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ABSTRACT

When updating router configurations, network operators often at-
tempt to meet a variety of management objectives (e.g., maintaining
structural similarity across devices), while also ensuring all forward-
ing policies are correctly satisfied. Our tool, AED, automates this
process. AED models configuration updates as a collection of syntax
tree additions and removals, and formulates an innovative system of
SMT (Satisfiability Modulo Theory) constraints that encode configu-
rations’ structure and interaction with routing algorithms. Operators
express management objectives in a high-level language, and AED
translates these to “soft” constraints that are maximally satisfied.
Evaluations on real and synthetic network configurations show that
AED can update networks with tens of routers and hundreds of
policies in under a minute, and AED outperforms both hand-crafted
updates and state-of-the-art tools in meeting management objectives.
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1 INTRODUCTION

Modifying router configurations is a fact of life for network operators.
For example, a study of 850 datacenter networks operated by an
online service provider found over half of the networks have at least
ten change events per month [23], and a study of two university
campus networks found that over a million lines of configuration
were changed in each university’s network over a 5 year period [30].
Configuration changes are often motivated by a change in forwarding
polices—e.g., to accommodate new services or end-hosts [30].
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Modifying a network’s configurations to implement new forward-
ing policies can be a daunting task due to the plethora of policies
the network must satisfy [13], the inherent complexity of cross-
protocol and cross-device dependencies [4, 12, 21], and the sheer
size of router configurations [12, 35]. Fortunately, the burden of
modifying network configurations can be reduced through (partial)
automation of changes. Network operators have routinely leveraged
configuration templates, scripts, and network management software
to modify configurations [14, 24]. For example, scripts perform up to
60% of changes in the 850 networks operated by the online service
provider [23]. More recently, practitioners have begun to “compile”
(partial) configurations from policy databases [2], and researchers
have developed systems to synthesize (partial) configurations from
intents [10, 17, 18, 42, 44].

Regardless of whether changes are performed manually or au-
tomatically, network operators must ensure the changes achieve
the desired forwarding policies—e.g., providing connectivity to
new end-hosts—without introducing regressions—e.g., breaking
connectivity for existing end-hosts. Moreover, the changes must be
performed in a manner that meets an organization’s network manage-
ment practices—e.g., maintaining configuration similarity between
devices with the same role [12, 23, 27], minimizing the number of de-
vices affected [21], etc. Existing synthesis tools have been designed
to guarantee configuration correctness [10, 11, 17, 18, 21, 42, 44],
but little attention has been dedicated to guaranteeing correctness
while also satisfying management objectives.

The scarcity of support for this duo of concerns is due in part to
the lack of a principled understanding of network operators’ con-
figuration management objectives. Consequently, we interviewed
or surveyed 58 network operators, and found that the size/scope
of changes—e.g., which devices are modified—and the structure
of the resulting configurations—e.g., maintaining the same packet
filters across devices—are both very important to network opera-
tors (§3.1). However, existing synthesis tools either ignore these
concerns [10, 18] or only support one of these two categories of ob-
jectives [11, 17, 21, 42, 44]. Furthermore, no tools allow operators
to express custom management objectives.

This leads us to explore the following research question: can we
design a system that efficiently synthesizes configuration updates
which conform to a network’s custom management objectives and

forwarding requirements?

We answer this question in the affirmative with the design of a
system we call AED. AED takes as input a network’s management
objectives, forwarding policies, and current configurations. Within a
few minutes, AED produces a set of configuration updates that rec-
tify forwarding policy violations and maximally satisfy management
objectives.
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Satisfying this duo of concerns is more complex than only guar-
anteeing policy-compliance, because we must find an optimal point
within the typically large space of policy-compliant configurations,
as opposed to choosing any policy-compliant configuration. In par-
ticular, computing suitable updates requires reasoning about: (i) the
semantics of potential configurations, to ensure policy compliance;
(ii) the syntax of potential configurations, to satisfy objectives for
configuration structure/features; and (iii) the difference between
current and potential configurations, to satisfy objectives for update
size/scope. Some synthesizers only consider configuration correct-
ness [10, 18] and can only reason about i. Other synthesizers also
reason about i but offer partial control over configuration struc-
ture/features [17, 42] or change size/scope [21, 44] and may require
additional operator input to reason about ii or iii. Automatically
satisfying the wide range of management objectives that matter to
operators (§3.1), requires higher-fidelity, fully automated reasoning.

Our key insight is to model configuration updates as a collection
of syntax tree additions and removals. By modeling configurations
(and updates) at a syntactic level, we can reason about configuration
structure (iii). By modeling updates as low-level additions and re-
movals, we can precisely reason about configuration differences (ii).
Finally, by modeling configurations’ influence on route computation
and selection, we can reason about configuration semantics (i).

In particular, we automatically derive a symbolic sketch from the
current configurations. The sketch mirrors the structure of the config-
uration syntax tree to facilitate reasoning about the impact of updates
on configurations structure and change scope. We call the symbols in
the sketch delta variables, because they encode potential syntax tree
additions and removals. By solving for a configuration delta, rather
than computing new configuration values from scratch [17, 42],
we can easily reason about the size/scope of changes and compute
updates efficiently.

Satisfying even simple forwarding policies—e.g., ensuring traf-
fic takes a certain path—for certain management objectives—e.g.
avoiding static routes—is NP-complete [42], so we use a MaxSMT
(Maximum Satisfiability Modulo Theories) solver to determine the
optimal values for delta variables. Our system of SMT constraints
include the symbolic configuration sketch and a model of various
routing algorithms (e.g., OSPF, BGP). We introduce “soft constraints”
on the relevant delta variables to search for an update that maximally
satisfies management objectives.

To facilitate flexibility in management objectives, AED provides
a high-level language for operators to specify rich configuration-
wide management objectives (§7.1). We observe that the objectives
reported by operators (§3.1) and supported by prior tools [21, 42]
focus on restricting how specific (elements of) configurations are
updated. Consequently, AED allows objectives to be expressed as
a restriction (e.g., ELIMINATE) on syntax subtrees. The subtrees
are identified using a variant of XPath [3], and determine precisely
which delta variables should be constrained.

We implement AED in Java using 4K LOC. Our experiments
using configurations from real data center networks show that AED
effectively supports a variety of management objectives, and gener-
ates updates that are better than hand-written ones. We empirically
show that state-of-the-art tools either cause significantly greater con-
figuration churn or cannot meet objectives optimally. We find that
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Figure 1: Example network: blue circles (A-D) are routers;
red rectangles are groups of hosts; orange rectangles are rout-
ing processes; solid blue lines are physical links; dashed or-
ange lines are routing adjacencies; black octagons are route or
packet filters—B discards routes from A for 1.0.0.0/16 and as-
signs a local preference of 20 to other routes from A; B blocks
incoming packets from 3.0.0.0/16

1 hostname B 10 router bgp 50000

2 interface Ethernet0/1 11 neighbor 192.168.42.2 route-map rmap in
3 ip address 192.168.42.1/24 12 route-map rmap permit 10

4 interface Ethernet0/2 13 match ip address prefix-list b_rfil

5 ip address 70.70.70.1/24 14  set local-preference 20

6 ip access-group b_pfil in 15 ip prefix_list b_rfil deny 1.0.0.0/16

7 router ospf 10 16 ip prefix_list b_rfil allow

8 network 2.0.0.0/16 17 access-list b_pfil deny ip 3.0.0.0/16 any

9 redistribute bgp 18 access-list b_pfil permit ip any any

Figure 2: Example configuration of router B

with optimizations, AED can generate updates in under a minute for
real networks, and AED scales well with network/policy-set size.

2 BACKGROUND

In this section, we present a brief overview of router configurations,
route computation and selection algorithms, and forwarding poli-
cies. To illustrate these concepts, we use the example network and
configuration in Figures 1 and 2.

In a network, each router runs one or more routing protocols (e.g.,
BGP, OSPF) to compute forwarding paths. Each instance is called a
routing process: €.g., router B has two routing processes—one BGP
and one OSPF—which are configured on lines 7-11. Each process
receives route advertisements for specific IP prefixes from other
processes running on the same or neighboring routers. Processes on
neighboring routers that exchange routes—e.g., BGPg and BGP4—
have a routing adjacency, defined on line 11. Processes on the same
router that exchange routes—e.g., BGPg and OSPFg—engage in
route redistribution, defined on line 9.

Routers may discard or modify route advertisements based on
route filters defined in configurations: e.g., B discards routes from
Afor 1.0.0.0/16 and assigns a BGP local preference of 20 to other
routes from A. Route filters (lines 12—16) consist of a set of match-
action rules which include permit and deny statements (lines 15—
16) to explicitly allow or block certain advertisements, and “set”
statements (line 14) to modify certain fields of route advertisements.
These fields are used in route selection algorithms to select the most
preferred routes (as described below). Additionally, certain data
packets can be filtered using packet filters, which consist of permit
and deny statements: e.g., B’s packet filter blocks incoming packets
from 3.0.0.0/16 (lines 17-18).

Route computation works as follows. Each routing process applies
route filters (if any) to its incoming advertisements. Next, each
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process selects and stores the best route (per IP prefix). The route
selection algorithm for each process compares fields in a predefined
order: e.g., BGP prefers routes with the highest local preference;
if they are equal, then the shortest path length, and so on. Since
each router can have only one route per prefix,! a router selects the
best (i.e., lowest administrative distance) route among all its routing
processes. The chosen process then advertises this route to all of its
neighbors. Note that routers can also originate routes for specific
IP prefixes: e.g., B originates a route for the directly connected
prefix 2.0.0.0/16 (line 8). Finally, during packet forwarding, each
router forwards packets using the best route, provided the packet is
permitted by a packet filter (if any).

Networks must often satisfy a diversity of forwarding policies [8,
17], such as: blocking traffic between specific subnets (P1); forward-
ing traffic through specific intermediate devices, or waypoints (P2);
enabling packets from one subnet to reach another subnet (P3); or
ensuring specific traffic is forwarded along a different path than other
traffic (not shown).

When a new forwarding policy (e.g., P3) is introduced, a net-
work’s configurations must be updated to satisfy the new policy,
without violating any existing policies. For example, P3 can be sat-
isfied by updating the packet filter on router B (line 17-18) to allow
P3’s traffic class.

3 MOTIVATION

Satisfying all forwarding policies is the central goal of modifying
network configurations. To understand what other factors operators
take into account during updates, we examine the configuration
change practices in over 50 organizations using one-on-one inter-
views and operator surveys (§3.1). We find that many operators (1)
use limited automation to generate configuration changes, and (2)
take into account many key factors beyond forwarding policies. Fi-
nally, we argue why existing tools [10, 17, 21, 24, 42] fail to meet
operators’ needs (§3.2).

3.1 Study of configuration change practices

We first conducted one-on-one interviews with operators from four
different networks. Using the results from these interviews, we de-
veloped and conducted a survey of operators from an additional 54
networks? to study the configuration change practices used in produc-
tion networks. The operators manage a variety of networks, including
enterprise (41%), data center (50%), service provider (54%), and re-
search & education (17%) networks. Half of the networks have more
than 100 routers, and one-tenth have fewer than 10 routers. About
two-thirds of operators employ automation to generate changes from
templates and deploy changes to routers, but only one-third synthe-
size changes from high-level specifications (Figure 3a). The latter
is not employed in small networks and is most heavily employed in
service provider networks.

In our one-on-one interviews, we asked operators an open-ended
question: besides satisfying policies, what additional factors do you
consider when making a configuration change? A total of seven
factors were suggested to us. Then, in our survey, we asked operators

!For simplicity of exposition, we ignore equal-cost multipath routing.
2We advertised our survey to the North American Network Operators Group (NANOG)
and EDUCAUSE Network Management Constituent Group.

CoNEXT '20, December 1-4, 2020, Barcelona, Spain

BVery important

S BModerately important
Q— = =
g B Generate from template %8
- Synthesize from specifications g
& Deploy to devices 53
0ol ploy CE o®
s%® Bo
g 5
(=]
20| So
9] &N
S -
Ega g S0 50 O DOV 00 05 Oh
3 / S0 % 00 c9 £ 52 2
= % L 52 23 £5 SS 29 59
£ / ES 8252 52 Es 55 3o
o & / 2 €8 292 0T £ +O0 FO
/ ° E'S 'c; 2 S 20 3
/ S0 2 o= £5 B2 $2 @
% £8 T2 S0 82 oF Lo
e ) - 55 88 2= 53 83 “z @
Small Large Provider S €3 &I Og Ea § =
§ oS8558 °
. 2 oS =
(a) Automation ¥ = 352
>
<

(b) Factors

Figure 3: Operator survey results

to rate the importance of these seven factors when they change their
network. Figure 3b shows for each factor the percentage of operators
that reported the factor was moderately or very important for at least
one type of change. We observe that all factors are at least moderately
important for more than 80% of operators. Operators also wrote-in
a few other factors that influence configuration changes, such as
ensuring changes are easily verified and reversible.

Configuration similarity. The most important factor (very impor-
tant to 90% of operators) is keeping configurations similar across
devices with similar roles. For example, in a data center, each router’s
role is rack, aggregation, or spine. Devices in the same role have
the same configuration template, and configuration similarity is vi-
olated if a device’s configuration deviates from its template. For
example, filters are often copied verbatim across devices with the
same role [9, 14]. If the filters of one device are modified—i.e. new
rules are added and/or existing rules are removed—then it violates
the configuration similarity (template) of those devices.

Further, we observe a substantial (49%) correlation between keep-
ing configurations similar and making debugging easier. This con-
curs with prior studies, which show that networks with high configu-
ration similarity are less complex for operators to update [12].

Interestingly, our survey results show that configuration similarity
is very important even for operators that reported using automation
to generate changes from templates or synthesize changes from high-
level specifications. This is in large part because not all network
changes are automated. For example, one operator we interviewed
said they recently started synthesizing route filters from specifica-
tions, but all other configuration changes were still done manually.
Similarly, a prior study showed that in almost all networks operated
by a large online service provider, at most two-thirds of the changes
were automated [23]. In such networks, ensuring that automated and
manual changes are similar helps debugging.

Devices changed. Minimizing the number of devices changed is
very important to 38% of operators, and avoiding changes on specific
routers (if possible) due to known hardware or software problems is
very important to 30% of operators. Interestingly, there is a substan-
tial (50%) correlation in the importance operators assigned to these
two factors, suggesting that the former is partially motivated by the
latter. For example, one operator we interviewed indicated some
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Management Objectives
Config Update | Features Config
Synthesizer structure | size/scope used components

& o | Zeppelin [42] O O O Most
§ | Synet [18] @) @) O Most
© “| Propane [10] O O @) BGP only
= NetComplete [17] © [@) © Most
5 CPR [21] @] [ ] O Many
E Jinjing [44] @) [ ) O Pkt filters only
S | Propane/AT [11] © © © Most
= | AED ° ° ° Most

Table 1: Coverage of management objectives and configuration
components (@ = supported, © = partially supported, O = not
supported)

of their routers had flash reliability issues, so they sought to mini-
mize the number of times they changed the configurations on these
routers. Furthermore, irrespective of this known issue, the operator
indicated there is always a risk for things to go wrong when an up-
dated configuration is pushed to a device. This risk likely underlies
the positive (32%) correlation we observe between the importance of
minimizing/avoiding devices and minimizing the downtime required
to deploy a change.
Feature usage. In our survey, 61% of operators indicated it was very
important to avoid using certain protocols/features. Prior studies
have found that operators may avoid certain routing protocols due
to their additional licensing costs [12], or avoid features that can
introduce routing loops (e.g., route redistribution [32]). Furthermore,
we observe a substantial (68%) correlation between the importance
operators assigned to this factor and making future changes easier.
In summary, operators are concerned with: (1) the structure of
configurations, (2) the size and scope of configuration updates, and
(3) the features used.

3.2 Limitations of existing tools

Inspired by our operator study, we seek a tool that automatically
generates configuration updates satisfying a range of management
objectives and forwarding policies. Although several types of con-
figuration synthesizers exist, they offer limited support for key man-
agement objectives (Table 1).

Templates. According to our survey (Figure 3a) and prior stud-
ies [12], one widely used class of tools generate portions of con-
figurations from specialized templates [24, 33, 43]. These tools
fill-in-the-blanks in a pre-defined configuration segment with appro-
priate prefixes, link weights, etc. to satisfy new policies—e.g., enable
new hosts to reach the rest of the network and vice versa. Although
these tools can support configuration structure and feature usage
objectives, they require manual effort to construct suitable templates.
Furthermore, templates often cover only part of the configuration;
ignoring the structure and semantics of other parts of the configu-
ration can lead to policy violations and suboptimal satisfaction of
management objectives.

Clean-slate synthesizers. These tools [10, 42] take as input the net-
work topology, a set of policies [14], and possibly a configuration
sketch. They produce brand-new, policy-compliant configurations
for every router in the network. Some of them bound the use of cer-
tain protocols: e.g., Zeppelin [42] bounds the number of static routes,
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OSPF domains, etc. However, since these tools ignore current con-
figuration, they cannot satisfy update size and scope objectives (e.g.,
minimizing the number of devices updated). Furthermore, some of
these tools focus only on a narrow swath of configuration compo-
nents: e.g., Propane [10] only synthesizes BGP configurations.
Incremental synthesizers. These tools [11, 17, 21, 44] take as in-
put a set of policies and the network’s existing configurations, and
produce configuration patches to fulfill any previously unsatisfied
policies without violating policies that were already satisfied by the
existing configurations.

CPR [21] creates a graph-based model of a network control plane
and produces updates that change the fewest lines of configuration
(which is modeled via changes to edges in the graph-based model).
However, CPR cannot satisfy configuration structure or feature usage
objectives, because CPR’s high-level control plane representation
only captures configuration semantics, not configuration structure.

NetComplete [17] is another incremental synthesizer that auto-
matically generates portions of configurations. NetComplete models
configurations’ semantics and syntax at the level of individual route
advertisements and filtering policies using SMT constraints. Con-
figuration values (e.g., filter rule actions) are symbolic, to allow the
SMT solver to find a set of values that satisfy a network’s policies.
However, in NetComplete, operators have to manually reason about
which values to leave symbolic and how possible values impact
different management objectives. This is very challenging given the
complexity of today’s configurations [12]. Consequently, satisfying
objectives requires significant manual guidance.

Other incremental synthesizers have similarly limited support for
management objectives. Jinjing [44] focuses on a single configura-
tion component as it only repairs packet filters. Propane/AT [11]
uses a high-level abstract topology to generate templates, and it
updates only devices whose templates have changed. But it does not
allow operators to control the features used and the scope of updates.
Additionally, Propane/AT was designed for topology changes and
not policy changes.

In summary, existing configuration synthesis tools fall short in
satisfying operators’ needs w.r.t. configuration changes.

4 OUR APPROACH: AED

Our tool, AED, addresses the aforementioned shortcomings. AED
takes as input: (i) a set of forwarding policies, expressed for specific
source/destination subnets using existing high-level languages [17,
41]; (ii) a network’s current router configurations, which violate one
or more forwarding policies; and (iii) a set of configuration man-
agement objectives, expressed in a new high-level language (§7.1).
AED generates a set of configuration updates that rectify forwarding
policy violations and optimally satisfy management objectives.

Generating such updates requires a framework for reasoning
about: (i) the semantics of potential configurations, to ensure policy
compliance; (ii) the syntax of potential configurations, to satisfy
configuration structure and feature usage objectives; and (iii) the
difference between current and potential configurations, to satisfy
update size and scope objectives.

Our key insight is to model configuration updates as a set of syn-
tax tree additions and removals. By modeling configurations (and
updates) at a syntactic level—instead of a higher-level intermediate
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representation [8, 10, 21, 42]—we can easily reason about the struc-
ture and contents of potential configurations (ii). By modeling up-
dates as additions and removals—instead of a complete regeneration
of (segments of) configurations [10, 17, 42]—we can easily reason
about the delta between current and potential configurations (iii).
Finally, by modeling configurations’ influence on route computation
and selection, we can reason about configurations’ semantics (i).

The fundamental challenge is determining which nodes to add
and remove from the syntax tree. As illustrated in §2, router configu-
rations specify five key elements that dictate a network’s forwarding
behavior: (i) which routing protocols to use, (ii) which neighboring
routers to communicate with—also known as routing adjacencies,
(iii) which routes (i.e., prefixes) to originate, (iv) which routes to
filter/prefer, and (v) which packets to filter. The precise organiza-
tion of this information varies between vendors, but it is generally
structured in the manner shown in Figure 4, where each leaf node
represents a single line of configuration.

AED automatically derives a symbolic sketch from the current
configurations to encode all possible syntax tree additions and re-
movals. We refer to the symbolic variables in the sketch as delta vari-
ables, because they encode the difference between the current and
potential configurations. We create a delta variable for each current
and potential node in the syntax tree. (Potential nodes are derived
from the physical topology—e.g., potential routing adjacencies—
and forwarding policies—e.g., potential router filter rules).

Even with simple forwarding policies—e.g., ensuring traffic is for-
warded along a certain path—finding a suitable configuration is not
trivial. Satisfying certain simple management objectives, like avoid-
ing static routes, is NP-complete [42]. Consequently, we formulate a
system of SMT constraints whose solution is a correct (w.r.t. forward-
ing policies) and optimal (w.r.t. management objectives) set of syntax
tree additions/removals. The system of constraints includes: (i) con-
figuration constraints (§5.2), which encode the symbolic sketch;
(ii) algorithmic constraints (§6.1), which encode configurations’ in-
fluence on route propagation and selection; (iii) policy constraints
(§6.2), which encode forwarding policies, and (iv) management
constraints (§7.2), which encode management objectives.

We introduce a high-level language (§7.1) for operators to ex-
press management objectives in terms of restrictions (ELIMINATE,
EQUATE, or NOMODIFY) on regions of the syntax tree. These ex-
pressions are translated into constraints over delta variables.

The next four sections describe AED in detail.
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S ENCODING CONFIGURATION

In this section, we describe AED’s encoding of potential configu-
rations as a symbolic sketch. The sketch is automatically derived
from the current configurations and encoded using first-order logic.
We use the example network in Figure 1 to help illustrate AED’s
encoding.

5.1 Symbolic variables

AED’s symbolic configuration sketch contains three types of sym-
bolic variables.

Delta variables encode configuration updates. AED creates a delta
variable for each current and potential node in the syntax tree. As-
signing a true (or non-zero) value to a delta variable indicates the
corresponding configuration element was added/removed (or incre-
mented/decremented in the case of a numeric value such as local
preference). These variables are used in the configuration sketch
to model the impact of changes on protocol parameters. Delta vari-
ables are also used in management constraints (§7.2) to model the
impact of changes on configuration structure/feature usage and up-
date size/scope. AED maintains a mapping between delta variables
and nodes of the syntax tree in order to allow AED to quantify a
change’s impact on configuration structure (§7.2). For simplicity
of exposition, we embed this mapping information in the names
of delta variables: e.g., rm_R1_RFilter1_Rulel corresponds to the
left-most route filter rule node in Figure 4.

Protocol parameter variables represent configuration values that
impact the advertisement and selection of routes: i.e., whether a
protocol is enabled, whether a routing adjacency is defined, whether
a prefix is originated, or whether a route/packet is allowed. These
values must be symbolic, because they depend on the contents of
configurations, which partially depends on the value of delta vari-
ables. Note that the encoding of protocol parameters in AED is
different from NetComplete [17]: NetComplete encodes them as
either unconstrained symbolic variables or constants depending on
the configuration templates, whereas AED encodes all protocol pa-
rameters as symbolic variables constrained on the network’s current
configurations and the delta variables.

Route advertisement variables represent the route advertisements
produced by routing algorithms. AED creates records of symbolic
values for each potential routing adjacency: e.g., outBGP4_, g rep-
resents a BGP advertisement sent from A to B and inBGPg. 4 rep-
resents an advertisement B receives from A. The fields within each
record are similar to the fields in actual protocol messages: e.g.,
prefix, path cost, administrative distance (ad), and protocol-specific
attributes such as BGP local preference (Ip). Also, every record has
a boolean field that indicates whether the advertisement is valid.

5.2 Configuration constraints

We now describe how AED models each of the five key router
configuration elements (Figure 4) using first-order logic.

Routing protocols and adjacencies. AED’s symbolic configuration
sketch contains protocol parameter variables for each routing proto-
col a router supports (e.g., BGP4) and each neighboring router with
whom information could be exchanged (e.g., BGPAdja—,g). If arout-
ing protocol is currently enabled or a routing adjacency is currently
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configured, then we introduce a delta variable to represent the poten-
tial disabling of the protocol or adjacency (e.g., rm_A_BGP_Adj_B).
The protocol parameter variable is constrained to be true as long as
the protocol or adjacency isn’t disabled. For example, since there is
a route adjacency between A and B in Figure 1, BGPAdj4—, g will
be constrained as follows:

BGPAdja_p — -rm_A_BGP1_Adj B

Conversely, if a protocol or possible adjacency isn’t configured,

then we introduce a delta variable to represent the possible enabling
of the protocol or adjacency (e.g., add_D_BGP), and we constrain
the protocol parameter variable to only be true when the correspond-
ing delta variable is true.
Route filters. Route filters define a set of match-action rules that
are applied to route advertisements. AED models the constraints
representing filters as if-then-else statements. For example, Figure 5
shows the encoding of B’s route filter that is applied to BGP advertise-
ments from A.3 The constraints modeled as if-then-else statements
(1) match the filter rule with the advertisement (line 4), and (2) set
the action fields of the rule based on configuration constants. The
actions associated with each rule: (i) dictate whether the advertise-
ment is allowed or dropped (line 5), and (ii) set the value of certain
metrics (line 6) like local preference, administrative distance, etc
(unspecified fields get default value). Next, AED uses delta variables
to encode the addition, removal and modification of filter rules. To
model rule removal, AED includes a rm_ * _rFil_x delta variable in
the match conditions (line 4). To modify the actions of existing rules,
AED uses (i) boolean delta variables to update filter allow actions
(line 5); and (ii) integer delta variables to update preference values
assigned to routes (line 6). AED represents preference values as the
sum of the current constant and an integer delta variable. Finally,
to model rule additions, AED prepends an additional conditional
statement (line 1-3) predicated on add_ * _rFil_x delta variables.

If the same filter is applied to advertisements from multiple neigh-
bors, then the constraint is replicated for each neighbor.

1 if match(outBGP 4_,g.prefix, policy.dstPrefix) A add_B_rFil_new then
2 filterg_,a.allow = B_rFily_new_allow

3

4 elseif match(outBGP5_,g.prefix, 1.0.0.0/16) A -rm_B_rFil_1 then

5 filterga.allow = B_rFily_1_allow

6 Filterg_a.lp =100+ B_rFila_1_lp /by default Ip is 100
7

8 else

9 filterg_, 4.allow = =B_rFily_2_allow

1o filterga.lp=20+B_rFily_2_Ip

Figure 5: Encoding of route filter on B

Originated prefixes. Originated prefixes are encoded similar to
route filters: a constraint identifies the originated prefix that matches
the destination prefix of the target policy (POLICY.DSTPREFIX) and
stores the matched prefix in a symbolic variable. Figure 6 encodes
prefixes originated by A. It is unnecessary to make the prefix constant
a symbolic variable, because we can realize a change in prefix by
removing the current originated route and adding a new originated
route.

3if-then-else is syntactic sugar that can be translated to a conjunction of implications in
classic first-order logic.
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1 ifadd_A_BGPg_Orig_new A match(outBGP 5o_,g.prefix, policy.dstPrefix)
then
originates_,g.advertise = true
originates_,g.prefix = POLICY.DSTPREFIX
else if match(policy.dstPrefix, 1.0.0.0/16) A =rm_A_BGPg_Orig_1 then
originate_,g.advertise = true
originatea_,g.prefix =10.0.0/16
else

® a9 ma W N

Figure 6: Origination of prefix from router A

Packet filters. Packet filter also consist of a set of match-action
rules and are encoded similar to route filters. For example, Figure 7
encodes B’s packet filter using rm_ * _pFil_x%, add_ + _pFil_x, and
*_pFil_« _allow delta variables.

if .. then
else if match(policy.srcPrefix, 3.0.0.0/16) A match(policy.dstPrefix, *) A
—rm_B_pFilp_1 then
pFilgc p.allow =false VB_pFilp_1_allow
else if ... then

Figure 7: Match-action rules for packet filter on B

Upper bound on delta variables. We now discuss the upper bound
on the number of delta variables added in AED’s encoding. Note
that we add delta variables for different key router configuration
elements. We first model adjacency update using delta variables to
remove existing route adjacency and add new route adjacency. If
the network has R routing processes, then in the worst case scenario,
each R process can be a neighbor of the remaining R — 1 processes.
This will create R? route adjacencies in the network. Hence, the
upper bound on the number of delta variables added for adjacency
is R2. Next, we model route filter updates. For each filter prefix
that already exists in the configuration files, we add delta variables
to remove the match condition (and hence the rule) for that prefix
and modify its filter actions. Additionally, we use delta variables to
represent adding a new filter rule w.r.t. the policy being synthesized.
Hence, the upper bound on the number of delta variables added for
route filters is the number of unique prefixes (P) in AED’s configu-
ration files and policies. The same logic applies to packet filters and
origination prefixes. Since each adjacency will have its own filters
and origination prefixes, the upper bound on the total number of
delta variables will be a function of R? and P, i.e. O(R?.P).

6 POLICY COMPLIANCE

Next, we discuss how AED guarantees configuration updates satisfy
operator-specified forwarding policies.

6.1 Encoding routing algorithms

The control plane advertises, computes, and selects routes based on
routing algorithms. AED’s encoding of these algorithms are similar
to tools like Minesweeper [8] and NetComplete [17]. For brevity,
we explain the encoding at a high-level leaving detailed descriptions
to Appendix A.

AED models receiving and sending of route advertisements using
constraints expressed over symbolic route advertisements. Certain
fields of the symbolic advertisement depend on the route filter that
applies to the adjacency (e.g. Ip), while other fields are populated
from the adjacent process’s outgoing advertisement (e.g. pre fix).
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Next, AED creates control and data plane forwarding variables for
each physical adjacency: e.g., controlFwd,_,g and dataFwds_,g
represent A’s decision of whether to forward traffic to B. AED
models the route selection algorithm using a preference relation
over route metrics (prefer routes with lowest ad, highest Ip, etc). A
router’s best route determines which interface (e.g., controlFwdx_,y)
is used to reach the destination listed in the policy. AED encodes
traffic forwarding using a dataFwd variable whose value is con-
strained based on the chosen route and any packet filters defined in
the configuration.

6.2 Encoding policies

AED can compute updates for a wide range of policies, including:
reachability, blocking, isolation, waypointing, path preferences and
length constraints, and avoiding loops and black holes. The target
policy is expressed using the dataFwd variables. For example, P2
in Figure 1 is encoded as:

dataFwdg_,c NdataFwdc_, 5 ‘

Figure 8: Encoding of waypoint policy P2

Handling multiple policies. The above encoding is designed to
model a network’s behavior w.r.t. a single policy. However, comput-
ing separate configuration updates for each policy can lead to an
update, and hence network paths, that satisfy one policy but violate
another. For example, consider the network and policies in Figure 1.
Due to the packet filter on B, the network currently satisfies policy
P1 and violates policy P3. Using the above encoding to compute an
update that satisfies P3 may result in an update that removes that
filter on B, which causes P1 to be violated. Thus, when computing
updates, AED must consider how a configuration change may impact
multiple policies.

The above encoding contains only one set of symbolic route ad-
vertisements between each pair of routing processes, so the encoding
can only be used to reason about one destination prefix at a time. To
reason about multiple policies with different destination preﬁxes,4
we must introduce multiple sets of symbolic route advertisements—
one for each prefix, e.g., inBGPllg'g'g'O/ 16 and inBGP%’E'g'O/ 16 Fyr-
thermore, since the constraints that encode route filters and origi-
nated prefixes (e.g., Figure 5 and 6), route sending and receiving
functions, and route selection (§6.1 and Appendix A) are predicated
on the route advertisements, we also include per-prefix versions of
these constraints and variables. The data forwarding decisions (e.g.
dataFwd) depend on packet filter, which may filter on the basis of
source and/or destination prefixes, so we must include per-prefix-pair
versions of these constraints and variables. All of these additional
constraints and variables—needed for correctness—substantially
increases the size of the SMT problem; we address this in §8.

Now that our encoding contains variables and constraints spe-
cialized for different prefixes, we must consider how configuration
changes—which are modeled by our delta variables (§5.1)—can im-
pact different prefixes. For example, removing a routing adjacency
prevents all prefixes from being advertised to a neighboring router,
whereas a route filter rule (e.g., a conditional in Figure 5) impacts a

af policies’ prefixes partially overlap, we can subdivide policies into non-overlapping
packet equivalence classes [26].
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specific prefix. When we introduced filter (add_ *_rFil_x) and origi-
nation (add_* _Orig_x) delta variables in §5.2, we did not include a
symbolic variable for the prefix to the which the addition applies, be-
cause the encoding only considered one policy, and hence one prefix.
Now that our encoding contains multiple policies, we need to create
specialized per-prefix versions of these and related variables (e.g.,
filter variables *_rFil_ = _allow and *_rFil_x _Ip) to allow network
paths to be customized on a per-prefix basis through the addition of
prefix-specific configuration constructs. Similarly, we need to create
per-prefix-pair versions of packet filter variables: add_ * _pFil_x*
and *_pFil_ = _allow. With rm_ % _rFil_s,rm_ % _Orig_x, and
rm_ = _pFil_x, the impacted prefixes are already included in the
constraint, so we do not need multiple versions of these variables.
Similarly, routing adjacencies are not prefix specific, so we do not
need multiple versions of add/rm_* _Adj_x.

By applying the aforementioned transformations to AED’s model,
we ensure the model faithfully represents the real network’s decision
processes and constrains update options to the space of correct and
valid router configurations.

7 MANAGEMENT OBJECTIVES

In §3.1, we showed that operators consider many factors when up-
dating configurations. To ensure updates computed by AED account
for these factors, we introduce a high-level language for operators
to express management objectives. Objectives expressed in this lan-
guage are translated into boolean formulas and appended to the SMT
encoding as soft constraints.

7.1 Objective language

We observe that operators’ management objectives focus on restrict-
ing how specific (elements of) configurations are updated. Conse-
quently, in AED, an objective is expressed as a high-level restriction
on syntax subtrees. AED’s overarching goal is to satisfy as many
objectives as possible.

Restrictions. Based on our survey results (§3.1) and review of prior
work [21, 42], we identify three primary restrictions: eliminate sub-
trees (ELIMINATE), make a set of subtrees consistent across devices
(EQUATE), or avoid changes altogether (NOMODIFY). AED sup-
ports these restrictions and encodes them in SMT constraints using
boolean operators (described later in §7.2). AED can easily be ex-
tended to support additional restrictions, as long as they can be
encoded using boolean operators—e.g., a “prefer changes” restric-
tion is simply the negation of NOMODIFY.

Syntax subtree selection. The objectives in §3.1 apply to various
subtrees of the configuration syntax tree (Figure 4): some apply
to a specific router—e.g., avoid changing routers with hardware
issues—and some apply to a particular feature—e.g., maintain packet
filter clones. In AED, the relevant subtrees are expressed using
XPath [3]. XPath is designed for selecting nodes of an XML docu-
ment based on node names, attributes, and relative location in the
XML tree. AED uses XPath expressions to select root nodes of
syntax subtrees based on node type (e.g., PacketFilter), node name
(e.g., internal), and node location. For example, all instances of a
packet filter called internal can be selected using the expression:
//PacketFilter [name="internal"]
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Objective Constraints
Preserve  packet filter | EQUATE //PacketFilter
clones GROUPBY name

Minimize number of NoMop1ry //Router GROUPBY name

devices changed

Avoid changing devices | NoMopIry //Router[name="B"]
with HW/SW issues NoMop1FY //Router [name="C"]

Avoid protocols/features | ELIMINATE //RoutingProcess
(e.g. static routes) [type="static"]/Origination
GROUPBY prefix

Table 2: Encoding important management objectives

Multiple objectives. An objective is satisfied if the specified restric-
tion holds true for all syntax subtrees selected by the XPath expres-
sion. For example, NoMob1ry //Router is satisfied if all routers’
configurations are unmodified. To express the objective of minimiz-
ing the number of devices changed, an operator must define multiple
objectives with different XPath expressions. For example, NoMop1ry
//Router [name="A"] is satisfied if router A’s configuration is un-
modified, NoMop1ry //Router[name="B"] is satisfied if router
B’s configuration is unmodified, etc. Since such enumeration is te-
dious and error prone, we introduce a GROUPBY clause whose
semantics is to group syntax subtrees based on a specified attribute
of the root node and apply the restriction to each group. For exam-
ple, NoMob1ry //Router GrourBy name defines a NOMODIFY
objective for each router, thus codifying the objective of minimizing
the number of devices changed. Note that GROUPBY is syntactic
sugar and does not fundamentally change the semantics of AED’s
objective language.

By default, every objective is assigned equal weight: e.g., avoiding

changes on one router is just as desirable as avoiding changes on a
different router. However, operators can assign weights to different
objectives to express their importance.
Examples. Table 2 shows how to express the management objectives
discussed in §3.1. To make AED easier to use, we include a library
of pre-defined objectives (including those in Table 2) for operators
to choose from. If these objectives do not meet operators’ needs,
then operators can define their own objectives using restrictions and
XPath expressions.

7.2 AED: Encoding management objectives

To ensure AED computes updates that maximally satisfy manage-
ment objectives, we convert the SMT problem into a maximum satis-
fiability modulo theories (MaxSMT) problem. A MaxSMT problem
contains hard constraints that must be satisfied and soft constraints
that should be maximally satisfied. In AED, hard constraints are
the previously presented constraints that encode forwarding poli-
cies (§6.2), configurations (§5.2), and control/data plane algorithms
(§6.1); these are necessary to ensure the computed updates are cor-
rect.

AED creates a soft constraint for each objective (after “desugar-
ing” GROUPBY clauses) expressed by operators in AED’s objective
language. The constraint encompasses the delta variables associated
with the nodes in the syntax subtrees selected by the objective’s
XPath expression. (As mentioned in §5.1, AED creates a delta vari-
able for each current and potential node in the syntax tree). The
selected delta variables are constrained according to the objective’s
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restriction: NOMODIFY is the negation of the disjunction of the vari-
ables; ELIMINATE is the conjunction of negated add and non-negated
remove variables; and EQUATE is the conjunction of the equality of
sets of variables associated with nodes in the same position in each
of the subtrees. For example, the objective in the first row of Table 2
translates to the following soft constraint:

rm_D_pFilg_1 =rm_B_pFilc_1=..A
D_pFilg_1_allow = B_pFilc_1_allow = ..A
rm_D_pFilg_ 2 =rm_B_pFilc_ 2= .. A ..

8 OPTIMIZATION STRATEGY

The above network model enables AED to compute correct, optimal
configuration updates. However, the complexity of the resulting
SMT formulation is substantial, and hence the time required to solve
it is high. For example, we find that updating a network with just
20 routers and a few hundred policies takes 20 minutes. Moreover,
the time to compute updates is 40X worse than the state-of-the-
art incremental synthesis tool [21]. Next, we propose three distinct
strategies that significantly improve AED’s speed.

Pruning irrelevant configuration. The parallels between AED’s
encoding of configuration and configuration’s syntactic-structure
is essential for realizing many important management objectives
(e.g., maintaining configuration similarity). However, a significant
fraction of a network’s configurations is often irrelevant for a given
policy, as they do not overlap with the source and/or destination
prefixes associated with that policy. For example, only those packet
filter rules that match a given destination will impact reachability to
that destination—i.e., lines 47 in Figure 5 are irrelevant for policy
P3 from Figure 1.

The inclusion of irrelevant conditionals in origination, route fil-
ter, and packet filter constraints, and the delta variables associated
with these clauses, increases the computational complexity of the
constraint problem, thereby reducing AED’s efficiency. Fortunately,
we can statically prune a significant fraction of the irrelevant condi-
tionals and delta variables by examining whether a rule applies to
(part of) the same traffic class covered by a network policy: if the
range of source and destination prefixes matched by the conditional
does not intersect with the range of source and destination prefixes
covered by a network policy, then the conditional, and its associated
delta variable, is a candidate for pruning. For example, Figure 5 is
encoded as the following for policy P3:

1 if match(outBGP 4_,g.prefix, policy.dstPrefix) A add_B_rFil,_new then
2 filterg_, o.allow = B_rFilg_new_allow

3 .

4 else

5 filterg_, a.allow =true A—-B_rFils_2_allow
6 filterg_,A.lp=20+B_rFilq_2_lp

Grouping policies based on a destination address. As discussed
in §6.2, AED considers all policies in unison to compute valid
updates. To overcome the resulting performance issue, we formu-
late multiple MaxSMT problems, one per destination. These per-
destination formulations are significantly smaller in size, and having
multiple SMT formulations allows us to solve them in parallel.
The solutions to each problem will not conflict, because routing
can always be customized on a per-destination basis using route
filters and static routes. For example, the problem presented in §6.2
with applying AED separately for P1 and P3 in Figure 1, can be
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addressed by updating B’s packet filter to match both source and
destination prefixes. However, the computed updates may be sub-
optimal w.r.t. the management objectives, because the management
objectives are considered separately for each destination. However,
in practice the computed updates are (close to) optimal (§9.3).
Replacing integer variables with booleans. AED uses integer vari-
ables for cost and metric (e.g., ad, Ip, med) values when computing
updates that change which routes are preferred (§5.2). However,
each integer variable in the model expands the space of possible
updates by a factor of 232, To reduce the space of possible updates,
we constrain the possible integer values to a small set of values
represented by boolean variables. For cost and metric values, the set
of values we choose is based on our observation that we only need
to know the relative rank of the route, not its absolute “distance”
from another route. In most cases, changing a route’s rank to have
an equal or in-between rank relative to other routes is sufficient.
Consequently, if the current configurations contain n distinct val-
ues for a cost or metric, we limit the set of possible new values
to (2n + 1) choices. For example, if the network model currently
contains three distinct BGP local preference values (50, 100, and
150), we limit the choice of new values to one of seven choices:
LPo-49, LP50, LP51-99, LP100, LP101-149, LP150, LP151-inf. We
replace the integer variable [p in the network model with (2n + 1)
boolean variables corresponding to the choices in the set.

9 EVALUATION

We prototype AED [1] atop Minesweeper [8]. Minesweeper uses Bat-
fish [20] to parse router configurations, and the Z3 SMT solver [16]
to encode and solve the underlying SMT formulation. We add our
objective language and modify Minesweeper to incorporate our
syntactic-level, update-oriented network model. In all, this amounted
to = 4K lines of Java code.

Next, we evaluate AED along a variety of issues:

e How effective is AED at meeting different management objec-
tives? Is AED useful in practice?

e How does AED’s performance compare with other incremental
synthesis tools? Does AED’s generality lead it to be slower than
the less general CPR?

e How does AED’s performance scale with network size and the set
of policies that need to be satisfied?

e How well do AED’s optimization techniques work?

We compare AED against two other incremental synthesis tools,
CPR [21] and NetComplete [17]. We use NetComplete with all
configuration constructs made symbolic.?

All our experiments were performed on machines with 10 core
2.4 GHz Intel Xeon Processors and 132 GB RAM.

Dataset. We run extensive experiments on both real and synthetic
network configurations. For the former, we use configuration snap-
shots from 24 datacenter networks operated by a large online service
provider. The dataset does not include operators’ intended policies,
so we infer all of a network’s reachability policies by checking for
reachability between every pair of subnets using Minesweeper [8].
These 24 networks have between 2 and 24 routers, and support 50

5NetComplete is an incremental tool, but there is no easy way to use it as such to
compare against AED, because NetComplete needs manual guidance to be used for
incremental synthesis (§3.2).
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Figure 10: Other management objectives

to 6600 reachability policies. In our experiments, given a network’s
“before” snapshot, we run AED with different objectives to update
the “before” configurations to new configurations that satisfy all
policies observed in the “after” snapshot. We then compare AED-
generated configurations against the actual “after” configurations.
The “after” configurations are the result of operators manually up-
dating, with limited automation [23], the “before” configurations.
To compute manual updates, we only consider changes related to
routing/forwarding. To compute changes in templates, we group
configurations based on their filter rules in the “before” snapshot.
We then compare these segments of the configuration across the
actual “before/after” snapshots.

To evaluate AED’s scalability and performance, we use synthetic
BGP configurations generated by NetComplete [17] for 10 network
topologies of varying sizes (30-160) from the Internet topology
zoo [31].

For brevity, we show most results by updating networks to support
new reachability policies. We show results for adding other policy
types in §9.2.

9.1 Management objectives and utility

AED allows operators to optimize updates for a variety of man-
agement objectives. We study the effectiveness with which AED
supports such objectives.

9.1.1 Quantitative Analysis. First, we quantitatively compare
updates made by AED against manual and other synthesis tools.
We use four objectives: minimize devices changed (min-devices),
minimize lines changed (min-lines), preserve templates (preserve-
templates), and minimize the use of packet filters (min-pfs).

For real data center networks, we compare AED and CPR against
manual updates. We cannot use NetComplete for these networks as
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they cannot model features like packet filters and route redistribution.
For the topology zoo networks [31], we first synthesize configura-
tions which support 8 randomly-generated reachability policies. We
then generate 8 more policies and run AED, CPR and NetComplete
to obtain configurations that support all 16 policies.

In Figure 9, we show the average percentage of changes (min-
devices and min-lines) made in both the real and synthetic networks.
In Figure 10, we evaluate for the min-pfs and preserve-templates
objective. The final two objectives are related to filters. To evaluate
them, we use synthetic blocking policies on synthetic networks to
allow filter updates. Overall, AED performs better for all objectives.
We explain the results in detail below.

Comparison with manual updates. In Figure 9, we observe that
compared to actual updates, AED significantly reduces the number
of devices and lines affected. When executed with the preserve-
templates objective, AED’s updates did not violate any configuration
uniformity, and neither did the actual updates. Although we don’t
know the actual management objective of the network operators
when conducting their updates, these experiments show that AED
matches or outperforms manual updates for many types of objectives.
Comparison with NetComplete. In Figure 9, we observe that Net-
Complete makes more changes than the other tools. It modifies
almost all devices in the network, whereas AED on average can
limit the number of modified devices to less than 30%. Addition-
ally, for preserve-templates objective (Figure 10b), NetComplete
creates as high as 25% template violation, whereas AED does not
violate any template. This happens because NetComplete [17] does
not support update size/scope objectives and only partially supports
configuration structure objectives.

Comparison with CPR. Recall from 3.2 that CPR only supports
update size objective. Hence, as shown in Figure 9, AED and CPR
have similar results. However, for configuration structure and feature
usage objectives (preserve-templates and min-pfs), CPR performs
poorly. For example, as shown in Figure 10a, with min-pfs objective,
AED never added more than 2 filters in any network. Whereas in
some cases, CPR added 3X as many as AED. Additionally, for
preserve-templates objective (Figure 10b), CPR creates the most
template violations among all the tools.

This shows that a system such as CPR that bakes in a specific
objective (min-lines) will find updates that may be valid but undesir-
able for an operator for multiple different management objectives.
Whereas, AED’s intrinsic expressiveness affords operators much
greater flexibility.

9.1.2 Qualitative Analysis. Next, we surveyed operators from
four different networks and asked them to rate three anonymized
synthesis tools (AED, CPR and NetComplete) based on their cover-
age of management objectives. First, we showed operators a sample
multi-site enterprise network and asked them to choose one or more
of the following objectives: preserve-templates, min-devices, avoid-
redistribution. Next, we showed them three iterations of the network,
each built on top of the other. The first iteration satisfied two new
blocking policies, the second satisfied a new reachability policy
and the final satisfied a new waypointing policy. We specifically
highlighted updates made by each synthesis tool and asked the op-
erators to categorize these updates as good, average, or bad, w.r.t.
their chosen objectives. We observe that in 50% of their answers,
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Figure 11: Performance on reachability policy

AED’s updates were rated better than the other tools. And in 42%
of their answers, AED’s updates were rated equal to the other tools.
In the remaining 8% of their answers, where AED’s updates were
rated lower, AED modified intermediate devices whereas operators
preferred changing route-originating devices. However, note that by
specifying this preference as an extra objective, AED could achieve
the same update. We also observe that in 8% of their answers, AED’s
updates were rated bad. However, in those answers, other tools were
also rated bad because all of them violated certain templates.
Overall these qualitative and quantitative results (vs. manual-,
NetComplete-, CPR-based updates) show AED’s practical utility.

9.2 Performance

Next, we examine AED’s performance and scalability. In the remain-
ing experiments, we group networks by their size and show average
values of metrics of interest for each group.

Impact of network size. We first compare AED’s performance with
CPR [21] by running both tools with their intrinsic performance
optimizations turned on across the 24 real datacenter networks. Fig-
ure 11a shows that for small networks (< 10 routers), the time AED
takes to compute updates is comparable to CPR. However, with
increasing network size, AED’s SMT-based control plane encoding
becomes more complex, relative to CPR’s graph-based encoding.
Consequently, the time difference between CPR and AED in com-
puting updates increases with network size. Recall however that
CPR has poor management objective coverage (Table 1) and cannot
satisfy configuration structure or feature usage objectives. Despite
much greater generality, AED’s performance does not significantly
degrade compared to CPR.

To evaluate AED’s scalability on larger networks, we use the
NetComplete-generated configurations. We repeat the experiment
from §9.1, where we start with configurations which support 8 reach-
ability policies, and update them to satisfy 8 more policies. The
objective is min-devices. The time taken to create the updated config-
urations is shown in Figure 11b. We observe that AED significantly
outperforms NetComplete (i.e., clean-slate synthesis) by a factor of
10 to 100X. There are at least two reasons for this. The primary one
is that, by taking the existing network as input, AED deals with a
smaller search space, compared to NetComplete, where we made
all configuration constructs symbolic. A secondary reason is that
the NetComplete prototype deals with integer variables (e.g., for IP
prefix, local-pref etc). It is synthesizing values for these variables
in BGP configurations using an SMT solver, which contributes to
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slow down. AED’s optimization strategy (§8) could improve Net-
Complete’s performance too, but the overall performance achieved
will still be poor due to the search space.

Impact of policy set size. Next, we measure how AED scales with
the number of old and new policies in a changing network. We
consider reachability policies on a 70 router network. For this experi-
ment, we introduce two terms: (1) base policies, which represent the
policies already configured in the network, and (2) added policies,
which represent new policies to be added to the network. For the
first experiment, we vary the number of base policies but keep the
number of added policies fixed at 8. NetComplete scales poorly and
takes more than 30 hours to handle just 64 base policies. On the
other hand, AED scales linearly with the number of base policies
and can synthesize a total of 1024+8 policies in 250 seconds. Next,
we explore how AED scales as a function of the number of added
policies. We run this experiment with three sets of base policies: 64,
128 and 256. Figure 12 shows that AED also scales linearly with an
increasing number of added policies, irrespective of the number of
base policies.

Impact of policy type. Finally, we evaluate AED’s performance as a
function of policy type. We evaluate on the real datacenter networks.
Here, we assume the operator wants to update the policies supported
by all networks by adding 5% new policies. We consider three
classes of newly added policies: reachability, waypointing, and, path-
preference. From Figure 13, we observe that at larger network sizes
(>15), adding path-preference policies is the slowest to generate
updates for. These policies need to ensure that (i) a less-preferred
path is taken only when a more-preferred path is unavailable, and,
(i) ordering of routers in these paths is valid. This results in adding
more variables and constraints to our formulation compared to the
other two policies. However, the overall time to compute updates is
still reasonable.
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9.3 Impact of optimization strategies

We next evaluate the performance benefits and optimality impact of
our strategies for improving AED’s speed (§8). We assume that the
strategies are leveraged in isolation. When employed together, their
benefits compound. For brevity, we discuss results only for the real
datacenter networks. We see similar and sometimes better speedup
on the synthetic networks.

Parallel solvers. Solving the control plane update problem for multi-
ple destinations in parallel yields updates in significantly lower time
than solving the entire update instance at once. As shown in Fig-
ure 14a, performance speed up ranges from 10X to 300X under
the min-devices objective. However, by not looking for a “globally”
optimal update, we may sacrifice on update quality. In Figure 14b,
we observe that there is only one network (with 15 routers) where
running AED in parallel results in updates spread across 2 addi-
tional devices compared to using a single AED instance. Overall,
parallelization performance speedup outweighs optimality loss.
Using boolean variables. A key optimization in our encoding was
to replace certain integer variables with approximate boolean equiv-
alents, because searching for suitable assignments for an integer
variable can take a significant amount of time. In this experiment, we
consider the Ip variable. We use a synthetic setting (because this con-
struct was not exercised in the networks of our dataset). Specifically,
we use the topology shown in Figure 1 and evaluate how quickly
AED computes updates for path-preference policies. The policy for
all source-destination pairs is to prefer routes through C over routes
through A. We set a higher Ip value on router A (compared to C)
in the configurations we provide to AED, such that the preference
policies can only be satisfied by changing local preferences. This
approach of using boolean variables instead of integers improves
AED’s performance by 3-10X.

Pruning configuration. Another key optimization was to prune ir-
relevant parts of the configuration for the given policy. This can
simplify the MaxSMT problem by removing irrelevant condition-
als and delta-variables from our encoding. We observe that this
optimization improves AED’s performance by 1.2-1.5X.

10 RELATED WORK

Network verification. Recent work [6-8, 15, 19, 20, 22, 28, 29,
36, 40] has shown how to detect errors in network control planes
that lead to violations of important network-wide policies. Tools like
Minesweeper [8], Bagpipe [46] and FSR [45] use SMT solvers for
verification. However, these tools cannot model network updates.
Intent-based networking. The idea of using policies (network in-
tent) to configure the network has has been well-adapted in both
Software-Defined Networks (SDN) [5, 6, 37, 39, 41] and legacy
networks [10, 17, 18, 38, 42]. Recently, many synthesis tools [10,
17, 18, 38, 42] automatically generate provably correct distributed
control plane configurations, based on a set of high-level policies
provided as input. However, these result in clean slate configuration
updates.

Centralized control plane update. Wu et al. have designed an
update system for a centralized control plane that uses provenance
information to identify what caused the control plane to generate
forwarding rules that violate some policies and suggests fixes to
correct the problem [47]. However, like CPR, this system is far from
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a complete solution to the problem of updating centralized control
planes. In particular, Wu et al.’s system requires control planes to be
written using a declarative programming language [34], and makes
no guarantees on the optimality or interpretability of the updates.
Forwarding rule update. Some systems [25, 38] directly update
forwarding rules. But this causes the control plane’s view of the
network to diverge from the current forwarding state. Future actions
taken by the control plane may conflict with the updated forwarding
rules, resulting in further policy violations and needing frequent
forwarding updates.

11 DISCUSSION

Deploying updates. Deploying large number of configuration up-
dates in a live network can lead to routing issues, like transient
forwarding loops and black holes. It can also result in significant
network downtime. Safely updating configurations in a live network
is an important research problem and is part of our future work.
Encoding limitation. We presented our paper in the context of
BGP and OSPF because they are very widely used. Although our
encoding can be extended to model protocols like RIP and EIGRP,
it cannot model stack-based protocols (e.g. MPLS, segment routing,
etc) and open-flow rules. Our encoding also does not handle external
routes, non-routing/forwarding-related configuration elements (e.g.,
SNMP, etc), and layer-2 features (e.g. mapping interfaces to VLANS,
spanning tree, etc).

SMT output for special cases. If the network has multiple stable
states/configurations to satisfy the policies and management objec-
tives, then AED’s SMT solver will choose one of those states. If
there are conflicting policies or if the network cannot implement
all the policies, then the SMT solver will generate an unsat solu-
tion. This indicates that the input (configurations and policies) is
unsatisfiable.

12 CONCLUSION

Our survey on configuration change practices showed that along
with correctness, operators care about a variety of management
objectives. To support that, we propose a new synthesis tool called
AED. AED encodes current configurations and its potential updates
as a novel MaxSMT-based model whose structure is analogous to a
syntax tree. AED allows operators to specify their objectives using
a novel objective language and it encodes these objectives as soft-
constraints. Finally, our evaluations over both real and synthetic
network configurations show that AED computes updates fast and
covers multiple management objectives.
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A ENCODING ROUTING ALGORITHMS

The control plane advertises, computes, and selects routes based
on parameterized algorithms. These algorithms reference the pro-
tocol parameter variables defined in §5. AED also creates control
and data plane forwarding variables for each physical adjacency:
e.g., controlFwdy_,p and dataFwd4_, g represent A’s decision of
whether to forward traffic to B. The value of the latter accounts for
packet filters, whereas the value of the former only accounts for
route selection.

Route advertisements. Receiving and sending of route advertise-
ments is modeled using constraints expressed over symbolic route
advertisements. A pair of constraints is created for each pair of
neighboring routers in the physical topology.

1 if BGPy A BGPAdjy_,x A activeLinky_,x A outBGPy_,x .valid then
2 inBGPxy.valid = filtery_,x .allow

3 inBGPxy.prefix = outBGPy_,x .prefix

4 inBGPxy.lp=filtery_,x.lp
5
6

else inBGPx . y.valid = false

Figure 15: Encoding of BGP receiving a route advertisement

Abhashkumar et al.

Figure 15 shows the template for constraints that encode BGP’s
route receiving function. The template is parameterized by two neigh-
boring routers X and Y, where X receives an advertisement from
Y. Line 1 represents a set of conditions that must be met to receive
a route: the routing protocol is enabled on the router (BGPx); the
routers are configured to have a routing adjacency (BGPAdjy_x);
the physical link connecting the routers is active (activeLinky_x);
and the advertisement sent by the adjacent router is valid. Certain
fields of the symbolic advertisement depend on the route filter that
applies to the adjacency (lines 2 and 4), while other fields are pop-
ulated from the adjacent process’s outgoing advertisement (line
3), independent of route filters. Note that the constraint references
the protocol parameter variables defined in §5. This differs from
NetComplete [17] and Minesweeper [8], where such values (e.g.,
prefixes and local preferences) are included directly in the receive
(and send) constraints.

The constraints representing the sending of route advertisements
have a similar structure, except matches and assignments are based
on the best advertisement for that protocol (described below) and
the policy being verified. For example, the constraint in Figure 16
encodes which BGP advertisements a router forwards (lines 1-6)
and originates (lines 7-10).

1 if bestBGPx .valid then // Forward advertisement

2 outBGPx_,y.valid = true

3 outBGPx_,y .prefix = bestBGPx .prefix

4 outBGPx_,y.cost = bestBGPx .cost +1

5 outBGPx_,y.lp = bestBGPx .lp

6

7 elseif originatex_,y.advertise then // Originate
8 outBGP x_,y.valid = true

9 outBGPx_,y.prefix =originatex_,y.prefix

10
11 else outBGPx_,y.valid = false

Figure 16: Encoding of BGP sending a route advertisement

Route selection. To model route selection within and across proto-
cols, the encoding includes an additional symbolic record for each
routing process (e.g., bestBGPx) and each router (e.g., bestOverallx).
A process’s best record is set to the most preferred incoming and
valid record: e.g., bestBGPx is equated from among multiple in
records from different neighbors, based on which record has the
highest Ip and lowest cost. Similarly, a router’s (bestOverallx) best
record is equated to whichever of its routing process (bestBGPx or
bestOSPF x ) has the lowest ad. A router’s best route (e.g., bestOverallx)
determines which interface (e.g., controlFwdx_,y) is used to reach
the destination listed in the policy:

controlFwdx_y < (inBGPx_y = bestOverallx)V
(inOSPFx .y = bestOverallx)

Data forwarding. Finally, AED encodes whether X forwards pack-
ets to Y using a dataFwd variable whose value is constrained based
on the chosen route and any packet filters defined in the configura-
tion. Again, these filter rules are encoded separately (§5) from the
forwarding algorithm, which differs from existing tools [8, 17].

dataFwdx_,y & controlFwdx_,y ApFilx_,y.allow ‘

Figure 17: Encoding of data forwarding rules
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