
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Figure 2.4: Empirical pdf and cdf of queuing delays under various loads for TM2
assuming 10 switches between the master and slave node. (a) pdf under loads 20%
and 40%. (b) pdf under loads 60% and 80%. (c) cdf under loads 20% and 40%. (d) cdf
under loads 60% and 80%.

medium loads). In the following sections, we present recently developed
optimum clock skew and offset estimators for IEEE 1588 PTP [32].1

1The developed optimum estimators are optimum for any clock synchronization
protocol built on the two-way message exchange scheme such as the TPSN [20] or
LTS [70].
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3
Statistical Preliminaries

The purpose of this section is to formalize the concept of invariance
by defining groups of transformations over parameter and observation
spaces. To this end, we repeat several essential definitions from [4, 47]
to establish some concepts of invariant estimation theory. It is assumed
throughout this section that the observed data x ∈ RN is characterized
by the pdf f(x | θ), which depends upon the vector of unknown
parameters θ ∈ RM with the corresponding parameter space Θ.

3.1 Performance of an Estimator

Let us suppose that we are interested in estimating an unknown scalar
parameter θ = cTθ, where c ∈ RM is a constant vector. Let ψ de-
note an estimator of θ, ψ(x) denote the estimate of θ obtained using
the estimator ψ on x, and L(ψ(x),θ) denote the considered loss func-
tion. The performance of the estimator ψ can be characterized by the
following [47]:

1. The conditional risk of an estimator

R(ψ, θ) =
∫

RN
L(ψ(x), θ)f(x | θ)dx. (3.1)

15
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16 Statistical Preliminaries

2. The maximum risk of an estimator

M(ψ) = sup
θ∈Θ
R(ψ, θ). (3.2)

3. The average risk of an estimator

B(ψ, p) =
∫
θ∈Θ
R(ψ, θ)p(θ)dθ, (3.3)

where p(θ) is a prior distribution defined over θ ∈ Θ.

3.2 Groups of Transformations

We now present some important definitions from [4] with regards to
invariant estimation theory. A measurable function f : RN → RN is
called a transformation on RN . If g1 and g2 are two transformations
on RN , the composition of g1 and g2, denoted by g2g1, is defined as
g2g1(m) = g2(g1(m)) for m ∈ RN . We are now ready to define a group
of transformations.

Definition 1 (Section 6.2.1, [4]). A group of transformations on RN ,
denoted by G, is a set of bijective transformations which satisfy the
following conditions:

• If g1 ∈ G and g2 ∈ G, then g2g1 ∈ G.

• If g ∈ G, then g−1, the inverse transformation defined by the
relation g−1(g(x)) = x, is in G.

• The identity transformation e, defined by e(x) = x, is in G.

Example 3.1. Let x ∈ R and consider the set of transformations G =
{gc: c > 0}, where gc(x) = cx. It is easy to see that the functions gc are
bijective. Also, note that

• gc2gc1(x) = c2c1x = gc2c1x. So gc2gc1 ∈ G.

• The identity element is e = g1.

• For every gc ∈ G, the inverse of the element is gc−1 ∈ G.

So G is indeed a group of transformations.
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3.3 Invariant Decision Problems

Let F denote the family of all pdfs f(x | θ) for θ ∈ Θ and G denote a
group of transformations on RN .

Definition 2 (Section 6.2.2, [4]). The family of pdfs F is said to be
invariant under G, if for every g ∈ G and θ ∈ Θ, there exists a unique
θ∗ ∈ Θ such that xg = g(x) has a pdf f(xg | θ∗). For a given transfor-
mation g on the observations, the parameters are transformed from θ

to θ∗. We denote θ∗ as ḡ(θ). For a given g, the transformation θ → θ∗

is a transformation of Θ into itself.

Remark 3.1. If the family of pdfs F is invariant under G, then

Ḡ = {ḡ: g ∈ G} (3.4)

is a group of transformations on Θ [4], since the group of transformations
Ḡ defined in (3.4) satisfies the conditions listed in Definition 1. We now
present a simple example to illustrate these ideas.

Example 3.2. Let x = [x1, x2, . . . , xN ] and h(·) be a known pdf. Con-
sider the family of pdfs of the form

f(x | θ) = 1
σN

h

(
x− µ1TN

σ

)
, (3.5)

where µ ∈ R (location parameter) and σ ∈ R+ (scale parameter) are
both unknown. The family of such pdfs is invariant under the group of
location-scale transformations GLS , on RN , defined as

GLS = {ga,b(m): ga,b(m) = am+ b1N} (3.6)

where a ∈ R+, b ∈ R and m ∈ RN , since xg = ga,b(x) = [xg1, xg2, . . . ,
xgN ] has the pdf (aσ)−Nh(xg−(aµ+b)1TN

aσ ).
The corresponding group, ḠLS , of induced transformations on Θ =

{(µ, σ): µ ∈ R and σ ∈ R+}, is given by

ḠLS = {ḡa,b(µ, σ): ḡa,b(µ, σ) = (aµ+ b, aσ)}. (3.7)

For an invariant estimation problem, we need to have a loss function
that is invariant to the group of transformations. We now present the
definition of an invariant loss function.
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Definition 3 (Section 6.2.2, [4]). Let the family of pdfs F be invariant
under the group G. Let ψ denote an estimator of θ ∈ θ, and ψ(x)
denote the estimate of θ obtained from the received observations x
characterized by the pdf f(x | θ). A loss function L(ψ(x),θ) is said to
be invariant under G, if for every g ∈ G, there exists a transformation g̃
on ψ(x) such that L(ψ(x), θ) = L(g̃(ψ(x)), ḡ(θ)) for all θ ∈ Θ.

The formal structures of the statistical distributions of x and g(x)
must be identical in an invariant estimation problem. Hence the in-
variance principle states that the estimates obtained from x and g(x),
using an estimator must be related [4]. We are now ready to present
the definition of an invariant estimator.

Definition 4 (Section 6.2.3, [4]). Let ψ denote an estimator of θ ∈ θ, and
ψ(x) denote the estimate of θ obtained from the received observations
x characterized by the pdf f(x | θ). We say ψ is invariant under the
group G if for all x ∈ RN and g ∈ G,

ψ(g(x)) = g̃(ψ(x)), (3.8)

where g̃ ∈ Ḡ defined in (3.4).

Example (Example 1 Continued). Let µ̂ and σ̂ denote estimators of
µ and σ, respectively and let µ̂(x) and σ̂(x) denote the estimates
obtained from x. The estimators µ̂ and σ̂ are invariant under GLS
defined in (3.6), if

µ̂(ga,b(x)) = aµ̂(x) + b, and σ̂(ga,b(x)) = aσ̂(x) (3.9)

for all ga,b ∈ GLS . Suppose the loss functions for µ and σ are defined as

Lµ(µ̂(x), [µ, σ]) = (µ− µ̂(x))2

σ2 , (3.10)

and

Lσ(σ̂(x), [µ, σ]) = (σ − σ̂(x))2

σ2 , (3.11)

respectively. The loss functions are invariant under GLS from (3.6), since

(µ− µ̂(x))2

σ2 = ((aµ+ b)− µ̂(ga,b(x)))2

a2σ2 (3.12)
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and
(σ − σ̂(x))2

σ2 = (aσ − σ̂(ga,b(x)))2

a2σ2 , (3.13)

for all ga,b ∈ GLS from (3.6). The loss functions given in (3.10) are
called the scale-normalized squared error loss. Also note that, any loss
functions for µ and σ, of the form

Lµ(µ̂(x), [µ, σ]) = |µ− µ̂(x)|k

σk
, (3.14)

and

Lσ(σ̂(x), [µ, σ]) = |σ − σ̂(x)|k

σk
, (3.15)

respectively, are invariant under GLS from (3.6), for k = 1, 2, . . ..

We now present an important definition regarding the transitivity of
the group of transformations on Θ and the conditional risk of invariant
estimators.

Definition 5 (Section 6.2.3, [4]). A group Ḡ of transformations of Θ is
said to be transitive if for any θ1,θ2 ∈ Θ, there exists some ḡ ∈ Ḡ for
which θ2 = ḡ(θ1).

Example (Example 1 Continued). Let θ1 = (µ1, σ1) and θ2 = (µ2, σ2).
Note that ḡσ2

σ1
,
(
µ2−

σ2
σ1
µ1
)(µ1, σ1) = (µ2, σ2), where ḡσ2

σ1
,
(
µ2−

σ2
σ1
µ1
) ∈ ḠLS

defined in (3.7). So, ḠLS is transitive.

While the conditional, maximum and average risk can be different
for a estimator, for an invariant estimator and a transitive group, they
are always equal, as stated in the following theorem.

Theorem 3.1 (Section 6.2.3, [4]). When Ḡ is transitive and the loss func-
tion is invariant under G, the conditional risk of an invariant estimator
ψ of θ ∈ θ, is constant for all θ ∈ Θ. Further, we have

R(ψ, θ) =M(ψ) = B(ψ, p), (3.16)

for any p(θ) defined over θ ∈ Θ.

Remark 3.2. When Ḡ is transitive, we can construct the optimum (or
minimum conditional risk) invariant estimator under G, when the loss
function is invariant under G using the theory from [4, 47].
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3.4 Invariance and Minimax Optimality

In our work, we are also interested in developing estimators that are
minimax optimum, that is estimators that minimize the maximum risk
over all possible estimators of the parameter of interest. We first present
the definition of a minimax estimator from [4, 47].

Definition 6 (Minimax Estimators). An estimator ψMinMax of θ ∈ θ is
said to be a minimax estimator of θ for the considered loss function, if

M(ψMinMax) = inf
ψ
M(ψ) = inf

ψ
sup
θ∈Θ
R(ψ, θ). (3.17)

Remark 3.3. The class of invariant decision rules is often much smaller
than the class of all possible decision rules. However, it frequently turns
out that the optimum invariant decision rule is minimax optimum [4].
We use the standard approach given in [4, 47, 69] to design a minimax
estimator of θ. We first construct the optimum invariant estimator of θ
for a considered (invariant) loss function and then show the optimum
invariant estimator is a minimax estimator of θ for the considered loss
function.
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4
Optimum Signal Processing Techniques for

Clock Offset Estimation

Packet-based clock synchronization using PTP is increasingly being con-
sidered as an alternative to GPS-based timing to provide microsecond-
level synchronization between base stations in 4G LTE mobile networks
[24, 25, 55, 56, 73]. This section discusses the problem of clock offset
estimation in PTP under the assumption that the clock skew is known.
A practical scenario where such an assumption can be made occurs when
Synchronous Ethernet (SyncE) is used in conjunction with PTP for
clock synchronization. SyncE [67] is a physical layer based technology
to deliver frequency synchronization (or clock skew synchronization) to
packet-based Ethernet networks. SyncE is independent of the network
load and supports multi-hop frequency transfer provided that all the
intermediate switches and routers support SyncE. In the considered
scenario of synchronization between base stations in 4G LTE mobile
networks, the slave node obtains the clock skew information from the
physical layer signals of SyncE, while the PTP messages are used for
clock offset synchronization [21, 23].

In PTP (or any clock synchronization based on the two-way message
exchange), the timing messages traveling between the master and the

21
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22 Optimum Signal Processing Techniques for COE

slave can encounter several intermediate switches and routers, accumu-
lating stochastic queuing delays at each such node. This randomness
in the overall network traversal times is referred to as the packet delay
variation (PDV) [21–23] and the problem of estimating the clock offset
of the slave clock while combating the randomness in the observations
that occurs due to PDV is referred to as the clock offset estimation
(COE) problem.

Given the nature of the observations, the COE problem falls under
a class of estimation problems referred to as the location parameter
estimation problems [4, 47]. In these problems, the unknown parameters
influence the observations by translating the pdf of the stochastic queu-
ing delays, without affecting the shape of the pdf. Location parameter
estimation problems occur in a wide range of practical applications;
some examples include regression analysis [9] and the estimation of user
position in global positioning system (GPS) receivers [5].

In this section, we describe recently developed optimum estimators
from [21] for the COE problem. These estimators are optimum in terms
of minimizing the mean square estimation error among the class of
invariant clock offset estimators for PTP. Further, these estimators are
minimax optimum, that is, they minimize the maximum mean squared
error over all possible values of the unknown parameters. Additionally,
we describe recently proposed L-estimators for the COE problem [22].
In the L-estimators, the estimate of the clock offset is obtained as a
linear combination of the order statistics of the observations.1 The linear
L-estimators proposed in [22] exhibit performance close to the optimum
estimators for many network scenarios.

4.1 Related Work

Several algorithms that address the COE problem are available in the
scientific literature [7, 8, 34, 35, 42–44, 48, 49, 57]. These algorithms
apply to a large number of pdf-models of PDV and address the COE
problem for various scenarios. Additionally, these clock offset estimation
algorithms are optimum for certain pdf-delay models of the PDV such as

1The order statistics of a set of observations refers simply to the same set of
observations rearranged in non-decreasing order.
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for the Gaussian pdf-model [57] and the exponential pdf-delay model [8].
While these estimators [7, 8, 34, 48, 49, 57] are quite useful, they may
not be optimum in certain niche cases where the pdf-model of the
PDV may not follow a Gaussian or exponential distribution. One such
case is the LTE backhaul network scenario (see Figures 2.3 and 2.4 for
the empirical pdf-model of the PDV for this scenario). This issue was
addressed in [21], where the authors develop the optimum clock offset
estimators for the COE problem that are optimum for any pdf-model
of the PDV.

We now briefly describe some of the popular algorithms available
in the literature for the COE problem [7, 8, 34, 35, 42–44, 48, 49, 57].
Depending on whether the fixed path delays are known or unknown,
the maximum likelihood (ML) estimator of the clock skew and offset
under the Gaussian PDV pdf delay model was derived in [57] and [48],
respectively. Under the exponential PDV pdf-delay model, the ML
estimate of the clock offset was derived in [34] and the joint ML-
estimate of the clock skew and offset depending on whether the mean
of the exponential distribution is known or unknown was derived in [7]
and [49], respectively. Further, the minimum variance unbiased estimate
of the clock offset under the exponential PDV pdf-delay model for the
COE problem was derived in [8]. Although these algorithms [7, 8, 34,
48, 49, 57] exhibit good performance under the assumed PDV pdf-delay
model, the performance of these approaches could significantly degrade
if the actual pdf of PDV does not fit the assumed families very well.

In some scenarios, prior information regarding the pdf-model of
the PDV might not be readily available. Several publications in the
literature have addressed the COE problem for this particular scenario
[35, 42–44]. In [35], the bootstrap estimate of the clock offset for the
COE problem was derived, while in [42, 43], the authors approximated
the unknown pdf of the PDV by a Gaussian mixture model and pro-
posed clock offset estimators that are robust against network PDV
pdf-delay model mismatches. In [44], the authors adopted a Bayesian
framework and proposes a novel clock synchronization algorithm that
combines the Gaussian mixture Kalman particle filter discussed in [42]
with an iterative noise density estimation procedure to achieve robust
performance in the presence of unknown network delay distributions.
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24 Optimum Signal Processing Techniques for COE

Additionally, survey papers [72, 74] are available in the literature that
discuss the current approaches available in the literature for the COE
problem.

The PTP standard [32] and related literature prescribe the use of
simple non-parametric COE schemes such as the sample mean, mini-
mum, and maximum filtering schemes. Several recent papers [2, 24, 25,
55, 56, 73] have studied methods to improve the performance of the
sample mean, minimum, and maximum filtering schemes, especially in
the presence of substantial queuing delays due to high network loads.
However, it was not known as to how close these COE schemes come to
achieving the best possible estimation performance, measured in terms
of the mean squared estimation error. Guruswamy et al. [21] addressed
this issue by developing optimum clock offset estimators for an arbitrary
pdf-model of the PDV.

4.2 Signal Model and Problem Statement

Recall from Section 2 that the slave node obtains four timestamps
{t1, t2, t3, t4} after a round of two-way message exchange. The relation-
ship between the timestamps is given by

t2 = φ(t1 + d1 + w1) + δ, (4.1)
t3 = φ(t4 − d2 − w2) + δ, (4.2)

where φ and δ denote the clock skew and offset of the slave node relative
to the master node, respectively. The variables d1 and d2 denote the
deterministic fixed delays in the forward master-to-slave path and the
reverse slave-to-master path, respectively.

In this section, we consider the case where the parameter φ is known.
Hence, the clock offset δ is the only unknown parameter of interest.
It is clearly sufficient to retain the pair of timestamp differences to
estimate δ. We have

y1 = t2 − t1 = d1 + δ + w1; (4.3)
y2 = t4 − t3 = d2 − δ + w2. (4.4)

Typically, a series of timing message transmissions is required to
estimate the relative clock skew and offset between the master and slave
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4.2. Signal Model and Problem Statement 25

nodes [74]. Assuming the parameters δ, d1 and d2 remain constant over
the duration of P two-way message exchanges, we can collect multiple
observation pairs (y1, y2) to help estimate δ. These observations can be
denoted as

y∗1i = d1 + δ + w1i; (4.5)
y∗2i = d2 − δ + w2i, (4.6)

for i = 1, 2, . . . , P . The accuracy with which we can estimate δ from
the observations in (4.5) and (4.6) depends on the amount of knowledge
we have about d1 and d2. To this end, two observation models with
varying degrees of information available about d1 and d2 are considered
as follows.

1. Known fixed delay model (K-model): In this model, the fixed delays
d1 and d2 are assumed to be known at the slave. Hence, setting

yik = y∗ik − dk (4.7)

for k = 1, 2 and i = 1, 2, . . . , P , the delay compensated observa-
tions can be written as

y1i = δ + w1i; (4.8)
y2i = −δ + w2i, (4.9)

for i = 1, 2, . . . , P . These observations can be collected in vector
form as

y = δe+w, (4.10)

where

y = [y1,y2]T , yk = [yk1, yk2, . . . , ykP ] for k = 1, 2, (4.11)
w = [w1,w2]T , wk = [wk1, wk2, . . . , wkP ] for k = 1, 2, (4.12)
e = [1TP ,−1TP ]T , (4.13)

and 1P is a P × 1 vector with all elements equal to 1.

2. Standard delay model (S-model): Freris et al. [16] provided the
necessary conditions for obtaining a unique solution to the clock
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offset for synchronization protocols based on the two-way message
exchange scheme. We need to know either one of the fixed delays
(either the forward- or reverse fixed path delay) or have a prior
known affine relationship between the fixed delays. For simplicity,
the fixed delays in the forward and reverse path are assumed to
be equal but unknown, i.e., d1 = d2 = d, where d is an unknown
parameter. The observations can be written as

y1i = δ + d+ w1i; (4.14)
y2i = d− δ + w2i, (4.15)

for i = 1, 2, . . . , P . These observations can be collected in vector
form as

y = Aθ +w, (4.16)

where y and w are defined in (4.11) and (4.12), respectively,
θ = [δ, d]T , and

A =
[

1P 1P
−1P 1P

]
. (4.17)

Given either observation models, the COE problem is to estimate δ
from y. Next, we state the assumptions used in developing the optimum
COE scheme [23].

COE Assumptions:

1. All the queuing delays are strictly positive random variables that
are mutually independent.

2. All forward queuing delays share a common pdf f1(·). Similarly the
reverse queuing delays share a common pdf f2(·). Also, when de-
veloping the optimum estimators under the K-model and S-model,
we assume f1(·) and f2(·) are assumed to be completely known.

3. The maximum possible value for a forward or reverse queuing
delay is finite.

4. The unknown parameters are assumed to be constant over P
two-way message exchanges.
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4.3. Optimum Clock Offset Estimators 27

4.3 Optimum Clock Offset Estimators

The COE problem under the considered observation models falls un-
der the class of the vector location parameter estimation problems [21].
The optimum invariant clock offset estimators for the considered obser-
vation models were derived in [21] and are presented in the following
subsections.

4.3.1 Optimum Invariant Estimator Under K-Model

Recall from (4.10), the observations under the K-model can be repre-
sented as

y = δe+w, (4.18)

where δ ∈ R is the unknown parameter. From the COE assumptions,
we now have

f(y | δ) = fw(y − δe), (4.19)

=
2∏

k=1

N∏
i=1

fk(yki − (−1)kδ). (4.20)

Let FKModel denote the class of all pdfs f(y | δ) for δ ∈ R. The class
of such pdfs is invariant under the group of location transformations
GKModel, on R2P , defined as

GKModel = {ga(m): ga(m) = m+ ae, ∀a ∈ R}, (4.21)

where m ∈ R2P , since yg = ga(y) has the pdf fw(yg − (a+ δ)e) which
has the location parameter (a+ δ) as opposed to the parameters δ for
f(y | δ). The corresponding group of induced transformations, ḠKModel,
is given by

ḠKModel = {ḡa(δ): ḡa(δ) = (a+ δ), ∀a ∈ R}, (4.22)

where δ ∈ R.
Let δ̂I denote an estimator of δ, and let δ̂I(y) denote the esti-

mates obtained from the received data y characterized by the pdf
f(y | δ) = fw(y − δe). The estimator δ̂I is invariant under GKModel from
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(4.21) if for all a ∈ R

δ̂I(ga(y)) = δ̂I(y + ae) = δ̂I(y) + a. (4.23)

When developing the optimum clock offset estimators, the loss
function for δ is chosen as the squared error loss function [21]. The main
reason for choosing the squared error loss is that the corresponding
conditional risk is the mean square estimation error (MSE), which is
a popular metric for evaluating the performance of an estimator. The
squared error loss function is invariant under GKModel from (4.21), since

(δ̂I(y)− δ)2 = (δ̂I(ga(y))− (a+ δ))2, (4.24)

for all ga ∈ GKModel.
In Theorem 4.1, we develop the optimum invariant clock offset

estimator for the K-model so we can calculate the best performance for
cases when f1(·) and f2(·) are known.2 Later, we use these results to
evaluate the losses from using clock offset estimation schemes designed
without knowledge of f1(·) and f2(·).

Theorem 4.1. Assuming complete knowledge of f1(·) and f2(·), the
optimum (or minimum conditional risk) invariant estimators of δ, de-
noted by δ̂opt, under GKModel defined in (4.21), for the squared error loss
function is given by

δ̂opt(y) =
∫
R δ
∏2
k=1

∏N
i=1 fk(yki − (−1)kδ)dδ∫

R
∏2
k=1

∏N
i=1 fk(yki − (−1)kδ)dδ

. (4.25)

Further, the derived optimum invariant estimators are minimax opti-
mum under the squared error loss.

Proof. The optimum invariant estimator of δ under GKModel from (4.21),
denoted by δ̂opt, can be obtained by solving (See [4], Sec. 6.6.2, Result 3)

δ̂opt(y) = arg min
δ̂

∫
R

(δ̂(y)− δ)2πr(δ | y)dδ, (4.26)

where we have

πr(δ | y) = f(y | δ)πr(δ)∫
R f(y | δ)πr(δ)dδ (4.27)

2The estimators are optimum when f1(·) and f2(·) have finite or infinite support.
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and πr(δ) is the right invariant prior defined over R and corresponds
to ḠKModel.3 The conditional pdf of y, f(y | δ), is defined in (4.20).
Since GKModel corresponds to a location parameter estimation problem,
the right invariant prior πr(δ) for ḠKModel is given by πr(δ) = 1 (see
Chapter 6 of [4]).

To find δ̂opt, we differentiate the objective function in (4.26) with
respect to δ̂(y), set the result equal to zero and solve for δ̂(y). We have

δ̂opt(y) =
∫
R δπ

r(δ | y)dδ∫
R π

r(δ | y)dδ ,

=
∫
R δf(y | δ)πr(δ)dδ∫
R f(y | δ)πr(δ)dδ =

∫
R δfw(y − δe)πr(δ)dδ∫
R fw(y − δe)πr(δ)dδ ,

=
∫
R δ
∏2
k=1

∏N
i=1 fk(yki − (−1)kδ)dδ∫

R
∏2
k=1

∏N
i=1 fk(yki − (−1)kδ)dδ

. (4.28)

Further, the derived estimator δ̂opt can be shown to be minimax
optimum using Theorem 1 from [21].

Remark 4.1. Theorem 4.1 provides us with the mathematical expression
for the optimum invariant clock offset estimator for the K-model under
the assumption that we have complete knowledge of f1(·) and f2(·).
The optimum estimator described in Theorem 4.1 is applicable to any
pdf-model of the PDV and achieves the lowest MSE among the class
of invariant clock offset estimators for the K-model. Additionally, the
optimum estimator presented in Theorem 4.1 is minimax optimum, i.e.,
it minimizes the maximum MSE among all clock offset estimators for the
K-model. The MSE performance of the optimum invariant estimator is
extremely useful as it provides a lower bound on the MSE against which
we can compare the performance of any proposed estimator designed
with limited information, (for example, f1(·) and f2(·) are unknown).
If a proposed clock offset estimator exhibits performance close to the
optimum estimator, the compared estimator is well suited for practical
applications.

3We should mention here that right invariant prior, πr(·) need not be an actual
probability density function [4].
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4.3.2 Optimum Invariant Estimator Under S-Model

Recall from (4.16), the observations under the S-model can be repre-
sented as

y = Aθ +w, (4.29)

where θ = [δ, d]T denotes the vector of unknown parameters. From
(4.16), we have

f(y | θ) = fw(y −Aθ), (4.30)

=
2∏

k=1

N∏
i=1

fk(yki − d− (−1)kδ). (4.31)

Let FSModel denote the class of all pdfs f(y | θ) for δ ∈ R and
d ∈ R. The class of such pdfs is invariant under the group of location
transformations GSModel, on R2P , defined as

GSModel = {gb(m): gb(m) = m+Ab, ∀b ∈ R2}, (4.32)

where m ∈ R2P , since yg = gb(y) has the pdf fw(yg −A(θ+ b)) which
has the vector location parameter (θ+ b) as opposed to the parameters
θ for f(y | θ). The corresponding group of induced transformations,
ḠSModel, is given by

ḠSModel = {ḡb(θ): ḡb(θ) = (θ + b), ∀b ∈ R2}, (4.33)

where θ ∈ R2.
Let δ̂I denote an estimator of δ, and let δ̂I(y) denote the estimates

obtained from the received data y characterized by the pdf f(y | θ) =
fw(y −Aθ). The estimator δ̂I is invariant under GSModel from (4.32) if
for all b ∈ R2

δ̂I(gb(y)) = δ̂I(y +Ab) = δ̂I(y) + cTb, (4.34)

where c = [1, 0]T is a constant vector.
When developing the optimum clock offset estimators under the

S-model, the loss function for δ is chosen as the squared error loss
function [21]. Similar to the case of the K-model, it can be shown that
the squared error loss function is invariant under GSModel from (4.32).
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The minimax optimum estimator of δ under the S-model for the squared
error loss function is given in the following theorem [21].

In Theorem 4.2, we develop the optimum invariant clock offset
estimator for the S-model and use it to calculate the best performance
for cases when f1(·) and f2(·) are known.4 Later, we use these results to
evaluate the losses from using clock offset estimation schemes designed
without knowledge of f1(·) and f2(·).

Theorem 4.2. Assuming complete knowledge of f1(·) and f2(·), the
optimum (or minimum conditional risk) invariant estimators of δ, de-
noted by δ̂opt, under GKModel defined in (4.21), for the squared error loss
functions is given by

δ̂opt(y) =
∫
R2 δ

∏2
k=1

∏N
i=1 fk(yki − λ− (−1)kδ)dδdλ∫

R2
∏2
k=1

∏N
i=1 fk(yki − λ− (−1)kδ)dδdλ

. (4.35)

Also, the derived optimum invariant estimators are minimax optimum
under the squared error loss (see [21] for complete proof).

Proof. Let θ = [δ, d]T denote the vector of unknown parameters. The
optimum invariant estimator of δ under GSModel from (4.32), denoted
by δ̂opt, can be obtained by solving (See [4], Sec. 6.6.2, Result 3)

δ̂opt(y) = arg min
δ̂

∫
R2

(δ̂(y)− δ)2πr(θ | y)dθ, (4.36)

where we have

πr(θ | y) = f(y | θ)πr(θ)∫
R f(y | θ)πr(θ)dθ (4.37)

and πr(θ) is the right invariant prior defined over R2 and corresponds
to ḠSModel. The conditional pdf of y, f(y | θ), is defined in (4.31). Since
GKModel corresponds to a vector location parameter estimation problem,
the right invariant prior πr(θ) for ḠSModel is given by πr(θ) = 1 (see
Section 6 of [4]).

4The estimators are optimum when f1(·) and f2(·) have finite or infinite support.

The version of record is available at: http://dx.doi.org/10.1561/2000000108



32 Optimum Signal Processing Techniques for COE

To find δ̂opt, we differentiate the objective function in (4.36) with
respect to δ̂(y), set the result equal to zero and solve for δ̂(y). We have

δ̂opt(y) =
∫
R2 δπr(θ | y)dθ∫
R π

r(θ | y)dθ ,

=
∫
R2 δf(y | θ)πr(θ)dθ∫
R2 f(y | θ)πr(θ)dθ =

∫
R2 δfw(y −Aθ)πr(θ)dθ∫
R2 fw(y −Aθ)πr(θ)dθ ,

=
∫
R2 δ

∏2
k=1

∏N
i=1 fk(yki − λ− (−1)kδ)dδdλ∫

R2
∏2
k=1

∏N
i=1 fk(yki − λ− (−1)kδ)dδdλ

. (4.38)

In (4.38), we have replaced the variable d with λ to avoid confusion
in notation. Further, the derived estimator δ̂opt can be shown to be
minimax optimum using Theorem 1 from [21].

Remark 4.2. Theorem 4.2 provides us with the mathematical expression
for the optimum invariant clock offset estimator for the S-model under
the assumption that we have complete knowledge of f1(·) and f2(·).
The optimum estimator described in Theorem 4.2 is applicable to
any pdf-model of the PDV and achieves the lowest MSE among the
class of invariant clock offset estimators for the S-model. Additionally,
the optimum estimator is minimax optimum, i.e., it minimizes the
maximum MSE among all clock offset estimators for the S-model. The
MSE performance of the optimum estimator is extremely useful as it
provides a lower bound on the MSE against which we can compare the
performance of any proposed estimator with limited information, (for
example, f1(·) and f2(·) are unknown).

4.4 Optimal Linear L-Estimators for Clock Offset Estimation

A popular class of estimators in the context of location parameter estima-
tion problems are the L-estimators [19, 31]. In these estimators, the un-
known location parameter is estimated as a linear combination of the
order statistics of a set of observations. Due to the linear nature of the
L-estimators, they have significantly lower computational complexity
than the minimax optimum estimators of [21]. Further, the conventional
COE schemes for IEEE 1588, including the sample minimum, mean,
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median, or maximum filtering, can all be expressed as L-estimators with
fixed linear combining weights.

With regards to COE, the L-estimators with optimized weights have
been studied in [34] and [8]. For the exponential pdf delay model, both
the maximum likelihood estimator (MLE) and the minimum variance
unbiased estimator (MVUE) of clock offset are linear combinations
of order statistics. In this section, we present some results from [22]
in the context of designing optimum weights for the L-estimators for
the K-model and S-model that apply for any pdf delay model of the
stochastic queuing delays.

Given a vector x = [x1, x2, . . . , xN ], the ith order-statistic of this
vector is defined as the ith smallest element of the vector. The vector
containing all the order statistics of x, ordered from smallest to largest,
is referred to as the order statistic vector of x and is denoted by � x �.
Guruswamy et al. [22] proposed a linear COE scheme based on the
order statistic vectors of y1 and y2 as

δ̂(y) = cT1 � y1 � −cT2 � y2 � +η, (4.39)

where c1, c2 are weight vectors and η is a scalar constant. Several
popular conventional COE schemes can be expressed in the form given
in (4.39):

1. Sample minimum estimator : c1 = c2 = [0.5,0TP−1]T and η = 0.

2. Sample mean estimator : c1 = c2 = P−11TP and η = 0.

3. Sample maximum estimator : c1 = c2 = [0TP−1, 0.5]T and η = 0.

Define

µk = E{� wk �}, (4.40)
Sk = cov{� wk �}, (4.41)

for k = 1, 2, where wk is defined in (4.12). Let

c =
[
c1
c2

]
; S =

[
S1 0P×P

0P×P S2

]
. (4.42)
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Assuming knowledge of µk for k = 1, 2 and S, Guruswamy et al. [22]
studied the problem of designing c1, c2 and η to minimize the mean
squared error (MSE) under the constraint of constant bias. The following
theorem presents the resultant optimum L-estimators from [22]:

Theorem 4.3. Under the K-model, the values of c1, c2 and η that
minimize the MSE of an estimator of δ of the form given in (4.39) under
the constraint of constant bias is given by

c∗ = S−112P
1T2PS−112P

, (4.43)

η = µT2 c
∗
2 − µT1 c∗1. (4.44)

The resultant optimum estimator has an MSE given by

MSE(δ̂) = (12PS
−112P )−1. (4.45)

For proof, see Corollary 1 in [22].

Theorem 4.4. Under the S-model, the values of c1, c2 and η that
minimize the MSE of an estimator of δ of the form given in (4.39) under
the constraint of constant bias is given by

c∗ = S−1AT (AS−1AT )−1γ, (4.46)
η = µT2 c

∗
1 − µT2 c∗1, (4.47)

where

A =
[
1TP 1TP
1TP −1TP

]
and γ = [1, 0]T . (4.48)

The resultant optimum estimator has an MSE given by

MSE(δ̂) = γT (AS−1AT )−1γ. (4.49)

For proof, see Corollary 2 in [22].

Remark 4.3. In Theorems 4.3 and 4.4, we do not assume f1(·) and
f2(·) are known, but we do assume the second order statistics of fk(·),
namely µk and Sk, are known for k = 1, 2.
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4.5 Numerical Results

We now compare the root mean square estimation error (RMSE) of the
L-estimators from [22] and the existing COE schemes to the RMSE of
the optimum estimators from [21] under the K-model and S-model. We
focus on the LTE backhaul network scenario described in Section 2. To
obtain the pdf of the stochastic queuing delays for this scenario, please
refer to Subsection 2.3.3.

The results are presented in Figure 4.1 for Traffic Model-1 (TM1)
and Traffic Model-2 (TM2) under 40% load. From the results, we see
that the L-estimator-based COE schemes proposed in [22] exhibits an
RMSE very close to the optimum estimators from [21] under both the
K- and S-model for both considered network scenarios. The loss in
performance, when restricted to only using L-estimators, is negligible
while the conventional clock offset estimators such as the sample mean
or the sample median exhibit an RMSE significantly larger than of
the optimized L-estimators. On the other hand, the sample minimum
estimator performs better than the conventional clock offset estimators
but worse than the optimized L-estimators developed in [22]. Additional
results highlighting the performance of the L-estimators for various
other network scenarios are available in [22].

The version of record is available at: http://dx.doi.org/10.1561/2000000108



36 Optimum Signal Processing Techniques for COE

(a) RMSE of clock offset for TM-1 under 40% load.

(b) RMSE of clock skew for TM-2 under 40% load.

(c) Legend.

Figure 4.1: RMSE of clock offset for various COE schemes under the network traffic
models TM1 and TM2 from [67].
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5
Optimum Signal Processing Techniques for Joint

Estimation of Clock Skew and Offset

In Section 4, we described optimum clock offset estimators for PTP
from [21] for the case when the clock skew is known. Typically, PTP
is used in conjunction with Synchronous Ethernet (SyncE) for cellular
base station synchronization in 4G LTE networks. Although the SyncE
standards are now mature, much of the deployed base of Ethernet
equipment does not support it [30, 66]. PTP is the primary option for
synchronization to operators with packet backhaul networks that do
not support SyncE [30, 66]. This section addresses the problem of joint
estimation of clock skew and offset for PTP (or any clock synchroniza-
tion protocol based on two-way message exchanges) in the presence
of PDV.

The problem of jointly estimating the clock skew and offset of
the slave clock while combating the randomness in the observations
that occurs due to PDV is referred to as the clock skew and offset
estimation (CSOE) problem [40]. Several maximum-likelihood (ML)-
based joint clock skew and offset estimators have been proposed in [7, 8,
48, 49, 57] for specific pdf-models of PDV (Gaussian and exponential).
Additionally, CSOE schemes based on the least squares estimation
approach were proposed in [58]. While the estimators in [7, 8, 48, 49, 57]

37
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are quite useful, they might not be optimum for an arbitrary pdf-model
of PDV.

The CSOE problem falls under a variant of the location-scale pa-
rameter estimation problem [4, 47], with the unknown clock skew as the
scale parameter and the unknown clock offset as the location parame-
ter. In this section, we restrict ourselves to invariant CSOE schemes.
This assumption is reasonable as all the popular estimation approaches,
including the ML-based joint clock skew and offset estimator and the
least-squares joint clock skew and offset estimator, are invariant for this
particular problem [40]. Fixing the loss function as the skew-normalized
squared error loss and assuming complete knowledge of the statistical in-
formation describing the PDV, we present recently developed optimum
estimators from [40] for jointly estimating the clock skew and offset.
These estimators minimize the skew-normalized mean square estimation
error (NMSE) among all invariant CSOE schemes for PTP. Further,
using results from [4, 47, 69], the optimum estimators are shown to be
minimax optimum for the skew-normalized squared error loss, that is,
these estimators minimize the maximum NMSE over all possible values
of the unknown parameters.

5.1 Signal Model and Problem Statement

Recall from Section 2 that the slave node obtains four timestamps
{t1, t2, t3, t4} after a round of two-way message exchange. The relation-
ship between the timestamps is given by

t2 = φ(t1 + d1 + w1) + δ, (5.1)
t3 = φ(t4 − d2 − w2) + δ, (5.2)

where φ and δ denote the clock skew and offset of the slave node relative
to the master node, respectively. The variables d1 and d2 denote the
deterministic fixed delays in the forward master-to-slave path and the
reverse slave-to-master path, respectively. Following [7, 8, 74], we assume
multiple rounds of two-way message exchanges between the master
and slave node. Increasing the number of rounds of two-way message
exchanges helps in reducing the estimation error when estimating the
unknown parameters. It should also be mentioned that a minimum of two
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rounds of two-way message exchanges to uniquely estimate φ and δ for
the case when d1 and d2 are unknown, but there is a known relationship
between d1 and d2 [16], as the number of unknown parameters is greater
than the number of available equations for a single round of two-way
message exchange. Assuming the parameters φ, δ, d1, and d2 remain
constant over the duration of P two-way message exchanges, we can
collect multiple timestamps {t1i, t2i, t3i, t4i}Pi=1 to help estimate φ and δ.
Similar to (5.1)–(5.2)

t2i = (t1i + d1 + w1i)φ+ δ, (5.3)
t3i = (t4i − d2 − w2i)φ+ δ (5.4)

for i = 1, 2, . . . , P . Define wk = [wk1, wk2, . . . , wkP ] for k = 1, 2 and
tk = [tk1, tk2, . . . , tkP ] for k = 1, 2, 3, 4. The joint pdf of wk is defined as

fwk(wk) = fk(wk1, wk2, . . . , wkP ),

=
P∏
i=1

fk(wki), (5.5)

for k = 1, 2. Similar to Section 4, two observation models, with varying
degrees of information available about d1 and d2 are considered. We
have

1. Known fixed delay model (K-model): In this model, we assume
complete knowledge of the fixed-path delays d1 and d2. The re-
ceived timestamps shown in (5.3) and (5.4) can be arranged in
vector form as follows

y = uφ+ δ12P , (5.6)

where we have y = [t2, t3]T , and u = [u1,u2]T , u1 = (t1 +w1 +
d11TP ) and u2 = (t4 −w2 − d21TP ). Also, note that

fu(u) = fu1(u1)fu2(u2), (5.7)

with

fu1(u1) = fw1(u1 − t1 − d11TP ); (5.8)
fu2(u2) = fw2(t4 − u2 − d21TP ). (5.9)

The unknown parameters in this model are φ and δ.
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2. Standard delay model (S-model): In this model, a prior known
affine relationship between the fixed path delays is assumed. Let
d1 = d and d2 = d, where the parameter d is unknown. The
received time stamps shown in (5.3) and (5.4) can be arranged in
vector form as

y = (hd+ v)φ+ δ12P , (5.10)

where v = [v1,v2]T , v1 = (t1+w1), v2 = (t4−w2), h = [1TP ,1TP ]T ,
and y = [t2, t3]T . Also, note that

fv(v) = fv1(v1)fv2(v2), (5.11)

with

fv1(v1) = fw1(v1 − t1) (5.12)

and

fv2(v2) = fw2(t4 − v2). (5.13)

The unknown parameters in this model are φ, d and δ.

Given either observation model, the CSOE problem is to estimate φ
and δ from the received time stamps. We now state the assumptions
used in developing the optimum COE scheme [23].

CSOE Assumptions:

1. All the queuing delays are strictly positive random variables that
are mutually independent.

2. All forward queuing delays share a common pdf f1(·). Similarly the
reverse queuing delays share a common pdf f2(·). When developing
the optimum estimators, we assume complete knowledge of f1(·)
and f2(·).

3. The maximum possible value for a forward or reverse queuing
delay is finite.

4. The unknown parameters are assumed to be constant over P
two-way message exchanges.
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5.2 Optimum Joint Clock Skew and Offset Estimators

The CSOE problem under the considered observation models falls under
a variant of the location-scale parameter estimation problem [4, 47],
with the unknown clock skew as the scale parameter and the unknown
clock offset as the location parameter. The optimum invariant joint
clock skew and offset estimators for the considered observation models
were derived in [40] and are presented in the following subsections.

5.2.1 Optimum Invariant Estimator Under K-Model

Recall from (5.6), the observations under the K-model can be repre-
sented as

y = uφ+ δ12P , (5.14)

where y ∈ R2P , u ∈ R2P , φ ∈ R+ and δ ∈ R. Let θ = [φ, δ] denote
the vector of unknown parameters. The parameter space of θ, denoted
by Θ, is given by

Θ = {(φ, δ): φ ∈ R+, δ ∈ R}. (5.15)

From (5.6), we have

f(y | θ) = 1
φ2P fu

(
y − δ12P

φ

)
,

= 1
φ2P fw1

(
t2 − δ1TP

φ
− d11TP − t1

)

× fw2

(
δ1TP − t3

φ
− d21TP + t4

)
, (5.16)

where fu(·) is defined in (5.7).
Let FKModel denote the class of all pdfs f(y | θ) for θ ∈ Θ. Following

steps similar to the ones described in Section 4, the class of such pdfs
is invariant under the group of location-scale transformations GKModel,
on R2P , defined as

GKModel = {ga,b(m): ga,b(m) = am+ b12P , ∀(a, b) ∈ R+ × R}, (5.17)

The version of record is available at: http://dx.doi.org/10.1561/2000000108



42 Optimum Signal Processing Techniques for Joint Estimation

where m ∈ R2P , since yg = ga,b(y) has the pdf 1
(aφ)2P fu

(yg−(aδ+b)12P
aφ

)
(where fu(·) was defined in (5.7)) which has the scale and shift parame-
ters (aφ, aδ + b) as opposed to the parameters (φ, δ) for f(y | θ). The
corresponding group of induced transformations, ḠKModel, is given by

ḠKModel = {ḡa,b((φ, δ)): ḡa,b((φ, δ)) = (aφ, (aδ + b)),
∀(a, b) ∈ R+ × R}, (5.18)

where φ ∈ R+ and δ ∈ R.
Let δ̂I and φ̂I denote estimators of δ and φ, respectively and let

δ̂I(y) and φ̂I(y) denote the estimates obtained from the received data y.
The estimators φ̂I(y) and δ̂I(y) are invariant under GKModel from (5.17)
if for all (a, b) ∈ R+ × R

δ̂I(ga,b(y)) = δ̂I(ay + b12P ) = aδ̂I(y) + b; (5.19)
φ̂I(ga,b(y)) = φ̂I(ay + b12P ) = aφ̂I(y). (5.20)

Thus the scaling and shifting factors a and b scale and shift the estima-
tors as one might expect. To construct the optimum invariant joint clock
skew and offset estimators for the CSOE problem under the K-model,
we need to have loss functions that are invariant under GKModel (see
Definition 3 in Section 3). To this end, we consider the skew-normalized
squared error loss for δ and φ. The skew normalized squared error loss
functions are invariant under GKModel from (5.17) since

(δ̂I(y)− δ)2

φ2 = (δ̂I(ga,b(y))− (aδ + b))2

a2φ2 , (5.21)

and

(φ̂I(y)− φ)2

φ2 = (φ̂I(ga,b(y))− aφ)2

a2φ2 (5.22)

for all ga,b ∈ GKModel. Fixing the loss function to the skew normalized
squared error loss, the optimum invariant estimators of δ and φ under
the K-model were derived in [40] and are presented in the following
theorem.

In Theorem 5.1, we develop the optimum invariant joint clock skew
and offset estimator for the K-model. We can use the optimum estimator
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to calculate the best performance for cases where f1(·) and f2(·) are
known.1 Later, we use these results to evaluate the losses from using joint
clock skew and offset estimation schemes designed without knowledge
of f1(·) and f2(·). If the losses are small, the compared estimators are
well suited for practical applications.

Theorem 5.1. Assuming complete information regarding f1(·) and f2(·),
the optimum (or minimum conditional risk) invariant estimators of δ
and φ, δ̂MinRisk and φ̂MinRisk, under GKModel defined in (5.17), for the
skew normalized squared error loss functions are given by

δ̂MinRisk(y) =
∫
R+
∫
R

δ
φ3 f(y | θ)dδdφ∫

R+
∫
R

1
φ3 f(y | θ)dδdφ

, (5.23)

and

φ̂MinRisk(y) =
∫
R+
∫
R

1
φ2 f(y | θ)dδdφ∫

R+
∫
R

1
φ3 f(y | θ)dδdφ

, (5.24)

respectively, where f(y | θ) was defined in (5.16). Also, the optimum
estimators are minimax for the skew-normalized squared error loss
(see [40] for full proof).

Proof. The optimum invariant estimator of δ under GKModel in (5.17),
denoted by δ̂MinRisk, can be obtained by solving (see Section 6.6.2 in [4])

δ̂MinRisk(y) = arg min︸ ︷︷ ︸
δ̂

∫
Θ
L1(δ̂(y), θ)πr(θ | y)dθ

= arg min︸ ︷︷ ︸
δ̂

∫
Θ

(δ̂(y)− δ)2

φ2 πr(θ | y)dθ, (5.25)

where πr(θ | y) = f(y | θ)πr(θ)∫
Θ f(y | θ)πr(θ)dθ is the posterior density of θ based

on the right invariant prior πr on Θ (see Section 6.6.1, [4]).2 The right
invariant prior for the location-scale group was derived in [4] (see Sec-
tion 6.6). As GKModel from (5.17) is a location-scale group, the right
invariant prior density for GKModel is given by πr(θ) = 1

φIR+(φ)IR(δ).
1The estimators are optimum when f1(·) and f2(·) have finite or infinite support.
2The right invariant prior density need not be an actual density [4] (see Section 6.6,

page 409).
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To find δ̂MinRisk, we differentiate the objective function in (5.25)
with respect to δ̂(y), set the result equal to zero and solve for δ̂MinRisk.
We obtain

δ̂MinRisk(y) =
∫
R+
∫
R

δ
φ2π

r(θ | y)dθ∫
R+
∫
R

1
φ2πr(θ | y)dθ

=
∫
R+
∫
R

δ
φ3 f(y | θ)dθ∫

R+
∫
R

1
φ3 f(y | θ)dθ

. (5.26)

Similarly, the optimum invariant estimator of φ under GKModel in (5.17),
denoted by φ̂MinRisk, can be obtained by

φ̂MinRisk(y) = arg min︸ ︷︷ ︸
φ̂

∫
Θ

(φ̂(y)− φ)2

φ2 πr(θ | y)dθ. (5.27)

Using the same derivative-based approach, we obtain

φ̂MinRisk(y) =
∫
R+
∫
R

1
φ2 f(y | θ)dδdφ∫

R+
∫
R

1
φ3 f(y | θ)dδdφ

. (5.28)

Remark 5.1. Theorem 5.1 provides us with mathematical expressions
for the optimum invariant joint clock skew and offset estimator for the
K-model under the assumption that we have complete knowledge of
f1(·) and f2(·). The optimum estimator described in Theorem 5.1 is
applicable to any pdf-model of the PDV and achieves the lowest MSE
among the class of invariant joint clock skew and offset offset estimators
for the K-model. The MSE performance of the optimum estimator is
extremely useful as it provides a lower bound on the MSE against which
we can compare the performance of any proposed estimator with limited
information, (for example, f1(·) and f2(·) are unknown).

5.2.2 Optimum Invariant Estimator Under S-Model

Recall from (5.10), the observations under the S-model can be repre-
sented as

y = (hd+ v)φ+ δ12P , (5.29)

where y ∈ R2P , v ∈ R2P , φ ∈ R+ and δ ∈ R. As the unknown fixed
delay d is always non-negative, we have d ∈ R+

0 . When d ∈ R+
0 , it is not
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possible to construct a group for which every element has an inverse due
to the non-negativity of d (unlike the group GSModel defined in (5.34),
where every element of GSModel has a unique inverse). The existence of
an inverse is necessary for constructing a group of transformations (see
Definition 1 from Section 3). As it is not possible to construct a group
of transformations for which the class of pdfs in the S-model with the
constraint d ∈ R+

0 , we assume that d ∈ R.
Let θ = [φ, d, δ] denote the vector of unknown parameters. The

unrestricted parameter space of θ, denoted by Θ, is given by

Θ = {(φ, d, δ): φ ∈ R+, d ∈ R, δ ∈ R}, (5.30)

and the restricted parameter space of θ, denoted by Θ∗, is given by

Θ∗ = {(φ, d, δ): φ ∈ R+, d ∈ R+
0 , δ ∈ R}. (5.31)

From (5.10), we have

f(y | θ) = 1
φ2P fv

(
y − δ12P

φ
− hd

)
,

= 1
φ2P fw1

(
t2 − δ1TP

φ
− d1TP − t1

)

× fw2

(
δ1TP − t3

φ
+ t4 − 1TP

)
, (5.32)

where we have

fv(v) = fw1(v1 − t1)fw2(t4 − v2). (5.33)

Let FSModel denote the class of all pdfs f(y | θ) for θ ∈ Θ. The class
of such pdfs is invariant under the group of transformations GSModel, on
R2P , defined as

GSModel = {ga,b,c(m): ga,b,c(m) = a(m+ hb) + c12P ,

∀(a, b, c) ∈ R+ × R× R}, (5.34)

where m ∈ R2P . Since yg = ga,b,c(y) has the conditional pdf 1
(aφ)2P ·

fv(yg−(aδ+c)12P
aφ − h(d+ b

φ)), which has the parameters (aφ, (d+ b/φ),
aδ + c) as opposed to the parameters (φ, d, δ) for f(y | θ). This shows
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that the group, ḠSModel, of induced transformations on Θ is given by

ḠSModel = {ḡa,b,c((φ, d, δ)): ḡa,b,c((φ, d, δ)) = (aφ, (d+ b/φ), (aδ + c))
(5.35)

where φ ∈ R+, d ∈ R and δ ∈ R. Thus the transformations modify
the three parameters but the pdf can still be represented in the same
general class of pdfs which have some valid values for these parameters.

Let δ̂I and φ̂I denote estimators of δ and φ, respectively and let
δ̂I(y) and φ̂I(y) denote the estimates obtained from the received data
y characterized by the pdf f(y | θ). The estimators φ̂I(y) and δ̂I(y)
are invariant under GSModel from (5.34), if for all (a, b, c) ∈ R+ ×R×R,

δ̂I(ga,b,c(y)) = δ̂I(a(y + hb) + c12P ) = (aδ̂I(y) + c); (5.36)
φ̂I(ga,b,c(y)) = φ̂I(a(y + hb) + c12P ) = aφ̂I(y). (5.37)

Note that, by design, the estimators φ̂I(y) and δ̂I(y) are invariant
to the parameter d (since the changes in d in (5.36) and (5.37) do
not affect δ̂I and φ̂I), i.e., the estimates, as well as the performance
of the estimators, are not affected by the value of d. Further, the
skew-normalized loss functions are invariant under GSModel from (5.34),
since

(δ̂I(y)− δ)2

φ2 = (δ̂I(ga,b,c(y))− (aδ + c))2

a2φ2 , (5.38)

and

(φ̂I(y)− φ)2

φ2 = (φ̂I(ga,b,c(y))− aφ)2

a2φ2 (5.39)

for all ga,b,c ∈ GSModel.
In Theorem 5.2, we develop the optimum invariant joint clock skew

and offset estimator for the S-model. We can use the optimum estimator
to calculate the best performance for cases when f1(·) and f2(·) are
known.3 Later, we use these results to evaluate the losses from using joint
clock skew and offset estimation schemes designed without knowledge

3The estimators are optimum when f1(·) and f2(·) have finite or infinite support.
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of f1(·) and f2(·). The minimax optimum estimators of δ and φ under
the S-model was derived in [40] and are given by

Theorem 5.2. Assuming complete knowledge of f1(·) and f2(·), the
optimum (or minimum conditional risk) invariant estimators of δ and
φ, δ̂MinRisk and φ̂MinRisk, under GSModel defined in (5.34), for the skew
normalized squared error loss functions, are given by

δ̂MinRisk(y) =
∫
R+
∫
R2

δ
φ2 f(y | δ, φ, λ)dλdδdφ∫

R+
∫
R2

1
φ2 f(y | δ, φ, λ)dλdδdφ

, (5.40)

and

φ̂MinRisk(y) =
∫
R+
∫
R2

1
φf(y | δ, φ, λ)dλdδdφ∫

R+
∫
R2

1
φ2 f(y | δ, φ, λ)dλdδdφ

, (5.41)

respectively, where f(y | δ, φ, λ) is defined as

f(y | δ, φ, λ) = 1
φ2P fw1

(
t2 − δ1TP

φ
− λ1TP − t1

)

fw2

(
δ1TP − t3

φ
+ t4 − λ1TP

)
. (5.42)

Further, the derived optimum invariant estimators are minimax for the
skew-normalized squared error loss in the restricted parameter space
Θ∗ (see [40] for proof).

Proof. Let θ = [φ, d, δ]. We first calculate the right invariant prior for
GSModel, defined in (5.34), as it is necessary for deriving the optimum
invariant estimator under GSModel. Let A ⊆ Θ and θ0 = (φ0, d0, δ0) ∈ Θ,
with Θ defined in (5.30). The right group transformation of A by θ0 is
given by [47]

Ar0 = {θr0 = (φr0 , dr0 , δr0): θr0 = ḡφ,d,δ(θ0), (φ, d, δ) ∈ A}, (5.43)
= {θr0 = (φφ0, d0 + d/φ0, φδ0 + δ): (φ, d, δ) ∈ A}, (5.44)
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with ḡφ,d,δ ∈ ḠSModel from (5.35). The right invariant prior, πr, on
GSModel from (5.34) is obtained by finding the function that satisfies4∫

A
πr(θ)dθ =

∫
Ar0

πr(θr0)dθr0 , (5.45)

for all A ⊆ Θ, for all ḡφ,d,δ ∈ ḠSModel and for all θ0 = (φ0, d0, δ0) ∈ Θ.
The right invariant prior for ḠSModel is given by πr(θ) = IR+(φ)IR(d) ·
IR(δ). To see this, note that∫

A
1dθ =

∫
Ar0

dθ

dθr0
dθr0 =

∫
Ar0

1dθr0 , (5.46)

since the Jacobian of the transformation in (5.44) is given by

dθr0

dθ
= det





∂φr0
∂φ

∂φr0

∂d
∂φr0
∂δ

∂dr0
∂φ

∂dr0

∂d
∂dr0
∂δ

∂δr0
∂φ

∂δr0

∂d
∂δr0
∂δ





= det


φ0 0 0

0 1/φ0 0
δ0 0 1


 = 1. (5.47)

The optimum invariant estimators of δ under GSModel from (5.34),
denoted by δ̂MinRisk, can now be obtained by solving

δ̂MinRisk(y) = arg min︸ ︷︷ ︸
δ̂

∫
Θ

(δ̂(y)− δ)2

φ2 πr(θ | y)dθ, (5.48)

where πr(θ | y) = f(y | θ)πr(θ)∫
Θ f(y | θ)πr(θ)dθ and πr(θ) is the right invariant prior

corresponding to ḠSModel. To find δ̂MinRisk, we differentiate the objective
function in (5.48) with respect to δ̂(y), set the result equal to zero and

4The right invariant prior is invariant to the right transformation of the parame-
ters in the parameter space. Similarly, the left invariant prior can also be constructed.
However, we are interested only in the right invariant prior as it is used in deriving
the optimum invariant estimator.

The version of record is available at: http://dx.doi.org/10.1561/2000000108



5.2. Optimum Joint Clock Skew and Offset Estimators 49

solve for δ̂(y). We have

δ̂MinRisk(y) =
∫
R+
∫
R2

δ
φ2π

r(θ | y)dθ∫
R+
∫
R2

1
φ2πr(θ | y)dθ

,

=
∫
R+
∫
R2

δ
φ2 f(y | θ)dθ∫

R+
∫
R2

1
φ2 f(y | θ)dθ

,

=
∫
R+
∫
R2

δ
φ2 f(y | δ, φ, λ)dλdδdφ∫

R+
∫
R2

1
φ2 f(y | δ, φ, λ)dλdδdφ

. (5.49)

We have replaced d with λ in Theorem 5.2 to make the notation clear
to the reader.

Similarly, the optimum invariant estimator of φ under GSModel from
(5.34), denoted by φ̂MinRisk, can be obtained by solving

φ̂MinRisk(y) = arg min︸ ︷︷ ︸
φ̂

∫
Θ

(φ̂(y)− φ)2

φ2 πr(θ | y)dθ. (5.50)

Solving, we obtain

φ̂MinRisk(y) =
∫
R+
∫
R2

1
φf(y | δ, φ, λ)dλdδdφ∫

R+
∫
R2

1
φ2 f(y | δ, φ, λ)dλdδdφ

. (5.51)

Remark 5.2. Theorem 5.2 provides us with mathematical expressions
for the optimum invariant joint clock skew and offset estimator for
the S-model under the assumption that we have complete knowledge
of f1(·) and f2(·). The optimum estimator described in Theorem 5.2
is applicable to any pdf-model of the PDV and achieves the lowest
MSE among the class of invariant joint clock skew and offset estimators
for the S-model. The MSE performance of the optimum estimator is
extremely useful as it provides a lower bound on the MSE against which
we can compare the performance of any proposed estimator with limited
information, (for example, f1(·) and f2(·) are unknown). If close, the
compared estimators are well suited for practical applications.
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5.3 Numerical Results

We now compare the skew normalized root mean square estimation error
(NRMSE) of the optimum estimators under the K-model (Minimax-K)
and S-model (Minimax-S) against the conventional maximum likelihood
(LMLE) and the least-squares joint clock skew and offset estimator (LSE)
under the K-model in the LTE backhaul network scenario described in
Section 2. To obtain the pdf of the stochastic queuing delays for this
scenario, please refer to Subsection 2.3.3.

The results are presented in Figures 5.1 and 5.2. From the results,
we see that the optimum estimators significantly outperform the conven-
tional CSOE schemes for the considered network scenario. Minimax-K
exhibits the lowest NRMSE among all the considered schemes as it has
prior knowledge regarding d. However, interestingly, there is no signifi-
cant loss in the performance of Minimax-S due to the unknown nuisance
parameter d. The performance of the optimum invariant estimator is
independent of the parameter values {φ, d, δ} since the conditional risk
of an invariant estimator is constant. This is also visible in Figure 5.2.
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(a)NRMSEofclockoffsetforTM-1under40%load.

(b)NRMSEofclockskewforTM-1under40%load.

Figure 5.1: NRMSE of clock skew and offset for various CSOE schemes under
Traffic Model-1.
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(a)NRMSEofclockoffsetforTM-1under40%load.

(b)NRMSEofclockskewforTM-1under40%load.

Figure 5.2: NRMSE performance of minimax optimum estimator under K-model for
different parameter values. We have for case 1, {φ, d, δ} = {1.01, 1 µs, 1.25 µs}, for case
2, {φ, d, δ} = {1.02, 1 µs, 1.25 µs} and for case 3, {φ, d, δ} = {0.98, 1 µs,−1.25 µs}.
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6
Joint Clock Skew and Offsets Estimators Robust

Against Unknown Path Asymmetries

In Section 4, we described optimum estimation schemes for clock offset
estimation, and in Section 5, we described optimum joint clock skew and
offset estimation schemes for PTP. The optimum estimators described
in Sections 4 and 5, assumed a prior known affine relationship between
the unknown fixed path delays. However, the performance of joint clock
skew and offset estimation schemes can significantly degrade in the
presence of unknown path asymmetries [68]. This unknown asymmetry
between the fixed path delays can arise from several sources, including
delay attacks [68] and routing asymmetry [3]. This section addresses
the problem of developing joint clock skew and offset estimators for
PTP that are robust against unknown path asymmetries.

Several clock offset estimation schemes that are robust against un-
known path asymmetries which assume complete knowledge of the clock
skew, are available in the literature [17, 38, 39, 53, 54, 64]. However,
to the best of our knowledge, there are no joint clock skew and offset
estimation schemes available in the literature whose performance does
not degrade in the presence of unknown deterministic path asymmetries.
The IEEE 1588 PTP standard [32] proposes the use of timing informa-
tion from multiple masters rather than a single master to help protect

53
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54 Joint Clock Skew and Offsets Estimators

against unknown path asymmetries. Following the PTP standard [32],
we assume the availability of multiple master-slave communication paths
in our work and further assume that fewer than half of the master-slave
communication paths have an unknown asymmetry between the fixed
path delays.1

We first present bounds from [41] on the best possible performance
for invariant joint clock skew and offset estimation schemes in the
presence of possible unknown path asymmetries. When developing the
performance lower bounds, prior knowledge on whether a master-slave
communication path has an unknown asymmetry between the fixed path
delays as well as the complete knowledge of the pdf describing the PDV
in the master-slave communication path is assumed. We then briefly
describe recently developed robust joint clock skew and offset estimators
from [41] that can handle unknown path asymmetries. Numerical results
comparing the performance of the robust CSOE scheme against the
performance lower bounds are also presented.

6.1 Signal Model and Problem Statement

Assume the availability of N master-slave communication paths and
perfect synchronization between the clocks of the N masters. Recall
that the relative clock skew and offset of the slave node with respect to
a master node are denoted by φ ∈ R+ and δ ∈ R, respectively. A total of
P rounds of two-way message exchanges is assumed at each master-slave
communication path. The relationship between the received timestamps
obtained from the various master-slave communication paths are given
by [7, 48, 57]

t2ij = (t1ij + dmsi + w1ij)φ+ δ, (6.1)
t3ij = (t4ij − dsmi + w2ij)φ+ δ, (6.2)

for i = 1, 2, . . . , N and j = 1, 2, . . . , P . In (6.1) and (6.2), dmsi and
dsmi denote the unknown fixed propagation delays in the forward and
reverse path, respectively, at the ith master-slave communication path.

1Alternatively, it could be assumed that one particular path must be symmetric
as opposed to assuming more than half of the paths are symmetric.
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The variables w1ij and w2ij denote the random queuing delays in the
forward and reverse path, respectively, during the jth round of message
exchanges for the ith master-slave communication path. The pdf of
{wkij}Pj=1 is denoted by fki(·) for k = 1, 2 and i = 1, 2, . . . , N .

Clock synchronization protocols including PTP [32], NTP [52],
TPSN [20] used in real networks generally assume that the fixed path
delays in the forward and reverse paths are equal. Freris et al. [16]
gave the necessary conditions in order to obtain a unique solution to
the clock skew and offset for protocols based on a two-way message
exchange scheme. We need to know either one of the fixed path delays,
or we need to have a prior known relationship between the fixed path
delays in the forward and reverse paths. In this section, we classify a
master-slave communication path as being symmetric or asymmetric de-
pending on the relationship between the fixed path delays. A symmetric
master-slave communication path denotes a path in which the fixed path
delays in the forward and reverse paths are equal, i.e., dmsi = dsmi = di,
where di denotes the unknown fixed path delay over the ith master-slave
communication path. Similarly, an asymmetric master-slave communi-
cation path denotes a path having an unknown asymmetry between the
forward and reverse fixed path delays, i.e., dmsi = di + τi and dsmi = di.
The parameter τi denotes the unknown constant (for all j) unexpected
asymmetry between the fixed path delays.

Define wki = [wki1, wki2, . . . , wkiP ] for k = 1, 2, i = 1, 2, . . . , N and
tki = [tki1, tki2, . . . , tkiP ] for k = 1, 2, 3, 4 and i = 1, 2, . . . , N . We now
introduce a new binary state vector variable η = [η1, η2, . . . , ηN ], which
indicates whether a master-slave communication path is symmetric
or asymmetric. The ith element of η is 1 when the ith master-slave
communication path has asymmetric fixed path delays, else it has a
value of 0. The parameter η is usually not known and has to estimated
from the observations. If ηi = 0, the received timestamps from the ith
master-slave communication path can be arranged in vector form as

yi = (hdi + vi)φ+ δ12P , (6.3)

where yi = [t2i, t3i]T , h = [1TP ,−1TP ]T and vi = [v1i,v2i]T with v1i =
(t1i +w1i) and v2i = (t4i −w2i). Similarly, when ηi = 1, the received
timestamps from the ith master-slave communication path can be
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arranged in vector form as

yi = (hdi + gτi + vi)φ+ δ12P , (6.4)

where g = [1TP ,0TP ]T . The complete set of received timestamps is
denoted by t = [t11, t12, . . . , t1N , t21, t22, . . . , t2N , t31, t32, . . . , t3N , t41,

t42, . . . , t4N ]. We now state the assumptions made in [41] when devel-
oping the performance bounds as well as the robust joint clock skew
and offset estimators:

CSOE with Asymmetry Assumptions

1. We assume the availability of N master-slave communication
paths. Further, we assume that fewer than half of the N master-
slave communication paths have an unknown asymmetry between
the fixed path delays, i.e., ||η||1 < N/2.

2. All the queuing delays are strictly positive random variables and
have finite support. Also, the random queuing delays {wkij}Pj=1 are
assumed to be independent and identically distributed. The pdf
of the random variables are denoted by fki(·) for i = 1, 2, . . . , N ,
k = 1, 2.

3. The unknown fixed delays {di}Ni=1, unknown biases {τi}Ni=1, clock
skew φ and the clock offset δ are assumed to be constant over P
two-way message exchanges for each master-slave communication
path.

4. As very small τi will have little impact, we officially define a master-
slave communication path as having an unknown asymmetry
(ηi = 1) when |τi| ≥ dτ , where dτ can be chosen such that |τi| < dτ
causes little impact.

6.2 Performance Lower Bounds Based on Optimum Estimators

We first present useful performance lower bounds from [41] that help
in evaluating the performance of the proposed joint clock skew and
offset estimation schemes that are robust to unknown path asymmetries.
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We assume η is known and further assume complete knowledge of
the forward- and reverse queuing delay pdfs f1i(·) and f2i(·) for all N
master-slave communication paths for i = 1, 2, . . . , N .

Fixing the loss function to the skew normalized squared error loss,
invariant decision theory was employed in [41] to develop the optimum
approach for fusing information from the N master-slave communication
paths. As prior information regarding the asymmetric paths is assumed,
the skew normalized mean square estimation error (NMSE) performance
of the optimum approach provides us a lower bound on the NMSE for an
invariant joint clock skew and offset estimation scheme in the presence of
possible unknown path asymmetries. We now describe the performance
lower bounds developed in [41].

For ease of notation, assume the first K(<N/2) master-slave commu-
nication paths have an unknown symmetry and the remaining (N −K)
master-slave communication paths have a known asymmetry. Under
these assumptions with (6.3) and (6.4), we have

yi = (hdi + gτi + vi)φ+ δ12P , (6.5)

for i = 1, 2, . . . ,K and

yi = (hdi + vi)φ+ δ12P , (6.6)

for i = K + 1, . . . , N . The complete set of observations from the N
master-slave communication paths can be represented in vector form as

y = (Hγ + v)φ+ δ12NP , (6.7)

where H = [h⊗ IN , g ⊗ IK ] with ⊗ denoting the Kronecker product
operation, y = [yT1 ,yT2 , . . . ,yTN ], v = [vT1 ,vT2 , . . . , vTN ] and γ = [d, τ ]
with d = [d1, d2, . . . , dN ] and τ = [τ1, τ2, . . . , τK ].

Let θ = [φ, δ, d1, d2, . . . , dN , τ1, . . . , τK ] denote the vector of un-
known parameters. The parameter space of θ, denoted by Θ, is given
by Θ = {(φ, δ,d, τ ): φ ∈ R+, δ ∈ R,d ∈ RN , τ ∈ RK}. From (6.7), the
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conditional pdf of y is given by

f(y | θ) = 1
φ2NP fv

(
y − δ12NP

φ
−Hγ

)
, (6.8)

= 1
φ2NP

K∏
i=1

fvi

(
yi − δ12P

φ
− dih− τig

)
N∏

i=K+1
fvi

(
yi − δ12P

φ
− dih

)
, (6.9)

where yi = [t2i, t3i]T and fvi(vi) =
∏P
j=1 f1i(v1ij − t1ij)f2i(t4ij − v2ij)

for i = 1, 2, . . . , N , where f1i(·) and f2i(·) denote the pdf of the forward
and reverse path stochastic queuing delays, respectively.

Let FM denote the class of all pdfs f(y | θ) for θ ∈ Θ. The class of
such pdfs is invariant under the group of transformations GM on the
observations y, on R2NP , defined as

GM = {ga,b,c(y): ga,b,c(y) = (y +Hb)a+ c12NP ,

∀(a, b, c) ∈ R+ × RN+K × R}, (6.10)

where y ∈ R2NP since yg = ga,b,c(y) has a pdf given by 1
(aφ)2NP

fv(yg−((aδ+c)12NP )
aφ −H(γ + b

φ)). The corresponding group of induced
transformations on Θ, denoted by ḠM , is given by

ḠM = {ḡa,b,c((φ,γ, δ)):ḡa,b,c((φ,γ, δ)) = (aφ, (γ + b/φ), (aδ + c)),
∀(a, b, c) ∈ R+ × RN+K × R}, (6.11)

where φ ∈ R+,γ ∈ RN+K and δ ∈ R.
Let δ̂I and φ̂I denote estimators of δ and φ, respectively and let

δ̂I(y) and φ̂I(y) denote the estimates obtained from the received data
y characterized by the pdf f(y | θ) = 1

φ2NP fv(y−(δ12NP )
φ −Hγ). The

estimators φ̂I(y) and δ̂I(y) are invariant under GM from (6.10), if for
all (a, b, c) ∈ R+ × RN+K × R,

δ̂I(ga,b,c(y)) = δ̂I(a(y +Hb) + c12NP ) = aδ̂I(y) + c; (6.12)
φ̂I(ga,b,c(y)) = φ̂I(a(y +Hb) + c12NP ) = aφ̂I(y). (6.13)

Following similar steps to the derivation in Section 4 and fixing the
loss function to the skew normalized squared error loss, the optimum
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invariant estimators of δ and φ for GM from (6.10) was derived in [41]
for known f1i(·) and f2i(·) for i = 1, 2, . . . , N and prior knowledge of
master-slave communication paths having unknown deterministic path
asymmetries. As these optimum estimators achieve the smallest skew
normalized mean square estimation error (NMSE) among the class of
invariant estimators, the MSE performance of these estimators give us
useful fundamental lower bounds on the MSE for a joint clock skew and
offset estimation scheme for PTP. Later, we use these results to evaluate
the losses from using joint clock skew and offset estimation schemes
which were designed for cases where f1i(·) and f2i(·) for i = 1, 2, . . . , N
and the asymmetric paths are not known.

Theorem 6.1. Assuming knowledge of the paths having an unknown
asymmetry and complete knowledge of f1i(·) and f2i(·) for i = 1, 2, . . . , N ,
the optimum invariant estimators for δ and φ, denoted by δ̂opt and φ̂opt,
respectively, are given by

δ̂opt(y) =
∫
R+
∫
RN+K+1

δΓ1(φ,δ,d,τ ,y)Γ0(φ,δ,d,y)
φ2NP−N−K+3 dτd(d)dδdφ∫

R+
∫
RN+K+1

Γ1(φ,δ,d,τ ,y)Γ0(φ,δ,d,y)
φ2NP−N−K+3 dτd(d)dδdφ

, (6.14)

and

φ̂opt(y) =
∫
R+
∫
RN+K+1

Γ1(φ,δ,d,τ ,y)Γ0(φ,δ,d,y)
φ2NP−N−K+2 dτd(d)dδdφ∫

R+
∫
RN+K+1

Γ1(φ,δ,d,τ ,y)Γ0(φ,δ,d,y)
φ2NP−N−K+3 dτd(d)dδdφ

, (6.15)

respectively, where we have Γ1(φ, δ,d, τ ,y) =
∏K
i=1 fvi(

yi−δ12P
φ − dih−

τig) and Γ0(φ, δ,d,y) =
∏N
i=K+1 fvi(

yi−δ12P
φ − dih). The NMSE perfor-

mance of δ̂opt(y) and φ̂opt(y) give us lower bounds on the NMSE for
clock skew and offset estimators in the presence of possible unknown
path asymmetries.

Theorem 6.1 provides us with mathematical expressions for the
optimum joint clock skew and offset estimators for IEEE 1588 under
the assumption that we have complete knowledge of f1i(·) and f2i(·)
for i = 1, 2, . . . , N and prior knowledge of the master-slave commu-
nication paths having unknown deterministic path asymmetries. The
NMSE performance of the optimum estimators described in Theo-
rem 6.1 cannot generally be achieved unless we have information that
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is usually not available (prior information regarding the master-slave
communication paths having unknown deterministic path delay asym-
metries). Hence, the NMSE performance of the optimum joint clock
skew and offset estimator described in Theorem 6.1 can be viewed as
a performance lower bound. In summary, the NMSE performance of
the optimum joint clock skew and offset estimator described in The-
orem 6.1 can be viewed as a performance lower bound on the NMSE
for invariant joint clock skew and offset estimation schemes which were
designed without knowledge of the asymmetric paths and f1i(·) and
f2i(·) for i = 1, 2, . . . , N . We can compare the performance of any
proposed estimator with limited information to this best possible per-
formance. If close, the compared estimators are well suited for practical
applications.

6.3 Robust Joint Clock Skew and Offset Estimation for
IEEE 1588

In practice, when developing joint clock skew and offset estimators that
are robust to unknown path asymmetries, prior information regarding
the paths with unknown path asymmetries is not available. Hence, it is
useful to identify the asymmetric paths when developing a joint clock
skew and offset estimation scheme that is robust against unknown path
asymmetries. Further, in specific scenarios, the complete information
regarding the pdf of the PDV, f1i(·) and f2i(·) for i = 1, 2, . . . , N , might
not be readily available. To address this issue, the pdf of the PDV can
be approximated by a finite mixture of Gaussian distributions [41]. The
Gaussian mixture distribution is a prominent model for approximating
a pdf as it is a universal approximator in a certain sense [6, 37, 59]. We
have

f1i(w) =
Mi∑
k=1

αikPµ1ik,σ1ik(w); (6.16)

f2i(w) =
Li∑
l=1

βilPµ2il,σ2il(w), (6.17)

for i = 1, 2, . . . , N . In (6.16) and (6.17), {αik}Mi
k=1 and {βil}Lil=1 denote

the unknown mixing coefficients in the forward and reverse path at
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the ith master-slave communication path with Mi and Li denoting the
number of assumed mixture components in the forward and reverse
path, respectively. Also, we have αik ∈ [0, 1] and βil ∈ [0, 1] with the
constraints

∑Mi
k=1 αik = 1 and

∑Li
l=1 βil = 1. Further, Pµ,σ(·) denotes

a normal distribution with mean µ and standard deviation σ. The
variables {µ1ik, σ1ik} denote the mean and standard deviation of the kth
component in the mixture models in the ith forward path and the
variables {µ2il, σ2il} denote the mean and standard deviation of the lth
component in the mixture models in the ith reverse path. Further, we
assume a set of samples w̃k = [w̃k1, w̃k2, . . . , w̃kN ] for k = 1, 2, where
w̃ki = [w̃ki1, w̃ki2, . . . , w̃kiPt ] for i = 1, 2, . . . , N to be available [41].
These samples have similar statistical properties to wk for k = 1, 2.

Let Ω denote the vector of unknown parameters defined as Ω =
[Ψ,η,α1,. . . ,αN ,β1, . . . ,βN ,µ11, . . . ,µ1N ,σ11, . . . ,σ1N ,µ21, . . . ,µ2N ,

σ21, . . . ,σ2N ] where we have Ψ = [φ, δ, d1, . . . , dN , τ1, . . . , τN ], η = [η1,

η2, . . . , ηN ], αi = [αi1, . . . , αiMi ] for i = 1, 2, . . . , N , βi = [βi1, . . . , βiLi ]
for i = 1, 2, . . . , N , µ1i = [µ11, . . . , µ1Mi ] for i = 1, 2, . . . , N , µ2i = [µ21,

. . . , µ2Li ] for i = 1, 2, . . . , N , σ1i = [σ1i1, . . . , σ1iMi ] for i = 1, 2, . . . , N
and σ2i = [σ2i1, . . . , σ2iLi ] for i = 1, . . . , N .

Given Ω, the log-likelihood function of the observed data t, w̃1 and
w̃2, denoted by L(Ω | t, w̃1, w̃2), is defined as

L(Ω | t, w̃1, w̃2)

=
N∑
i=1

P∑
j=1

[
ln
(
ηi

( Mi∑
k=1

αikPµ1ik,σ1ik

(
t2ij − δ
φ

− di − τi − t1ij
))

×
( Li∑
l=1

βilPµ2il,σ2il

(
t4ij − di + δ − t3ij

φ

)))

+ (1− ηi)
( Mi∑
k=1

αikPµ1ik,σ1ik

(
t2ij − δ
φ

− di − t1ij
))

×
( Li∑
l=1

βilPµ2il,σ2il

(
t4ij − di + δ − t3ij

φ

)))]
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+
N∑
i=1

Pt∑
j=1

ln
( Mi∑
k=1

αikPµ1ik,σ1ik(w̃1ij)
)

+
N∑
i=1

Pt∑
j=1

ln
( Li∑
l=1

βilPµ2il,σ2il(w̃2ij)
)
− 2NM lnφ. (6.18)

The maximum likelihood method is widely used and has many
attractive features including consistency and asymptotic unbiasedness.
The maximum likelihood estimate (MLE) of Ω, denoted by Ω̂mle, is
obtained by solving the following constrained optimization problem

Ω̂mle = arg max
Ω

L(Ω | t, w̃1, w̃2) (6.19)

such that ηi ∈ {0, 1} for i = 1, 2, . . . , N, (6.19a)
αik ∈ [0, 1] for i = 1, 2, . . . , N

and k = 1, 2, . . . ,M with
Mi∑
k=1

αik = 1, (6.19b)

βil ∈ [0, 1] for i = 1, 2, . . . , N

and l = 1, 2, . . . ,M with
Li∑
l=1

βil = 1, (6.19c)

|τi| ≥ dτ when ηi = 1, (6.19d)
N∑
i=1

ηi ≤ N/2. (6.19e)

The mixed integer nonlinear programming problem presented in (6.19)
is computationally intensive to solve for large values of N as we would
have to generally search across 2N possibilities of η. To address this
issue, we use the idea discussed in [75] to formulate a relaxed version of
the mixed integer non-linear programming problem.

6.3.1 Binary Variable Relaxation and EM Algorithm

As the constraints in (6.19a) correspond to binary variables, we relax
the problem and introduce real variables with constraints defined as
πi = Pr(ηi = 1) ∈ (0, 1) for i = 1, 2, . . . , N . Let Ωπ = [Ψ,π,α1, . . . ,
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αN ,β1, . . . ,βN ,µ11,. . . ,µ1N ,σ11, . . . ,σ1N ,µ21, . . . ,µ2N ,σ21, . . . ,σ2N ],
where we have π = [π1, π2, . . . , πN ]. Replacing the binary variables
with the corresponding real variables and dropping the constraints in
(6.19d) and (6.19e), we can rewrite the optimization problem in (6.19) as

Ω̂π,mle = arg max
Ωπ

LEM (Ωπ | t, w̃1, w̃2) (6.20)

such that πi ∈ (0, 1) for i = 1, 2, . . . , N, (6.20a)

αik ∈ (0, 1) with
Mi∑
k=1

αik = 1

for i = 1, 2, . . . , N, (6.20b)

βil ∈ (0, 1) with
Li∑
l=1

βil = 1

for i = 1, 2, . . . , N, (6.20c)

where Ω̂π,mle denotes the MLE of Ωπ and LEM (Ωπ | t, w̃1, w̃2), referred
to as the incomplete log-likelihood is defined as

LEM (Ωπ | t, w̃1, w̃2)

=
N∑
i=1

P∑
j=1

ln
[
πi

(( Mi∑
k=1

αikPµ1ik,σ1ik

( t2ij − δ
φ

− di − τi − t1ij
))

×
( Li∑
l=1

βilPµ2il,σ2il

(
t4ij − di + δ − t3ij

φ

)))

+ (1− πi)
(( Mi∑

k=1
αikPµ1ik,σ1ik

(
t2ij − δ
φ

− di − t1ij
))

×
( Li∑
l=1

βilPµ2il,σ2il

(
t4ij − di + δ − t3ij

φ

)))]

+
N∑
i=1

Pt∑
j=1

ln
[ Mi∑
k=1

αikPµ1ik,σ1ik(w̃1ij)
]

+
N∑
i=1

Pt∑
j=1

ln
[ Li∑
l=1

βilPµ2ik,σ2ik(w̃2ij)
]
− 2NM lnφ. (6.21)
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The iterative algorithm for solving (6.20) is next enumerated in steps
(1)–(16). The SAGE algorithm proposed in [15] is used to derive steps
(1)–(16), and the details are discussed in [41]. The algorithm begins
with the current estimates Ω̂′π of Ωπ and produces updated estimates
of Ωπ as follows:

1. In this step, we calculate the variables Dij , χ(1)
ijkl and χ

(0)
ijkl based on

the current parameter estimates, Ω̂′π, and the observed timestamps.
These variables are necessary for calculating the updated estimates
of the parameters in Ωπ. Define Dij as

Dij =
Mi∑
kc=1

Li∑
lc=1

[
π̂′iα̂
′
ikc β̂

′
ilcPµ′2ilc ,σ′2ilc

(
t4ij − d̂′i + δ̂′ − t3ij

φ̂′

)

× Pµ′1ikc ,σ′1ikc

(
t2ij − δ̂′

φ̂′
− d̂′i − τ̂ ′i − t1ij

)

+ (1− π̂′i)α̂′ikc β̂
′
ilcPµ′2ilc ,σ′2ilc

(
t4ij − d̂′i + δ̂′ − t3ij

φ̂′

)

× Pµ′1ikc ,σ′1ikc

(
t2ij − δ̂′

φ̂′
− d̂′i − t1ij

)]
(6.22)

for i = 1, 2, . . . , N and j = 1, 2, . . . , P . Then, compute

χ
(1)
ijkl = D−1

ij π̂
′
iα̂
′
ikβ̂
′
ilPµ′2il,σ′2il

(
t4ij − d̂′i + δ̂′ − t3ij

φ̂′

)

× Pµ′1ik,σ′1ik

(
t2ij − δ̂′

φ̂′
− d̂′i − τ̂ ′i − t1ij

)
(6.23)

and

χ
(0)
ijkl = D−1

ij (1− π̂′i)α̂′ikβ̂′ilPµ′2il,σ′2il

(
t4ij − d̂′i + δ̂′ − t3ij

φ̂′

)

× Pµ′1ik,σ′1ik

(
t2ij − δ̂′

φ̂′
− d̂′i − t1ij

)
(6.24)

for i = 1, 2, . . . , N , j = 1, 2, . . . , P , k = 1, 2, . . . ,Mi and l =
1, 2, . . . , Li.
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2. Similar to the first step, we calculate the variables D̃ij and
ãijkl based on the current parameter estimates, Ω̂′π, and the
observed timestamps. These variables are necessary for calculat-
ing the updated estimates of parameters in Ωπ. First, we calcu-
late D̃ij =

∑Mi
kc=1

∑Li
lc=1 α̂

′
ikc
β̂′ilcPµ′2ikc ,σ′2ikc (w̃1ij)Pµ′2ilc ,σ′2ilc (w̃2ij)

for i = 1, 2, . . . , N and j = 1, 2, . . . , Pt. We then compute

ãijkl = D̃−1
ij α̂

′
ikβ̂
′
ilPµ′2ik,σ′2ik(w̃1ij)Pµ′2il,σ′2il(w̃2ij) (6.25)

for i = 1, 2, . . . , N , j = 1, 2, . . . , Pt, k = 1, 2, . . . ,Mi and l =
1, 2, . . . , Li.

3. In this step, we calculate the updated estimate of πi, αik and βil,
denoted by π′i, α′ik and β′il, respectively, for i = 1, 2, . . . , N, k =
1, 2, . . . ,Mi and l = 1, 2, . . . , Li. We have

π̂i = 1
P

P∑
j=1

Mi∑
k=1

Li∑
l=1

χ
(1)
ijkl, (6.26)

α̂ik = 1
(P + Pt)

 P∑
j=1

Li∑
l=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)
+

Pt∑
j=1

Li∑
l=1

ãikjl

 , (6.27)

β̂il = 1
(P + Pt)

 P∑
j=1

Mi∑
k=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)
+

Pt∑
j=1

Mi∑
k=1

ãikjl

 . (6.28)

4. In this step, we update the current estimates of πi, αik and βil
with the estimates obtained from step (3) and we recompute
the variables in steps (1) and (2). Set π̂′i = π̂i, α̂′ik = α̂ik and
β̂′il = β̂il for i = 1, 2, . . . , N, k = 1, 2, . . . ,Mi and l = 1, 2, . . . , Li
and recompute Dij and D̃ij . Then recompute χ(1)

ijkl, χ
(0)
ijkl and ãijkl

using (6.23), (6.24) and (6.25), respectively.

5. In this step, we calculate the updated estimates of µ1ik and
µ2il, denoted by µ′1ik and µ′2il, respectively, for i = 1, 2, . . . , N ,
k = 1, 2, . . . ,Mi and l = 1, . . . , Li. Define

Dµ1,ik =
P∑
j=1

Li∑
l=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)
+

Pt∑
j=1

Li∑
l=1

ãijkl, (6.29)
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and

Dµ2,il =
P∑
j=1

Mi∑
k=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)
+

Pt∑
j=1

Mi∑
k=1

ãijkl, (6.30)

for i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi and l = 1, . . . , Li. Then
compute

µ̂1ik = D−1
µ1,ik

 P∑
j=1

Li∑
l=1

((
t2ij − δ̂′

φ̂′
− d̂′i − t1ij

)

×
(
χ

(1)
ijkl + χ

(0)
ijkl

)
− χ(1)

ijklτ̂
′
i

)
+

Pt∑
j=1

Li∑
l=1

ãijklw̃1ij

 , (6.31)

and

µ̂2il = D−1
µ2,il

[ P∑
j=1

Mi∑
k=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)

×
(
t4ij − d̂′i + δ̂′ − t3ij

φ̂′

)
+

Pt∑
j=1

Mi∑
k=1

ãijklw̃2ij

]
(6.32)

for i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi and l = 1, . . . , Li.

6. In this step, we update the current estimates of µ1ik and µ2il
with the estimates obtained from step (5) and we recompute the
variables in steps (1) and (2). Set µ̂′1ik = µ̂1ik and µ̂′2il = µ̂2il for
i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi and l = 1, 2, . . . , Li. Recompute
Dij and D̃ij . Then recompute χ(1)

ijkl, χ
(0)
ijkl and ãijkl using (6.23),

(6.24) and (6.25), respectively.

7. In this step, we calculate the updated estimates of σ2
1ik and σ2

2il,
denoted by σ̂2

1ik and σ̂2
2il, respectively, for i = 1, 2, . . . , N , k =

1, 2, . . . ,Mi and l = 1, 2, . . . , Li. Define

Dµ1,ik =
P∑
j=1

Li∑
l=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)
+

Pt∑
j=1

Li∑
l=1

ãijkl, (6.33)

and

Dµ2,il =
P∑
j=1

Mi∑
k=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)
+

Pt∑
j=1

Mi∑
k=1

ãijkl (6.34)
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for i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi and l = 1, . . . , Li. Then
compute

σ̂2
1ik = D−1

µ1,ik

 Pt∑
j=1

Li∑
l=1

ãijkl(w̃1ij − µ̂′1ik)2

+
P∑
j=1

Li∑
l=1

χ
(0)
ijkl

(
t2ij − δ̂′

φ̂′
− d̂′i − t1ij − µ̂′1ik

)2

+χ(1)
ijkl

(
t2ij − δ̂′

φ̂′
− d̂′i − τ̂ ′i − t1ij − µ̂′1ik

)2
 , (6.35)

and

σ̂2
2il = D−1

µ2,il

[ Pt∑
j=1

Mi∑
k=1

ãijkl(w̃2ij − µ̂′2il)2 +
P∑
j=1

Mi∑
k=1

(
χ

(1)
ijkl + χ

(0)
ijkl

)

×
(
t4ij − d̂′i + δ̂′ − t3ij

φ̂′
− µ̂′2il

)2 ]
(6.36)

for i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi and l = 1, . . . , Li.

8. In this step, we update the current estimates of σ2
1ik and σ2

2il
with the estimates obtained from step (7) and we recompute the
variables in steps (1) and (2). Set σ̂′21ik = σ̂2

1ik and σ̂′22il = σ̂2
2il for

i = 1, 2, . . . , N , k = 1, 2, . . . ,Mi and l = 1, 2, . . . , Li. Recompute
Dij and D̃ij . Then recompute χ(1)

ijkl, χ
(0)
ijkl and ãijkl using (6.23),

(6.24) and (6.25), respectively.

9. In this step, we calculate the updated estimates of di, denoted by
d̂i, for the various master-slave communication paths.
Define Dd,i =

∑P
j=1

∑Mi
k=1

∑Li
l=1(χ(1)

ijkl + χ
(0)
ijkl)(

1
σ
′2
1ik

+ 1
σ
′2
2il

) for
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i = 1, 2, . . . , N . Then compute

d̂i = D−1
d,i

 P∑
j=1

Mi∑
k=1

Li∑
l=1

χ(1)
ijkl


(
δ̂′−t3ij
φ̂′

+ t4ij − µ̂′2il
)

σ
′2
2il

+

(
t2ij−δ̂′

φ̂′
− τ̂ ′i − t1ij − µ̂′1ik

)
σ
′2
1ik



+ χ
(0)
ijkl


(
t2ij−δ̂′

φ̂′
− t1ij − µ̂′1ik

)
σ
′2
1ik

+

(
δ̂′−t3ij
φ̂′

+ t4ij − µ̂′2il
)

σ
′2
2il





(6.37)
for i = 1, 2, . . . , N .

10. In this step, we update the current estimates of di using the
estimates obtained from step (9) and we recompute the variables
in steps (1) and (2). Set d̂′i = d̂i for i = 1, 2, . . . , N . Recompute
Dij and D̃ij . Then recompute χ(1)

ijkl, χ
(0)
ijkl and ãijkl using (6.23),

(6.24) and (6.25), respectively.

11. In this step, we calculate the updated estimates of τi, denoted
by τ̂i, for the various master-slave communication paths. Define

Dτ,i =
∑P
j=1

∑Mi
k=1

∑Li
l=1

χ
(1)
ijkl

σ
′2
1ik

for i = 1, 2, . . . , N . Then compute

τ̂i = D−1
τ,i

 P∑
j=1

Mi∑
k=1

Li∑
l=1

χ
(1)
ijkl


(
t2ij−δ̂′

φ̂′
− d̂′i − t1ij − µ̂′1ik

)
σ
′2
1ik




(6.38)
for i = 1, 2, . . . , N .

12. In this step, we update the current estimates of τi using the
estimates obtained from step (11) and we recompute the variables
in steps (1) and (2). Set τ̂ ′i = τ̂i for i = 1, 2, . . . , N . Recompute
Dij and D̃ij . Then recompute χ(1)

ijkl, χ
(0)
ijkl and ãijkl using (6.23),

(6.24) and (6.25), respectively.
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13. In this step, we calculate the updated estimate of the clock offset
δ, denoted by δ̂. Define Dδ =

∑N
i=1

∑P
j=1

∑Mi
k=1

∑Li
l=1(χ(1)

ijkl +χ
(0)
ijkl)( 1

σ
′2
1ik

+ 1
σ
′2
2il

)
and compute

δ̂ = φ̂′D−1
δ

 N∑
i=1

P∑
j=1

Mi∑
k=1

Li∑
l=1

χ(1)
ijkl


(
t2ij
φ̂′
− d̂′i − τ̂ ′i − t1ij − µ̂′1ik

)
σ
′2
1ik

−

(
t4ij − t3ij

φ̂′
− d̂′i − µ̂′2il

)
σ
′2
2il

+ χ
(0)
ijkl


(
t2ij
φ̂′
− d̂′i − t1ij − µ̂′1ik

)
σ
′2
1ik

−

(
t4ij − t3ij

φ̂′
− d̂′i − µ̂′2il

)
σ
′2
2il



 . (6.39)

14. In this step, we update the current estimates of δ using δ̂ obtained
from step (13) and we recompute the variables in steps (1) and
(2). Set δ̂′ = δ̂. Recompute Dij and D̃ij . Then recompute χ(1)

ijkl,
χ

(0)
ijkl and ãijkl using (6.23), (6.24) and (6.25), respectively.

15. In this step, we calculate the updated estimate of the clock
skew φ, denoted by φ̂. Define cφ =

∑N
i=1

∑P
j=1

∑Mi
k=1

∑Li
l=1(χ(1)

ijkl +

χ
(0)
ijkl)

( (t2ij−δ̂′)2

σ
′2
1ik

+ (δ̂′−t3ij)2

σ
′2
2il

)
, aφ = 2NP and bφ as

bφ =
N∑
i=1

P∑
j=1

Mi∑
k=1

Li∑
l=1

χ
(1)
ijkl

[(d̂′i + τ̂ ′i + t1ij + µ̂′1ik)(t2ij − δ̂′)
σ
′2
1ik

− (t4ij − d̂′i − µ̂′2il)(δ̂′ − t3ij)
σ
′2
2il

]

+ χ
(0)
ijkl

[(d̂′i + t1ij + µ̂′1ik)(t2ij − δ̂′)
σ
′2
1ik

− (t4ij − d̂′i − µ̂′2il)(δ̂′ − t3ij)
σ
′2
2il

]
. (6.40)

Then compute φ̂ =
√
b2
φ
−4aφcφ−bφ

2aφ .
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16. In this step, we update the current estimates of φ using φ̂ obtained
from step (15) and we recompute the variables in steps (1) and (2).
Set φ̂′ = φ̂, and repeat steps (1)–(16).

Since the update equations in steps (1)–(16) employ the SAGE
algorithm, they inherit the desirable property that the likelihood is
non-decreasing at each iteration [15]. When the algorithm converges, we
obtain the estimate of the clock skew and offset from Ω′π. Initial values
for the parameters are required to begin the SAGE algorithm. A simple
ad-hoc scheme to obtain the initial values of the various parameters in
Ωπ is presented in [41].

6.4 Numerical Results

We now compare the skew normalized root mean square estimation error
(NRMSE) of the robust CSOE scheme (SAGE-CSOE) proposed in [41]
against the performance lower bounds obtained using the NRMSE of the
optimum estimators in the LTE backhaul network scenario described in
Section 2. To obtain the pdf of the stochastic queuing delays for this
scenario, please refer to Subsection 2.3.3.

The results are presented in Figures 6.1 and 6.2. From Figure 6.1,
we see that the SAGE-CSOE scheme developed in [41] exhibits an
NRMSE close to the performance bounds for the considered TM1
network scenario. Also, from Figure 6.2, we observe that for a sufficiently
large number of two-way message exchanges, the SAGE-CSOE exhibits
an NRMSE close to the lower bounds for several network scenarios
indicating the relative robustness of the developed approach for different
network scenarios.
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(a)NRMSEofclockoffsetforTM-1under60%load.

(b)NRMSEofclockskewforTM-1under60%load.

Figure 6.1: NRMSE of clock skew and offset for the considered CSOE schemes
under traffic model-1.
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(a)NRMSEofclockoffsetforP=60.

(b)NRMSEofclockoffsetforP=25.

Figure 6.2: NRMSE of clock offset and skew for the considered CSOE schemes
under traffic model-1 under different loads.
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7
Conclusions

In this monograph, we have presented an overview of recent develop-
ments in the field of clock synchronization techniques for packet-switched
networks. Here we briefly present some concluding remarks on the mate-
rial presented in Sections 2 through to 6. In Section 2, we presented the
popular models to model the clock time at the slave node in terms of
clock time at the master node. We also described the two-way message
exchange in the context of PTP and presented the popular pdf-models
for modeling the stochastic queuing delays in packet-switched networks.
From Sections 4 through to 6, we have used invariant decision theory
to develop the optimum invariant estimators for PTP. To this end, in
Section 3, we formalized the concept of invariance by defining groups of
transformations over parameter and observation spaces.

In Section 4, we presented the recently developed optimum clock
offset estimators under various observation models for PTP from [21].
The optimum estimators achieve the lowest mean square estimation
error among the class of invariant clock offset estimators and are also
minimax-optimum. These estimators are guaranteed to provide the best
possible performance under any network scenario for jointly estimating
the clock skew and offset. Hence, these estimators are suitable for
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obtaining lower bounds on achievable estimation performance. Also,
in Section 4, we presented the optimum L-estimators for estimating
the clock offset in PTP. The L-estimators have significantly lower
computational complexity than the optimum estimators while exhibiting
a mean square estimation error very close to the lower bounds. In
Section 5, we addressed the problem of joint clock skew and offset
estimation for PTP in the presence of stochastic queuing delays. We
presented the optimum clock skew and offset estimators under various
observation models for PTP from [40]. Similar to the optimum clock
offset estimators, the optimum clock skew and offset estimators are
guaranteed to provide the best possible performance under any network
scenario.

When developing the optimum estimators in Sections 4 and 5, we
assumed either the complete knowledge of the fixed path delays or
a prior known affine relationship between the delays. However, the
presence of an unknown asymmetry between the fixed path delays can
significantly degrade the performance of clock skew and offset estimation
schemes [68]. This unknown asymmetry between the fixed path delays
can arise from several sources, including delay attacks [68] and routing
asymmetry [3]. Section 6 addresses the problem of developing clock
skew and offset estimators for PTP that are robust against unknown
path asymmetries. We present useful performance bounds on the mean
square estimation error of a clock skew and offset estimator in the
presence of unknown path asymmetries. We also describe a robust clock
skew and offset estimator that exhibits a mean square estimation error
close to the bounds for a sufficiently large number of two-way message
exchanges. The presented approaches from Sections 3 through to 6 are
very general as they do not assume any particular pdf-model of the
stochastic queuing delays. Also, the presented approaches apply to any
clock synchronization based on the two-way message exchange, including
TPSN [20], tiny-sync, and mini-sync [62], and LTS [70]. Further, these
estimators can be easily modified for clock synchronization protocols
based on message exchanges including RBS [10] and the flooding time
synchronization protocol [50].
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