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ABSTRACT

When updating router configurations, network operators often at-

tempt to meet a variety of management objectives (e.g., maintaining

structural similarity across devices), while also ensuring all forward-

ing policies are correctly satisfied. Our tool, AED, automates this

process. AED models configuration updates as a collection of syntax

tree additions and removals, and formulates an innovative system of

SMT (Satisfiability Modulo Theory) constraints that encode configu-

rations’ structure and interaction with routing algorithms. Operators

express management objectives in a high-level language, and AED

translates these to “soft” constraints that are maximally satisfied.

Evaluations on real and synthetic network configurations show that

AED can update networks with tens of routers and hundreds of

policies in under a minute, and AED outperforms both hand-crafted

updates and state-of-the-art tools in meeting management objectives.
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1 INTRODUCTION

Modifying router configurations is a fact of life for network operators.

For example, a study of 850 datacenter networks operated by an

online service provider found over half of the networks have at least

ten change events per month [23], and a study of two university

campus networks found that over a million lines of configuration

were changed in each university’s network over a 5 year period [30].

Configuration changes are often motivated by a change in forwarding

polices—e.g., to accommodate new services or end-hosts [30].
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Modifying a network’s configurations to implement new forward-

ing policies can be a daunting task due to the plethora of policies

the network must satisfy [13], the inherent complexity of cross-

protocol and cross-device dependencies [4, 12, 21], and the sheer

size of router configurations [12, 35]. Fortunately, the burden of

modifying network configurations can be reduced through (partial)

automation of changes. Network operators have routinely leveraged

configuration templates, scripts, and network management software

to modify configurations [14, 24]. For example, scripts perform up to

60% of changes in the 850 networks operated by the online service

provider [23]. More recently, practitioners have begun to “compile”

(partial) configurations from policy databases [2], and researchers

have developed systems to synthesize (partial) configurations from

intents [10, 17, 18, 42, 44].

Regardless of whether changes are performed manually or au-

tomatically, network operators must ensure the changes achieve

the desired forwarding policies—e.g., providing connectivity to

new end-hosts—without introducing regressions—e.g., breaking

connectivity for existing end-hosts. Moreover, the changes must be

performed in a manner that meets an organization’s network manage-

ment practices—e.g., maintaining configuration similarity between

devices with the same role [12, 23, 27], minimizing the number of de-

vices affected [21], etc. Existing synthesis tools have been designed

to guarantee configuration correctness [10, 11, 17, 18, 21, 42, 44],

but little attention has been dedicated to guaranteeing correctness

while also satisfying management objectives.

The scarcity of support for this duo of concerns is due in part to

the lack of a principled understanding of network operators’ con-

figuration management objectives. Consequently, we interviewed

or surveyed 58 network operators, and found that the size/scope

of changes—e.g., which devices are modified—and the structure

of the resulting configurations—e.g., maintaining the same packet

filters across devices—are both very important to network opera-

tors (§3.1). However, existing synthesis tools either ignore these

concerns [10, 18] or only support one of these two categories of ob-

jectives [11, 17, 21, 42, 44]. Furthermore, no tools allow operators

to express custom management objectives.

This leads us to explore the following research question: can we

design a system that efficiently synthesizes configuration updates

which conform to a network’s custom management objectives and

forwarding requirements?

We answer this question in the affirmative with the design of a

system we call AED. AED takes as input a network’s management

objectives, forwarding policies, and current configurations. Within a

few minutes, AED produces a set of configuration updates that rec-

tify forwarding policy violations and maximally satisfy management

objectives.
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Satisfying this duo of concerns is more complex than only guar-

anteeing policy-compliance, because we must find an optimal point

within the typically large space of policy-compliant configurations,

as opposed to choosing any policy-compliant configuration. In par-

ticular, computing suitable updates requires reasoning about: (i) the

semantics of potential configurations, to ensure policy compliance;

(ii) the syntax of potential configurations, to satisfy objectives for

configuration structure/features; and (iii) the difference between

current and potential configurations, to satisfy objectives for update

size/scope. Some synthesizers only consider configuration correct-

ness [10, 18] and can only reason about i. Other synthesizers also

reason about i but offer partial control over configuration struc-

ture/features [17, 42] or change size/scope [21, 44] and may require

additional operator input to reason about ii or iii. Automatically

satisfying the wide range of management objectives that matter to

operators (§3.1), requires higher-fidelity, fully automated reasoning.

Our key insight is to model configuration updates as a collection

of syntax tree additions and removals. By modeling configurations

(and updates) at a syntactic level, we can reason about configuration

structure (iii). By modeling updates as low-level additions and re-

movals, we can precisely reason about configuration differences (ii).

Finally, by modeling configurations’ influence on route computation

and selection, we can reason about configuration semantics (i).

In particular, we automatically derive a symbolic sketch from the

current configurations. The sketch mirrors the structure of the config-

uration syntax tree to facilitate reasoning about the impact of updates

on configurations structure and change scope. We call the symbols in

the sketch delta variables, because they encode potential syntax tree

additions and removals. By solving for a configuration delta, rather

than computing new configuration values from scratch [17, 42],

we can easily reason about the size/scope of changes and compute

updates efficiently.

Satisfying even simple forwarding policies—e.g., ensuring traf-

fic takes a certain path—for certain management objectives—e.g.

avoiding static routes—is NP-complete [42], so we use a MaxSMT

(Maximum Satisfiability Modulo Theories) solver to determine the

optimal values for delta variables. Our system of SMT constraints

include the symbolic configuration sketch and a model of various

routing algorithms (e.g., OSPF, BGP). We introduce “soft constraints”

on the relevant delta variables to search for an update that maximally

satisfies management objectives.

To facilitate flexibility in management objectives, AED provides

a high-level language for operators to specify rich configuration-

wide management objectives (§7.1). We observe that the objectives

reported by operators (§3.1) and supported by prior tools [21, 42]

focus on restricting how specific (elements of) configurations are

updated. Consequently, AED allows objectives to be expressed as

a restriction (e.g., ELIMINATE) on syntax subtrees. The subtrees

are identified using a variant of XPath [3], and determine precisely

which delta variables should be constrained.

We implement AED in Java using 4K LOC. Our experiments

using configurations from real data center networks show that AED

effectively supports a variety of management objectives, and gener-

ates updates that are better than hand-written ones. We empirically

show that state-of-the-art tools either cause significantly greater con-

figuration churn or cannot meet objectives optimally. We find that
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Figure 1: Example network: blue circles (A–D) are routers;

red rectangles are groups of hosts; orange rectangles are rout-

ing processes; solid blue lines are physical links; dashed or-

ange lines are routing adjacencies; black octagons are route or

packet filters—B discards routes from A for 1.0.0.0/16 and as-

signs a local preference of 20 to other routes from A; B blocks

incoming packets from 3.0.0.0/16

10 router bgp 50000​
11 neighbor 192.168.42.2 route-map rmap in​
12 route-map rmap permit 10​
13 match ip address prefix-list b_rfil

14 set local-preference 20​
15 ip prefix_list b_rfil deny 1.0.0.0/16​
16 ip prefix_list b_rfil allow ​
17 access-list b_pfil deny ip 3.0.0.0/16 any​
18 access-list b_pfil permit ip any any

1 hostname B​
2 interface Ethernet0/1​
3 ip address 192.168.42.1/24​
4 interface Ethernet0/2​
5 ip address 70.70.70.1/24​
6 ip access-group b_pfil in​
7 router ospf 10​
8 network 2.0.0.0/16​
9 redistribute bgp

Figure 2: Example configuration of router B

with optimizations, AED can generate updates in under a minute for

real networks, and AED scales well with network/policy-set size.

2 BACKGROUND

In this section, we present a brief overview of router configurations,

route computation and selection algorithms, and forwarding poli-

cies. To illustrate these concepts, we use the example network and

configuration in Figures 1 and 2.

In a network, each router runs one or more routing protocols (e.g.,

BGP, OSPF) to compute forwarding paths. Each instance is called a

routing process: e.g., router B has two routing processes—one BGP

and one OSPF—which are configured on lines 7–11. Each process

receives route advertisements for specific IP prefixes from other

processes running on the same or neighboring routers. Processes on

neighboring routers that exchange routes—e.g., BGPB and BGPA—

have a routing adjacency, defined on line 11. Processes on the same

router that exchange routes—e.g., BGPB and OSPFB—engage in

route redistribution, defined on line 9.

Routers may discard or modify route advertisements based on

route filters defined in configurations: e.g., B discards routes from

A for 1.0.0.0/16 and assigns a BGP local preference of 20 to other

routes from A. Route filters (lines 12–16) consist of a set of match-

action rules which include permit and deny statements (lines 15–

16) to explicitly allow or block certain advertisements, and “set”

statements (line 14) to modify certain fields of route advertisements.

These fields are used in route selection algorithms to select the most

preferred routes (as described below). Additionally, certain data

packets can be filtered using packet filters, which consist of permit

and deny statements: e.g., B’s packet filter blocks incoming packets

from 3.0.0.0/16 (lines 17–18).

Route computation works as follows. Each routing process applies

route filters (if any) to its incoming advertisements. Next, each
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process selects and stores the best route (per IP prefix). The route

selection algorithm for each process compares fields in a predefined

order: e.g., BGP prefers routes with the highest local preference;

if they are equal, then the shortest path length, and so on. Since

each router can have only one route per prefix,1 a router selects the

best (i.e., lowest administrative distance) route among all its routing

processes. The chosen process then advertises this route to all of its

neighbors. Note that routers can also originate routes for specific

IP prefixes: e.g., B originates a route for the directly connected

prefix 2.0.0.0/16 (line 8). Finally, during packet forwarding, each

router forwards packets using the best route, provided the packet is

permitted by a packet filter (if any).

Networks must often satisfy a diversity of forwarding policies [8,

17], such as: blocking traffic between specific subnets (P1); forward-

ing traffic through specific intermediate devices, or waypoints (P2);

enabling packets from one subnet to reach another subnet (P3); or

ensuring specific traffic is forwarded along a different path than other

traffic (not shown).

When a new forwarding policy (e.g., P3) is introduced, a net-

work’s configurations must be updated to satisfy the new policy,

without violating any existing policies. For example, P3 can be sat-

isfied by updating the packet filter on router B (line 17–18) to allow

P3’s traffic class.

3 MOTIVATION

Satisfying all forwarding policies is the central goal of modifying

network configurations. To understand what other factors operators

take into account during updates, we examine the configuration

change practices in over 50 organizations using one-on-one inter-

views and operator surveys (§3.1). We find that many operators (1)

use limited automation to generate configuration changes, and (2)

take into account many key factors beyond forwarding policies. Fi-

nally, we argue why existing tools [10, 17, 21, 24, 42] fail to meet

operators’ needs (§3.2).

3.1 Study of configuration change practices

We first conducted one-on-one interviews with operators from four

different networks. Using the results from these interviews, we de-

veloped and conducted a survey of operators from an additional 54

networks2 to study the configuration change practices used in produc-

tion networks. The operators manage a variety of networks, including

enterprise (41%), data center (50%), service provider (54%), and re-

search & education (17%) networks. Half of the networks have more

than 100 routers, and one-tenth have fewer than 10 routers. About

two-thirds of operators employ automation to generate changes from

templates and deploy changes to routers, but only one-third synthe-

size changes from high-level specifications (Figure 3a). The latter

is not employed in small networks and is most heavily employed in

service provider networks.

In our one-on-one interviews, we asked operators an open-ended

question: besides satisfying policies, what additional factors do you

consider when making a configuration change? A total of seven

factors were suggested to us. Then, in our survey, we asked operators

1For simplicity of exposition, we ignore equal-cost multipath routing.
2We advertised our survey to the North American Network Operators Group (NANOG)
and EDUCAUSE Network Management Constituent Group.
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Figure 3: Operator survey results

to rate the importance of these seven factors when they change their

network. Figure 3b shows for each factor the percentage of operators

that reported the factor was moderately or very important for at least

one type of change. We observe that all factors are at least moderately

important for more than 80% of operators. Operators also wrote-in

a few other factors that influence configuration changes, such as

ensuring changes are easily verified and reversible.

Configuration similarity. The most important factor (very impor-

tant to 90% of operators) is keeping configurations similar across

devices with similar roles. For example, in a data center, each router’s

role is rack, aggregation, or spine. Devices in the same role have

the same configuration template, and configuration similarity is vi-

olated if a device’s configuration deviates from its template. For

example, filters are often copied verbatim across devices with the

same role [9, 14]. If the filters of one device are modified—i.e. new

rules are added and/or existing rules are removed—then it violates

the configuration similarity (template) of those devices.

Further, we observe a substantial (49%) correlation between keep-

ing configurations similar and making debugging easier. This con-

curs with prior studies, which show that networks with high configu-

ration similarity are less complex for operators to update [12].

Interestingly, our survey results show that configuration similarity

is very important even for operators that reported using automation

to generate changes from templates or synthesize changes from high-

level specifications. This is in large part because not all network

changes are automated. For example, one operator we interviewed

said they recently started synthesizing route filters from specifica-

tions, but all other configuration changes were still done manually.

Similarly, a prior study showed that in almost all networks operated

by a large online service provider, at most two-thirds of the changes

were automated [23]. In such networks, ensuring that automated and

manual changes are similar helps debugging.

Devices changed. Minimizing the number of devices changed is

very important to 38% of operators, and avoiding changes on specific

routers (if possible) due to known hardware or software problems is

very important to 30% of operators. Interestingly, there is a substan-

tial (50%) correlation in the importance operators assigned to these

two factors, suggesting that the former is partially motivated by the

latter. For example, one operator we interviewed indicated some
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Management Objectives

Config Update Features Config

Synthesizer structure size/scope used components

C
le

a
n

-

sl
a
te

Zeppelin [42] # # G# Most
Synet [18] # # # Most
Propane [10] # # # BGP only

In
cr

em
en

ta
l

NetComplete [17] G# # G# Most
CPR [21] #  # Many
Jinjing [44] #  # Pkt filters only
Propane/AT [11] G# G# G# Most
AED    Most

Table 1: Coverage of management objectives and configuration

components ( = supported, G# = partially supported, # = not

supported)

of their routers had flash reliability issues, so they sought to mini-

mize the number of times they changed the configurations on these

routers. Furthermore, irrespective of this known issue, the operator

indicated there is always a risk for things to go wrong when an up-

dated configuration is pushed to a device. This risk likely underlies

the positive (32%) correlation we observe between the importance of

minimizing/avoiding devices and minimizing the downtime required

to deploy a change.

Feature usage. In our survey, 61% of operators indicated it was very

important to avoid using certain protocols/features. Prior studies

have found that operators may avoid certain routing protocols due

to their additional licensing costs [12], or avoid features that can

introduce routing loops (e.g., route redistribution [32]). Furthermore,

we observe a substantial (68%) correlation between the importance

operators assigned to this factor and making future changes easier.

In summary, operators are concerned with: (1) the structure of

configurations, (2) the size and scope of configuration updates, and

(3) the features used.

3.2 Limitations of existing tools

Inspired by our operator study, we seek a tool that automatically

generates configuration updates satisfying a range of management

objectives and forwarding policies. Although several types of con-

figuration synthesizers exist, they offer limited support for key man-

agement objectives (Table 1).

Templates. According to our survey (Figure 3a) and prior stud-

ies [12], one widely used class of tools generate portions of con-

figurations from specialized templates [24, 33, 43]. These tools

fill-in-the-blanks in a pre-defined configuration segment with appro-

priate prefixes, link weights, etc. to satisfy new policies—e.g., enable

new hosts to reach the rest of the network and vice versa. Although

these tools can support configuration structure and feature usage

objectives, they require manual effort to construct suitable templates.

Furthermore, templates often cover only part of the configuration;

ignoring the structure and semantics of other parts of the configu-

ration can lead to policy violations and suboptimal satisfaction of

management objectives.

Clean-slate synthesizers. These tools [10, 42] take as input the net-

work topology, a set of policies [14], and possibly a configuration

sketch. They produce brand-new, policy-compliant configurations

for every router in the network. Some of them bound the use of cer-

tain protocols: e.g., Zeppelin [42] bounds the number of static routes,

OSPF domains, etc. However, since these tools ignore current con-

figuration, they cannot satisfy update size and scope objectives (e.g.,

minimizing the number of devices updated). Furthermore, some of

these tools focus only on a narrow swath of configuration compo-

nents: e.g., Propane [10] only synthesizes BGP configurations.

Incremental synthesizers. These tools [11, 17, 21, 44] take as in-

put a set of policies and the network’s existing configurations, and

produce configuration patches to fulfill any previously unsatisfied

policies without violating policies that were already satisfied by the

existing configurations.

CPR [21] creates a graph-based model of a network control plane

and produces updates that change the fewest lines of configuration

(which is modeled via changes to edges in the graph-based model).

However, CPR cannot satisfy configuration structure or feature usage

objectives, because CPR’s high-level control plane representation

only captures configuration semantics, not configuration structure.

NetComplete [17] is another incremental synthesizer that auto-

matically generates portions of configurations. NetComplete models

configurations’ semantics and syntax at the level of individual route

advertisements and filtering policies using SMT constraints. Con-

figuration values (e.g., filter rule actions) are symbolic, to allow the

SMT solver to find a set of values that satisfy a network’s policies.

However, in NetComplete, operators have to manually reason about

which values to leave symbolic and how possible values impact

different management objectives. This is very challenging given the

complexity of today’s configurations [12]. Consequently, satisfying

objectives requires significant manual guidance.

Other incremental synthesizers have similarly limited support for

management objectives. Jinjing [44] focuses on a single configura-

tion component as it only repairs packet filters. Propane/AT [11]

uses a high-level abstract topology to generate templates, and it

updates only devices whose templates have changed. But it does not

allow operators to control the features used and the scope of updates.

Additionally, Propane/AT was designed for topology changes and

not policy changes.

In summary, existing configuration synthesis tools fall short in

satisfying operators’ needs w.r.t. configuration changes.

4 OUR APPROACH: AED

Our tool, AED, addresses the aforementioned shortcomings. AED

takes as input: (i) a set of forwarding policies, expressed for specific

source/destination subnets using existing high-level languages [17,

41]; (ii) a network’s current router configurations, which violate one

or more forwarding policies; and (iii) a set of configuration man-

agement objectives, expressed in a new high-level language (§7.1).

AED generates a set of configuration updates that rectify forwarding

policy violations and optimally satisfy management objectives.

Generating such updates requires a framework for reasoning

about: (i) the semantics of potential configurations, to ensure policy

compliance; (ii) the syntax of potential configurations, to satisfy

configuration structure and feature usage objectives; and (iii) the

difference between current and potential configurations, to satisfy

update size and scope objectives.

Our key insight is to model configuration updates as a set of syn-

tax tree additions and removals. By modeling configurations (and

updates) at a syntactic level—instead of a higher-level intermediate
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Figure 4: Configuration syntax tree

representation [8, 10, 21, 42]—we can easily reason about the struc-

ture and contents of potential configurations (ii). By modeling up-

dates as additions and removals—instead of a complete regeneration

of (segments of) configurations [10, 17, 42]—we can easily reason

about the delta between current and potential configurations (iii).

Finally, by modeling configurations’ influence on route computation

and selection, we can reason about configurations’ semantics (i).

The fundamental challenge is determining which nodes to add

and remove from the syntax tree. As illustrated in §2, router configu-

rations specify five key elements that dictate a network’s forwarding

behavior: (i) which routing protocols to use, (ii) which neighboring

routers to communicate with—also known as routing adjacencies,

(iii) which routes (i.e., prefixes) to originate, (iv) which routes to

filter/prefer, and (v) which packets to filter. The precise organiza-

tion of this information varies between vendors, but it is generally

structured in the manner shown in Figure 4, where each leaf node

represents a single line of configuration.

AED automatically derives a symbolic sketch from the current

configurations to encode all possible syntax tree additions and re-

movals. We refer to the symbolic variables in the sketch as delta vari-

ables, because they encode the difference between the current and

potential configurations. We create a delta variable for each current

and potential node in the syntax tree. (Potential nodes are derived

from the physical topology—e.g., potential routing adjacencies—

and forwarding policies—e.g., potential router filter rules).

Even with simple forwarding policies—e.g., ensuring traffic is for-

warded along a certain path—finding a suitable configuration is not

trivial. Satisfying certain simple management objectives, like avoid-

ing static routes, is NP-complete [42]. Consequently, we formulate a

system of SMT constraints whose solution is a correct (w.r.t. forward-

ing policies) and optimal (w.r.t. management objectives) set of syntax

tree additions/removals. The system of constraints includes: (i) con-

figuration constraints (§5.2), which encode the symbolic sketch;

(ii) algorithmic constraints (§6.1), which encode configurations’ in-

fluence on route propagation and selection; (iii) policy constraints

(§6.2), which encode forwarding policies, and (iv) management

constraints (§7.2), which encode management objectives.

We introduce a high-level language (§7.1) for operators to ex-

press management objectives in terms of restrictions (ELIMINATE,

EQUATE, or NOMODIFY) on regions of the syntax tree. These ex-

pressions are translated into constraints over delta variables.

The next four sections describe AED in detail.

5 ENCODING CONFIGURATION

In this section, we describe AED’s encoding of potential configu-

rations as a symbolic sketch. The sketch is automatically derived

from the current configurations and encoded using first-order logic.

We use the example network in Figure 1 to help illustrate AED’s

encoding.

5.1 Symbolic variables

AED’s symbolic configuration sketch contains three types of sym-

bolic variables.

Delta variables encode configuration updates. AED creates a delta

variable for each current and potential node in the syntax tree. As-

signing a true (or non-zero) value to a delta variable indicates the

corresponding configuration element was added/removed (or incre-

mented/decremented in the case of a numeric value such as local

preference). These variables are used in the configuration sketch

to model the impact of changes on protocol parameters. Delta vari-

ables are also used in management constraints (§7.2) to model the

impact of changes on configuration structure/feature usage and up-

date size/scope. AED maintains a mapping between delta variables

and nodes of the syntax tree in order to allow AED to quantify a

change’s impact on configuration structure (§7.2). For simplicity

of exposition, we embed this mapping information in the names

of delta variables: e.g., rm_R1_RFilter1_Rule1 corresponds to the

left-most route filter rule node in Figure 4.

Protocol parameter variables represent configuration values that

impact the advertisement and selection of routes: i.e., whether a

protocol is enabled, whether a routing adjacency is defined, whether

a prefix is originated, or whether a route/packet is allowed. These

values must be symbolic, because they depend on the contents of

configurations, which partially depends on the value of delta vari-

ables. Note that the encoding of protocol parameters in AED is

different from NetComplete [17]: NetComplete encodes them as

either unconstrained symbolic variables or constants depending on

the configuration templates, whereas AED encodes all protocol pa-

rameters as symbolic variables constrained on the network’s current

configurations and the delta variables.

Route advertisement variables represent the route advertisements

produced by routing algorithms. AED creates records of symbolic

values for each potential routing adjacency: e.g., outBGPA→B rep-

resents a BGP advertisement sent from A to B and inBGPB←A rep-

resents an advertisement B receives from A. The fields within each

record are similar to the fields in actual protocol messages: e.g.,

pre f ix , path cost , administrative distance (ad), and protocol-specific

attributes such as BGP local preference (lp). Also, every record has

a boolean field that indicates whether the advertisement is valid.

5.2 Configuration constraints

We now describe how AED models each of the five key router

configuration elements (Figure 4) using first-order logic.

Routing protocols and adjacencies. AED’s symbolic configuration

sketch contains protocol parameter variables for each routing proto-

col a router supports (e.g., BGPA) and each neighboring router with

whom information could be exchanged (e.g., BGPAdjA→B ). If a rout-

ing protocol is currently enabled or a routing adjacency is currently
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configured, then we introduce a delta variable to represent the poten-

tial disabling of the protocol or adjacency (e.g., rm_A_BGP_Adj_B).

The protocol parameter variable is constrained to be true as long as

the protocol or adjacency isn’t disabled. For example, since there is

a route adjacency between A and B in Figure 1, BGPAdjA→B will

be constrained as follows:

BGPAd jA→B ⇐⇒ ¬rm_A_BGP1_Adj_B

Conversely, if a protocol or possible adjacency isn’t configured,

then we introduce a delta variable to represent the possible enabling

of the protocol or adjacency (e.g., add_D_BGP), and we constrain

the protocol parameter variable to only be true when the correspond-

ing delta variable is true.

Route filters. Route filters define a set of match-action rules that

are applied to route advertisements. AED models the constraints

representing filters as if-then-else statements. For example, Figure 5

shows the encoding of B’s route filter that is applied to BGP advertise-

ments from A.3 The constraints modeled as if-then-else statements

(1) match the filter rule with the advertisement (line 4), and (2) set

the action fields of the rule based on configuration constants. The

actions associated with each rule: (i) dictate whether the advertise-

ment is allowed or dropped (line 5), and (ii) set the value of certain

metrics (line 6) like local preference, administrative distance, etc

(unspecified fields get default value). Next, AED uses delta variables

to encode the addition, removal and modification of filter rules. To

model rule removal, AED includes a rm_ ∗ _rFil_∗ delta variable in

the match conditions (line 4). To modify the actions of existing rules,

AED uses (i) boolean delta variables to update filter allow actions

(line 5); and (ii) integer delta variables to update preference values

assigned to routes (line 6). AED represents preference values as the

sum of the current constant and an integer delta variable. Finally,

to model rule additions, AED prepends an additional conditional

statement (line 1-3) predicated on add_ ∗ _rFil_∗ delta variables.

If the same filter is applied to advertisements from multiple neigh-

bors, then the constraint is replicated for each neighbor.

1 ifmatch (outBGPA→B .pref ix, policy.dstPrefix) ∧ add_B_r F ilA_new then

2 f il terB→A .allow = B_r F ilA_new_allow

3 ...

4 else ifmatch (outBGPA→B .pref ix, 1.0.0.0/16) ∧ ¬rm_B_r F ilA_1 then

5 f il terB→A .allow = B_r F ilA_1_allow

6 f il terB→A .lp = 100 + B_r F ilA_1_lp //by default lp is 100

7 ...

8 else

9 f il terB→A .allow = ¬B_r F ilA_2_allow

10 f il terB→A .lp = 20 + B_r F ilA_2_lp

Figure 5: Encoding of route filter on B

Originated prefixes. Originated prefixes are encoded similar to

route filters: a constraint identifies the originated prefix that matches

the destination prefix of the target policy (POLICY.DSTPREFIX) and

stores the matched prefix in a symbolic variable. Figure 6 encodes

prefixes originated by A. It is unnecessary to make the prefix constant

a symbolic variable, because we can realize a change in prefix by

removing the current originated route and adding a new originated

route.

3if-then-else is syntactic sugar that can be translated to a conjunction of implications in
classic first-order logic.

1 if add_A_BGPB _Oriд_new ∧match (outBGPA→B .pref ix, policy.dstPrefix)

then

2 or iдinateA→B .adver tise = true

3 or iдinateA→B .pref ix = POLICY.DSTPREFIX

4 else ifmatch (policy.dstPrefix, 1.0.0.0/16) ∧ ¬rm_A_BGPB _Oriд_1 then

5 or iдinateA→B .adver tise = true

6 or iдinateA→B .pref ix = 1.0.0.0/16

7 else

8 ...

Figure 6: Origination of prefix from router A

Packet filters. Packet filter also consist of a set of match-action

rules and are encoded similar to route filters. For example, Figure 7

encodes B’s packet filter using rm_ ∗ _pFil_∗, add_ ∗ _pFil_∗, and

∗_pFil_ ∗ _allow delta variables.

if .. then

else ifmatch (policy.srcPrefix, 3.0.0.0/16) ∧match (policy.dstPrefix, ∗) ∧
¬rm_B_pF ilD _1 then

pF ilB←D .allow = false ∨B_pF ilD _1_allow

else if ... then

Figure 7: Match-action rules for packet filter on B

Upper bound on delta variables. We now discuss the upper bound

on the number of delta variables added in AED’s encoding. Note

that we add delta variables for different key router configuration

elements. We first model adjacency update using delta variables to

remove existing route adjacency and add new route adjacency. If

the network has R routing processes, then in the worst case scenario,

each R process can be a neighbor of the remaining R − 1 processes.

This will create R2 route adjacencies in the network. Hence, the

upper bound on the number of delta variables added for adjacency

is R2. Next, we model route filter updates. For each filter prefix

that already exists in the configuration files, we add delta variables

to remove the match condition (and hence the rule) for that prefix

and modify its filter actions. Additionally, we use delta variables to

represent adding a new filter rule w.r.t. the policy being synthesized.

Hence, the upper bound on the number of delta variables added for

route filters is the number of unique prefixes (P) in AED’s configu-

ration files and policies. The same logic applies to packet filters and

origination prefixes. Since each adjacency will have its own filters

and origination prefixes, the upper bound on the total number of

delta variables will be a function of R2 and P , i.e. O (R2.P ).

6 POLICY COMPLIANCE

Next, we discuss how AED guarantees configuration updates satisfy

operator-specified forwarding policies.

6.1 Encoding routing algorithms

The control plane advertises, computes, and selects routes based on

routing algorithms. AED’s encoding of these algorithms are similar

to tools like Minesweeper [8] and NetComplete [17]. For brevity,

we explain the encoding at a high-level leaving detailed descriptions

to Appendix A.

AED models receiving and sending of route advertisements using

constraints expressed over symbolic route advertisements. Certain

fields of the symbolic advertisement depend on the route filter that

applies to the adjacency (e.g. lp), while other fields are populated

from the adjacent process’s outgoing advertisement (e.g. pre f ix).
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Next, AED creates control and data plane forwarding variables for

each physical adjacency: e.g., controlFwdA→B and dataFwdA→B

represent A’s decision of whether to forward traffic to B. AED

models the route selection algorithm using a preference relation

over route metrics (prefer routes with lowest ad, highest lp, etc). A

router’s best route determines which interface (e.g., controlFwdX→Y )

is used to reach the destination listed in the policy. AED encodes

traffic forwarding using a dataFwd variable whose value is con-

strained based on the chosen route and any packet filters defined in

the configuration.

6.2 Encoding policies

AED can compute updates for a wide range of policies, including:

reachability, blocking, isolation, waypointing, path preferences and

length constraints, and avoiding loops and black holes. The target

policy is expressed using the dataFwd variables. For example, P2

in Figure 1 is encoded as:

dataFwdB→C ∧ dataFwdC→A

Figure 8: Encoding of waypoint policy P2

Handling multiple policies. The above encoding is designed to

model a network’s behavior w.r.t. a single policy. However, comput-

ing separate configuration updates for each policy can lead to an

update, and hence network paths, that satisfy one policy but violate

another. For example, consider the network and policies in Figure 1.

Due to the packet filter on B, the network currently satisfies policy

P1 and violates policy P3. Using the above encoding to compute an

update that satisfies P3 may result in an update that removes that

filter on B, which causes P1 to be violated. Thus, when computing

updates, AED must consider how a configuration change may impact

multiple policies.

The above encoding contains only one set of symbolic route ad-

vertisements between each pair of routing processes, so the encoding

can only be used to reason about one destination prefix at a time. To

reason about multiple policies with different destination prefixes,4

we must introduce multiple sets of symbolic route advertisements—

one for each prefix, e.g., inBGP
1.0.0.0/16

B←A
and inBGP

2.0.0.0/16

B←A
. Fur-

thermore, since the constraints that encode route filters and origi-

nated prefixes (e.g., Figure 5 and 6), route sending and receiving

functions, and route selection (§6.1 and Appendix A) are predicated

on the route advertisements, we also include per-prefix versions of

these constraints and variables. The data forwarding decisions (e.g.

dataFwd) depend on packet filter, which may filter on the basis of

source and/or destination prefixes, so we must include per-prefix-pair

versions of these constraints and variables. All of these additional

constraints and variables—needed for correctness—substantially

increases the size of the SMT problem; we address this in §8.

Now that our encoding contains variables and constraints spe-

cialized for different prefixes, we must consider how configuration

changes—which are modeled by our delta variables (§5.1)—can im-

pact different prefixes. For example, removing a routing adjacency

prevents all prefixes from being advertised to a neighboring router,

whereas a route filter rule (e.g., a conditional in Figure 5) impacts a

4If policies’ prefixes partially overlap, we can subdivide policies into non-overlapping
packet equivalence classes [26].

specific prefix. When we introduced filter (add_∗_rFil_∗) and origi-

nation (add_ ∗ _Oriд_∗) delta variables in §5.2, we did not include a

symbolic variable for the prefix to the which the addition applies, be-

cause the encoding only considered one policy, and hence one prefix.

Now that our encoding contains multiple policies, we need to create

specialized per-prefix versions of these and related variables (e.g.,

filter variables ∗_rFil_ ∗ _allow and ∗_rFil_ ∗ _lp) to allow network

paths to be customized on a per-prefix basis through the addition of

prefix-specific configuration constructs. Similarly, we need to create

per-prefix-pair versions of packet filter variables: add_ ∗ _pFil_∗

and ∗_pFil_ ∗ _allow . With rm_ ∗ _rFil_∗, rm_ ∗ _Oriд_∗, and

rm_ ∗ _pFil_∗, the impacted prefixes are already included in the

constraint, so we do not need multiple versions of these variables.

Similarly, routing adjacencies are not prefix specific, so we do not

need multiple versions of add/rm_ ∗ _Adj_∗.

By applying the aforementioned transformations to AED’s model,

we ensure the model faithfully represents the real network’s decision

processes and constrains update options to the space of correct and

valid router configurations.

7 MANAGEMENT OBJECTIVES

In §3.1, we showed that operators consider many factors when up-

dating configurations. To ensure updates computed by AED account

for these factors, we introduce a high-level language for operators

to express management objectives. Objectives expressed in this lan-

guage are translated into boolean formulas and appended to the SMT

encoding as soft constraints.

7.1 Objective language

We observe that operators’ management objectives focus on restrict-

ing how specific (elements of) configurations are updated. Conse-

quently, in AED, an objective is expressed as a high-level restriction

on syntax subtrees. AED’s overarching goal is to satisfy as many

objectives as possible.

Restrictions. Based on our survey results (§3.1) and review of prior

work [21, 42], we identify three primary restrictions: eliminate sub-

trees (ELIMINATE), make a set of subtrees consistent across devices

(EQUATE), or avoid changes altogether (NOMODIFY). AED sup-

ports these restrictions and encodes them in SMT constraints using

boolean operators (described later in §7.2). AED can easily be ex-

tended to support additional restrictions, as long as they can be

encoded using boolean operators—e.g., a “prefer changes” restric-

tion is simply the negation of NOMODIFY.

Syntax subtree selection. The objectives in §3.1 apply to various

subtrees of the configuration syntax tree (Figure 4): some apply

to a specific router—e.g., avoid changing routers with hardware

issues—and some apply to a particular feature—e.g., maintain packet

filter clones. In AED, the relevant subtrees are expressed using

XPath [3]. XPath is designed for selecting nodes of an XML docu-

ment based on node names, attributes, and relative location in the

XML tree. AED uses XPath expressions to select root nodes of

syntax subtrees based on node type (e.g., PacketFilter), node name

(e.g., internal), and node location. For example, all instances of a

packet filter called internal can be selected using the expression:

//PacketFilter[name="internal"]
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Objective Constraints

Preserve packet filter
clones

EQUATE //PacketFilter

GROUPBY name

Minimize number of
devices changed

NOMODIFY //Router GROUPBY name

Avoid changing devices
with HW/SW issues

NOMODIFY //Router[name="B"]

NOMODIFY //Router[name="C"]

Avoid protocols/features
(e.g. static routes)

ELIMINATE //RoutingProcess

[type="static"]/Origination

GROUPBY prefix

Table 2: Encoding important management objectives

Multiple objectives. An objective is satisfied if the specified restric-

tion holds true for all syntax subtrees selected by the XPath expres-

sion. For example, NOMODIFY //Router is satisfied if all routers’

configurations are unmodified. To express the objective of minimiz-

ing the number of devices changed, an operator must define multiple

objectives with different XPath expressions. For example, NOMODIFY

//Router[name="A"] is satisfied if router A’s configuration is un-

modified, NOMODIFY //Router[name="B"] is satisfied if router

B’s configuration is unmodified, etc. Since such enumeration is te-

dious and error prone, we introduce a GROUPBY clause whose

semantics is to group syntax subtrees based on a specified attribute

of the root node and apply the restriction to each group. For exam-

ple, NOMODIFY //Router GROUPBY name defines a NOMODIFY

objective for each router, thus codifying the objective of minimizing

the number of devices changed. Note that GROUPBY is syntactic

sugar and does not fundamentally change the semantics of AED’s

objective language.

By default, every objective is assigned equal weight: e.g., avoiding

changes on one router is just as desirable as avoiding changes on a

different router. However, operators can assign weights to different

objectives to express their importance.

Examples. Table 2 shows how to express the management objectives

discussed in §3.1. To make AED easier to use, we include a library

of pre-defined objectives (including those in Table 2) for operators

to choose from. If these objectives do not meet operators’ needs,

then operators can define their own objectives using restrictions and

XPath expressions.

7.2 AED: Encoding management objectives

To ensure AED computes updates that maximally satisfy manage-

ment objectives, we convert the SMT problem into a maximum satis-

fiability modulo theories (MaxSMT) problem. A MaxSMT problem

contains hard constraints that must be satisfied and soft constraints

that should be maximally satisfied. In AED, hard constraints are

the previously presented constraints that encode forwarding poli-

cies (§6.2), configurations (§5.2), and control/data plane algorithms

(§6.1); these are necessary to ensure the computed updates are cor-

rect.

AED creates a soft constraint for each objective (after “desugar-

ing” GROUPBY clauses) expressed by operators in AED’s objective

language. The constraint encompasses the delta variables associated

with the nodes in the syntax subtrees selected by the objective’s

XPath expression. (As mentioned in §5.1, AED creates a delta vari-

able for each current and potential node in the syntax tree). The

selected delta variables are constrained according to the objective’s

restriction: NOMODIFY is the negation of the disjunction of the vari-

ables; ELIMINATE is the conjunction of negated add and non-negated

remove variables; and EQUATE is the conjunction of the equality of

sets of variables associated with nodes in the same position in each

of the subtrees. For example, the objective in the first row of Table 2

translates to the following soft constraint:

rm_D_pF ilB _1 = rm_B_pF ilC _1 = ..∧

D_pF ilB _1_allow = B_pF ilC _1_allow = ..∧

rm_D_pF ilB _2 = rm_B_pF ilC _2 = .. ∧ ..

8 OPTIMIZATION STRATEGY

The above network model enables AED to compute correct, optimal

configuration updates. However, the complexity of the resulting

SMT formulation is substantial, and hence the time required to solve

it is high. For example, we find that updating a network with just

20 routers and a few hundred policies takes 20 minutes. Moreover,

the time to compute updates is ≈40X worse than the state-of-the-

art incremental synthesis tool [21]. Next, we propose three distinct

strategies that significantly improve AED’s speed.

Pruning irrelevant configuration. The parallels between AED’s

encoding of configuration and configuration’s syntactic-structure

is essential for realizing many important management objectives

(e.g., maintaining configuration similarity). However, a significant

fraction of a network’s configurations is often irrelevant for a given

policy, as they do not overlap with the source and/or destination

prefixes associated with that policy. For example, only those packet

filter rules that match a given destination will impact reachability to

that destination—i.e., lines 4–7 in Figure 5 are irrelevant for policy

P3 from Figure 1.

The inclusion of irrelevant conditionals in origination, route fil-

ter, and packet filter constraints, and the delta variables associated

with these clauses, increases the computational complexity of the

constraint problem, thereby reducing AED’s efficiency. Fortunately,

we can statically prune a significant fraction of the irrelevant condi-

tionals and delta variables by examining whether a rule applies to

(part of) the same traffic class covered by a network policy: if the

range of source and destination prefixes matched by the conditional

does not intersect with the range of source and destination prefixes

covered by a network policy, then the conditional, and its associated

delta variable, is a candidate for pruning. For example, Figure 5 is

encoded as the following for policy P3:

1 ifmatch (outBGPA→B .pref ix, policy.dstPrefix) ∧ add_B_r F ilA_new then

2 f il terB→A .allow = B_r F ilA_new_allow

3 ...

4 else

5 f il terB→A .allow = true ∧¬B_r F ilA_2_allow

6 f il terB→A .lp = 20 + B_r F ilA_2_lp

Grouping policies based on a destination address. As discussed

in §6.2, AED considers all policies in unison to compute valid

updates. To overcome the resulting performance issue, we formu-

late multiple MaxSMT problems, one per destination. These per-

destination formulations are significantly smaller in size, and having

multiple SMT formulations allows us to solve them in parallel.

The solutions to each problem will not conflict, because routing

can always be customized on a per-destination basis using route

filters and static routes. For example, the problem presented in §6.2

with applying AED separately for P1 and P3 in Figure 1, can be
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addressed by updating B’s packet filter to match both source and

destination prefixes. However, the computed updates may be sub-

optimal w.r.t. the management objectives, because the management

objectives are considered separately for each destination. However,

in practice the computed updates are (close to) optimal (§9.3).

Replacing integer variables with booleans. AED uses integer vari-

ables for cost and metric (e.g., ad , lp, med) values when computing

updates that change which routes are preferred (§5.2). However,

each integer variable in the model expands the space of possible

updates by a factor of 232. To reduce the space of possible updates,

we constrain the possible integer values to a small set of values

represented by boolean variables. For cost and metric values, the set

of values we choose is based on our observation that we only need

to know the relative rank of the route, not its absolute “distance”

from another route. In most cases, changing a route’s rank to have

an equal or in-between rank relative to other routes is sufficient.

Consequently, if the current configurations contain n distinct val-

ues for a cost or metric, we limit the set of possible new values

to (2n + 1) choices. For example, if the network model currently

contains three distinct BGP local preference values (50, 100, and

150), we limit the choice of new values to one of seven choices:

LP0−49, LP50, LP51−99, LP100, LP101−149, LP150, LP151−inf . We

replace the integer variable lp in the network model with (2n + 1)

boolean variables corresponding to the choices in the set.

9 EVALUATION

We prototype AED [1] atop Minesweeper [8]. Minesweeper uses Bat-

fish [20] to parse router configurations, and the Z3 SMT solver [16]

to encode and solve the underlying SMT formulation. We add our

objective language and modify Minesweeper to incorporate our

syntactic-level, update-oriented network model. In all, this amounted

to ≈ 4K lines of Java code.

Next, we evaluate AED along a variety of issues:

• How effective is AED at meeting different management objec-

tives? Is AED useful in practice?

• How does AED’s performance compare with other incremental

synthesis tools? Does AED’s generality lead it to be slower than

the less general CPR?

• How does AED’s performance scale with network size and the set

of policies that need to be satisfied?

• How well do AED’s optimization techniques work?

We compare AED against two other incremental synthesis tools,

CPR [21] and NetComplete [17]. We use NetComplete with all

configuration constructs made symbolic.5

All our experiments were performed on machines with 10 core

2.4 GHz Intel Xeon Processors and 132 GB RAM.

Dataset. We run extensive experiments on both real and synthetic

network configurations. For the former, we use configuration snap-

shots from 24 datacenter networks operated by a large online service

provider. The dataset does not include operators’ intended policies,

so we infer all of a network’s reachability policies by checking for

reachability between every pair of subnets using Minesweeper [8].

These 24 networks have between 2 and 24 routers, and support 50

5NetComplete is an incremental tool, but there is no easy way to use it as such to
compare against AED, because NetComplete needs manual guidance to be used for
incremental synthesis (§3.2).
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to 6600 reachability policies. In our experiments, given a network’s

“before” snapshot, we run AED with different objectives to update

the “before” configurations to new configurations that satisfy all

policies observed in the “after” snapshot. We then compare AED-

generated configurations against the actual “after” configurations.

The “after” configurations are the result of operators manually up-

dating, with limited automation [23], the “before” configurations.

To compute manual updates, we only consider changes related to

routing/forwarding. To compute changes in templates, we group

configurations based on their filter rules in the “before” snapshot.

We then compare these segments of the configuration across the

actual “before/after” snapshots.

To evaluate AED’s scalability and performance, we use synthetic

BGP configurations generated by NetComplete [17] for 10 network

topologies of varying sizes (30-160) from the Internet topology

zoo [31].

For brevity, we show most results by updating networks to support

new reachability policies. We show results for adding other policy

types in §9.2.

9.1 Management objectives and utility

AED allows operators to optimize updates for a variety of man-

agement objectives. We study the effectiveness with which AED

supports such objectives.

9.1.1 Quantitative Analysis. First, we quantitatively compare

updates made by AED against manual and other synthesis tools.

We use four objectives: minimize devices changed (min-devices),

minimize lines changed (min-lines), preserve templates (preserve-

templates), and minimize the use of packet filters (min-pfs).

For real data center networks, we compare AED and CPR against

manual updates. We cannot use NetComplete for these networks as



CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Abhashkumar et al.

they cannot model features like packet filters and route redistribution.

For the topology zoo networks [31], we first synthesize configura-

tions which support 8 randomly-generated reachability policies. We

then generate 8 more policies and run AED, CPR and NetComplete

to obtain configurations that support all 16 policies.

In Figure 9, we show the average percentage of changes (min-

devices and min-lines) made in both the real and synthetic networks.

In Figure 10, we evaluate for the min-pfs and preserve-templates

objective. The final two objectives are related to filters. To evaluate

them, we use synthetic blocking policies on synthetic networks to

allow filter updates. Overall, AED performs better for all objectives.

We explain the results in detail below.

Comparison with manual updates. In Figure 9, we observe that

compared to actual updates, AED significantly reduces the number

of devices and lines affected. When executed with the preserve-

templates objective, AED’s updates did not violate any configuration

uniformity, and neither did the actual updates. Although we don’t

know the actual management objective of the network operators

when conducting their updates, these experiments show that AED

matches or outperforms manual updates for many types of objectives.

Comparison with NetComplete. In Figure 9, we observe that Net-

Complete makes more changes than the other tools. It modifies

almost all devices in the network, whereas AED on average can

limit the number of modified devices to less than 30%. Addition-

ally, for preserve-templates objective (Figure 10b), NetComplete

creates as high as 25% template violation, whereas AED does not

violate any template. This happens because NetComplete [17] does

not support update size/scope objectives and only partially supports

configuration structure objectives.

Comparison with CPR. Recall from 3.2 that CPR only supports

update size objective. Hence, as shown in Figure 9, AED and CPR

have similar results. However, for configuration structure and feature

usage objectives (preserve-templates and min-pfs), CPR performs

poorly. For example, as shown in Figure 10a, with min-pfs objective,

AED never added more than 2 filters in any network. Whereas in

some cases, CPR added 3X as many as AED. Additionally, for

preserve-templates objective (Figure 10b), CPR creates the most

template violations among all the tools.

This shows that a system such as CPR that bakes in a specific

objective (min-lines) will find updates that may be valid but undesir-

able for an operator for multiple different management objectives.

Whereas, AED’s intrinsic expressiveness affords operators much

greater flexibility.

9.1.2 Qualitative Analysis. Next, we surveyed operators from

four different networks and asked them to rate three anonymized

synthesis tools (AED, CPR and NetComplete) based on their cover-

age of management objectives. First, we showed operators a sample

multi-site enterprise network and asked them to choose one or more

of the following objectives: preserve-templates, min-devices, avoid-

redistribution. Next, we showed them three iterations of the network,

each built on top of the other. The first iteration satisfied two new

blocking policies, the second satisfied a new reachability policy

and the final satisfied a new waypointing policy. We specifically

highlighted updates made by each synthesis tool and asked the op-

erators to categorize these updates as good, average, or bad, w.r.t.

their chosen objectives. We observe that in 50% of their answers,
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Figure 11: Performance on reachability policy

AED’s updates were rated better than the other tools. And in 42%

of their answers, AED’s updates were rated equal to the other tools.

In the remaining 8% of their answers, where AED’s updates were

rated lower, AED modified intermediate devices whereas operators

preferred changing route-originating devices. However, note that by

specifying this preference as an extra objective, AED could achieve

the same update. We also observe that in 8% of their answers, AED’s

updates were rated bad. However, in those answers, other tools were

also rated bad because all of them violated certain templates.

Overall these qualitative and quantitative results (vs. manual-,

NetComplete-, CPR-based updates) show AED’s practical utility.

9.2 Performance

Next, we examine AED’s performance and scalability. In the remain-

ing experiments, we group networks by their size and show average

values of metrics of interest for each group.

Impact of network size. We first compare AED’s performance with

CPR [21] by running both tools with their intrinsic performance

optimizations turned on across the 24 real datacenter networks. Fig-

ure 11a shows that for small networks (≤ 10 routers), the time AED

takes to compute updates is comparable to CPR. However, with

increasing network size, AED’s SMT-based control plane encoding

becomes more complex, relative to CPR’s graph-based encoding.

Consequently, the time difference between CPR and AED in com-

puting updates increases with network size. Recall however that

CPR has poor management objective coverage (Table 1) and cannot

satisfy configuration structure or feature usage objectives. Despite

much greater generality, AED’s performance does not significantly

degrade compared to CPR.

To evaluate AED’s scalability on larger networks, we use the

NetComplete-generated configurations. We repeat the experiment

from §9.1, where we start with configurations which support 8 reach-

ability policies, and update them to satisfy 8 more policies. The

objective is min-devices. The time taken to create the updated config-

urations is shown in Figure 11b. We observe that AED significantly

outperforms NetComplete (i.e., clean-slate synthesis) by a factor of

10 to 100X. There are at least two reasons for this. The primary one

is that, by taking the existing network as input, AED deals with a

smaller search space, compared to NetComplete, where we made

all configuration constructs symbolic. A secondary reason is that

the NetComplete prototype deals with integer variables (e.g., for IP

prefix, local-pref etc). It is synthesizing values for these variables

in BGP configurations using an SMT solver, which contributes to
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slow down. AED’s optimization strategy (§8) could improve Net-

Complete’s performance too, but the overall performance achieved

will still be poor due to the search space.

Impact of policy set size. Next, we measure how AED scales with

the number of old and new policies in a changing network. We

consider reachability policies on a 70 router network. For this experi-

ment, we introduce two terms: (1) base policies, which represent the

policies already configured in the network, and (2) added policies,

which represent new policies to be added to the network. For the

first experiment, we vary the number of base policies but keep the

number of added policies fixed at 8. NetComplete scales poorly and

takes more than 30 hours to handle just 64 base policies. On the

other hand, AED scales linearly with the number of base policies

and can synthesize a total of 1024+8 policies in 250 seconds. Next,

we explore how AED scales as a function of the number of added

policies. We run this experiment with three sets of base policies: 64,

128 and 256. Figure 12 shows that AED also scales linearly with an

increasing number of added policies, irrespective of the number of

base policies.

Impact of policy type. Finally, we evaluate AED’s performance as a

function of policy type. We evaluate on the real datacenter networks.

Here, we assume the operator wants to update the policies supported

by all networks by adding 5% new policies. We consider three

classes of newly added policies: reachability, waypointing, and, path-

preference. From Figure 13, we observe that at larger network sizes

(>15), adding path-preference policies is the slowest to generate

updates for. These policies need to ensure that (i) a less-preferred

path is taken only when a more-preferred path is unavailable, and,

(ii) ordering of routers in these paths is valid. This results in adding

more variables and constraints to our formulation compared to the

other two policies. However, the overall time to compute updates is

still reasonable.

9.3 Impact of optimization strategies

We next evaluate the performance benefits and optimality impact of

our strategies for improving AED’s speed (§8). We assume that the

strategies are leveraged in isolation. When employed together, their

benefits compound. For brevity, we discuss results only for the real

datacenter networks. We see similar and sometimes better speedup

on the synthetic networks.

Parallel solvers. Solving the control plane update problem for multi-

ple destinations in parallel yields updates in significantly lower time

than solving the entire update instance at once. As shown in Fig-

ure 14a, performance speed up ranges from 10X to 300X under

the min-devices objective. However, by not looking for a “globally”

optimal update, we may sacrifice on update quality. In Figure 14b,

we observe that there is only one network (with 15 routers) where

running AED in parallel results in updates spread across 2 addi-

tional devices compared to using a single AED instance. Overall,

parallelization performance speedup outweighs optimality loss.

Using boolean variables. A key optimization in our encoding was

to replace certain integer variables with approximate boolean equiv-

alents, because searching for suitable assignments for an integer

variable can take a significant amount of time. In this experiment, we

consider the lp variable. We use a synthetic setting (because this con-

struct was not exercised in the networks of our dataset). Specifically,

we use the topology shown in Figure 1 and evaluate how quickly

AED computes updates for path-preference policies. The policy for

all source-destination pairs is to prefer routes through C over routes

through A. We set a higher lp value on router A (compared to C)

in the configurations we provide to AED, such that the preference

policies can only be satisfied by changing local preferences. This

approach of using boolean variables instead of integers improves

AED’s performance by 3-10X.

Pruning configuration. Another key optimization was to prune ir-

relevant parts of the configuration for the given policy. This can

simplify the MaxSMT problem by removing irrelevant condition-

als and delta-variables from our encoding. We observe that this

optimization improves AED’s performance by 1.2-1.5X.

10 RELATED WORK

Network verification. Recent work [6–8, 15, 19, 20, 22, 28, 29,

36, 40] has shown how to detect errors in network control planes

that lead to violations of important network-wide policies. Tools like

Minesweeper [8], Bagpipe [46] and FSR [45] use SMT solvers for

verification. However, these tools cannot model network updates.

Intent-based networking. The idea of using policies (network in-

tent) to configure the network has has been well-adapted in both

Software-Defined Networks (SDN) [5, 6, 37, 39, 41] and legacy

networks [10, 17, 18, 38, 42]. Recently, many synthesis tools [10,

17, 18, 38, 42] automatically generate provably correct distributed

control plane configurations, based on a set of high-level policies

provided as input. However, these result in clean slate configuration

updates.

Centralized control plane update. Wu et al. have designed an

update system for a centralized control plane that uses provenance

information to identify what caused the control plane to generate

forwarding rules that violate some policies and suggests fixes to

correct the problem [47]. However, like CPR, this system is far from
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a complete solution to the problem of updating centralized control

planes. In particular, Wu et al.’s system requires control planes to be

written using a declarative programming language [34], and makes

no guarantees on the optimality or interpretability of the updates.

Forwarding rule update. Some systems [25, 38] directly update

forwarding rules. But this causes the control plane’s view of the

network to diverge from the current forwarding state. Future actions

taken by the control plane may conflict with the updated forwarding

rules, resulting in further policy violations and needing frequent

forwarding updates.

11 DISCUSSION

Deploying updates. Deploying large number of configuration up-

dates in a live network can lead to routing issues, like transient

forwarding loops and black holes. It can also result in significant

network downtime. Safely updating configurations in a live network

is an important research problem and is part of our future work.

Encoding limitation. We presented our paper in the context of

BGP and OSPF because they are very widely used. Although our

encoding can be extended to model protocols like RIP and EIGRP,

it cannot model stack-based protocols (e.g. MPLS, segment routing,

etc) and open-flow rules. Our encoding also does not handle external

routes, non-routing/forwarding-related configuration elements (e.g.,

SNMP, etc), and layer-2 features (e.g. mapping interfaces to VLANs,

spanning tree, etc).

SMT output for special cases. If the network has multiple stable

states/configurations to satisfy the policies and management objec-

tives, then AED’s SMT solver will choose one of those states. If

there are conflicting policies or if the network cannot implement

all the policies, then the SMT solver will generate an unsat solu-

tion. This indicates that the input (configurations and policies) is

unsatisfiable.

12 CONCLUSION

Our survey on configuration change practices showed that along

with correctness, operators care about a variety of management

objectives. To support that, we propose a new synthesis tool called

AED. AED encodes current configurations and its potential updates

as a novel MaxSMT-based model whose structure is analogous to a

syntax tree. AED allows operators to specify their objectives using

a novel objective language and it encodes these objectives as soft-

constraints. Finally, our evaluations over both real and synthetic

network configurations show that AED computes updates fast and

covers multiple management objectives.
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A ENCODING ROUTING ALGORITHMS

The control plane advertises, computes, and selects routes based

on parameterized algorithms. These algorithms reference the pro-

tocol parameter variables defined in §5. AED also creates control

and data plane forwarding variables for each physical adjacency:

e.g., controlFwdA→B and dataFwdA→B represent A’s decision of

whether to forward traffic to B. The value of the latter accounts for

packet filters, whereas the value of the former only accounts for

route selection.

Route advertisements. Receiving and sending of route advertise-

ments is modeled using constraints expressed over symbolic route

advertisements. A pair of constraints is created for each pair of

neighboring routers in the physical topology.

1 if BGPY ∧ BGPAd jY→X ∧ activeLinkY→X ∧ outBGPY→X .valid then

2 inBGPX←Y .valid = f il terY→X .allow

3 inBGPX←Y .pref ix = outBGPY→X .pref ix

4 inBGPX←Y .lp = f il terY→X .lp

5 ...

6 else inBGPX←Y .valid = false

Figure 15: Encoding of BGP receiving a route advertisement

Figure 15 shows the template for constraints that encode BGP’s

route receiving function. The template is parameterized by two neigh-

boring routers X and Y , where X receives an advertisement from

Y . Line 1 represents a set of conditions that must be met to receive

a route: the routing protocol is enabled on the router (BGPX ); the

routers are configured to have a routing adjacency (BGPAdjY→X );

the physical link connecting the routers is active (activeLinkY→X );

and the advertisement sent by the adjacent router is valid. Certain

fields of the symbolic advertisement depend on the route filter that

applies to the adjacency (lines 2 and 4), while other fields are pop-

ulated from the adjacent process’s outgoing advertisement (line

3), independent of route filters. Note that the constraint references

the protocol parameter variables defined in §5. This differs from

NetComplete [17] and Minesweeper [8], where such values (e.g.,

prefixes and local preferences) are included directly in the receive

(and send) constraints.

The constraints representing the sending of route advertisements

have a similar structure, except matches and assignments are based

on the best advertisement for that protocol (described below) and

the policy being verified. For example, the constraint in Figure 16

encodes which BGP advertisements a router forwards (lines 1–6)

and originates (lines 7–10).

1 if bestBGPX .valid then // Forward advertisement

2 outBGPX→Y .valid = true

3 outBGPX→Y .pref ix = bestBGPX .pref ix

4 outBGPX→Y .cost = bestBGPX .cost + 1

5 outBGPX→Y .lp = bestBGPX .lp

6 ...

7 else if or iдinateX→Y .adver tise then // Originate

8 outBGPX→Y .valid = true

9 outBGPX→Y .pref ix = or iдinateX→Y .pref ix

10 ...

11 else outBGPX→Y .valid = false

Figure 16: Encoding of BGP sending a route advertisement

Route selection. To model route selection within and across proto-

cols, the encoding includes an additional symbolic record for each

routing process (e.g.,bestBGPX ) and each router (e.g.,bestOverallX ).

A process’s best record is set to the most preferred incoming and

valid record: e.g., bestBGPX is equated from among multiple in

records from different neighbors, based on which record has the

highest lp and lowest cost . Similarly, a router’s (bestOverallX ) best

record is equated to whichever of its routing process (bestBGPX or

bestOSPFX ) has the lowest ad . A router’s best route (e.g.,bestOverallX )

determines which interface (e.g., controlFwdX→Y ) is used to reach

the destination listed in the policy:

control FwdX→Y ⇐⇒ (inBGPX←Y = bestOverallX ) ∨
(inOSPFX←Y = bestOverallX )

Data forwarding. Finally, AED encodes whether X forwards pack-

ets to Y using a dataFwd variable whose value is constrained based

on the chosen route and any packet filters defined in the configura-

tion. Again, these filter rules are encoded separately (§5) from the

forwarding algorithm, which differs from existing tools [8, 17].

dataFwdX→Y ⇐⇒ control FwdX→Y ∧ pF ilX→Y .allow

Figure 17: Encoding of data forwarding rules
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