BIT Numerical Mathematics
https://doi.org/10.1007/s10543-021-00864-1 BIT

n

Check for
updates

A posteriori error analysis for Schwarz overlapping domain
decomposition methods

Jehanzeb H. Chaudhry' - Donald Estep? - Simon J. Tavener3

Received: 24 June 2020 / Accepted: 26 March 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Domain decomposition methods are widely used for the numerical solution of partial
differential equations on high performance computers. We develop an adjoint-based
a posteriori error analysis for both multiplicative and additive overlapping Schwarz
domain decomposition methods. The numerical error in a user-specified functional of
the solution (quantity of interest) is decomposed into contributions that arise as a result
of the finite iteration between the subdomains and from the spatial discretization. The
spatial discretization contribution is further decomposed into contributions arising
from each subdomain. This decomposition of the numerical error is used to construct
a two stage solution strategy that efficiently reduces the error in the quantity of interest
by adjusting the relative contributions to the error.
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1 Introduction

We derive and implement an adjoint-based a posteriori error analysis for overlap-
ping domain decomposition methods for elliptic boundary value problems, examining
both additive and multiplicative Schwarz algorithms. Domain decomposition methods
(DDMs) arrive at the solution of a problem defined over a domain by combining the
solutions of related problems posed on subdomains. The problems posed on subdo-
mains often require less computational resources and some of the first uses of DDMs for
practical applications were in low-memory or limited computation scenarios [31,37].
Recently DDMs have seen increased use in the context of distributed and parallel
computing [30,35,38—40]. In this article, we follow the presentation in [35].

In overlapping DDMs, each subdomain has a non-empty intersection with at least
one other subdomain and typically state information is exchanged between the subdo-
mains. The theoretical properties of the multiplicative Schwarz method and some of
its variants were studied in [33]. The variant of this method suitable for parallel com-
puting, called the additive Schwarz method, was introduced in [19]. Non-overlapping
DDMs, in which the subdomains have empty intersection and state and derivative
information is exchanged through their common interfaces, is an alternative approach
[32].

Adjoint-based a posteriori error analysis for systems of ordinary and partial differ-
ential equations has an extensive history [3,4,20,21,26,27], and has been applied to a
wide range of applications and numerical methods [1,2,8,10-12,14-18,29]. Adjoint-
based a posteriori error analysis classically considers a differential equation

L(u(x,1) = g(x,1), ey

where L denotes the differential operator, and a Quantity of Interest (Qol), expressed
as a linear functional

Qu) = (u, V), @

where (-, -) denotes the L, inner product and the function ¥ is chosen to yield the
desired information. Given the numerical approximation U to the analytical solution,
the residual R(U) = g — L(U) quantifies the effects of discretization on the evaluation
of the differential equation, but it does not provide the error in the Qol, (u — U, ).
The relation between the residual and the error is derived from solving an adjoint
problem.

For linear problems, the adjoint operator £L* : Y* — X* of a linear operator
L : X — Y between Banach spaces X, Y with dual spaces X*, Y* is defined by the
bilinear identity

(Lx,y" )y = (x, LYY x, xe€ X,y eY", 3)
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where (-, -)s denotes duality-pairing in the space S € {X, Y'}. The adjoint problem
associated with (1) is

L*¢ = . 4)
This yields the error estimate,
Error in the Qol = (u — U, ¥) = (RU), ¢). 5)

We estimate the numerical error in the quantity of interest by numerically solving the
adjoint problem (4), computing the residual, and evaluating (5).

Classical a posteriori error analysis for the numerical solution of differential equa-
tions assumes the use of fully implicit discretization methods in which the approximate
solution is computed exactly for which the adjoint of the forward operator (4) pro-
duces a useful adjoint solution. The adjoint of the discrete solution operator when
implementing more complex, multistage solution methods is much more complicated
to define. If the steps in the solution process are written as compositions of opera-
tors, then the appropriate adjoint can typically be written as a composition of adjoints
associated with various steps of discretization. The resulting error estimate must then
use the appropriate adjoint to weight specific residuals and include additional terms
quantifying the difference between this adjoint and the adjoint of the overall prob-
lem (4). The correct choice of adjoint and residuals also enables a decomposition of
the total error into distinct sources of error, such as discretization, iteration, trans-
fer, projection and quadrature errors. These concepts are illustrated in an analysis of
iterative solvers for non-autonomous evolution problems in [9], in an analysis of a
multirate iterative solver for ordinary differential equations in [23], and in an analy-
sis of an iterative multi-discretization method for reaction—diffusion systems in [13].
An a posteriori error analysis for non-overlapping DDM is carried out in [8]. To the
best of our knowledge, an a posteriori error analysis for overlapping DDMs has not
been performed. Domain decomposition methods may converge slowly and iterating
to convergence not only wasteful, but can be prohibitively expensive, thus independent
estimates of discretization and iterative error are of considerable value.

Adjoint-based a posteriori error estimates can provide useful information for design-
ing efficient adaptive solution strategies. During the first “pre-processing” step (stage
1), a solution is computed on a relatively coarse discretization together with an accu-
rate a posteriori error estimate that quantifies the contributions of all sources of error.
The information provided by the first stage is used to guide discretization choices for
a “production level” (stage 2) computation. This strategy is described in earlier work
on blockwise adaptivity [6,29] and in [11].

Other a posteriori approaches have been developed for providing upper and lower
bounds on the iterative (algebraic) and discretization errors when solving a finite
element scheme with an iterative method, and these bounds been used to drive adaptive
solution strategies [28,36]. Upper and lower bounds on the discretization errors are
obtained through the solution of multiple localized “patch” problems. Bounds on the
iteration error are obtained through a consideration of the differences between solutions
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after a given number of iterations and the solutions obtained after an additional number
of iterations.

Accurate error estimates are also an essential component for the accurate quan-
tification of uncertainty when the problem specification is in doubt, either through
uncertainty in parameter values, the computational domain or the model description
itself. The numerical error introduces in stochastic computations varies as each of
these components defining the problem is varied, and examples of each are described
in [5,8,14,25,25]. The ability to capture the subtle interplay between different sources
of error and their potential for cancellation is essential in all cases. These features can
be obscured by considering sources of error in isolation and by taking bounds.

We introduce the multiplicative and additive Schwarz overlapping domain decom-
position methods in Sect. 2. We present the a posteriori error analysis in Sect. 3.
Examples are provided for multiplicative Schwarz in Sect. 4 and for additive Schwarz
in Sect. 5. Details of the analysis appear in Sect. 6. A discussion and future research
directions appear in Sect. 7.

2 Overlapping Schwarz domain decomposition

Assume that we have p overlapping subdomains £21, ..., £2, on a domain §2, such
that for any £2;, there exists a 2, i # j, for which £; N §2; #  and U;2; = £2.
We consider overlapping domain decomposition algorithms for partial differential
equations (PDEs) given in the weak form: find u € V such that

a(u,v) =1(v) YvelV. (6)

Here a(-, -) is the standard bilinear form over §2 arising from integration by parts
of the PDE operator, [(-) is the linear functional arising from the right-hand-side of
the PDE and V is an an appropriate function space. Such PDEs model a variety of
physical phenomena ranging from biomolecular simulation and diffusive processes, to
Darcy flow and linear elasticity. We use L, (§2) to denote the space of square integrable
functions, H ! (§2) for functions having a L, (£2) derivative and HO1 (£2) as the subspace
of H'(£2) of functions satisfying homogeneous Dirichlet boundary conditions. We let
(+,-) and (-, -);; represent the L»(£2) and L»(§2; N §2;) inner products respectively.

To be specific, we consider the weak form of a second-order linear elliptic PDE
problem: findu € V = HO1 (£2) such that

a(u,v) =1(v) Vv e HJ(£2). (7
For example, given the Poisson equation —V2u(x) = f(x) with homogeneous Dirich-
let boundary conditions, we have a(u, v) = fQ Vu - Vvdx and I(v) = (f,v). We
denote by a; (-, -) the restriction of a(-, -) to §2; and a;; (-, -) the restriction of a(-, -) to

£2; N £2;. Similarly, we let /; (-) be the restriction of /(-) to £2;.
We are interested in a Qol which is a linear functional of the solution,

Qu) = (Y, u), ®)
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where ¥ € L,(£2).

2.1 Multiplicative Schwarz overlapping domain decomposition

Defining H& (£2) ={ve H (2)| v =u*TE=D/P} on 582;}, we present the multi-
plicative Schwarz method in Algorithm 1, for K iterations over the p subdomains.

Algorithm 1 Overlapping multiplicative Schwarz domain decomposition

Given u!%} defined on .Q
fork=0,1,2,. —1 do
fori =1,2,. p d
Find ik +i/7] H), , (42i) such that

a; (@*H/PY v) = v), Vv e HE(2). 9)
Let
~{k+i/p} 0.
atktizpy LT o @i (10)
ulk+@=1/p} on 2\%2;.
end for
end for

2.2 Additive Schwarz overlapping domain decomposition

The additive Schwarz solution method is given in Algorithm 2 with H 5}{ R2)={ve

H []) (£2)] v = u'®™ on 8£2;}. The Richardson parameter t, is needed to ensure that the
iteration converges [35].

Algorithm 2 Overlapping additive Schwarz domain decomposition

Given 1'% defined on 22
fork=0,1,2,...,K —1 do
fori =1,2,..., p do
Find ﬁl{k} € HLl)k (£2;) such that

ai(ﬁl[k+l},v) =1;(v), VUEHOL(Q,‘). an
Let
» {1} =
! R 2;,
u = (1 = pyut 4 ¢ Z k“ where IT; u(kH] i o Y12
Py utkl on 2\2;.
end for
end for
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2.3 Finite element discretizations

Welet 7j, = {T),} ,’,‘;’:1 denote a quasi-regular triangulation of £2 in to non-overlapping
elements 7,, such that no node of one element 7; intersects the interior of an edge
of another element 7}, i.e., there are no hanging nodes, and 2 = U,,T,,. Moreover,
the triangulation is consistent with the domain decomposition in the sense that if 7; N
2j #@then T; C ;. The discretization of the overlapping domain decomposition

approximation substitutes finite dimensional spaces Vlkh for H Ll)k(.Q,-) and V; j o for

H(} (£2;) in Algorithm 1, where Vlkh and V; 5.0 refer to the standard finite element
spaces consisting space of continuous piecewise polynomial functions on 7,; =
Thlg,;. Additionally, V), C H& (£2) is the finite element space consisting of continuous
piecewise polynomial functions with respect to 7j,.

We represent the global discrete solutions as UK+7/P} (resp. Ui{k}) belonging to

the space V), and the local discrete solutions as U tk+i/p) (resp. ﬁi{k}) belonging to the
space V; j o for the multiplicative (resp. additive) Schwarz methods. For simplicity we
assume that U% = 4{%. For both algorithms, the global continuum, (resp. discrete),
solution after k iterations is represented as u'K, (resp. U},

3 A posteriori analysis for the finite element approximation
computed using Schwarz algorithms

We derive a representation formula for the error in the Qol, Q(u) — Q(U'K}) =
(v, u — U'KY), that is computed from the discrete solution of the multiplicative or
additive domain decomposition method after K iterations.

3.1 The total error and its components

We first consider the total numerical error, and then its decomposition into discretiza-
tion and iteration error components.

3.1.1 The total error
We define the global adjoint, ¢ € HO1 (£2), such that
a(v,¢) = (¥, v), Yve Hy(82). (13)

Theorem 1 (Total error representation) The error in the Qol for the discretized mul-
tiplicative or additive Schwarz algorithm after K iterations is given by

(u—U“(},w) :R(U{K},¢>, (14)
where R (U{K}, ¢) =1(¢p) —a (U{K}, d:) is the weak residual.
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The proof of Theorem 1 is standard, see e.g., [20]. Unfortunately, it does not capture
the structure of the differential operator corresponding to the Schwarz domain decom-
position, which is reflected in the lack of Galerkin orthogonality in the expression.
Performing Schwarz domain decomposition with a finite number of iterations defines
a differential operator which is different than the differential operator associated with
the original PDE (7). The numerical solution U {K} is a solution to the discretization
of this modified operator. We carry out an analysis by decomposing the error into
two contributions: iterative and discretization errors. For implementation purposes we
note that the global adjoint ¢ is solved using a higher order finite element scheme.
The global adjoint may be approximated by a Schwarz domain decomposition method
provided sufficient iterations are performed, or the overlap is sufficiently large that the
iteration error is negligible.

3.1.2 Discretization and iteration errors

We decompose the total error as

u— UK = =K (K g KD ), (15)
—— —_———

Iteration Error ~ Discretization Error

where e}k} =u—ul, e{g} = u® —y and eg)} = 0. The iteration error quantifies the

error due to the discrepancy between the PDE differential operator and the modified
differential operator in the Schwarz algorithms arising from using a finite number
(K) iterations. The discretization error arises from the discretization of the modified
differential operator.

Theorem 2 (Iteration error representation) We have

(u—u“‘},w) :R(U{K},qs)—<¢,u{K}—U{K}). (16)

Proof This follows by combining (14) and (15). O

The analysis involves partitioning of the Qol data over subdomains by a partition
of unity. Similar ideas were used in [24]. Let {x; }le be a partition of unity such that

Yi = xiv, 17

and ¢; = 0 on £2\£2;. The partition of unity localizes the Qol data to the subdomains.
Let d; (x) denote the distance function

dist(x, BD), if x € ©2;
d;i(x) = _ — (18)
0,ifx ¢ 2,
where BY) = (3£2; N £2). Then set
d;i (x)
Xi)==—7—- (19)
' Iy dj(x)
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With the partition of the Qol data, we have the following partition of the Qol.

Lemma 1 (Partitioning the Qol data over subdomains) We have

{k} ) _ ( {k} ) 20
(eDJP ;el)»w: i (20)
1=
Proof This follows directly from the definition of the partition of unity in (17),

(bl v) = (eg}’ fw) =3 (B w). -
i=l1 i

j = i=1

O
3.1.3 Weak residuals
We define the subdomain weak residual for a function s, such that
Ri(s,v) = [;(v) —ai(s,v), Yve Hy(82), 21

fori =1,2,...,p.
3.2 A posteriori error analysis of discretization error for multiplicative Schwarz

In this section, we derive a representation of the discretization error, (v, u!K} — UKY),
for the multiplicative Schwarz method.

3.2.1 Adjoint problems

Define solutions ¢[k+i /pl ¢ H(} (£2;) of the adjoint problems,

ap (v, 91QHP) =€), Vo e HY(2)),
ai (v, #10H/P) = <Ly = S0 aij (v.91QH/P) 1 <i<p, Vo e HY(20),
(22)

where

dw.ypy. Q=K-1,
2w =1’ l-l_l (23)
Zaij (v’¢[Q+l+j/p]>’ 0<Q<K-—1.

J=1

p
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The right hand side of (22) captures not only the residuals corresponding to the
localized Qol data (in the form of (v, ‘/f]) ), but also the fransfer error between

subdomains as the iteration proceeds (in the form of — jzll a;jj (v, pLOFIHI/PY) —

Zf:i 1 aij (v, 19F7/P1)). The adjoint problems (22) have the same sequential nature
of subdomains solves as the multiplicative Schwarz Algorithm 1, but note that these
are defined backwards from K, K -1+ (p—-1)/p, K—1+(p—-2)/p,..., 1

3.2.2 Discretization error

Theorem 3 (Discretization error for multiplicative Schwarz) We have

K

(. ulk) — UK7) = Sk (G, glitiin — g glision) o4y

i=1

|
_

~
Il
o

where m;v is an arbitrary (e.g. Lo, nodal etc.) projection of v € H& (£2;) in V; p0.

The proof of Theorem 3 is presented as a sequence of lemmas in Sect. 6.2. The
term (¢! F/P) — 7;¢1k+i/P1) arises from the use of Galerkin orthogonality, or the fact
that the residual of the dlscrete solution is zero on the finite dimensional space Vino
This reflects the fact that I *+/P} is the discrete approximation to u!**/P} not to u.

3.3 A posteriori analysis of the discretization error for additive Schwarz

In this section, we derive representation of the discretization error in the Qol obtained
from the additive Schwarz method.

3.3.1 Adjoint problems for discretization error

Define ¢l.[k] € HO1 (£2;) solutions to the adjoint problems,

» K
( ¢[k]) Z {(Wj’ v)ij = dij (v, Z ¢5~”)} . Yve Hy(2). (25)

I=k+1

For a fixed k, the adjoint problems (25) are independent for each i, so ¢>l!k] may be
computed backwards from K, K—1, K—2, ..., linparallel analogous to the solution
strategy in the additive Schwarz Algorithm 2. We also note that for implementation
purposes Zlek L1 qby] involves a sum of the vectors, Zlek ) qﬁy] (computed earlier)

and ¢5k+1].

@ Springer



J.H. Chaudhry et al.

3.3.2 Discretization error

Theorem 4 (Discretization error for additive Schwarz) We have

(1/[’ e{DK}) _ (1/[, WK U{K}) _ ii& (ﬁi{k}’ ¢i[k] _ 7Ti¢i[k]> . (26)

The proof of Theorem 4 is presented as a sequence of lemmas in Sect. 6.3.

3.4 Solution algorithms

The full algorithm for a posteriori error estimation for overlapping multiplica-
tive/additive Schwarz domain decomposition is provided in Algorithm 3. We also
sketch a two stage procedure in Algorithm 4. The preceding error analysis provides
subdomain-by-subdomain contributions to the discretization error and a range of
refinement strategies are possible; see Sect. 4.5.1 for a concrete example. Iteration
error can be reduced either by increasing the number of iterations or by increasing the
size of the overlap regions. An example of this is given in Sect. 4.5.2. Which of these
two approaches is preferable cannot be determined by our current analysis. Further,
significant grid refinement may require a new division of the computational domain
into the same number of subdomains (p) or the addition of further subdomains. Since
the accuracy of the error estimates is our primary concern, only the simplest strategies
are implemented here.

Algorithm 3 Adjoint-based a posteriori error estimation for overlapping DDMs

procedure ERROR ESTIMATION OVERLAPPING DDMS(mesh, p, K, mode)
fork=0,1,2,...,K—1 do
fori =1,2,...,p do
Solve primal problem on subdomain i (see (9)/ (11))
Combine to construct a global solution (see (10)/ (12))
end for
end for
if mode == 0 then Return (solution)
end if
if mode == 1 then
fork=K—-1,K—2,...,0 do
fori=p,p—1,....1 do

Approximate solution of adjoint problem on subdomain i (see (22)/ (25))
Compute adjoint weighted residuals and accumulate error contributions (see (24)/ (26))
end for
end for
Approximate solution of global adjoint problem (see (13))
Estimate total error (see (14))
Estimate iteration error (see (16))
Return (solution, total error, discretization error, iteration error)

end if
end procedure

@ Springer



A posteriori error analysis for Schwarz overlapping...

Algorithm 4 Two stage procedure

Call procedure ERROR ESTIMATION OVERLAPPING DDMSs(meshl, p1, K1, 1)
Adapt meshl — mesh2, py — p2, K1 —> K»
Call procedure ERROR ESTIMATION OVERLAPPING DDMS(mesh?2, py, K2, 0)

4 Numerical examples for multiplicative Schwarz

We provide examples for both multiplicative and additive Schwarz in order to demon-
strate the accuracy of the a posteriori error estimate for a range of scenarios, stressing
the importance of the ability to distinguish the contributions from discretization and
iteration. All adjoint problems are solved on the same mesh as the forward problem
using a higher order finite element scheme. Since the adjoint problems are linear, the
adjoint problems can be more expensive to solve than the forward problem when the
forward problem is also linear, but are generally less expensive to solve when the
forward problem is nonlinear. The global adjoint problem was solved using a global
discretization.

The initial examples in Sect. 4.2 are chosen to illustrate certain expected behaviors.
We expect the discretization error to decrease as the mesh is refined, and the iteration
error to decrease as we increase the number of iterations or the degree of overlap. We
expect the discretization error to be constant if the mesh is fixed when the number of
subdomains is increased, but expect the iteration error to increase. In other words, the
discretization error is determined by the mesh, but the iteration error is determined by
the number (and disposition) of subdomains, the degree of overlap, and the number of
iterations. In Sect. 4.3, we construct a problem where the discretization and iteration
errors have opposite signs, and show that iterating with a fixed mesh may result in the
overall error initially decreasing as the iteration error decreases, achieving a minimum
when the discretization and iteration errors cancel each other, and then increasing
(and stabilizing) as the discretization error comes to dominate the total error. For the
convection dominated problem in Sect. 4.4, we show how the configuration of the
subdomains affects the iteration error, but not the discretization error. Finally in Sect.
4.5 we provide two examples of a two stage strategy in which an accurate error estimate
for an initial coarse solution guides the construction of a more accurate “production”
calculation. We choose to locally adapt the finite element mesh when the discretization
error in a particular subdomain is dominant, and to increase the degree of subdomain
overlap when iteration is the leading source of error. “Adaptivity” in the context of
iterative methods, requires strategies for addressing both discretization and iteration
eITorS.

4.1 Error estimates and effectivity ratios

We compute approximate adjoint solutions @*¥+1/Pl a~ ¢lk+i/P] and @ ~ ¢ and then
compute (24) and (14). The resulting error estimates are
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=
L

p
ZRl U{k-H/P} @lk+i/pl _ m@[k-i'i/[’])’ 27)
i=1

~
Il
=}

and
K = rUKY, @), (28)

One way to measure the performance of an error estimates is the “effectivity ratios”,

’7K
S E— 29
VS W —uE ) (29
and
n
VD= 2. (30)

@ KT =TT y)

An effectivity ratio close to one indicates that the error estimate is accurate. We also
recall that e; denotes the iteration error. Moreover, we choose m; to be the trivial
projection, that is we set 7r; @¥*+/P1 = 0. This is appropriate for the numerical exper-
iments considered in this article in which all mesh elements in a particular subdomain
are refined. If the mesh elements in a subdomain are refined based on their localized
contribution to error, then a different projection like the nodal projection may be a
better choice.

4.2 Poisson’s equation

Consider Poisson’s equation

—Viu=f g, 1)
u=0, onas2,

in a square domain 2 = [0, 1] x [0, 1], where f(x,y) = 8772 sin(27 x) sin(27 y).
The Qol in (8) is specified by

¥ = 116, 81x[.6, .8]- (32)

where 1, is the characteristic function on a domain w. In the computations below,
unless otherwise specified, the mesh is uniform and contains 2 x Ny x N, triangular
elements. The overlap between subdomains in a coordinate direction is indicated by g
as illustrated by Fig. 2c. The adjoint problems are solved using continuous piecewise
quadratic polynomials.
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(a) (b) (c)

Fig. 1 Overlapping subdomains with 8 = 0.1. a Two (2 x 1) subdomains. b Four (4 x 1) subdomains. ¢
Four (1 x 4) subdomains

Table 1 Multiplicative Schwarz for Poisson’s equation: 2 x 1 subdomains

Ne Ny B K EstErm y el . et

20 20 0.1 2 1.02e—03 9.98E—01 6.56e—04 9.98E—01 3.60e—04

20 20 0.2 2 7.03e—04 9.96E—-01 6.28¢—04 9.97E-01 7.50e—05
20 20 0.1 2 1.02e—03 9.98E—-01 6.56e—04 9.98E—-01 3.60e—04
20 20 0.1 4 6.55e—04 9.96E—-01 6.26e—04 9.97E—-01 2.89e—05
20 20 0.1 6 6.21e—04 9.96e—01 6.19¢e—04 9.97e—01 2.32e—06
20 20 0.1 2 1.02e—03 9.98E—-01 6.56e—04 9.98E—-01 3.60e—04
40 40 0.1 2 5.25e—04 1.00E+00 1.66e—04 9.99E—01 3.60e—04

80 80 0.1 2 4.0le—04 1.00e+00 4.16e—05 1.00e+00 3.60e—04

4.2.1 2 x 1 subdomains

Two overlapping subdomains £2; = [0, .6] x [0, 1] and £2, = [.4, 1] x [0, 1] are
illustrated in Fig. la, corresponding to an overlap parameter § = 0.1. The solid
black lines in this figure and in subsequent figures, indicate the center line between
overlapping subdomains.

Estimates of the discretization, iteration and total errors, and the corresponding
effectivity ratios as we vary the overlap 8, number of Schwarz iterations K and number
of elements are shown in Table 1. In all cases the effectivity ratios are close to 1.0.
The table highlights the sensitivity of the estimates to the different contributions of the
error. The “base” computation with Ny = Ny, = 20, 8 = 0.1 and K = 2 is repeated
for ease of comparison. Increasing the overlap decreases the iteration error eiK} but
does not have a significant effect on the discretization error eg{}. The iteration error
decreases with increasing number of Schwarz iterations, but the discretization error
is largely unaffected when the mesh is fixed. The discretization error decreases when
the mesh is refined with a fixed number of iterations, but the iteration error remains
essentially constant.
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Table 2 Multiplicative Schwarz for Poisson’s equation: 4 x 1 subdomains.

N« Ny B K  EstEm y elK D K

20 20 01 2 457e—03  9.99e—01  692¢—04  9.97e—0l  3.88c—03
20 20 02 2 134e—03  998—01  648c—04  9.98—01  6.87e—04
20 20 01 2 457e—03  9.99%-01  692—04  997e—0l  3.88e—03
20 20 01 4 1.04e—03  998¢—01  648c—04  9.98—01  394e—04
20 20 01 6 674e—04  996e—01  627e—04  9.97e—01  467e—05
20 20 01 2 457e—03  9.9%—01  692%—04  9.97e—0l  3.88e—03
40 40 01 2 405-03  100e+00  175¢—04  999e—01  3.88c—03
80 80 01 2 39203 100400  4.39%—05  100e+00  3.88—03

(T D (U (TS
(@) (b) (c)

Fig. 2 a Sixteen (4 x 4) overlapping subdomains with § = 0.1. b Four (2 x 2) overlapping subdomains
with 8 = 0.05. ¢ Four (2 x 2) overlapping subdomains with 8 = 0.2

4.2.2 4 x 1subdomains

The computational domains for 8 = 0.1 are shown in Fig. 1b. It is well known that as
the number of subdomains increases, the convergence of Schwarz methods decreases,
and this is evident by comparing Tables 1 and 2. While the discretization errors of the
four subdomain and two subdomain cases are comparable in magnitude, the iteration
error eBK} is an order of magnitude larger for four subdomains compared to two.
The contributions of the separate components of the total error vary with the overlap,
number of iterations and number of elements in a qualitatively similar way to the
results in Sect. 4.2.1.

4.2.3 4 x 4 subdomains

The computational domains for § = 0.1 and sixteen equally-sized subdomains are
configured in a 4 x 4 grid, see Fig. 2a. The error estimates are quite accurate. The
results, shown in Table 3 are qualitatively similar to those in Tables 1 and 2. The
iteration error is larger than in the 4 x 1 case, while the discretization errors are
essentially the same in both, which is to be expected since the finite element meshes
are the same.
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Table 3 Multiplicative Schwarz for Poisson’s equation: 4 x 4 subdomains

Ny Ny B K Est. Err. Y E{DK} YD eﬁm

20 20 0.1
20 20 0.2

9.22e—03 1.00e+00 1.02e—03 1.00e+00 8.20e—03
2.80e—03 9.99e—01 7.31e—04 9.98e—01 2.07e—03

20 20 0.1
20 20 0.1
20 20 0.1

9.22e—03 1.00e+00 1.02e—03 1.00e+00 8.20e—03
2.72e—03 9.99e—01 8.27e—04 9.99e—01 1.90e—03
1.23e—-03 9.98e—01 7.07e—04 9.98e—01 5.23e—04

20 20 0.1
40 40 0.1
80 80 0.1

9.22e—03 1.00e+00 1.02e—03 1.00e+00 8.20e—03
8.45e—03 1.00e+00 2.55e—04 1.00e+00 8.20e—03
8.26e—03 1.00e+00 6.38¢e—05 1.00e+00 8.20e—03

NS \S RN S R e R L 2 LS

4.3 Cancellation of error

To illustrate the potential for cancellation between discretization and iteration errors,
the quantity of interest is chosen to be

Y = 114, 8]x[4, 8]- (33)

for two subdomains and an overlap 8 = 0.05. Computational results for an increasing
number of Schwarz iterations are shown in Table 4. The magnitude of the total error
initially decreases as the iteration proceeds, reaching a minimum after six iterations, but
then starts to increase. This behavior is explained by observing that the discretization
and iteration errors have opposite signs. The discretization error is essentially fixed
as the iteration proceeds and has a value of —1.6 x 10~*. The initial iteration error
is of order 4.0 x 10~3 and dominates the total error. As expected, the iteration error
decreases monotonically as K increases, but is always positive. After six iterations the
discretization and iteration errors have approximately equal magnitudes but opposite
signs, and cancel to produce a total error of 3.0 x 107, For greater than six iterations,
the iteration error continues to decrease and now the discretization error dominates the
total error. The total error increases to —1.5 x 10~ after 10 iterations and gradually
approaches the (fixed) discretization error as the number of iterations increases further.

4.4 A convection—diffusion problem

Consider the convection—diffusion equation,

—Vu+b-Vu=f, ing,

34
u =0, onads2, 34

where 2 = [0, 1]x[0, 1], f(x, y) = 1,andb = [—60, 0]. The effect of the convection
is that a perturbation to data on the right affects the solution to the left. For this example,
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Table 4 Multiplicative Schwarz for Poisson’s equation: 2 x 1 subdomains, Ny = Ny =40, g =0.05

K Est. Err. 1% egq ¥D egK}

1 3.98e—03 1.00e+00 —1.50e—05 9.98e—01 4.00e—03
2 2.07e—03 1.00e+00 —5.95e—05 9.99e—01 2.13e—03
3 1.04e—03 1.00e+00 —9.11e—-05 1.00e+00 1.13e—03
4 4.89e—04 1.00e+00 —1.14e—04 1.00e+00 6.03e—04
5 1.91e—04 1.00e+00 —1.30e—04 1.00e+00 3.21e—04
6 2.97e—05 1.01e+00 —1.41e—04 1.00e+00 1.71e—04
7 —5.83e—05 9.96e—01 —1.49¢e—-04 1.00e+00 9.09e—05
8 —1.07e—-04 9.98e—01 —1.55e—-04 1.00e+00 4.84e—05
9 —1.33e—-04 9.98e—01 —1.59¢e—-04 1.00e+00 2.58e—05
10 —1.48e—04 9.98e—01 —1.62e—04 1.00e+00 1.37e—05

we choose the quantity of interest

¥ = 1105, 21x[.05, 2] (35

concentrated near the bottom left hand corner. The adjoint problems are solved using
continuous piecewise cubic polynomials to ensure accurate solutions in the presence
of the strong convective vector field. We experiment with two configurations with
the subdomains aligned with different coordinate axes, and either parallel with or
perpendicular to the direction of convection.

4.4.1 4 x 1 configuration

This subdomain configuration is the same as in Fig. 1b. The total, discretization and
iteration errors are provided in Table 5. Note the significant iteration error in this
configuration for K = 2, which dominates the total error. The large iteration error for
K = 2 is to be expected given direction of information travel from right to left. The
iteration error decreases dramatically for K = 4 and K = 6, and discretization error
becomes the dominant error.

4.4.2 1 x 4 configuration

This subdomain configuration is shown in Fig. 1c. The subdomains are aligned with
the direction of the convective vector field. The iteration error after two iterations and
the total error are more than an order of magnitude less than in the 4 x 1 case. In this
scenario, one subdomain contains most of the “domain of influence” for the Qol [24]
and hence results in low iteration error, even for K = 2. There is again cancellation
between the discretization and iteration errors for K = 2 so that the total error increases
for K =4 and K = 6 with the total error dominated by the discretization error.
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Table 5 Multiplicative Schwarz for convection—diffusion: Ny = Ny =20, g =0.1

K Est. Err. y eg(} YD egK}

4 x 1 configuration

2 9.76e—03 1.00e+00 —1.54e—04 9.87e—01 9.92e—03

4 —1.15e—04 9.81e—01 —1.42e—04 9.77e—01 2.67e—05

6 —3.54e—04 9.94e—01 —3.54e—04 9.94e—01 4.36e—10
1 x 4 configuration

2 8.42e—05 1.03e+00 —3.73e—04 9.94e—01 4.57e—04

4 —3.54e—04 9.94e—01 —3.55e—04 9.94e—01 3.53e—07

6 —3.54e—04 9.94e—01 —3.54e—04 9.94e—01 3.70e—11

4.5 Two stage solution strategy for Poisson’s equation

Adjoint-based a posteriori error estimates can provide useful information for designing
efficient two stage strategies for computing approximate solutions, as presented in
Algorithm 4 and discussed in Sect. 3.4. First, a preliminary, inexpensive computation
is performed on a coarse discretization. The a posteriori error estimate for the “stage
1”7 solution is computed and the different error contributions determined. A more
expensive “stage 2” approximation is computed using numerical parameters chosen
to balance the sources of error. We provide two examples of this strategy below. The
stage 1 computation for both experiments is run on a 2 x 2 subdomain configuration
as shown in Fig. 2c.

4.5.1 Dominant discretization error

Consider the Qol given by (32). The results on the initial 2 x 2 subdomain configuration
with Ny = Ny =10, 8 = 0.2 and K = 6 are provided in Table 6. The mesh for this
computation is shown in Fig. 3a. The main source of the error is the discretization error

e{DK}. In order to reduce the discretization error, we need to reduce the discretization
error contribution arising from each subdomain. We define the contribution to the
discretization error from subdomain i as

K—1
SE =) R@WHIPY QIHIP] g/l =1 p, (36
k=0

so that the discretization error, (24) may be written as
p
W, ul® — Utk =3 " gk (37)
i=1

The values of SI.K for the stage 1 calculation are also shown in Table 6. Subdomain
4 contributes the most towards the discretization error, and hence it is the prime
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Table 6 Two stage solution strategy using multiplicative Schwarz to solve Poisson’s equation: 8 =
02, K=6

Stage Num. vertices Est. Err. y e{DK} ¥D ey{}

1 121 2.36e—03 9.83e—01 2.36e—03 9.89e—01 6.98e—06

2 253 3.44e—04 1.00e+00 3.37e—04 1.05e+00 6.97e—06

Stage Num. vertices i 1 2 3 4

1 121 SiK 3.07e—04 —7.94e—04 —7.82e—04 3.62e—03

2 253 SiK 1.82e—04 —3.87e—04 —3.85e—04 9.27e—04
(a) (b) (c)

Fig.3 aInitial uniform mesh. b Mesh refinement in £24 guided by adjoint based error estimates. ¢ Uniformly
refined mesh

candidate for refinement. After refining all the elements in subdomain 4, the refined
mesh is shown in Fig. 3b. The discretization errors in each subdomain S IK and the total
error after the refinement are shown in Table 6. The discretization error is significantly
lower and hence the total error is also significantly lower. The values of Sl.’( also
indicate that now each subdomain contributes roughly the same magnitude towards
the discretization error.

We note that we can take advantage of cancellation of the discretization errors.
Applying the standard approximation theory for degree one Lagrange finite elements,
we expect the discretization error component Sf to decrease by a factor of four if we
refine the mesh corresponding to subdomain 4 uniformly. The conjectured value for
Sf is therefore approximately 9 x 10~%. The discretization errors from subdomains 2
and 3 (represented by SZK and SSK ) have negative signs and are not expected to change
as significantly when subdomain 4 is refined. As shown in Table 6, after refinement of
subdomain 4, there is significant cancellation of error between subdomains 2 and 3 and
subdomain 4, and the total error is 3.44 x 10~%. Uniformly refining the entire initial
mesh results in a refined mesh with 441 vertices (shown in Fig. 3b) and the solution
after K = 6 iterations has a total error of 6.24 x 10~%, which is approximately the
expected four-fold reduction in error. The mesh refined using adjoint based error infor-
mation in Fig. 3b has almost half the number of degree of freedoms of the uniformly
refined mesh in Fig. 3c, but none-the-less has half the total error (3.44 x 1074 vs.
6.24 x 10™%). Recognizing and taking advantage of cancellation of error can produce
otherwise startling efficiencies. Similar refinement strategies, where specific “compo-
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Table 7 Two stage solution strategy using multiplicative Schwarz to solve Poisson’s equation. Stage 1:
B =0.05,stage 2: $ =0.2

Stage Ny Ny B K Est. Err. y e%ﬂ YD e{IK}
1 40 40 005 2 1.23e—03 1.00e+00 1.79e—04  9.99¢e—01 1.05e—03
2 40 40 0.2 2 5.04e—04 1.00e+00 1.62e—04  9.99e—01 3.42e—04

nents” are refined to exploit cancellation of error, are also employed in [10,11]. Such
component-wise refinement strategies allow for estimation of the decrease of error in
amore reliable manner than classical adaptive refinement strategies in which disparate
elements are marked for refinement.

4.5.2 Dominant iteration error

For the same choice of Qol, we perform a stage 1 computation with 2 x 2 subdomains
and Ny = Ny = 40, 8 = 0.05 and K = 2. This configuration is shown in Fig. 2b.
The contributions to the total error are shown in Table 7. The dominant source of the
error is the iteration error eEK}. There are two ways to reduce it, either by performing
a great number of iterations or increasing B. We choose the latter option and set
B = 0.2, see Fig. 2c. The results are shown in Table 7, where now the iteration error
and discretization are balanced and the overall error has decreased.

5 Numerical examples for additive Schwarz

We repeat analogous numerical examples in Sect. 4 for additive Schwarz. Effectivity
ratios for the discretization error and the total error are defined analogously to the case
of the multiplicative Schwarz case by replacing @¥+/7 in the above expressions by
@i[k] in the expressions in Sect. 4.1, where Cbl.[k] is the numerical approximation to
q)l.[k]. A relaxation parameter T = 0.4 was used in all examples. The error estimates
are again highly accurate with effectivity ratios close to 1.

5.1 Estimates for Poisson’s equation
5.1.1 2 x 1 subdomains

We solve the same problem described in Sect. 4.2.1 by equations (31) and (32) using
additive Schwarz. The results are shown in Table 8. In comparison to the results in Sect.
4.2.1, we observe that the additive Schwarz method has much higher iteration error than
multiplicative Schwarz method. The discretization error is of course approximately
the same.

@ Springer



J.H. Chaudhry et al.

Table 8 Additive Schwarz for Poisson’s equation: 2 x 1 subdomains

N« Ny B K  EstEm y elK D K

20 20 0.1
20 20 0.2

1.09e—02 1.00e+00 4.52e—04 9.98e—01 1.05e—02
1.04e—02 1.00e+00 4.34e—-04 9.98e—01 9.96e—03

20 20 0.1
20 20 0.1
20 20 0.1

1.09e—02 1.00e+00 4.52e—04 9.98e—01 1.05e—02
4.23e—03 9.99e—01 6.02e—04 9.98e—01 3.62e—03
1.93e—03 9.99e—01 6.46e—04 9.98e—01 1.28e—03

20 20 0.1
40 40 0.1
80 80 0.1

1.09e—02 1.00e+00 4.52e—04 9.98e—01 1.05e—02
1.06e—02 1.00e+00 1.14e—04 9.99e—01 1.05e—02
1.05e—02 1.00e+00 2.85e—05 1.00e+00 1.05e—02

[NCRE (S RN (S R e R L LS

Table 9 Additive Schwarz for Poisson’s equation: 4 x 1 subdomains

Ny Ny B K Est. Err. y e{DK} YD esK)

20 20 0.1
20 20 0.2

1.89e—02 1.00e+00 5.42e—04 9.96e—01 1.84e—02
1.19e—02 1.00e+00 6.04e—04 9.97e—01 1.13e—02

20 20 0.1
20 20 0.1
20 20 0.1

1.89e—02 1.00e+00 5.42e—04 9.96e—01 1.84e—02
1.21e—02 1.00e+00 6.51e—04 9.97e—01 1.14e—02
7.90e—03 1.00e+00 6.84e—04 9.97e—01 7.22e—03

20 20 0.1
40 40 0.1
80 80 0.1

1.89e—02 1.00e+00 5.42e—04 9.96e—01 1.84e—02
1.85e—02 1.00e+00 1.38e—04 9.99e—01 1.84e—02
1.84e—02 1.00e+00 3.46e—05 1.00e+00 1.84e—02

[SS I ST S I e N L LS )

5.1.2 4 x 1 subdomains

The results solving the same problem using twice the number of subdomains are shown
in Table 9. The iteration error is considerably larger than for multiplicative Schwarz
and the convergence rate with increasing numbers of iterations appears to be much
slower. The discretization error is again approximately the same.

5.1.3 4 x 4 subdomains
Repeating the problem in Sect. 4.2.3 and using additive Schwarz produces the results
provided in Table 10.

Once again the iteration error is significantly greater than in the multiplicative case
and appears to improve more slowly with increasing overlap or number of iterations.

5.2 A convection—diffusion problem

The problem formulation is defined in Sect. 4.4 by equations (34) and (35). We provide
results for two different configurations of the subdomains in Table 11 below.
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Table 10 Additive Schwarz for Poisson’s equation: 4 x 4 subdomains

Ny Ny B K Est. Err. y E{DK} YD eEK)

20 20 0.1
20 20 0.2

2.18e—02 1.00e+00 6.83e—04 1.00e+00 2.12e—02
1.25e—02 1.00e+00 6.14e—04 1.00e+00 1.18e—02

20 20 0.1
20 20 0.1
20 20 0.1

2.18e—02 1.00e+00 6.83e—04 1.00e+00 2.12e—02
1.58e—02 1.00e+00 9.42e—04 9.86e—01 1.48e—02
1.15e—02 1.00e+00 1.04e—03 9.80e—01 1.05e—02

20 20 0.1
40 40 0.1
80 80 0.1

2.18e—02 1.00e+00 6.83e—04 1.00e+00 2.12e—02
2.13e—02 1.00e+00 1.70e—04 1.00e+00 2.12e—02
2.12e—02 1.00e+00 4.22e—05 1.00e+00 2.12e—02

NS (S I S B e R L LS S

Table 11 Additive Schwarz for convection—diffusion: Ny = Ny =20, g =0.1

K Est. Err. y e{DK} YD egK}

4 x 1 configuration

2 1.78e—02 1.00e+00 —1.04e—04 9.92e—01 1.79e—02
4 1.28e—02 1.00e+00 —9.38e—05 9.81e—01 1.29e—02
6 8.40e—03 1.00e+00 —5.56e—05 9.54e—01 8.46e—03
1 x 4 configuration

2 1.08e—02 1.00e+00 —1.32e—04 9.91e—01 1.10e—02
4 5.11e—03 1.00e+00 —2.37e—04 9.93e—01 5.35e—03
6 2.32e—03 1.00e+00 —3.0le—04 9.94e—01 2.62e—03

The differences between these two configurations are not as dramatic as in the
case of multiplicative Schwarz. Furthermore, both 4 x 1 and 1 x 4 configurations had
essentially converged after 6 iterations of multiplicative Schwarz. This is far from true
for additive Schwarz.

5.3 Two stage solution strategy for Poisson’s equation
5.3.1 Dominant discretization error

We repeat the problem in Sect. 4.5.1 and the results are shown in Table 12. We observe
the expected reduction in discretization error in subdomain 4, but the reduction in total
error is not as dramatic as in the multiplicative Schwarz case. There is less cancellation
between discretization errors of opposite sign following local mesh refinement, and
the iteration error is much larger for additive Schwarz. However, after mesh refinement
in subdomain 4 and six iterations, the iteration error makes the largest contribution to
the total error.
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Table 12 Two stage solution strategy using additive Schwarz to solve Poisson’s equation: 8 = 0.2, K =6

Stage Num. vertices Est. Err. y e{DK} YD e}K)

1 121 3.24e—03 9.88e—01 2.48e—03 9.90e—01 7.61le—04
2 253 1.24e—03 1.00e+00 4.79¢e—04 1.04e+00 7.60e—04
Stage Num. vertices i 1 2 3 4

1 121 Sl.K 6.82e—05 —3.76e—04 —3.76e—04 3.16e—03
2 253 sk 4.13e—05 —1.78e—04 —1.78e—04 7.93e—04

1

Table 13 Two stage solution strategy using additive Schwarz to solve Poisson’s equation. Stage 1: 8 = 0.05,
stage 2: B = 0.2

Ny Ny B K Est. Err. y e{DK} ¥D ey()

40 40 0.05 2 1.05e—02 1.00e+00 1.19e—04 1.00e+00 1.04e—02
40 40 0.2 2 8.27e—03 1.00e+00 1.15e—04 1.00e+00 8.15e—03

5.3.2 Dominant iteration error

The results upon repeating the problem in Sect. 4.5.2 are shown in Table 13. Increasing
the overlap reduces the iteration error, but not as effectively as for multiplicative
Schwarz, and after only two iterations the iteration error remains significantly larger
than the discretization error.

6 Details of analysis: algorithm reformulation, technical lemmas and
proofs

6.1 Analogy with algebraic Gauss-Seidel iteration

It is helpful to consider an algebraic analog of multiplicative Schwarz overlapping
domain decomposition in order to provide insight in to the unusual forms of equations
(22) and (23) and Theorem 3. Consider solving the algebraic linear system Mx = b,
where M is a p X p matrix, using K Gauss-Seidel iterations. (Here we choose p = 4
and K =5.)

We decompose the matrix M as a sum of strictly lower triangular, diagonal and a
strictly upper triangular matrices as M = L 4+ D + U and solve

(L+Dx* B =p—pyx® k=0,1,....

Let A = (L 4+ D) and B = U, each of which are p x p matrices. The complete
Gauss-Seidel iteration can be written as the following block lower triangular system

Cgsx = b,
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where
A00O0O
BAOOO
Cgs=|{0BAO0OO
00BAO
000BA

C s has a block bandwidth of two. Here,
«T = (x{l}T,x{Z}T’x{3}T’x{4}T’x{5}T) and b7 = (br’ b7, bT’bT’bT>_
The corresponding adjoint problem is C ;;—s‘p = ¥ where WT = (O, 0,0,0, wT), and

ATBT 0 0 0
0 ATBT 0 0
Cgs=|0 0 ATBT 0
0 0 0 AT BT
00 0 0A"

Note that the adjoint is non-zero only for the final solutions x X} = x15}, Let

07 = (b1, b2 b3, bs. b5) .

The adjoint problems are

Alps =y,
ATg,=-B"¢s, AT¢p3=—B"¢p,, AT¢,=—B ¢35, AT =—B"¢,,

which can be solved sequentially by backward substitution. Recall that A is lower
triangular and B is strictly upper triangular, hence

Aq \
Az Ax :
A31 Az Asz |
As A Agz Agg) .
— A Agz A14TA11 T
Az Apq1Az1 A !
As4 A3 A Azz
1A41 Agr Ays A44:
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~ AT AT AT !
Aq A21 A31 Az_trﬂ - !
Ap Ay AA%Z‘AIZ |

|

Cgs = TAI] AI] A;Trl A:E ,
: A22 Asl_2 A4|_2\
I A33 A43\
I AL\

and the adjoint equations within each block can also be solved via backward substi-
tution. The adjoint equations are therefore

Afg =g =Y ALl =1 p, (38)
j>i
Aol == ATE N N Al =1 p, k=K1, 1
j<i Jj>i
(39

The form of the adjoint problems in (38) and (39) mimic those in equations (22) and
(23). The sum on the RHS of (38) represents the additional adjoint problems that must
be solved to estimate effect of errors made while solving forward problems during
the final (Kth) iteration. We call these within iteration transfer errors. The first sum
on the RHS of (39) represents the additional adjoint problems that must be solved to
estimate the effect of errors made while solving forward problems during the previous
iteration. We call these between iteration transfer errors. The second sum on the RHS of
(39) again represents additional adjoint problems to estimate within iteration transfer
errors. These two distinct types of transfer error were earlier identified in the context
of operator decomposition approaches to coupled semilinear elliptic systems in [7].
Since Cgsx = b is justa Kp x Kp linear system,

(e.¥)=(R,¢) (40)
where
R=>b-— Cgsfc

for approximate solution X. The error in the quantity of interest can be expressed as
an inner products of two vectors of length K p, and (40) mimics the result in equation
24).
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6.2 Details of analysis of multiplicative Schwarz algorithm

6.2.1 Reformulation of the algorithm

Algorithm 1 is not amenable to adjoint based analysis since the affine solution space
H ﬁk (£2;) changes at every iteration. We reformulate the algorithm by using a standard

lifting technique to account for this in Algorithm 5. We set

qUH/P) o lkti/p) 4 HG=D/P) op o @41

where wi*ti/p} ¢ Hy (£2:).

Algorithm 5 Reformulated overlapping multiplicative Schwarz

Given u!% defined on £2
fork=0,1,2,...,K—1 do
fori =1,2,...,p do
Find w+/P} e HJ(£2)) such that

a; (w{k+i/1’), v) =1L —aq (u[k+(i_l)/p], v) , Yve Hd (£2)). (42)
Let
{k+@i—1)/p} {k+i/p} 0.
lerip Z 10 tw . ond, (43)
ulk+G=1/p} on 2\2;.
end for
end for

There is an equivalent reformulation of the discrete Algorithm 5 and we denote
the unknown solutions as W#+i/p} belonging to the spaces V; j 0 C Hol(.Qi). The
solutions W{k+7/P} are defined formally for the analysis but are not computed in
practice.

To distinguish between different solutions (true, analytical, discrete) we use the
notation in Table 14.

6.2.2 Technical lemmas
Let ely) = wlt) — Wikl By (41) we have

e%/l;—&-i/p} _ e%{+i/ﬂ} _ e%“"(i_l)/p} on £2;. (44)

Note that e%‘,ﬂ/p} = 0on 8£2;. We set e%‘,ﬂ/p} =0on 2\ 2.

Lemma 2 (Error in Qol in terms of discretization errors with homogeneous bcs)
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Table 14 Multiplicative Schwarz: notation for different solutions and their spaces

Notation ~ Formula Space Meaning

u H(} (£2) True solution

ulk) HO1 (£2;) Global analytic solution at iteration k

vk Vi Global discrete solution at iteration k

glk+i/p} H le (£2;)  Analytic solutions on §2; at iteration k

Utk+i/p} Vzkh Discrete solutions on §2; at iteration k

wik+i/p} HO1 (£2;) Analytic solns on £2; with homogen. bcs at iteration k
wik+i/p} Vi h,0 Discrete solns on £2; with homogen. bcs at iteration k
etk u—uk HO1 (£2) Total error

egk} u — utkl HO1 (£2) Global iteration error at iteration k

e%(} ulkl — ik} HO1 (£2) Global discretization error at iteration k

e%—t—i/p} wikti/p _ wlk+i/p} HO1 (£2;)  Discretization error on £2; with homogen. bcs at it. k

The discretization error in the Qol is

>
L

CRIE»>

i=1j

i
(eivﬂ/p}’ ‘ﬁj)

1

. (45)

)4
ij

~
Il
=}

Proof From equation (44) and the fact that ¢; = 0 on £2 \ £2; for fixed j we have

(egﬂ’ wj) _ (eg)K—Hp/p}, w,-)
_ (eg‘ll(—i-ﬁ-P/P}’ wj)pj n (eg(—l-&-(p—l)/ﬁ}’ %‘)
_ (4{/(—1’-4—1’/17}’ wj)pj n (e{ull<—i+(p—1)/p}’ %’)

K—1+(p—2
+ (eE) +(p )/p}’ Wj) )

(p—1Dj

Continuing,

(e0,0,) = (e ) 30 (e,

1
i=1 I

This is a recursive relation for e{DK}. Expanding (e{[f_l}, ¥ j> as above leads to

K—-1 p
{K} {k+i/p}
(eD ,%’): 22 (eW l p’l//’)ij'
k=0 i=1
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Summing over j = 1,..., p,

(e{DK}, Wj) =

1

>
|

p
ij

P
k+ p
(e{w g }1 WJ)

1

J

i=1j

iy
[}

O

Lemma 3 (Bilinear form with discretization errors with homogeneous bcs) For any
v e Hék (£2;) we have

i1
a; (e{vi/p},v) = qj (e{Dl/p},v)—Zair (e{v{,/p},v>. (46)
r=1

and fork > 1,
. . . i_l
a; (eg;ﬂ/p}’ v) — a4 (E%C_H/P}, v) —a (e%c—l+l/l7}’ v) _ Zal_r (eif,w/P}, v)
r=1
p
— Z ajr (ei,];_lw/p}, v) ) 47
r=i+1

Proof By (44) we have form < i,

ai (e{D’n/P}, v) — g (e{D(m—l)/p}7 v) + aim (eg/"/l?}’ v),

=aq; (egm_z)/p}, v) + aim—1 (e{)f,m_l)/p}, v) + aim (e{v:,"/‘"}, v) .

where we use eg,/ rl

m m
a; (e{Dm/P}, v) =a; (eg}, v) + Za” (eg,/p}, v) = Zair (eg/p}, v) , (48)
r=1 r=1

= 0on £2 \ £2,. Continuing in this manner yields

since eg)} = 0. Again by (44),
a; (e{vi,/p}, v) =q; (e{[g/p}, v) —a; (e{D(i_l)/p}, v) . (49)
Using (48) with m =i — 1 with (49) leads to
_ _ i—1
(A7) = i (e 0) = S (e 0)
r=1

thus showing (46). A similar argument shows (47) for k > 1.
O
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Lemma 4 (Sums of bilinear form with discretization errors with homogeneous bcs)
For0 < Q < K — 1 we have

0
Zai (egjﬂ/p}’ v) = (e{DQ_H/p}’ U)

k=0
0 i1 o-1 p
k k
_2 :E :air (e;,”/p},v)— Z air (e{WJrr/p}’v)_
k=0 r=1 k=0 r=i+1

(50)

Proof By Lemma 3,

k=0 k=1
:Z{“i <eg+i/p},v) a < k—1+i/p )
k=1
i—1 P
_Zair (e[v’;”/”],v)— Z air (e[v’;‘“’/”},v)}
r=1 r=i+l

i—1
+ a; (e{[’,/p}, v) — Zai’ <eg/p}, v)
r=1
Y , . .
= Z {ai <eg+l/p], v) —a; (eg_1+l/p}, v)} + a; (e%/p}, v)

k=1
0 i-1 i—1 Q p
ONACAEDE WACEE P SHC I
k=1 r=1 r=1 k=1r=i+1

[Y
=a ( {0+i/p) U) ZZ“" (e(v';”/”’,v)

k=0 r=1

P
- Y (ei,’;”/”, v) _
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Lemma5 (Sum of RHS of the adjoint equations over iterations) Let2 < M < p +1
and R=M — 1and0 < Q < K. Then

0 p
+R/p}) Y ar (e{ +R/p), ¢[Q+]/P])

k=0 j=M

»‘

R-1

0
Q+R/p} ol +R/p) Z dir (ei{ilﬂ/p},(b[Q-&—R/p])

k=0 i=1

—_

Qo
| /\ T D

p
.
3 air (eév+t/p}’¢[Q+R/p]>_

i=M

~
Il
S

Proof From the adjoint equation (22) we have

p
k+R k+R k+R i
a (ew /P}’¢[Q+R/p]> =2 (€{W+ /p}) ~ Y ax (ev /P}’¢[Q+J/p])'

j=M
(51)
From Lemma 4,
( k+R/p} ¢[Q+R/p])
0 R-1
R k+i
( {Q+R/p) ¢[Q+R/p]) % ain (e{W+z/p}’¢|Q+R/pl)
k=0 i=1
g (k+i/p}
> ain (el glORIN) (52)
k=0 i=M
Combining (51) and (52) proves the result.
O

Lemma 6 (Sum of RHS of the adjoint equations over iterations and subdomains) Let
1<M<p+1and0 < Q < K. Then,

O ld 0 M-I
:ZZEQ( k+l/p}> Y a (e 0+i/p) ¢[Q+z/p])+z _L,lQ( k+,/,,>
k=0i=l i=M k=0 i—1
0 M-1 p ‘
Y a (i, giein)
k=0 i=1 j=M
0o-1 p i-1
ki ,
> Z“z/(e{vv+’/”},¢[Q+f/”]). (53)
k=0 i=M+1 j=
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Proof The proof is by induction on M.
[I] For M = p + 1 the right-hand side of (53) is simply /.
[II] Assume that the expression holds for some 2 < M < p.

[TIT] To show the result is true for M = p — 1, we isolate terms involving
e{k+(M—1)/P}
w .

p 0 M-2
_ Z ai (e{ +l/P}’¢[Q+l/p]> 4 Z rQ( k+l/17}>
i=M k=0 i=1
Q M-2 p
S Y 3 (e )
k=0 i=1 j=M
o-1 p i-l 0
k k+(M—1
3 Z“ ({+z/p} ¢[Q+'/p])+2f571 (e{wﬂ )/p})
k=0 i=M+1 j= k=0
S k+(M—1
_Z Z ay—1; ( {k+(M—=1)/p} ¢[Q+]/p) (54)
k=0 j=M

From Lemma 5,

Y 0 p
2 : k+(M—1 k+(M—1 i
T}g_l <€{w ( )/p}) _ Z Z an—1; (ffiy ( )/P}’¢[Q+_//p])
k=0 j=M

1

k=0
0 M2
= ay_ (ei)QJr(Mfl)/p}’ ¢[Q+(Mfl)/p]> Z i v (e$+i/P}’¢[Q+(M71)/p]>
k=0 i=1
o-1 p
> dine ( tketi/p}  glO+(M~ 1)/pJ> (55)
k=0 i=M
Combining (55) with (54),
p ) Q0 M-2
=Y ai( {Q+l/P}’¢[Q+z/p])+Z TQ( k+l/p}>
i=M—1 k=0 i=1
Q M2 p
k+i i
XX D (g
k=0 i=1 j=M-1
-

1 p i )
ai (e{v’;“/l’}, ¢[Q+.//p]) _
-1

1

x~
||

0i=Mj
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Corollary 1 Let 0 < Q < K. Then we have

Q »r . P ) ‘ o-1 p Ll tend
3y 2 (e{w+z/p}> =Y (e{l)Q+t/17}’¢[Q+z/p]) +3 50 <€i/v+t/17}>.
k=0 i=1 i=1 k=0 i=1

(56)
Proof Set M = 1 in Lemma 6 to get,

o p p )
> () = Y (. gl
k=0 i=1 i=1

0-1 p i-1
Z a; ( k+i/p) ¢[Q+J/p)
k=0 i=2 j=1
14 o-1 p )
_ Z (e{ +i/p) ¢[Q+i/p]> _ ZriQ—l (e{vl;ﬂ/p})
i=1 k=0 i=2
p o-1 p )
_ Z ( {O+i/p) ¢[Q+l/p]> ZtiQ—l (ey‘j-i-t/p})’
i=1 k=0 i=1
(57)
where we use (23) and note that 7, (v) =0forQ <K —1. O
6.2.3 Proof of Theorem 3
Proof From Lemma 2 and (23),
K-1 p p K—-1 p
{K} {k+i/p} K—1 ( {k+i/p}
(87 0) = 22500 (™) = o e (™)
k=0 i=1 j=1 k=0 i=1
Applying Corollary 1 yields
p K-2 p
(e{K},W> Zaz( {K—1+4i/p} Pk 1+l/p]) _ Z.L,IK 2( k+t/l7})
i=1 k=0 i=1

Repeated application of Corollary 1 yields

>

(e{K}7 lﬁ) Xp:az ( {k+t/p k+i/p]). (58)

=0 i=1

=~
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Now,

a; (egm/m’ ¢[k+i/p]> —a (u{k+i/p} _ ylkti/p), ¢lk+,-/m>
=g (ﬁ{k+i/p}’ ¢[k+i/p1) —a (ﬁ{k+i/p}’ ¢[k+i/p])

=1 (¢[k+i/p1> —a (i}[k+i/p)’ ¢[k+i/p1) =R (ﬁlk+i/p}’ ¢[k+i/p])_

(59)
Combining (58) and (59) leads to
-1 p
(,/,, WK U{K}) =Y 3 & (,7{k+i/p}, ¢[k+i/17]) . (60)
k=0 i=1
The discrete equivalent of (9) is
R; (F/“‘“/P}, v) =1 (v) — a; (ﬁ“‘““’h v), Vo € Vipo. 61)

Substituting v = mipkti/pl ¢ Vi.no in (61) and subtracting the result from (60)
completes the proof.
O

6.3 Details of analysis of additive Schwarz algorithm

6.3.1 Reformulation of the algorithm

Similar to the multiplicative case in Sect. 6.2, the basic additive algorithm 2 is not
amenable to adjoint based analysis since the affine solution space H 51((91') changes

at every iteration. We reformulate the algorithm by again using a standard lifting
technique to account for this. We set

gl e K on (62)

1

where now w1 ¢ Hé (£2;). This results in Algorithm 6.

i
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Table 15 Additive Schwarz: notation for different solutions and their spaces

Notation Formula Space Meaning

u H& (£2) True solution

ulk) H& (£2;) Global analytic solution at iteration k

vk Vi Global discrete solution at iteration k

ﬁl{k} H 5]{ (£2) Analytic solutions on £2; at iteration k

ﬁi{k} Vlk h Discrete solutions on £2; at iteration k

w}k} H& (£2;) Analytic solns on £2; with homogen. bcs at iteration k
w ik} Vino Discrete solns on £2; with homogen. bcs at iteration k
otk u— Uk H& (£2) Total error

e}k] u— ulk} HO1 (£2) Global iteration error at iteration k

e%{} ulky — ik} H(} (£2) Global discretization error at iteration k

ewi wl{k} — Wi[k} H(} (£2;) Discretization error on §2; with homogen. bcs at it. k

Algorithm 6 Reformulated overlapping additive Schwarz

Given 1'% defined on 2
fork=0,1,2,...,K—1 do
fori =1,2,...,p do

Find w* ™ ¢ K (£2)) such that
1
a; (w}k+ }, v) =1;(v) —a; (u{k), v) , Yve Hol (£2). (63)
Let
)4 {k+1} >
~ ~ h R 2;,
w1l = 1k o Zﬂiwi[kH} where Hiwl{k_’_” B on 17 (64)
i=1 0, on 2\£2;.
end for
end for

There is an equivalent reformulation of the discrete Algorithm 6 and we denote the
unknown solutions as W} belonging to the spaces V; .0 C HO1 (£2;). These solutions
are defined formally but are not computed in practice. Equation (64), which shows
that u'*+1) is a weighted sum of all previous solutions to (63), results in very different
adjoint problems for additive Schwarz (equations (25)) from those for multiplicative
Schwarz (equations (22) and (23)).

To distinguish between different solutions (true, analytical, discrete) we use the
notation in Table 15.
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6.3.2 Technical lemmas

Let e%} = w — Wk} By (64) we have

=

k k—1
e{D} = e{D } Z ewl (65)

We apply lemma 1 to arrive at
k b : k
(e ) = (e{D}, Zw) =2 (eBlwi) - (66)
i=1 i=1

Lemma 7 (Error in Qol in terms of discretization errors with homogeneous bcs)
The discretization error in the Qol is

(c59) = XX (ew).

k=1i=1 j=1

Proof Using (65), we have for a fixed j

(1), = (70ws) o (),

This is a recursive relation involving é{X}. Unrolling the recursion leads to

K
() = 0 (elhov),

k=1 i=1

—_

Summing over all j = 1, ..., p and using (66),

O
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Proof By (65), we have
p
a; (6%{}, U) = a; (6%{71}, U) +7 Za,'j (ei/,lj},j’ U)
=a; (e%‘ B )—i—tZa,] (eW/, ),

since ey is the identity on subdomain j. This is a recursive relation involving

a; (e{[,;}, ) Unrolling this recursion and using the fact that e{[())} = 0 proves the result.
(]

Lemma 9 (Bilinear form with local discretization errors with homogeneous bcs)

P
o (e = R (O ) — £ 3 3y (el ).
m=1 j=1
Proof By definition of ely ,
o el = o1 o) o (1)
— o (w1 M)
4 (uz{k_l}’d)i ) (W{k} U{k 1} ¢[k]>+al< lk 1}’¢i[k])'

Using (62) followed by (63) and definition of ¢!y’

ai () o) = o (T 040) = (w0 010) -y (T, 011) -y (01, )
R (1, M) = a; (ely ™" 611).

By Lemma 8,

14
k k ~{k k k
a; (ei,v}‘i,(ﬁl.[ ])zRi (Ul.{} []) T E al]< g,"}], [])
j=1

m=1

6.3.3 Proof of Theorem 4
Proof By (25),
K p
(lﬁ, e{DK}) =T Z Z Z (’S”J’ ey, z)
k=1 i=i j=1
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K p p K
k k k 1
=32 e (Wi o) + e 20 3 a (e o))
k=1 i=1 j=11=k+1
By Lemma 9
K »p
k k
(') = 23 o (7. 61
k=1 i=1
k—1 p K
k k 1
o Y ) o3 3 e (e o)
m=1 j=1 j=11=k+1

Application of Galerkin orthogonality, similar to its use in the proof in Sect. 6.2.3,
leads to

K p k=1 p
() = 0 (B0 i) = 32 3 (el )
k=1 i=1 m=1 j=1
P K
k l
+r 0 Y ai (el o)
j=11=k+1
The result follows if
K p k-1 p K p K
{m}  [k] {k} [7]
Y Y a (e o) =200 Y ay (eh o).
k=1 j=1m=1i=1 k=1 i=i j=1I=k+1

where we interchanged the i and j loop indices on the left hand side. This follows if

~
|
—_

M =

(W}t’¢[k)=§: ZK: aiy (el 9/") (67)
=k+

k=11 1

~
Il
Il

_

1m

To see why this is true, let Abea K x K strictly lower triangular matrix where the
non-zero entries are given by Ay, = a;j ( ew > ¢[k]> for m < k. Then the left hand

side of (67) is the sum of the entries of A by first summing each row while the right
hand side of (67) is the sum of the entries of A by first summing each column.
O

7 Conclusions and future directions

We develop an adjoint based a posteriori error analysis to evaluate the discretization
and iteration errors for a given quantity of interest when solving boundary value
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problems using overlapping domain decomposition employing either multiplicative
or additive Schwarz iteration. The additional expense of formulating and solving the
necessary sequence of adjoint problems both recommends and enables a two stage
approach to constructing efficient solution strategies. In this approach, a “stage 1”
solution is computed on a relatively coarse discretization employing a small number
of iterations or small overlap between subdomains. The error in the quantity of interest
is determined for the stage 1 solution and the balance of discretization and iteration
errors, and the distribution of discretization error between subdomains, is determined.
These guide the solution strategy for a more accurate “stage 2 solution in terms of
the localized refinement of the finite element mesh and the choices of overlap and
number of iterations. Only very simple refinement strategies were employed here. A
number of more sophisticated refinement strategies suggest themselves and are worthy
of study, but the interaction between discretization and iteration errors can be subtle
and advanced refinement strategies remain a topic for future research.

The adjoint based analysis in this article has focused exclusively on linear prob-
lems. Adjoint based analysis can be extended to nonlinear problems, see [22,34]. A
consideration of nonlinear problems is therefore an obvious and relatively immediate
extension of this work.

A more serious extension is to address initial boundary value problems. In combina-
tion with earlier work on parallel methods for initial value problems [11], the current
analysis should enable the development of an a posteriori analysis for a numerical
method that is parallel in both space and time. Such an analysis would again enable
an efficient two stage solution approach, using the distribution of various sources of
error estimated from an initial coarse solution to inform the discretization choices for
a second “production” computation.

Acknowledgements J. Chaudhry’s work is supported by the NSF-DMS 1720402. S. Tavener’s work is
supported by NSF-DMS 1720473. D. Estep’s work is supported by NSF-DMS 1720473.

References

1. Arbogast, T., Estep, D., Sheehan, B., Tavener, S.: A posteriori error estimates for mixed finite element
and finite volume methods for problems coupled through a boundary with nonmatching grids. IMA J.
Numer. Anal. 34(4), 1625-1653 (2014)

2. Arbogast, T., Estep, D., Sheehan, B., Tavener, S.: A posteriori error estimates for mixed finite ele-
ment and finite volume methods for parabolic problems coupled through a boundary. SITAM/ASA J.
Uncertain. Quant. 3(1), 169-198 (2015)

3. Bangerth, W., Rannacher, R..: Adaptive Finite Element Methods for Differential Equations. Birkhéuser,
(2013)

4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element
methods. Acta Numerica 10(1), 1-102 (2001)

5. Butler, T., Estep, D., Sandelin, J.: A computational measure theoretic approach to inverse sensitivity
problems II: A posteriori error analysis. SIAM J. Numer. Anal. 50, 22-45 (2012)

6. Carey, V., Estep, D., Johansson, A., Larson, M., Tavener, S.J.: Blockwise adaptivity for time dependent
problems based on coarse scale adjoint solutions. SIAM J. Sci. Comput. 32(4), 2121-2145 (2010)

7. Carey, V., Estep, D., Tavener, S.J.: A posteriori analysis and adaptive error control for operator decom-
position solution of coupled semilinear elliptic systems. Int. J. Numer. Meth. Eng. 94(9), 826-849
(2013)

@ Springer



J.H. Chaudhry et al.

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

. Chaudhry, J., Burch, N., Estep, D.: Efficient distribution estimation and uncertainty quantification

for elliptic problems on domains with stochastic boundaries. STAM/ASA J. Uncertain. Quant. 6(3),
1127-1150 (2018)

. Chaudhry, J.H., Estep, D., Ginting, V., Tavener, S.J.: A posteriori analysis for iterative solvers for

nonautonomous evolution problems. STAM/ASA J. Uncertain. Quant. 3(1), 434-459 (2015)
Chaudhry, J.H.: A posteriori analysis and efficient refinement strategies for the Poisson-Boltzmann
equation. STAM J. Sci. Comput. 40(4), A2519-A2542 (2018)

Chaudhry, J.H., Estep, D., Tavener, S., Carey, V., Sandelin, J.: A posteriori error analysis of two-stage
computation methods with application to efficient discretization and the parareal algorithm. SIAM J.
Numer. Anal. 54(5), 2974-3002 (2016)

Chaudhry, J.H., Estep, D., Ginting, V., Shadid, J.N., Tavener, S.J.: A posteriori error analysis of IMEX
multi-step time integration methods for advection-diffusion-reaction equations. Comput. Methods
Appl. Mech. Eng. 285, 730-751 (2015)

Chaudhry, J.H., Estep, D., Ginting, V., Tavener, S.J.: A posteriori analysis of an iterative multi-
discretization method for reaction-diffusion systems. Comput. Methods Appl. Mech. Eng. 267, 1-22
(2013)

Chaudhry, J.H., Estep, D., Gunzburger, M.: Exploration of efficient reduced-order modeling and a
posteriori error estimation. Int. J. Numer. Meth. Eng. 111(2), 103-122 (2017)

. Chaudhry, J.H., Shadid, J.N., Wildey, T.: A posteriori analysis of an IMEX entropy-viscosity formu-

lation for hyperbolic conservation laws with dissipation. Appl. Numer. Math. 135, (2019)

Collins, J., Estep, D., Tavener, S.J.: A posteriori error estimates for explicit time integration methods.
BIT Numer. Math. (2014)

Collins, J.B., Estep, D., Tavener, S.J.: A posteriori error estimation for the Lax—Wendroff finite differ-
ence scheme. J. Comput. Appl. Math. 263, 299-311 (2014)

Collins, J.B., Estep, D., Tavener, S.J.: A posteriori error estimation for a cut cell finite volume method
with uncertain interface location. Int. J. Uncertain. Quant. 5(5), (2015)

Dryja, M., Widlund, O.B.: An additive variant of the Schwarz alternating method for the case of many
subregions. Technical Report 339, also Ultracomputer Note 131, Department of Computer Science,
Courant Institute (1987)

Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential
equations. Acta Numerica 4, 105-158 (1995)

Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential
equations. SIAM J. Numer. Anal., 1-48, (1995)

Estep, D.: Error estimates for multiscale operator decomposition for multiphysics models. In: Fish,
J. (ed.) Multiscale Methods: Bridging the Scales in Science and Engineering, pp. 305-390. Oxford
University Press, Oxford (2009)

Estep, D., Ginting, V., Tavener, S.J.: A posteriori analysis of a multirate numerical method for ordinary
differential equations. Comput. Methods Appl. Mech. Eng. 223, 10-27 (2012)

Estep, D., Holst, M., Larson, M.: Generalized Green’s functions and the effective domain of influence.
SIAM J. Sci. Comput. 26(4), 1314-1339 (2005)

Estep, D., Malqvist, A., Tavener, S.J.: Nonparametric density estimation for randomly perturbed elliptic
problems I: Computational methods, a posteriori analysis, and adaptive error control. SIAM J. Sci.
Comput. 31(4), 2935-2959 (2009)

Giles, M.B., Siili, E.: Adjoint methods for pdes: a posteriori error analysis and postprocessing by
duality. Acta Numerica 11(1), 145-236 (2002)

Houston, P., Senior, B., Siili, E.: hp-Discontinuous Galerkin finite element methods for hyperbolic
problems: error analysis and adaptivity. Int. J. Numer. Meth. Fluids 40(1-2), 153-169 (2002)
Jiranek, P., Strakos, Z., Vohralik, M.: A posteriori error estimates including algebraic error and stopping
criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567-1590 (2010)

Johansson, A., Chaudhry, J.H., Carey, V., Estep, D., Ginting, V., Larson, M., Tavener, S.J.: Adaptive
finite element solution of multiscale pde-ode systems. Comput. Methods Appl. Mech. Eng. 287, 150—
171 (2015)

Keyes, D.E., Saad, Y., Truhlar, D.G. (eds.): Domain-Based Parallelism and Problem Decomposition
Methods in Computational Sciences and Engineering. SIAM, New York (1995)

Kron, G.: A set of principles to interconnect the solutions of physical systems. J. Appl. Phys. 24(8),
965-980 (1953)

@ Springer



A posteriori error analysis for Schwarz overlapping...

32.

33.

34.

35.

36.

37.
38.

39.

40.

Lions, P.L.: On the Schwarz alternating method III: a variant for nonoverlapping subdomains. In: Third
international Symposium on Domain Decomposition Methods for Partial Differential Equations, vol 6,
pp. 202-223. Philadelphia, SIAM (1990)

Lions, P--L.: On the Schwarz alternating method. I. SIAM, Philadelphia (1988)

Marchuk, G.I., Agoshkov, V.I., Shutyaev, V.P.: Adjoint Equations and Perturbation Algorithms in
Nonlinear Problems. CRC Press, New York (1996)

Mathew, T.P.A.: Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations. Lecture Notes in Computational Science and Engineering, vol. 61. Springer, Berlin (2008)
Papez, J., Strakos, Z., Vohralik, M.: Estimating and localizing the algebraic and total numerical errors
using flux reconstructions. Numer. Math. 138(3), 681-721 (2018)

Przemieniecki, J.S.: Matrix structural analysis of substructures. AIAA J. 1(1), 138-147 (1963)
Smith, B.F,, Bjgrstad, P.E., Gropp, W.: Domain Decomposition: Parallel Multilevel Methodsfor Elliptic
Partial Dierential Equations. Cambridge University Press, Cambridge (1996)

Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory, volume 34 of
Springer Series in Computational Mathematics. Springer, (2004)

Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Tech-
nical report, Habilitation, Department of Mathematics, Augsburg (1999)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	A posteriori error analysis for Schwarz overlapping domain decomposition methods
	Abstract
	1 Introduction
	2 Overlapping Schwarz domain decomposition
	2.1 Multiplicative Schwarz overlapping domain decomposition
	2.2 Additive Schwarz overlapping domain decomposition
	2.3 Finite element discretizations

	3 A posteriori analysis for the finite element approximation computed using Schwarz algorithms
	3.1 The total error and its components
	3.1.1 The total error
	3.1.2 Discretization and iteration errors
	3.1.3 Weak residuals

	3.2 A posteriori error analysis of discretization error for multiplicative Schwarz
	3.2.1 Adjoint problems
	3.2.2 Discretization error

	3.3 A posteriori analysis of the discretization error for additive Schwarz
	3.3.1 Adjoint problems for discretization error
	3.3.2 Discretization error

	3.4 Solution algorithms

	4 Numerical examples for multiplicative Schwarz
	4.1 Error estimates and effectivity ratios
	4.2 Poisson's equation
	4.2.1 2 times1 subdomains
	4.2.2 4 times1 subdomains
	4.2.3 4 times4 subdomains

	4.3 Cancellation of error
	4.4 A convection–diffusion problem
	4.4.1 4 times1 configuration
	4.4.2 1 times4 configuration

	4.5 Two stage solution strategy for Poisson's equation
	4.5.1 Dominant discretization error 
	4.5.2 Dominant iteration error


	5 Numerical examples for additive Schwarz
	5.1 Estimates for Poisson's equation
	5.1.1 2 times1 subdomains
	5.1.2 4 times1 subdomains
	5.1.3 4 times4 subdomains

	5.2 A convection–diffusion problem
	5.3 Two stage solution strategy for Poisson's equation
	5.3.1 Dominant discretization error
	5.3.2 Dominant iteration error


	6 Details of analysis: algorithm reformulation, technical lemmas and proofs
	6.1 Analogy with algebraic Gauss-Seidel iteration
	6.2 Details of analysis of multiplicative Schwarz algorithm
	6.2.1 Reformulation of the algorithm
	6.2.2 Technical lemmas
	6.2.3 Proof of Theorem 3

	6.3 Details of analysis of additive Schwarz algorithm
	6.3.1 Reformulation of the algorithm
	6.3.2 Technical lemmas
	6.3.3 Proof of Theorem 4


	7 Conclusions and future directions
	Acknowledgements
	References




