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a b s t r a c t

This paper proposes and tests a sequence-based modeling of deep learning (DL) for structural damage
detection of floating offshore wind turbine (FOWT) blades using Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) neural networks. The complete framework was developed with four
different designs of deep networks using unidirectional or bidirectional layers of LSTM and GRU net-
works. These neural networks, specifically developed to learn long-term and short-term dependencies
within sequential information such as time-series data, are successfully trained with the sensor signals of
damaged FOWT. The sensor data were simulated due to the limited availability of field data from
damaged FOWTs using multiple computational methods previously validated with experimental tests.
The simulations accounted for the damage scenarios with various intensities, locations, and damage
shapes, totaling 1320 damage scenarios. Both the presence of damage and its location were detected up
to an accuracy of 94.8% using the best performing model of the selected network when tested for in-
dependent signals. The K-fold cross-validation accuracy of the selected network is estimated to be 91.7%.
The presence of damage itself was detected with an accuracy of 99.9% based on the cross-validation
regardless of the damage location. Structural damage detection using deep learning is not restricted
by the assumptions of the systems or the environmental conditions as the networks learn the system
directly from the data. The framework can be applied to various types of civil and offshore structures.
Furthermore, the sequence-based modeling enables engineers to harness the vast amounts of digital
information to improve the safety of structures.

Published by Elsevier Ltd.
1. Introduction

The rapid increase in demand for clean and sustainable energy
has promoted the development of technology and commercializa-
tion of the floating offshore wind turbine (FOWT). The develop-
ment of FOWT intends to harvest larger amounts of energy
resources from deeper water compared to the current fixed-based
offshore wind turbine. Its various advantages over the on-land or
fixed-based offshore wind turbine have made FOWT more
appealing than ever before, particularly with the successful com-
missions of projects such as WindFloat in Portugal [1] and Hywind
Choe), khc4156@gmail.com
in Scotland [2,3]. However, FOWT is in the infancy stage of
commercialization. This is due to challenges that complicate the
predictive outcomes for its highly nonlinear system, which involves
the uncertainties inherent in the system, environment, and oper-
ational conditions. The uncertainties inherent in the floating sys-
tem includes larger inertia loading by motions, potential instability
by blade pitch control, potential high fluctuation of power output
due to motions etc. The modeling uncertainties increase as the
hydrodynamics of floating structures and the turbine aerodynamics
are coupled in the system. In addition, the uncertainties during
operation and monitoring increase due to the longer physical dis-
tance of FOWT from the coast compared to the current fixed-based
offshore wind turbine. These disadvantages result in higher oper-
ation and maintenance costs [4,5]. Structural Health Monitoring
(SHM) has been discussed as a vital option that may significantly

mailto:dchoe@nmsu.edu
mailto:khc4156@gmail.com
mailto:m-kim3@tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2021.04.025&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2021.04.025
https://doi.org/10.1016/j.renene.2021.04.025
https://doi.org/10.1016/j.renene.2021.04.025


D.-E. Choe, H.-C. Kim and M.-H. Kim Renewable Energy 174 (2021) 218e235
improve the safety and the cost-efficiency of FOWT systems, which
service lives are longer than typical offshore structures [6]. By
continuously monitoring the sensor signals from the tower or
blade, the on-site maintenance and inspection schedule can be
optimized [7]. Early detection of structural damage could prevent
catastrophic failures and secondary damage leading to exorbitant
repair costs [8].

SHM methods based on the modal properties as damage sen-
sitive features have been suggested considering the characteristics
of the FOWT structures. The structural members of FOWT are
typically slender, e.g., blades and towers and experience highly
nonlinear environmental conditions including extreme winds and
waves [9,10]. However, Tcherniak et al. [11] reported that the
application of modal-property-based SHM methods to FOWT
structure is limited due to several violations of the assumptions of
modal-property-based methods in the FOWT system and
environments.

Several non-modal-property-basedmethods have recently been
developed for wind turbine applications. Dervilis et al. [12] inves-
tigated SHM of wind turbine blades using Artificial Neural Network
(ANN), which is a traditional shallow neural network, non-deep-
learning technique. It was reported that the damage could be
detected before a visible crack in the structure was observed.
H€ackell et al. and Tsiapoki et al. [6] [[,13] introduced and validated a
three-tier modular SHM framework with real field wind turbine
data. They analyzed training and testing data using a combination
of machine learning, damage parameters, and probabilistic
modeling to determine if the damagewas present for on-land wind
turbines. Wang et al. [14] introduced a deep autoencoder for
identifying impending wind turbine blade breakages based on su-
pervisory control and data acquisition data, which were collected
from four wind farms located in China. However, these methods
have been developed for on-land turbines, which may not fully
consider the nature of FOWT behavior, such as the dynamic
coupling of the blades’ aerodynamics and the hydrodynamics
involved in floating body motion. Therefore, reliable SHM methods
for FOWT are critically needed for the safe, reliable, and cost-
effective maintenance of FOWT systems. In an effort to develop a
reliable SHM method, we propose a sequence-based modeling of
Deep Learning (DL) using Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) networks. This approach has not been
previously applied to the problem in structural engineering, but its
potential for providing multiple advantages is high.

DL is a subarea of Machine Learning (ML), which is again a
subarea of Artificial Intelligence (AI). DL uses deep layers of neural
networks to learn the system directly from the data, which has
drastically improved the performance from traditional shallow
neural networks. Traditional neural network, typically called as
Artificial Neural Network (ANN) [15], is a single hidden-layered
neural network that feed the input only forward. Multiple layered
neural networks, deep learning, enabled a fine tuning of the asso-
ciated parameters of the network by its back propagation as well as
by increasing the model complexity with the deeper layer [16]. In
addition, the traditional neural network cannot learn from a
sequential data as an input. Recurrent Neural Network (RNN) is one
of deep learning method that learns from sequential data. Recent
development of LSTM neural network, a type of RNN, improved the
learning performance by introducing “forget gate” [17].

The advantage of DL methods for the maintenance of FOWT is
that it is less restricted by the assumption of the system and the
environmental conditions because the deep network learns the
system directly from the data. While the modal-property-based
methods carry various assumptions for their applications,
whereas the DL method does not. For instance Operational Modal
Analysis (OMA) [18] assumes the system as a linear, stationary, and
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observable to be applicable. The substructure of FOWT a floating
system rather than stationary. In addition, the coupled dynamics of
the hydrodynamics of floating body and the turbine aerodynamic is
highly nonlinear, which does not respect the linearity assumption
of OMA. The suggested DL method may potentially be applicable to
various types of future structures with dissimilar environmental
and mechanical conditions.

Beside the specific DL applications, various data-drive modeling
methods has been applied to solve the wind energy problems
[19e24]. Data-driven modeling is a broader definition than ML and
refers the methods that are informed by data rather than the the-
ories behind the system regardless of the methods including
various ML, ANN, and DL that utilize multiple layers of neural
networks.

Both LSTM and GRU networks are types of Recurrent Neural
Networks (RNNs) that are specifically developed to learn long-term
and short-term relationships within the sequence data often used
for text recognition, weather predictions, or medical detections.
These networks were chosen to design the deep networks and train
the sensor signals of FOWT in our research. It has been reported
that it is practically difficult to train the traditional RNN as the
gradients tend to either vanish or diverge [25]. LSTM neural
network was first introduced by Hochreiter & Schmidhuber [17]
and was followed by many variations of the algorithm. LSTM al-
gorithm introduced a few unique functions including “forget gate”,
which allows the network to efficiently capture the sequential
dependency and differentiated LSTM from the traditional RNNs.
GRU neural network was recently developed by Cho et al. [26] This
application has been rapidly adopted due to its simpler structure
and faster training time. Overall, it has demonstrated comparable
or superior performance to the LSTM network. Bahdanau et al. [27]
reported that LSTM and GRU units performed comparably to each
other based on their machine translation experiments; however,
evidence showing that this applies to other research areas are
lacking. Chung et al. [28] tested both LSTM and GRU for polyphonic
music and speech signals, where the GRU performed slightly better
but comparable to LSTM. Other than this, reports addressing the
performance of LSTM and GRU are scarce.

In this paper, the sequence-based modeling of DL is proposed
and tested for structural damage detection of FOWT blades. The
following section describes basic properties of the FOWT and the
numerical modeling of the FOWT system and various damage
scenarios. The next section describes the principle of the primary
unit of LSTM and GRU networks for the sequence-based modeling,
including conceptual and mathematical details of how the LSTM
and GRU network learns the long-term dependency from sequen-
tial data. The section, entitled Framework, provides the details and
visual representations of the entire DL process within its sub-
sections. The last two sections of the paper present the results of
the damage detection of FOWT blades using the proposed deep
network and provide a conclusion for our research findings.

2. Structural damage of FOWT blades

2.1. Simulation of OC4-DeepCwind semi-submersible FOWT

In this study, OC4-DeepCwind semi-submersible FOWT [29]
with NREL 5 MW baseline turbine is used as shown in Fig. 1. The
turbine is a three-bladed semi-submersible type FOWT with the
capacity of 5 MW. Each blade length is 61.5 mwith hub diameter of
3 m, which makes the rotor diameter of 126 m. It is designed to
operate the turbine between 3m/s~ 25m/s for its cut-in and cut-off
wind speeds and the rated tip speed is 80 m/s. Hub height is 90 m
and the center of mass of the turbine is �0.2 m, 0.0, 64.0 m in three
global coordinate directions. The mass of rotor, nacelle, and tower



Fig. 1. DeepCWind OC4 semi-submersible FOWT: Simulation model (left) and actual model testing [30] (right).
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are measured to be 110, 000 kg, 240, 999 kg, & 347,460 kg
respectively. The detailed dimension, parameters, and properties of
the turbine, platform, and mooring are given in Kim et al. [10].

To ensure the simulated data to represent the responses of the
actual wind turbine, the floating platform, and themooring system,
two software, FAST [31] and Orcaflex [32], are coupled with addi-
tional sets of connected software. Fig. 2 shows the structure of the
simulation software. The integration of the set of software, FAST
and OrcaFlex, have been verifiedwith actual testing data [30,33,34].
In this coupled model, OrcaFlex calculates the hydrodynamics of
the substructures, passing mooring tension, hydrodynamic co-
efficients, and hydrodynamic forces to FAST. FAST calculates the
displacements and velocities of the platform and passes back into
OrcaFlex at each time step. For the mooring dynamics in the time
Fig. 2. Simulation sof
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domain analysis, the lumped mass element method was used. The
detailed description of the coupled process between OrcaFlex and
FAST can be found in Masciola et al. [32] The hydrodynamic co-
efficients, such as radiation damping and added mass, and first and
second order wave excitation forces are obtained based on the
potential theory in the frequency domain by WAMIT [35] and
subsequently entered into the time-domain analysis. The effects of
radiation damping force from addedmass and damping coefficients
are included using the impulse response function in the form of a
convolution integral. Also, the viscous drag force is added using the
Morison equation for pontoons and platform columns.

The dynamics due to the elasticity of the tower and blade in the
time-domain simulation are implemented using ElastoDyn, a sub-
routine of FAST. In ElastoDyn, the blade model is a straight and
tware structures.
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isotropic cantilever beam structure with distributed mass and
bending stiffness. Blade mode shape is pre-calculated using finite
element method (FEM) code, specified as a polynomial coefficient,
and entered into the FAST-time domain simulation. BModes [36] is
the FEM program code that provides dynamically coupled modes
for a beam. The mode-shape polynomial equations are used as
shape functions in a nonlinear beam model according to the
Rayleigh-Ritz method. Deflections of the beam’s node points are
calculated using a linear summation of normal mode shapes. In this
study, the first and second flap modes, the first edge mode for
blade, the first two fore-aft mode, and the side-to-side modes for
the tower are included [37].

uðz; tÞ¼
Xn
a¼1

faðzÞqaðtÞ (1)

where uðz; tÞ is the lateral deformation at time t and location z.
faðzÞ and qaðtÞ are the normal mode shape and generalized coor-
dinate for normal mode a, respectively.

The full-field wind is generated using the Turbsim program [38],
a stochastic, full-field, turbulent-wind simulator that integrates
various wind spectra and turbulence models. For the imple-
mentation of turbulence, the Kaimal turbulence model is used. The
Kaimal model is defined in IEC 61400e1 2nd ed. [39], and 3rd ed.
[40], which is used for generating of full-filed wind file or hub-
height wind file including wind turbulence in the TurbSim [38],
which is the pre-processor program of FAST-OrcaFlex. In this study,
the accelerations of fore-aft and side-to-side directions are ob-
tained from the numerical sensors, and the acceleration results are
used for the structural damage detection. For simplicity, only the
parking condition (blade-fixed) is considered, and the blade rota-
tion and control are not considered. Nineteen numerical sensors
per blade are evenly distributed along the blade length, and twenty
sensors at the towers are assumed. In this paper, accelerometer is
used to measure vibration, which has been mainly used in long
structures such as bridges [41e44], offshore structure [45], and
wind turbine blade and tower [9,46e49] for the industrial and
research purposes. In the case of accelerometer, it must be properly
installed so that all the interested directions of acceleration can be
measured. For example, if users want to measure the three axes of
acceleration of flap, edge, and axial directions in the wind blade,
three single-axis accelerometers must be installed for each direc-
tion. If the multi-axis accelerometer is used, one accelerometer is
enough to measure all the directions of acceleration at the specific
blade length.
2.2. Damage modeling

In the present study, the damaged condition is modeled by
reducing the bending stiffness and the mass of the damaged ma-
terials [8,50,51]. During the simulations of FEM analyses and time-
domain analyses, the distribution of mass and the stiffness of the
damaged blades were entered along with the blade length. The
bending stiffness is represented by the product of Young’s modulus
(E) and the area moment of inertia of the beam cross-section (I).
The undamaged properties of mass and the bending stiffness are
given in Jonkman et al. [29].

The damaged condition is modeled by various damage locations,
shapes, and intensity. The blade model of FAST is divided into ten
blade segments. This study aims to use DL to find the damage
location in one of the ten segments. To create the various damage
conditions, the blade structure of each segment is divided into two
elements at 19 distinct locations (Fig. 3). At each damage location,
six different levels of stiffness reductions (5%, 10%, 15%, 20%, 25 &
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30%) and the corresponding mass reductions are modeled. At each
damage location and each damage intensity, ten different damage
shapes defined by the edge side width of the damaged blade,w, are
modeled (Fig. 3). The right top picture in Fig. 3 shows an example
damage model when the damage is located in the normalized scale
of 0.46, where 1 represents the blade tip with the width w of 0.006
(0.006� blade length 61.5 m). A total of 1200 damage scenarios are
simulated to be used for structural damage detection at ten loca-
tions. Damage location is expressed as an integer from 1 to 10 so
that the blade root element and the blade tip element are 1 and 10,
respectively as shown in Fig. 3. The reduced stiffness and mass
distribution for the damaged materials were replaced with the
non-damaged values of the simulation model. To maintain the
same number of undamaged FOWT, 120 additional simulations
were performed with randomly generated wind speeds and tur-
bulence using a coefficient of variance of 0.25 for wind speed and
0.125 for wind turbulence.

3. Principle of sequence-based modeling for damage
detection of FOWT

To model and predict the structural damage status of FOWT
blades, we used both LSTM and GRU neural networks. In this sec-
tion, the principle of the sequence-based modeling is presented
through the primary units of LSTM and GRU neural networks.

The goal of the prediction in the sequence-based modeling of
this research is to identify the damaged status Y ¼ fy1; y2;/; y11g
indicating undamaged status (y1) or one of ten damaged locations
(y2 to y11) based on the collected signals of the numerical accel-
erometers X, located at multiple, n, points of the wind turbine
tower and blades of FOWT.

In sequence-based modeling, the model predicts yi based on n
sets of sequential data xi, which may typically be n set of numerical
values in traditional modeling. In other words, instead of the nu-
merical values of input sets x, the long-term or short-term re-
lationships within the sets of sequence vectors, x, becomes the
basis of the predictions. In this study, an input xi is represented by a
½n�t� matrix consisting of n sets of sensor signals recorded for the
length of t. The training input X can be represented by X ¼ fx1;x2;
/xi; /; xmg, where m is the total number of observations. The
number of sensors, n, is also referred to as the number of features in
DL. It is ideal to maintain identical time steps, t, for all observations,
x1.through xm. If not, the timestep variation of the data sets within
each batchmust beminimized to reduce the amount of the padding
or truncation of data.

Both LSTM and GRU neural networks are types of RNNs and are
known to capture long-term dependencies. In RNNs, the models
are trained to maximize the conditional log-likelihood function of
[26].

max
1
m

Xm
i¼1

logPqðyijxnÞ (2)

where q is a set of unknown parameters. The conditional proba-
bility that yi is classified as y given the set of input xi ¼ fx1;1;i; x1;2;i;
/x1;t; i; x2;1;i; x2;2;i;/xn;t; ig is defined as:

Pðyi ¼ yj x i Þ¼ gðht ; ctÞ (3)

where ht ¼ f ðht�1; xt ; cÞ for GRU or ht ¼ f ðctðht�1; xtÞÞ for LSTM.
The hidden stateht , and cell state, ct , with associated parame-

ters,q; are to be trained using already-known training data sets of
XeY, which is the main goal of the DL modeling. Fig. 4 shows the
primary unit of LSTM and GRU cells that will repeat its process for
each data timestep to train the cell and hidden states.



Fig. 3. Illustration of damage location index and sample damage modeling.
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The principal differentiator between LSTM network and the
traditional RNN is that a few gates, such as ‘forget gate’, are used at
each timestep to control the passing of information along with the
sequences, which capture long-term dependencies at higher ac-
curacy [17]. The diagram on the left side of Fig. 4 shows the step-by-
step prediction mechanism of an LSTM unit. Upon the input of each
data xi, the recurrent gate, also called the forget gate, first decides
how much of the information to drop from the previous cell state,
ct�1. The new cell state, ct , is then updated based on the modified
previous cell status, f t1ct�1, the new input gate, it , and cell
candidate, gt . The new hidden status, ht , is updated based on the
new cell state, ct , and the output gate, ot . The gates can be repre-
sented as follows [52,53].

ct ¼ f t1ct�1 þ it1tanhðgtÞ (4a)

ht ¼ot1tanhðctÞ; (4b)

f t ¼s
�
Wf xt þVf ht�1 þbf

�
; (4c)

it ¼sðW ixt þ V iht�1 þbiÞ; (4d)

gt ¼sðWcxt þVcht�1 þ bcÞ; (4e)

ot ¼ s
�
W f xt þV fht�1 þ bf

�
(4f)

where W ; V ; & b are the unknown model parameters q ¼
fW ; V ; bg; where W are the matrix of input weights, V are the
Fig. 4. Primary units of LSTM
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matrix of recurrent weights, b are a vector of bias, s represents a
logistic sigmoid function, sðxÞ ¼ ð1þ e�xÞ�1, and 1 represents an
element-wise product.

GRU neural network is first introduced by Cho et al. [26] The cell
structure is presented on the right side of Fig. 4. The GRU unit in-
cludes two separate gates similar to the forget gate of LSTM, update
gate,zt , and reset gate,rt , while the overall structure is simpler than
LSTM. The reset gate, rt , decides how much information to drop

from the previous information and creates a state candidate, ~ht ,
with the given input data xt : For instance, if the reset gate is closed
to 0, this means the entire information from the previous steps are
ignored. The update gatezt , decides how much information from
the previous hidden state to keep. The update gate will be mostly
active with the data that shows long-term dependency, while the
reset gate will be active with a short-term dependency of the data.
The hidden state is updated by the state candidate and the update
gate. After the end of the sequence of the data, the summary of the
input, c, is calculated. The gates can be represented as follows [28].

ht ¼ zt 1ht�1 þð1� ztÞ1 ~ht (5a)

~ht ¼ tanhðWcxt þ Vcðrt 1 ht�1ÞÞ; (5b)

rt ¼sðW rxt þ V rht�1Þ;& (5c)

zt ¼ sðWzxt þVzht�1Þ (5d)
(left) & GRU (right) cells.
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4. Framework

In this section, we present the framework of the sequence-based
prediction using a DL technique structured with two most
advanced RNNs, LSTM and GRU network, based upon the time-
series information of structural behavior. We tested the proposed
framework for the structural damage detection of FOWT blades.
Fig. 5 illustrates the framework used in this paper: data collection,
data preprocess, sequence input, LSTM/GRU layers, fully connected
layer, softmax layer, output layer, and prediction. The subsequent
subsections provide details of the methods used in each step. Each
step of the entire framework for damage detection is coded, pro-
cessed, modeled, and computed using MATLAB software.
4.1. Data collections

A total of 13,200 sets of simulations were performed: 120 sets of
damaged FOWTs at each of the ten different locations with various
damage levels and shapes, totaling 1200 damage scenarios, and an
additional 120 sets of undamaged FOWTs detailed in earlier sec-
tions of this study. Each set of raw data is composed of 20,000
timestep signals (1000 s) for a total of 154 sensor signals (features)
including 20 sensors at FOWT tower recorded in two local coor-
dinate directions ðxtw; ytw), 19 sensors at each of three FOWT blades
recorded in two local coordinate directions ðxbl; ybl). For the pur-
pose of efficient training of the deep networks, only 2e12 features
out of a total of 154 features were selected and tested based on the
domain engineering judgment. After numerous tests, 3 types of
selections are reported in this paper: (1) 12 features at tower and
blade in 2 directions, (2) 2 features (sensor signals) recorded at the
blade tip in 2 coordinate directions; and (3) 5 features including 2
tower sensors and 3 blade sensors. The optimum length of the
sequences, t, per single observation was determined after testing
various lengths within the range of 300e1000 timesteps collected
out of 20,000 total timesteps. After multiple trial-and-errors, we
found that sequence data containing less than 500 timesteps
significantly decreased the performance while the performance
was slightly improved by sequence data comprised of up to 900
timesteps. Therefore, data A, C, E, and F collected 900 timesteps per
each feature within a single observation, and B and D collected 500
timesteps considering a large amount of data in these sets shown in
Table 1.
Fig. 5. Framework of sequence-based modeling of
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Table 1 shows the sets of data used in this paper. Each feature set
is tested for two variations. Data sets A, C, and E were collected
using an identical timeline for all observations starting from 400 s
(8000 timesteps). Data set B, D, and F were collected at multiple
time durations per damage scenario. These variable timelines were
randomly chosen using the condition that the signals have at least a
50% overlap between the sequences. The overlapping technique is
commonly used in image processing DL applications. For instance,
data C includes a total of 1320 observations, collecting only one
sequence per feature for each damage scenario. Data set D includes
a total of 6600 observations, collecting five sequences per feature at
random time durations for each damage scenario (Table 1). Fig. 6
shows a sample data out of 1320 scenarios used for data set F,
displaying the full-length raw data from two sensors. The figure
also presents the data slicing process with 50% of overlap.

Once the group of data sets, A to F, were prepared, the data is
then divided into two groups of training and testing sets: 80% for
training sets and 20% for testing sets. The common split of the data
in DL is either 70 to 30 (training:testing) or 80 to 20 (train-
ing:testing). In this research, the 80:20 ratio was chosen in order to
secure a sufficient number of training sets. For K-fold cross vali-
dation, the data split is redefined for the validations of the final
network, which is detailed in a later section.
4.2. Data pre-treatment: normalization, wavelet filter, & denoise

Data normalization is critical to obtain an unbiased model and
to train the network efficiently. One assumes that n features of
input sequence data with various units, dimensions are used to
train a deep network and one of the feature sequences contains
significantly higher numbers due to the engineering unit used for
the measurement. Thus, the network will rely on this particular
feature sequence compared to other features. To avoid this prob-
lem, data normalization is commonly recommended to improve
the performance of the DL process. This is usually accomplished
uniformly between 0 and 1 or in a zero-centered transformation. In
the research reported here, the sets of data are normalized with
center 0 and standard deviation 0, called z-score standardization,
which is one of the commonly used data normalization methods.
The transformation is performed with the equation, xt; norm ¼ ðxt �
xÞ=v, where xt; norm is the data in the transformed space, xt is the
data in the original space, is x themean of a time series of xi, and v is
deep learning for structural damage detection.



Table 1
List of collected data sets.

Set Number of
(n)

Length of input x,
(t)

Size of single input x,
(n�t)

Number of classes,
(s)

Damage scenarios per
location

Samples per
scenario

Extracted
timeline

Number of observations,
(m)

A 12 900 12�900 11 120 1 Identical 1320
B 12 500 12�500 11 120 3 Random 3960
C 5 900 5�900 11 120 1 Identical 1320
D 5 500 5�500 11 120 5 Random 6600
E 2 900 2�900 11 120 1 Identical 1320
F 2 900 2�900 11 120 5 Random 6600
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the standard deviation of the time series signal. This common
approach of data normalization is used in statistical analysis as well
as DL techniques for effective training of the networks.

Wavelet decomposition filters [54] are also tested for the per-
formance improvement of training and predictions. The wavelet
filter extracts additional feature vectors, which are added to the
original data to train the model. The model performance trained
with the added features from the wavelet filters was then
compared to the performance with non-treated data. The tech-
nique has been successfully used for the recent study of signal
classifications [55e57], although none of these studies were asso-
ciated with DL classification. It is reported to improve the perfor-
mance of predictions for the noisy data. Lately, Yildirim [58]
reported improved prediction accuracies for LSTM network classi-
fication by using wavelet-filtered electrocardiogram signals as an
added feature vector. The wavelet filter bank is composed of high-
Fig. 6. A sample data out of total 1320 scenarios u
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pass and low-pass filters (HP and LP), which are repeated for i

levels. The filters are represented as H ¼ P∞
k¼�∞

s½k�fh½2n � k�, L ¼
P∞

k¼�∞
s½k�fg ½2n � k�, where s is the input signal and fhand fgare

low-pass and high-pass filters, respectively. The output of HP filter
at each level i is detailed coefficients (cDi). The output of LP is
approximate coefficients (cAi), which are passed to HP and LP filters
at the next level. In our research, the added features up to 3rd level
of detailed coefficient (cD1, cD2,& cD3) from the high pass filter are
tested for improvement of the performance. We used the Daube-
chies dB6 wavelet member [59] of the wavelet family for the filter.
The technique did not significantly improve the performance in this
study, which we expected as the data used in this research is free
from noise. This finding is detailed in later sections of this paper.
Fig. 7 shows a sample observation, xi, for data with five features.
sed for data set F; sliced samples for training.
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The figure shows the raw signal (top left), normalized signal (top
right), wavelet-filtered added feature (bottom left) for level 1 (cD1)
only, and the normalized added features (bottom right). Fig. 8
shows the sample added features for levels 1 to 3 (cD1, cD2, &
cD3) in addition to the original signal.

While the wavelet filter method is to add more information to
help finding important information from noisy data, the wavelet
denoise technique is to delete unimportant information from those.
We also performed wavelet denoise using Donoho and Johnstone’s
universal threshold to quell the data noise [60]. Assuming that a
time-series input xn is expressed as xn ¼ f ðiÞþ sεðiÞ, the objective
of denoising is to surpass the noise of xn and recover f ðiÞ. The
denoising algorithm is composed of three steps: First, decompose
the time series input with a chosen wavelet member and a chosen
level of decomposition. Second, apply soft thresholding to the
detailed coefficients (cDi) of each level with a chosen threshold
method. Third, reconstruct the time-series based on the original cAi
at the last level i and the detailed coefficients of cD1 to cDi at the
levels 1 to i modified from the previous step. The model trained
with denoised input data is then compared to the model trained by
untreated data. Although field data may include a significant level
of noise, our simulated data generates much less noise. In fact, the
Fig. 7. Sample raw and treated data. Ob
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data denoise technique we used did not improve model training in
our study. Fig. 9 shows the sample denoised data compared to the
original signal through levels 1, 2, and 3.
4.3. Recurrent layers of LSTM and GRU neural networks

The sensor signals from FOWTare entered one at a time as input
sets into the LSTM/GRU cell discussed in the previous section
(Fig. 4). Fig.10 shows the continuous process of the data input in the
sequence t¼ 1 to t¼ Twith various configurations. The layer can be
in a single direction or bi-directional, which can be layered deeper
by stacking layers. The standard unidirectional LSTM/GRU network
layer is shown in Fig. 10 (top left). Bidirectional LSTM (BiLSTM)
layers scan the data once in forward and next in backward to
combine both information to predict the structural damage loca-
tion as shown in Fig. 10 (lower left). The bi-directional LSTM/GRU
enables the efficient capture of both the past and future contexts.
The equation of the bidirectional LSTM can be represented as the
same equations used for the gates and the status, ht , f t , it ,& ot as in
equation (4), repeated for both forward and backward directions,

ht
�!

, f t
!
, it
!
,& ot

�! and ht
)

, f t
)

, it
)

,& ot
)

, respectively. Finally, both sets
servation 5; damage location at 2.



Fig. 8. Sample wavelet filtered signals: Original and 1st to 3rd detailed band.

Fig. 9. Sample data denoise level 1 to 3 using Daubechies dB6 wavelet & Donoho and
Johnstone’s universal threshold.
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of information are used to predict the damage location by yT ¼
s f ð ht

�!
; ht
)

Þ, where s f represents the function used to estimate the
output [53,61].

A deeper network of either unidirectional or bidirectional of
LSTM or GRU network can be designed as needed. The right side of
Fig. 10 shows a deeper BiLSTM network layer where two layers of
BiLSTM networks are stacked together. The hidden output of one
BiLSTM layer is propagated through t in the same way as a single
BiLSTM, and at the same time, the output of the one BiLSTM layer is
used as the input data to the next BiLSTM. Every hidden layer of the
second BiLSTM layer receives an input sequence, which includes
the output sequences of both forward and backward layers from
the previous layer. In this research, the complexity of GRU network
is not further developed because a single layer of unidirectional
GRU performed better than the most complex form of LSTM layer
and the techniques of bi-directional or double-layered approaches
did not improve the performance of GRU for the data used in this
research.

Computationally, the modeling of damage detection using deep
neural networks can be done by either sequence-to one regression,
which is the prediction from the given sequence sets to the damage
location as a continuous number, or sequence classification, which is
the prediction from the sequences to the damage location as a
discontinuous number representing the segment number of the
damaged location. In this paper, we chose to perform the sequence
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classification of the damaged segment expressed as a category
variable.
4.4. Proposed networks for structural damage detection of FOWT
blades

In this research, we designed and tested numerous neural net-
works to find the structural damage of FOWT blades. Four deep
networks are presented in this paper, as shown in Fig. 11. Each
proposed network contains different recurrent layers: (I) standard
LSTM, (II) standard GRU, (III) single layer of BiLSTM, and (IV)
stacked BiLSTM, which details and selections were presented in the
previous section. More than a single layer of unidirectional GRU led
to an unnecessary increase in network complexity that led to
overfitting data. Therefore, only single-layered GRU networks are
presented in this paper.

In order to avoid overfitting or underfitting the training data, it
is critical to optimize the network complexity. A less complex
model would underfit the data, which results in a high prediction
error in both training and testing sets. However, an overly complex
networks tend to overfit the data resulting in a low prediction error
in training sets while producing a high prediction error in the
testing sets. The ideal model produces a similar error rate in the
predictions for both training and testing sets. The network hyper-
parameters are detailed in the later section of this paper.



Fig. 10. LSTM, GRU, BiLSTM, and double-layered BiLSTM network layers.

Fig. 11. Proposed networks for deep learning of structural damage detection of FOWT blades.
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4.5. Fully connected & Softmax layer

The fully connected layer (Fc) follows the recurrent layers of
LSTM/GRU/BiLSTM where the outputs of these recurrent layers are
connected to every activated unit of the next layer. Softmax layer. In
this research, the fully connected layer multiplies the input data to
the weight, W , from the last iteration of the previous recurrent
layer and adds the bias, b. This layer outputs the classification based
on the trained recurrent layer given input data.

The Softmax layer provides a vector, SðyiÞ, as an outcome that
includes the probabilities of each target class based on the weights
from the last step of the previous layer: SðyiÞ ¼ Pðy ¼ yijxi; qÞ,
where i ¼ 1 to 11. In this research, the Softmax function calculates
the probabilities that the damage has occurred at the location yi ¼
1 � s given the input sensor data (xi) where s ¼ 11 is the size of the
vector S and the number of the class, representing the damage
status: no damage (ND) status and possible damage locations 1 to
10 defined in FOWT blades. The probabilities are between 0 and 1
and later used to determine the damage location. Typical Softmax
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function is used, which calculates the ratio of the exponential of the
out value from Fc layer to the sum of the exponential values of all
out values from the Fc layer.
4.6. Fine-tuning network

In order to train an unbiased model with the highest accuracy
and the simplest structure, it is necessary to fine tune the hyper-
parameters such as the number of hidden unit and a learning rate.

The number of hidden units is the size of the hidden status vector
per batch. A larger number of hidden units reflects increasing
model complexity, and a network with an excessive number of
hidden units for a given system and data attribution may result in
the overfitting of data. In the damage detection models, it was
defined between 64 and 256 units after testing the training prog-
ress. The selected number of hidden units for each case and the
selection progress will be shown in the later section with the re-
sults of the network training.
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Learning rate (LR) is a hyperparameter used in the stochastic
gradient descent optimization algorithm to find the unknown
parametersq ¼ fW ;V ;bg, of the model discussed in equations (4)
and (5). This controls how much to change the model parame-
ters q, upon the estimated error when the model weights are
updated. In fact, this is the most critical hyperparameter during the
training. A lower value of LR tends to overfit the model by leading it
to the local minimum, whereas, a larger value of LR may not sta-
bilize the model. The optimum LR varies depending on the model
complexity and the data attributions. This should be explored in a
large interval and then refined using a smaller interval. LR can be
scheduled to change over the iterations. In this research, the LRs
were fine-tuned and tested for each different network and data set
to find the best network.

Batch size is the number of data sets that will be scanned at each
iteration out of the total number of observations used for the
training data. In our research, a batch size of 50 was used for all
cases after testing various numbers ranging between 20 and 200.
For example, if one of training data has 1000 observations, then the
entire data set is divided into 20 group of 50 observations. Then,
only 50 data are scanned at each iteration. It takes 20 iterations to
scan the entire observation, which is called an epoch. In this case,
one epoch is equal to 20 iterations. In the network training, the
maximum epoch also defines when to stop the network training
since excessive iterations after the model to find the optimum
status may also cause overfitting problems. It is desirable to have
the maximum epoch be within a reasonable range. The settings of
hyperparameters are related to one another. For instance, a lower
setting of LR requires longer training, meaning a higher value for
the maximum epoch. In this research, the maximum epoch is
defined within the 200 to 600 range depending on model
complexity and defined learning rates.

4.7. Testing, cross-validation, & estimators of prediction error and
accuracy

The trained networks are tested using independent sensor sig-
nals not employed during the training process. The data split ratio
of 80e20 is used for training and testing sets. However, accuracies
obtained from the testing sets may differ slightly from the true
value of prediction accuracies depending on the number of obser-
vations used during training and testing or on the magnitude of
bias incorporated into the model. Once the model complexity and
hyperparameters are fine-tuned, the cross-validation was per-
formed for the selected models for each network-data set.

Cross-validation is critical to obtain an unbiased model and to
allow the estimation of prediction errors and accuracies, which
more closely represent the true value. In this section, the K-fold
cross-validation method and estimators of the prediction error and
accuracy used for structural damage detection in FOWTs are
presented.

In the machine learning and statistical predictions, there are
several cross-validation methods and variations such as leave-p-
out, hold-out, and K-fold cross-validations. Cross-validation was
studied earlier by Stone [62] which was a leave-one-out method in
the context of regression, which is the same as a leave-p-out
method when p ¼ 1. Geisser [63,64] has studied V-fold method.
Leave-p-out method is an exhaustive validation method which
tests and validates all possible ways to split the data. Leave-one-out
validation results in the same computation as K-fold using K ¼ m
wherem is the number of observations, which is also considered as
an exhaustive method. Hold-out testing is known for its inefficient
use of the data because it does not account for the variance with
respect to the training set reported by Dietterich [65]. In the same
report, it was concluded that K-fold is a more appropriate method
228
when comparing one algorithm to another. We used K-fold cross-
validationwhich has been shown to be one of the most reliable and
non-exhaustive validation methods for estimating an unbiased
model [66]. In addition, Blum et al. [67] reported that the K-fold
method provides more accurate estimates of prediction errors
compared to hold-out testing.

K-fold cross-validation splits the training data set into K sets
with a size of m=K , where m is the total number of observations.
K � 1 sets are used for training network and one set is used for
validation, which independent training process is repeated for K
times by choosing a different validation set through k ¼ 1 through
k ¼ K . Model accuracy is calculated by averaging K training accu-
racies and the most accurately trained model is used for prediction.

Fig. 12 visualizes the iteration of repeated training for K-fold
cross-validation. In this research, K ¼ 8 is used. The eight (K) sets of
data is divided into two groups, seven set for the training and one
set for the validation. The split of eight fold is randomly selected
within the group such that ðX; YÞ ¼ ðfXk;Ukg fYk;VkgÞ, where Xk
and Yk represent k-th training set of the input signals (X) and cor-
responding classifications (Y) with a size ofm� ðm =KÞ, and Uk and
Vk represent k-th validation set with a size of m=K .

The cross-validation estimator, CV, [66] is used for the estimator
of the prediction error, PE, given algorithm Að:Þ and the sets of data
ðX;YÞ in the cross-validation of the structural damage detection
model of FOWT. The estimator of the prediction error is repre-
sented as follows:

PE½AðÞ; ðX;YÞ�¼CV ¼ 1
K

XK
k¼1

0
@ 1
ðm=KÞ

X
xi;yi2Uk;Vk

L½AðXk; :Þ; ðxi; yiÞ�
1
A

(6)

where Aða;bÞ is the return of a function by algorithm A trained by
the set a upon the new input of b and L½:� is a component loss which
represents the misclassifications of each observation. In this
research, the loss is defined as a weighted classification error:

L½Aða; :Þ; ðxi; yiÞ�¼wiIfAða; xiÞs yig (7)

where wi is the weight which sums to 1,
Pn
i¼1

wi ¼ 1 and Ifg is the

indicator function: Ifxg ¼ 1 if x is true and otherwise, Ifxg ¼ 0. In
the structural damage detection, Ifg ¼ 0 if the damage status of
FWOT blades detected from the deep neural network model is the
same as the actual damage status, meaning no loss. Otherwise, the
value returns to 1 with given weight. Note that Að:Þ is trained by Xk
and tested for xi;2Uk in equation (7).

Similarly, the estimator of the prediction accuracy given the
network algorithms and the sets of numerical sensor data of FOWT
can be calculated as follows:

PA½AðÞ; ðX;YÞ�¼ 1
K

XK
k¼1

0
@ 1
ðm=KÞ

X
xi;yi2Uk;Vk

I
n
AðXk; xiÞ¼ yj

o1A

(8)
5. Results of damage detection

5.1. Summary results

Table 2 shows the results of the damage detection with the
selected models for four proposed networks (Fig. 11) with various
sets of sensor data (Table 1). The general model selection



Fig. 12. Iterations k ¼ 1~K in K-fold cross-validation with K ¼ 8.
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philosophy is applied to this research that an unbiased model with
the highest accuracy and with the simplest structures are to be
selected. The selected model (D-II) exhibits 91.7% of the cross-
validation accuracy based on the estimator of K-fold iterations
and was trained with network design II using data sets with five
features (sensors), data D. The detailed K-fold cross-validation re-
sults of the selected D-II model is shown in Table 3, where the best
network prediction reached 94.8%. The learning rate was scheduled
to set the initial value of 0.007 with a drop rate of 0.3 every 100
epoch up to the maximum epoch of 600 in this case. In all cases, the
best results are obtained using normalized data input sequences
with no other data treatments.

It is found that the performance of the single-layer unidirec-
tional GRU network (network II) was superior to even the most
complex LSTM network, the double-layered bidirectional LSTM
Table 2
Results of the selected models for all proposed networks and data.

Case Data Network Prediction Accuracy (PA[$]) Average
Training
Accuracy

Initial LR LR

A-I A I 0.628 0.831 0.001 0.5
A-II II 0.757 0.834 0.0008 0.5
A-III III 0.600 0.833 0.001 0.5
A-IV IV 0.619 0.887 0.0005 0.5
BeI B I 0.746 0.906 0.001 0.5
B-II II 0.867 0.947 0.0005 0.5
B-III III 0.770 0.957 0.001 0.5
B-IV IV 0.735 0.926 0.001 0.5
CeI C I 0.678 0.941 0.002 0.5
C-II II 0.640 0.959 0.002 0.5
C-III III 0.695 0.982 0.007 0.5
C-IV IV 0.686 0.998 0.007 0.5
D-I D I 0.640 0.998 0.007 0.3
D-II II 0.917 0.997 0.007 0.3
D-III III 0.819 0.998 0.007 0.3
D-IV IV 0.848 0.980 0.007 0.3
E-I E I 0.665 0.947 0.005 0.5
E-II II 0.711 0.867 0.001 0.5
E-III III 0.674 0.915 0.001 0.5
E-IV IV 0.699 0.991 0.001 0.5
FeI F I 0.731 0.991 0.001 0.5
F-II II 0.818 0.999 0.001 0.5
F-III III 0.434 0.986 0.005 0.5
F-IV IV 0.625 0.994 0.005 0.5
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networks (network IV). In most of the data selections, the perfor-
mance of the GRU network demonstrated a 10e30% gain in accu-
racy compared to the other networks tested. The accuracies
reached 89.7% using a 12-feature selection, 91.7% with a 5-feature
selection, and 81.8% with a 2-feature selection. It is also observed
that the selection of more than five features does not improve
performance.

Except for data sets A and F, the bidirectional layer of LSTM
(BiLSTM, network III) slightly improves the performance of LSTM
networks (network I); however, the results are comparable to one
another. It was also found that the double-layered BiLSTM network
performs better than the single-layered BiLSTM with most of the
data selections except for data B. However, the computational time
takes roughly 300% longer compared to the single-layered BiLSTM,
and the performance improvement is a marginal percentage: 2%
Drop (rate/freq.) # of Feature # of Hidden Unit Batch Size Max Epoch

/200 12 128 50 350
/200 200 50 220
/100 128 50 350
/100 128�2 50 250
/200 12 128 50 300
/200 128 50 600
/100 128 50 300
/100 128�2 50 300
/200 5 96 50 600
/200 96 50 600
/100 96 50 450
/100 96�2 50 400
/100 5 96 50 600
/100 96 50 600
/100 96 50 600
/100 96�2 50 450
/100 2 128 50 600
/200 200 50 600
/100 200 50 600
/100 128�2 50 600
/200 2 128 50 600
/200 200 50 600
/100 128 50 600
/100 96�2 50 450



Table 3
Results of K-fold cross-validation of the selected model of D-II.

Data k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8 Best Accuracy PA[·]

Validation 0.895 0.932 0.948 0.925 0.918 0.910 0.892 0.918 0.948 0.917
Training 0.999 0.998 1.000 0.999 0.999 0.998 0.999 0.999 1.000 e
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increase in data A and C; 3% increase in data D, 19% increase in data
F.

It is also observed that unnecessary increases in model
complexity result in lower performance. This is particularly clear
when the model is trained using a small number of features. For
instance, the trainingmodel with data set F (at the smallest number
of the features) shows an accuracy of 73.1% with a single-layer
LSTM network (FeI); however, double-layered BiLSTM network
(F-IV) decreases the performance accuracy to 62.5% for the same
data set.
Fig. 13. Confusion matrix of the selected model, k ¼ 2.
5.2. Summary of the selected model, D-II

The K-fold iterations of the selected model of D-II is displayed in
Table 3. The prediction accuracy (PA½:�), 91.7%, is estimated based on
equation (8). The best model exhibits 94.8% of accuracy at k ¼ 3.
Note that PA½:� is defined only based on the accuracies of validation
sets after being trained by the training sets and, therefore, the table
cell that represents PA½:� on the bottom row remains blank in the
table. In this K-fold cross-validation, out of total 6600 observations
(m), the number of observations used during each training (m-m/K)
is 5775 and the number of observations for the validations (m/K) is
825. The entire training process is repeated K¼ 8 times as shown in
Fig. 12. A single set of observation includes the signals from 5
sensors of 500 timesteps each. The K fold is randomly split and,
therefore, the total numbers of observation for each class may not
be exactly the same.

Fig. 13 and Fig. 14 show the confusion matrix of the selected
model of case D-II when k ¼ 2 & k ¼ 3, which compares the
detected damage status to the true damage status. ND stands for no
damage (ND) status, and the numbers 1 to 10 represent the location
of the damages. Diagonal boxes display the numbers of true clas-
sifications for 11 different damage states. The lower and upper
white triangles show the numbers of false classifications. The
bottom line of the confusion matrix shows the prediction accu-
racies (%) of each true damage group and the bottom right corner
box displays the overall prediction accuracy. Similarly, the right-
side column of the confusion matrix displays the prediction accu-
racies (%) of each predicted damage group. The prediction accu-
racies reached 93.2% (k ¼ 2) and 94.8% (k ¼ 3) for determining both
the presence and location of the damage. This is displayed in the
box at the bottom right corner of Figs. 13 and 14. In the model at
k ¼ 3, out of 5.2% of total misclassifications, 3.1% of mis-
classifications locate the damage within one-segment distance. The
damage location of only 2.1% of the entire data set is located more
than one-segment distance from the true damage location.

The presence of damage itself was detected with higher accu-
racy (99.9%) regardless of the identification of its location in this
model. The damage status 1 to 10 indicates that damage (D) existed
while ND indicates no damage. From the network k ¼ 3 (Fig. 14),
only 1 sample out of 825 samples tested provided a false identifi-
cation of damage, and this was at location 1 and predicted as ND
from the network. The rest of the 824 samples show true D-D or
true ND-ND regardless of the damage location. Thus, the results
suggest that the model is 99.9% accurate for detecting the presence
of damage. Similarly, the confusion matrix of network k ¼ 2 shows
only 2 misclassifications out of 825 observations. This suggest that
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the model detected the presence of damage with 99.8% accuracy.
5.3. Selection of model complexity

In addition to the depth of the network layers, model
complexity is also determined by the number of hidden units. A
higher number of hidden units increases the model complexity
which may lead to overfit the data and produce a biased model. On
the other hand, an insufficient number of hidden units decreases
the performance of the model. The relationship between model
complexity, errors, and model bias (underfitting or overfitting) was



Fig. 14. Confusion matrix of the selected model, k ¼ 3.
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discussed in the earlier section.
Fig.15 shows the training progress of Network II trained with set

D by decreasing the number of hidden units: (a) 256 units; (b) 128
units; (c) 96 units and (d) 64 units. Left side figures of (a), (b), (c),
and (d) show the model accuracies of training sets (solid line) and
validation sets (triangle mark) during training progress. The figures
on the right-side show the loss function. At this stage, all models
use a constant learning rate of 0.001 to determine model
complexity. The ideal progress is to show the validation accuracy as
close as possible to the training accuracy throughout the progres-
sion while maintaining the highest level of accuracy. Although an
increase in the number of hidden units leads to similar validation
accuracies, 87.33%, 86.75%, 88.92% and 88.92%, the gap between the
training (solid line) and validation (triangle mark) accuracies in-
creases over iterations in figure (a) and (b). In addition, the loss
functions increase over iterations in the two figures of (a) and (b).
These results indicate that the model slightly overfits the training
data. In contrast, Fig.15 (c) and (d) show stabilized loss compared to
(a) and (b) and their validation accuracies are close to the training
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accuracies. Fig. 15 (c) shows the accuracy level of 88.92% and (d)
show 88.90%. Using these results, we chose to further investigate
models with 64 and 96 hidden units and to fine-tune our approach
as detailed in the following section.

5.4. Improving accuracy

After the model complexity is chosen based on the depth of
network layers and the number of hidden units, networks were
fine-tuned to achieve the highest accuracy. As detailed in earlier
sections, model hyperparameters such as learning rate, minimum
batch size, and maximum number of epochs were controlled in
order to improve accuracy. The most critical hyperparameter to
improve the model is the learning rate (LR) which controls the
changes of the unknown parameters of q ¼ fW ; V ; bg. The
expression of the changes in the stochastic optimization algorithm
is qiþ1 ¼ qi � aVlðqiÞwhere a >0 is the learning rate and lðqiÞ is the
loss function from the entire data set. Note that q is updated at each
batch, a subset of the entire dataset, while lðqiÞ uses the entire data
used for training. A batch size of 50 was used for our research. The
dynamics between the hyperparameters allows the model to use a
fixed batch size at this reasonable level. We proceeded to control
the learning rate for each network design. Table 4 shows the fine-
tuning progress of the selected model D-II. The test set A is for
the network with 64 hidden units and set B is the progress for the
network with 96 hidden units. Fine-tuning of the network resulted
in the highest testing accuracy for test B5 which reached 92.7% and
used for the final configuration of D-II model. The details of 24 fine-
tuned network models (A-I to F-IV) were summarized in Table 2.

5.5. Effects of wavelet filters and denoise

In this section, the effects of added features from the wavelet
filter and the denoise technique are presented. Data treatments
other than data normalization did not significantly improve the
results of the training and predictions. Instead, they interfered with
the training process. Since the data is simulated and lacks the noise
expected from the field sensors, we expected this outcome. How-
ever, the results are presented here because data treatments are a
critical part of the framework for increasing the performance of
models and will play a significant role to train a network with field
data. The results do not exclude the needs of the wavelet filters and
wavelet denoise techniques when the network is trained with field
data or when the data type is dissimilar to the data used in this
research.

Table 5 shows the results of model testing and training accuracy
after fine-tuning. Samples of treated data were presented in Figs. 7,
Figure 8, and Fig. 9. Results from models trained by denoised data
are listed according to the level of denoise, 1 to 3, and compared
with the results of the untreated data shown in the top four rows of
the table. It was observed that the denoise process removes
necessary information from the signals in this research. Therefore,
the performance of the model decreases as the denoise level in-
creases. This may be due to the fact that the training data is
simulated and without noise. The bottom three rows of Table 5
show the results of the fine-tuned model trained by data sets
with added features from thewavelet filter. cDi, which indicates the
detailed coefficient at the level of i, the output from the HP filters at
each level. For the type of data used in our research, added features
did not improve the training results.

6. Conclusion

A sequence-based modeling and prediction method of DL was
proposed and tested for structural damage detection of FOWT



Fig. 15. Comparison by the number of hidden units.
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Table 4
Accuracies by learning rate (LR) during the fine-tuning.

Test Network Testing
Accuracy

Training Accuracy Initial LR LR Drop (rate/freq.) # of Hidden Unit Batch Size Max Epoch

A1 0.777 0.847 0.0005 0.5/200 64 50 600
A2 0.850 0.920 0.0008 0.5/200 64 50 600
A3 0.889 0.952 0.001 0.5/200 64 50 600
A5 0.897 0.999 0.0035 0.4/100 64 50 600
A6 0.886 0.998 0.007 0.3/100 64 50 600
B1 0.825 0.880 0.0005 0.5/200 96 50 600
B2 0.880 0.942 0.001 0.5/E200 96 50 600
B3 0.889 0.997 0.0035 0.4/E100 96 50 600
B4 0.917 0.998 0.005 0.5/E100 96 50 600
B5 0.948 0.997 0.007 0.3/E100 96 50 600

Table 5
Training results of wavelet filters and denoise for case D-II.

Treatment
Method

Levels Testing
Accuracy

Training Accuracy Initial LR LR Drop (rate/freq.) # of Hidden Unit Batch Size Max Epoch

Untreated 0.927 0.997 0.007 0.3/100 96 50 600
Wavelet Denoise Level 1 0.848 1.000 0.007 0.3/100 96 50 600

Level 2 0.803 0.999 0.007 0.3/100 96 50 600
Level 3 0.450 1.000 0.007 0.3/100 96 50 600

Wavelet Filter cD1 0.830 0.979 0.001 0.9/100 128 50 600
cD1 & cD2 0.823 0.991 0.005 0.3/100 200 50 600

cD1, cD2, & cD3 0.843 0.974 0.005 0.3/100 200 50 600
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blades, using uni/bi-directional LSTM and GRU neural networks.
The complete framework was developed and presented. A total of
1200 damage scenarios were simulated with various shapes, in-
tensities, and locations of 5 MW semisubmersible FOWT blades, in
addition to 120 simulations of undamaged FOWT. Various data
treatment methods were applied and tested to improve the per-
formance of the network. We found that the wavelet filter and
denoise treatments did not improve or interfere with the network
training performance in this research. This may be because the
simulated data does not likely contain the noises commonly ex-
pected from the field data. Therefore, the data treatments should
not be excluded if a network is trained by field data or if the data
attribution is dissimilar to the one used in this research.

Four different deep network designs were proposed and tested.
Overall, the network with a single GRU unit (Network II) performed
better than the other networks in training numerical sensor signals
from the FOWTs. However, the results from the deep network with
a stacked BiLSTM network (Network IV) demonstrated that this
configuration is comparable to one with GRU networks depending
on data attribution. The difference in performance between the
networks with single and double layers of BiLSTM was not
significant.

The presence of structural damage was successfully detected
using the selected network (Network II) with a 99.9% accuracy,
which was tested with independent testing signals and repeated
for K randomly-split groups during the K-fold cross-validation. The
best network during K-fold validation reached 100% accuracy. The
overall damage status, which indicates both the presence and its
location, was detected with an accuracy of 91.7.% based on K-fold
cross-validation. The testing accuracy of the best model reaches
94.8% in the detection of damage status at k ¼ 3. Out of 5.2% of
incorrect predictions in this model, 3.1% fall in the damage location
within 1-segment distance from the true damage location. Only
2.1% of the testing signals are misclassified more than 1 segment
distance from the true damage location. K-fold cross-validationwas
performed to obtain unbiased results and to calculate the estima-
tors of the prediction accuracies. The prediction of damage status
233
was not significantly improved after using more than five features
(sensors). The future work of this research will be a systematic DL
monitoring of the entire FOWT system. In addition to the structural
failure of blades, holistic system failure scenarios will be considered
including structural, mechanical, and operational failures. Alter-
native DL methods will also be considered.

The methodology and framework of the sequence-based
modeling provided in this paper can be applied to various engi-
neering research fields especially in data-driven modeling. We
believe that sequence-based modeling will enable the engineers to
advance the technologies and knowledge in various engineering
fields by harnessing the massive amounts of digital informational
currently being cumulated.
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