
BIT Numerical Mathematics
https://doi.org/10.1007/s10543-020-00825-0

Error estimation and uncertainty quantification for first
time to a threshold value

Jehanzeb H. Chaudhry1 · Donald Estep3 · Zachary Stevens1 ·
Simon J. Tavener2

Received: 11 February 2020 / Accepted: 22 July 2020
© Springer Nature B.V. 2020

Abstract
Classical a posteriori error analysis for differential equations quantifies the error in a
Quantity of Interest which is represented as a bounded linear functional of the solution.
In this workwe consider a posteriori error estimates of a quantity of interest that cannot
be represented in this fashion, namely the time at which a threshold is crossed for the
first time. We derive two representations for such errors and use an adjoint-based a
posteriori approach to estimate unknown terms that appear in our representation. The
first representation is based on linearizations using Taylor’s Theorem. The second rep-
resentation is obtained by implementing standard root-finding techniques. We provide
several examples which demonstrate the accuracy of the methods. We then embed
these error estimates within a framework to provide error bounds on a cumulative
distribution function when the parameters of the differential equations are uncertain.
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1 Introduction

There are many situations in which the purpose of a computation is to determine
when a functional of the solution to (1) achieves a certain event, for example when
a temperature or a species concentration reaches a specified level, the wave height
of a tsunami crosses a threshold at a certain location, an orbiting body completes
a revolution etc. In this article we perform a posteriori analysis for the error in the
computed value and computed probability distribution of the time at which a threshold
value is realized for the first time in the context of ordinary differential equations
(ODEs). More precisely, consider a system of first order ODEs

ẏ = f (y, t; θ), t ∈ (0, T ], y(0) = y0, (1)

where ẏ ≡ dy(t)
dt , f : Rm × R × R → R

m is a Lipschitz continuous function and θ

is a deterministic or random parameter. Let S(y(t)) be a linear functional of y(t) and
Q(y) be the first time t ∈ (0, T ] at which a threshold S(y(t)) = R is crossed. We
assume such a t < T exists. That is,

Q(y) := min
t∈(0,T ] arg(S(y(t)) = R). (2)

Hence, we refer to this as a non-standard QoI in the context of a posteriori error
analysis. An example of this non-standard QoI for the Lorenz system (see Sect. 2.1)
is illustrated in Fig. 1a.

Standard adjoint-based a posteriori error analysis seeks to estimate the error in
a quantity of interest (QoI) that can be expressed as a bounded functional of the
solution and is widely used for a broad range of numerical methods [1,4,6,7,9–13,15–
19,22,23,28,30,32,34,35,40]. In these cases, the error analysis involves computable
residuals of the numerical solution, the generalizedGreen’s function solving an adjoint
problem and variational analysis [1,7,31,34,35]. This work is briefly summarized for
initial value problems in Sect. 3.2. It is usually employed within a finite element
(variational) solution strategy, but can also be applied to finite difference and finite
volumemethods by recasting them as equivalent finite elementmethods [16,20,22–25,
29,33,41]. Nonlinear QoIs are treated by first linearizing around a computed solution
e.g. see [7,10,21].

Thegoal of the currentwork is to derive accurate error estimates for the non-standard
QoI given by equation (2) that cannot be expressed as a bounded linear functional
of the solution y. In addition, we use the result to bound the error in an empirical
distribution function for the nonstandard QoI corresponding to a stochastic parameter
θ . This is similar to the a posteriori analysis for the error in CDF for standard QoIs
for PDEs with random coefficients and random geometries appearing in [14,36,37].
The situation is more complex for a stochastic differential equation when seeking to
compute the expected value of a functional of the solution at an “exit time” τ , when
the solution first leaves a specified region, since the continuous solution trajectory
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may leave and re-enter the specified region undetected within a single time-step of the
numerical integration scheme. Discussion of this problem appears in, e.g., [8,26,39].

We first perform a a priori error analysis for the non-standard QoI given by equation
(2) assuming the initial value problem (1) is solved using a numerical method with
O(h p) convergence rate and show that the error in the non-standard QoI converges at
the same asymptotic rate. The a posteriori analysis for the error in the non-standard
QoI appears in Sect. 3. The first approach in Sect. 3.3 takes advantage of linearization
via Taylor series and employs auxiliary quantities of interest to obtain a formula that
directly estimates the error in the QoI. Our second approach, in Sect. 3.4 proceeds by
using different root findingmethods and again employs auxiliary quantities of interest.
Numerical results supporting the accuracy of the error estimates for a deterministic
system appear in Sect. 4. Details of the error estimate for the CDF when θ is a random
variable are provided in Sect. 3.6 and the bounds are computed for several examples
in Sect. 5.

2 A priori analysis

In this section, we present a general a priori result regarding the convergence of
the approximate time that a threshold condition is met as the discretization is refined.
Assume a continuous numerical solution, Y (t), of order p is computed to approximate
the solution to the initial value problem (1). That is,

‖y(t) − Y (t)‖Rm ≤ Chp, (3)

for all t ∈ [0, T ], for some constantC > 0.Here ‖·‖Rm denotes the standard Euclidean
norm in Rm and h denotes the step-size used to compute the numerical solution Y (t).
For a given value of the threshold R, define tt and tc such that

S(y(tt )) = R = S(Y (tc)), (4)

where tt = Q(y) is the true value of the QoI (2), and tc = min
t∈(0,T ] arg(S(Y (t)) = R) is

a computed approximation to the QoI. Here, we assume that S satisfies the Lipschitz
condition in y,

|S(y1(t)) − S(y2(t))| ≤ K‖y1(t) − y2(t)‖Rm , (5)

for some constant K > 0. Define the true error in the QoI, eQ , to be

eQ = tt − tc. (6)

Theorem 1 (Convergence of the non-standard QoI) Assume there is a numerical
approximation to the solution of (1) satisfying (3), and the functional S(y(t)) is con-
tinuously differentiable with respect to t in a neighborhood, B, which contains both
the true QoI, tt , as well as its numerical approximation, tc. Further assume there exists
an M > 0 such that
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∣
∣
∣
∣

dS

dt
(y(t))

∣
∣
∣
∣
> M, (7)

for all t ∈ B. Then the error eQ in the computed QoI, defined by (6), satisfies the
bound,

eQ ≤ Ĉh p,

for some constant Ĉ which depends on M,C and K .

Proof Given the true solution y(t) to (1), we consider the functional S as an explicit
function of t, i.e.,

S(y) = S(y(t)) = S(t). (8)

Since S(y(t)) is continuously differentiable in t , for t ∈ B, by the Inverse Function
Theorem (see [42]) we have t = t(S) for S in the image of B, and

dt

dS
(S(y(t))) = 1

dS
dt (t(S))

. (9)

Applying the Mean-value Theorem (see [2]) we have, for some ξ between S(y(tt ))
and S(y(tc)),

tt − tc = dt

dS
(ξ) [S(y(tt )) − S(y(tc))] = 1

dS
dt (t(ξ))

[S(y(tt )) − S(y(tc))] . (10)

Adding and subtracting the term S(Y (tc)) and recalling that S(y(tt )) = R = S(Y (tc)),

tt − tc = 1
dS
dt (t(ξ))

[S(y(tt )) − S(y(tc)) + S(Y (tc)) − S(Y (tc))] ,

= 1
dS
dt (t(ξ))

[S(Y (tc)) − S(y(tc))] .
(11)

Taking norms (absolute values for scalars), and using (7) and (5),

|tt − tc| =
∣
∣
∣
∣
∣

1
dS
dt (t(ξ))

∣
∣
∣
∣
∣
|S(Y (tc)) − S(y(tc))|

≤ 1

M
K ‖y(tc) − Y (tc)‖Rm ≤ 1

M
KChp.

(12)

Defining Ĉ := K C
M gives the desired result. ��

Remark 1 Theorem 1 and (12) implies that the approximate QoI tc converges to tt with
at least the same rate as the numerical solution Y (t). Further, the conclusion that the
constant in the final bound (12) is inversely proportional to the lower bound on the
absolute value of the derivative accords with the intuition developed through standard
root-finding techniques such as Newton’s method.
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Fig. 1 aReference solution and QoI for the Lorenz system (13). bConverge rates of the error in the solution
and the error in the QoI. The numerical solution Y and QoI tc , are computed using the cG(1) method

2.1 Example: Lorenz system

To illustrate the convergence results in Theorem 1, we consider the Lorenz system,

ẏ1 = σ(y2 − y1),

ẏ2 = r y1 − y2 − y1y3,

ẏ3 = y1y2 − by3,

⎫

⎪⎬

⎪⎭

t ∈ (0, 3] with

⎧

⎪⎨

⎪⎩

y1(0) = 1,

y2(0) = 0,

y3(0) = 24,

(13)

and setσ = 10, r = 28, and b = 8
3 (see Sect. 5.2 formore details of this example).We

define the functional S(y(t)) = y1(t) and set the threshold value R = −10. Figure
1a illustrates an accurate reference solution as well as the threshold value and the
QoI. Figure 1b shows the convergence rates for the error in the solution and the error
in the non-standard QoI when using the cG(1) method for computing the numerical
solution. The cG(1) method (see Sect. 3.1 for details) has second order accuracy and
this convergence rate is observed both for the solution and the non-standard QoI.

3 A posteriori error analysis

The aim is to derive an accurate a posteriori error estimate η ≈ eQ . The accuracy of
the error estimate is quantified by the effectivity ratio,

ρeff = η

eQ
. (14)

An effectivity ratio close to one indicates an accurate error estimate. We let ε denote
the error in the solution to (1), i.e.,

ε(t) = y(t) − Y (t). (15)
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Fig. 2 a Graph showing true functional S(y(t)), chosen value of R, and true value of QoI for the example
in Sect. 4.1. b Close up of true QoI and numerical QoI for the example in Sect. 4.1, solved using the
Crank–Nicolson scheme

3.1 Integration schemes

For simplicity, we consider a continuous FEM approximation Y (t), t ∈ [0, T ], with
approximate functional S(Y (t)) as illustrated in Fig. 2. For each problem the linear
functional S(y(t)) and the value of R are specified, and the problems are solved using
two different numerical schemes: (i) a variational cG(1) finite element scheme using 40
equally-sized elements and high-orderGaussian quadrature, and (ii) a Crank–Nicolson
finite difference scheme with 21 equally-spaced nodes. However, we stress that the
analysis can be extended to awide variety of numerical methods for which equivalence
to a finite element method can be established, as discussed in Sect. 1.

Given the partition 	 = {0 = t0, t1, . . . , tN = T } define the space,

Vq = {w ∈ C0([0, T ];Rm) : w|In ∈ Pq(In), 1 ≤ n ≤ N },

where Pq(In) is the space of all polynomials of degree q or less on In := [tn, tn+1].
The continuous Galerkin finite element method of order q + 1, denoted cG(q), for
solving (1) is defined interval-wise by: Find Y ∈ Vq such that

∫ tn+1

tn
Ẏ (t) · v(t) dt =

∫ tn+1

tn
f (Y , t) · v(t)dt, ∀v ∈ Pq−1(In), (16)

for n = 0, 1, 2, . . . , N − 1. The cG(q) schemes are variational and hence well suited
for adjoint based analysis. However, the Crank–Nicolson is also nodally equivalent to
a variational scheme, see Theorem 5 in “Appendix A”.

3.2 Adjoint-based a posteriori error analysis for standard QoIs

We derive error estimates for the nonstandard QoI in terms of expressions involving
errors in linear functionals of the numerical solution. This section presents a standard
a posteriori error estimate for a linear functional of a solution. Let (·, ·) denote the
inner-product pairing in R

m .
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Theorem 2 (Adjoint-based a posteriori error analysis for IVPs)Given a finite element
solution Y(t) of (1) and ψ ∈ R

m, the error (ψ, ε(t̂)) at t̂ ∈ (0, T ] is represented as

(ψ, ε(t̂)) = (ψ, y(t̂)) − (ψ,Y (t̂)) =
∫ t̂

0
(φ, [ f (Y , t) − Ẏ ]) dt, (17)

where φ is the solution to the adjoint equation

{

−φ̇ = fy,Y (t)
T
φ, t ∈ [0, t̂),

φ(t̂) = ψ,
(18)

with

fy,Y (t) =
∫ 1

0

d f

dz
(z, t)ds (19)

and z = sy + (1 − s)Y ,

Proof The proof is standard see [28]. ��
Note that the adjoint equation (18) is solved backward in time from t̂ to 0.

3.3 A posteriori analysis for the non-standard QoI based on Taylor series

We denote the error in the non-standard QoI as eQ = tt − tc.

Theorem 3 For an approximate solution Y (t) to (1) and a bounded linear functional
S(y(t)) on (H1((0, T ]))m, if the function f (y, t) is continuously differentiable in t ,
then the error in the QoI (2) is given by

eQ = S(Y (tc)) − S(y(tc)) − R1(tc, tt )

∇y S(Y (tc)) · f (Y (tc), tc) + ∇y[∇y S(Y (tc)) · f (Y (tc), tc)] · (y(tc) − Y (tc)) + R2(Y (tc))
,

(20)

where the remainder terms R1(tt , tc) and R2(tc) satisfy

R1(tt , tc) = 1

2

d2S

dt2
(y(ξ))(tt − tc)

2, (21)

for some ξ between tt and tc and

R2(Y (tc)) = ||y(tc) − Y (tc)||H2(Y (tc)), for H2 with lim
Y (tc)→y(tc)

H2(Y (tc)) = 0,

and || · || denotes the Euclidean norm on Rm.
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Proof From the definition of the functional S(y(t)) and R,

S(Y (tc)) = R = S(y(tt )). (22)

Expanding S(y(tt )) using Taylor’s Theorem with remainder centered at tc (e.g. see
[2]) in (22),

S(Y (tc)) = S(y(tc)) + dS

dt
(y(tc))(tt − tc) + R1(tc, tt ), (23)

Applying the chain-rule to the derivative in (23) and using (1) gives

S(Y (tc)) = S(y(tc)) + [∇y S(y(tc)) · f (y(tc), tc)
]

(tt − tc) + R1(tc, tt ). (24)

Adding and subtracting the term ∇y S(Y (tc)) · f (Y (tc), tc) inside the square brackets
gives

S(Y (tc)) = S(y(tc))

+ [∇y S(Y (tc)) · f (Y (tc), tc) + (∇y S(y(tc)) · f (y(tc), tc)

−∇y S(Y (tc)) · f (Y (tc), tc)
)]

(tt − tc)

+ R1(tc, tt ).

(25)

Using the multi-variable Taylor’s Theorem with remainder centered at Y (e.g. see [3])
gives

∇y S(y(tc)) · f (y(tc), tc) − ∇y S(Y (tc)) · f (Y (tc), tc)

= ∇y[∇y S(Y (tc)) · f (Y (tc), tc)] · (y(tc) − Y (tc)) + R2(Y (tc)), (26)

where the remainder is of the form

R2(Y (tc)) = 1

2
(Y (tc) − y(tc))

�Hy(∇y S(ξ) · f (ξ, tc))(Y (tc) − y(tc)), (27)

for some ξ between y(tc) and Y (tc), and where Hy is the Hessian

(Hy)i, j = ∂2

∂ yi∂ y j
.

Substituting (26) in to (25) and rearranging to isolate the error of the QoI, results in

(tt − tc) =
S(Y (tc)) − S(y(tc)) − R1(tc, tt )

∇y S(Y (tc)) · f (Y (tc), tc) + ∇y[∇y S(Y (tc)) · f (Y (tc), tc)] · (y(tc) − Y (tc)) + R2(Y (tc))
.

(28)

��
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Corollary 1 For functionals S(y(t), t) that are explicitly dependent on t,

eQ =
S(Y (tc), tc) − S(y(tc), tc)−R1(tc, tt )

∂S

∂t
(y(tc), tc)+∇y S(Y (tc), tc) · f (Y (tc), tc)+∇y [∇y S(Y (tc), tc) · f (Y (tc), tc)] · (y(tc) − Y (tc))+R2(Y (tc)))

.

(29)

Where the partial derivative of S with respect to t appears from the chain-rule applied
to (23).

Proof If S depends explicitly on t , then (24) becomes

S(Y (tc), tc) = S(y(tc), tc) +
[

∇y S(y(tc), tc) · f (y(tc), tc) + ∂S

∂t
(y(tc), tc)

]

(tt − tc)

+ R1(tc, tt ).

The remainder of the proof mimics the proof of Theorem 3 retaining this additional
partial derivative. ��

Note that functionals S(y(t), t) that depend directly on t require special treatment
of the term ∂S

∂t (y(tc), tc) in (29). More precisely, one can use another application of
Taylor’s Theorem centered at Y (tc) in order to make this term computable.

Corollary 2 For functionals of the form S(y(t)) = v · y(t), for some v ∈ R
m,

∇y S(y(t)) = v, and (20) becomes

eQ = −v · (y(tc) − Y (tc)) − R1(tc, tt )

v · f (Y (tc), tc) + v�∇y f (Y (tc), tc) · (y(tc) − Y (tc)) + R2(Y (tc))

= −v · ε(tc) − R1(tc, tt )

v · f (Y (tc), tc) + v�∇y f (Y (tc), tc) · ε(tc) + R2(Y (tc))

(30)

Obtaining a computable error estimate. Taylor’s Theorem gives that the two func-
tionsR1 andR2 in equations (20) and (30) decay to zero super-linearly as tc → tt and
Y (tc) → y(tc), respectively. Provided the numerical solution Y (t) is fairly accurate,
R1 will be small compared to the other terms in (23) andR2 will be small compared
to the terms in (26). This leads to the first approximation of the error,

η(Y ) = −v · ε(tc)

v · f (Y (tc), tc) + (v�∇y f (Y (tc), tc)) · ε(tc)
. (31)

Remark 2 Note that the functional Smayachieve the value R atmultiple times.Assume
there exists a time t̃ > tt such that S(y(t̃)) = R. Equation (22) is then valid at time
t̃ , i.e., S(Y (tc)) = R = S(y(t̃)) and (20) follows with tt replaced by t̃ and ξ replaced
by ξ̃ . In the estimate (31) we approximate the termR1(tc, ·) by zero. If the numerical
solution is sufficiently accurate, then |tt−tc| < |t̃−tc| and 0 ≈ R1(tc, tt ) 
 R1(tc, t̃).
However, if the numerical solution is inaccurate, we may have the reverse situation,
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where |tt − tc| > |t̃ − tc|, in which case the error estimate will be inaccurate or worse,
R1(tc, t̃) ≈ 0 and the estimate may indicate the value of t̃ − tc rather than tt − tc. We
observe this phenomenon in Sect. 4.4.1 and is illustrated by Table 10 and Fig. 6b.

The estimate (31) contains two terms that are linear functionals of the error at
time tc. These can both be approximated by the standard techniques in Sect. 3.2 as is
discussed next.
First adjoint problem In order to estimate −v · ε(tc), we solve (18) with adjoint
data ψ = ψ1 = −v and t̂ = tc, then substitute the solution φ1 in (17) to provide the
estimate

E1(Y , φ1) ≈ ψ1 · ε(tc) = −v · ε(tc). (32)

Second adjoint problem In order to estimate vT∇y f (Y (tc), tc) · ε(tc), we solve (18)
with adjoint data ψ = ψ2 = vT∇y f (Y (tc), tc) and t̂ = tc, then substitute the solution
φ2 in (17) to provide the estimate

E2(Y , φ2) ≈ ψ2 · ε(tc) = v�∇y f (Y (tc), tc) · ε(tc). (33)

Computable error based on Taylor series and adjoint techniques. For an approx-
imate solution Y (t) to (1) and a linear functional S(Y (t)) = v · Y (t), a computable
estimate of the error in the QoI (2) is obtained by substituting (32) and (33) in (31),

η(Y , φ1, φ2) = E1(Y , φ1)

v · f (Y (tc), tc) + E2(Y , φ2)
. (34)

3.4 Error in non-standard QoI based on iterative techniques

Given an approximate solution Y (t) to (1) with numerical QoI tc, define g(t) as

g(t) = S(y(t)) − R,

= S(Y (t)) + (S(y(t)) − S(Y (t))
)− R,

(35)

so

g(tt ) = 0. (36)

In the case where S(t) is a linear functional of y(t), i.e., S(y(t)) = v · y(t), then

g(t) = S(Y (t)) + v · ε(t) − R.

At t = t̂ we estimate v · ε(t̂) by solving (18) with adjoint data ψ = ψ3 = v� and
substituting the solution φ3 in to (17) to provide the estimate

E3(Y , φ3; t̂) ≈ v� · (y(t̂) − Y (t̂)), (37)
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hence
g(t̂) = S(Y (t̂)) + E3(Y , φ3; t̂) − R.

We find t∗ such that g(t∗) ≈ 0 via a standard root finding procedure, then

η(Y ) = t∗ − tc. (38)

There are many options for root finding methods for computing η. In this article, we
use two of the basic root finding methods: the secant method and the inverse quadratic
method.

3.4.1 Error estimate based on the secant method

Given initial values x0, x1, the method is defined by the recurrence

xn = xn−2 ∗ g(xn−1) − xn−1 ∗ g(xn−2)

g(xn−1) − g(xn−2)
n = 2, 3, . . . (39)

(See [38]). For the initial guesses the examples presented choose x0 < tc < x1. These
choices are made precise in the numerical examples in Sect. 4.

3.4.2 Error estimate based on inverse quadratic interpolation

Given initial values x0, x1, x2, the method is defined by the recurrence

xn = xn−3 gn−2 gn−1

(gn−3 − gn−2)(gn−3 − gn−1)
+ xn−2 gn−3 gn−1

(gn−2 − gn−3)(gn−2 − gn−1)

+ xn−1 gn−2 gn−3

(gn−1 − gn−2)(gn−1 − gn−3)
.

n = 3, 4, . . . .

(40)

(See [27]). The choice of the initial guesses is made precise in the numerical examples
in Sect. 4.

3.5 Comparison of the two error estimationmethods

The method based on Taylor series always requires fewer adjoint problems to be
solved than using one of the iterative methods. However, the estimate (31) neglects
certain terms compared to the error representation (30). If any of the neglected terms
are large, the error estimate may be inaccurate even though an accurate numerical
solution is used. The iterative methods only rely on the initial guesses and point-
wise error computation, which is computed accurately. The initial guesses defined in
Sect. 4 bracket the computed QoI, and provided the computed solution is sufficiently
accurate and the initial bracket contains only a single value t such that S(y(t)) = R,
the iterative methods will be accurate. Numerical comparisons of the two methods, as
well as limitations of both are discussed throughout Sect. 4.
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3.6 Error in a cumulative density function

If the differential equation (1) depends on a random parameter θ , then the solution
y(t; θ) and the QoI, Q(y; θ), are random variables. As a random variable, Q(y; θ)

has a corresponding cumulative distribution function (CDF),

F(t) = P({θ : Q(y; θ) ≤ t}) = P(Q ≤ t).

An approximation to the CDF is computed using theMonte Carlo method with a finite
number of numerically computed sample values {Q̂(Y [n], θ [n]) = Q̂[n]}Nn=1,

F̂N (t) = 1

N

N
∑

n=1

1(Q̂[n] ≤ t), (41)

where 1 is the indicator function. A nominal sample distribution is computed using
exact values of the QoI,

FN (t) = 1

N

N
∑

n=1

1(Q[n] ≤ t). (42)

An estimate of the error in an approximate distribution of the QoI (2) is computed
for two examples in Sect. 5. The estimate takes into account error contributions due to
finite sampling and errors arising from the discretization of the ODE. The expressions
(41) and (42) decompose the error in to sampling and discretization contributions,

F(t) − F̂N (t) = (F(t) − FN (t)) + (FN (t) − F̂N (t)).

This decomposition is used to derive the following error bound.

Theorem 4 For 0 < ε < 1,

∣
∣
∣F(t) − F̂N (t)

∣
∣
∣ ≤
⎛

⎝

F̂N (t)
(

1 − F̂N (t)
)

Nε

⎞

⎠

1/2

+
(
1

N
+ 1

Nε1/2

)
∣
∣
∣
∣
∣

N
∑

n=1

(

1(Q̂[n] −
∣
∣
∣e[n]

Q

∣
∣
∣ ≤ t ≤ Q̂[n] +

∣
∣
∣e[n]

Q

∣
∣
∣)
)∣
∣
∣

+ 2

(2Nε)3/4
(43)

with probability greater than or equal to 1− 2ε + ε2, where e[n]
Q = Q[n] − Q̂[n] is the

error in a numerically computed sample of the QoI.
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Proof We decompose the error as

∣
∣
∣F(t) − F̂N (t)

∣
∣
∣ ≤ |F(t) − FN (t)| +

∣
∣
∣FN (t) − F̂N (t)

∣
∣
∣ = I + I I . (44)

Focusing on the term I I =
∣
∣
∣FN (t) − F̂N (t)

∣
∣
∣ =
∣
∣
∣F̂N (t) − FN (t)

∣
∣
∣,

I I =
∣
∣
∣
∣
∣

1

N

N
∑

n=1

(

1(Q̂[n] ≤ t) − 1(Q[n] ≤ t)
)
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

1

N

N
∑

n=1

(

1(Q̂[n] ≤ t) − 1(Q̂[n] + e[n]
Q ≤ t)

)
∣
∣
∣
∣
∣
,

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

1

N

N
∑

n=1
e[n]
Q ≤0

(

1(Q̂[n] −
∣
∣
∣e[n]

Q

∣
∣
∣ ≤ t ≤ Q̂[n])

)

+ 1

N

N
∑

n=1
e[n]
Q >0

(

1(Q̂[n] ≤ t ≤ Q̂[n] +
∣
∣
∣e[n]

Q

∣
∣
∣)
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

≤
∣
∣
∣
∣
∣

1

N

N
∑

n=1

(

1(Q̂[n] −
∣
∣
∣e[n]

Q

∣
∣
∣ ≤ t ≤ Q̂[n])

)

+ 1

N

N
∑

n=1

(

1(Q̂[n] ≤ t ≤ Q̂[n] +
∣
∣
∣e[n]

Q

∣
∣
∣)
)
∣
∣
∣
∣
∣
,

=
∣
∣
∣
∣
∣

1

N

N
∑

n=1

(

1(Q̂[n] −
∣
∣
∣e[n]

Q

∣
∣
∣ ≤ t ≤ Q̂[n] +

∣
∣
∣e[n]

Q

∣
∣
∣)
)
∣
∣
∣
∣
∣
, (45)

Now consider the term I = |F(t) − FN (t)|. We start with the Chebyshev Inequal-
ity:

P (|F(t) − FN (t)| ≥ ks) ≤ 1

k2

for any real number k, where s2 is the variance of FN given by [36,43],

s2 = F(t) (1 − F(t))

N
.

Choosing ε = 1
k2

leads to

I = |F(t) − FN (t)| ≤
(
F(t) (1 − F(t))

Nε

)1/2

, (46)

with a probability greater than 1 − ε. Now,

F(t) (1 − F(t)) = FN (t) (1 − FN (t)) + (F(t) − FN (t)) (1 − F(t) − FN (t)) .

(47)
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Taking absolute values in (47), dividing by Nε, taking the square root, and using√
a + b ≤ √

a + √
b for any a, b ≥ 0,

∣
∣
∣
∣

F(t) (1 − F(t))

Nε

∣
∣
∣
∣

1/2

≤
∣
∣
∣
∣

FN (t) (1 − FN (t))

Nε

∣
∣
∣
∣

1/2

+
∣
∣
∣
∣

(F(t) − FN (t)) (1 − F(t) − FN (t))

Nε

∣
∣
∣
∣

1/2

.

(48)

Multiplying and dividing the second term on the right-hand side of (48) by
√
2δ

and using the fact that ab ≤ a2
2 + b2

2 ,

∣
∣
∣
∣

(F(t) − FN (t)) (1 − F(t) − FN (t))

Nε

∣
∣
∣
∣

1/2

≤
∣
∣
∣
∣
∣
δ2 (F(t) − FN (t))2 + (1 − F(t) − FN (t))2

4δ2N 2ε2

∣
∣
∣
∣
∣

1/2

≤ δ |F(t) − FN (t)| + 1

2δNε
,

where we obtain the final line by observing that (1 − F(t) − FN (t))2 ≤ 1.
Substituting back into (48) and combining with (46),

I ≤
(
FN (t) (1 − FN (t))

Nε

)1/2

+ δ |F(t) − FN (t)| + 1

2δNε
. (49)

From [43], for any ε > 0 we have with a probability greater than 1 − ε,

I ≤
(
log(ε−1)

2N

)1/2

≤
(

1

2Nε

)1/2

, (50)

where we also used that log(x) ≤ x for all x > 0. Substituting this into the right-
hand side of (49),

I ≤
(
FN (t) (1 − FN (t))

Nε

)1/2

+ δ

(
1

2Nε

)1/2

+ 1

2δNε
. (51)

Consider the function

D(δ) = δ

(2Nε)1/2
+ 1

δ(2Nε)
,

Elementary calculus shows that the minimum of D(δ), for δ > 0, occurs at δ =
( 1
2Nε

)1/4
.

With this choice of δ, (51) becomes

I ≤
(
FN (t) (1 − FN (t))

Nε

)1/2

+ 2

(2Nε)3/4
. (52)

The numerator of the first term in (52) is expanded as

|FN (t) (1 − FN (t))| =
∣
∣
∣F̂N (t)

(

1 − F̂N (t)
)

+
(

FN (t) − F̂N (t)
) (

1 − FN (t) − F̂N (t)
)∣
∣
∣
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≤
∣
∣
∣F̂N (t)

(

1 − F̂N (t)
)∣
∣
∣+
∣
∣
∣

(

FN (t) − F̂N (t)
) (

1 − FN (t) − F̂N (t)
)∣
∣
∣ .

(53)

Using
∣
∣
∣1 − FN (t) − F̂N (t)

∣
∣
∣ ≤ 1 in (53) together with (45) and (52),

I ≤
⎛

⎝

F̂N (t)
(

1 − F̂N (t)
)

Nε

⎞

⎠

1/2

+ 1

Nε1/2

(∣
∣
∣
∣
∣

N
∑

n=1

(

1(Q̂[n] −
∣
∣
∣e[n]

Q

∣
∣
∣ ≤ t ≤ Q̂[n] +

∣
∣
∣e[n]

Q

∣
∣
∣)
)
∣
∣
∣
∣
∣

)1/2

+ 2

(2Nε)3/4
,

≤
⎛

⎝

F̂N (t)
(

1 − F̂N (t)
)

Nε

⎞

⎠

1/2

+ 1

Nε1/2

(∣
∣
∣
∣
∣

N
∑

n=1

(

1(Q̂[n] −
∣
∣
∣e[n]

Q

∣
∣
∣ ≤ t ≤ Q̂[n] +

∣
∣
∣e[n]

Q

∣
∣
∣)
)
∣
∣
∣
∣
∣

)

+ 2

(2Nε)3/4
, (54)

where we also used
√
x ≤ x if x = 0 or x ≥ 1.

Since (54) relies on both (46) and (50), this bound occurs with a probability of at
least (1− ε)2 = 1− 2ε + ε2. Combining (45) and (54) with (44) completes the proof.

��
The estimate (34) is used to approximate η[n] ≈ e[n]

Q . The first term on the right-
hand side of the bound (43) quantifies the error contribution from finite sampling,
while the second term represents error due to discretization.

4 Numerical examples

This section considers a wide range of types of linear and nonlinear ODEs in order to
explore the accuracy of the estimates.

Since the Crank–Nicolson finite difference scheme is nodally equivalent to the
cG(1) finite element method with a trapezoidal rule quadrature, given ti < tc < ti+1,
the numerical QoI may be computed by using linear interpolation as,

tc = R(ti − ti+1)

Y (ti ) − Y (ti+1)
− ti Y (ti ) − ti+1Y (ti+1)

Y (ti ) − Y (ti+1)
.

When implementing the secant method (39), the two grid-points closest to the QoI
are used as initial guesses:

x0 = tL and x1 = tR, (55)
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where tL < tc < tR , with no other grid-points in between. For the inverse quadratic
interpolation scheme (40), the initial guesses are the two closest grid-points to the left
of the QoI and one to the right:

x0 = tLL , x1 = tL and x2 = tR, (56)

where tLL < tL < tc < tR , with no other grid-points in between. For most examples
the adjoint solutions, needed for the estimates (32), (33) and (34), are computed using
the cG(3) method with 100 finite elements, with the exceptions of Sect. 4.5 where
cG(3) is used with 40 elements and Sect. 5.2 where cG(2) with 100 elements is used.
For all methods define nadj to be the number of adjoint solutions required to compute
the error in the QoI. This number can be seen as the relative cost of implementing the
different methods.

4.1 Linear problem

We consider the initial value problem

ẏ = sin(2π t)y, t ∈ (0, 1], y(0) = 1,

with analytic solution

y(t) = exp

(
1

2π
(1 − cos(2π t))

)

.

Let R = 1.3 and S(y(t)) = y(t). The true QoI is given by

tt = Q(y) = min
t∈(0,1] arg(y(t) = 1.3) = 1

2π
(arccos(−2π ln(1.3) + 1)).

For this problem, the terms in (31) are

v = 1, f (y, t) = sin(2π t)y, ∇y f (y, t) = sin(2π t),

hence, for (32), (33), and (37) the values needed are

ψ1 = −1, ψ2 = sin(2π tc), ψ3 = 1.

The true solution and QoI are shown in Fig. 3. This graph includes a horizontal line
at S(y(t)) = R, to indicate the threshold value of interest, as well as a vertical line
denoting the true value of the QoI, i.e. the first time the threshold is crossed. Figure
3 compares the numerical QoI to the true value for both the numerical schemes.
True errors, error estimates and effectivity ratios are provided in Tables 1 and 2. All
methods provide excellent effectivity ratios, but the iterative methods require many
more applications of Theorem 2 and hence require solving more adjoint problems of
the form (18), as shown by the values of ηad j .
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Fig. 3 a Comparing cG(1) solution and computed QoI(2) to the true values for example in Sect. 4.1. b
Comparing Crank–Nicolson solution and computed QoI (2) to the true values for example in Sect. 4.1

Table 1 Results of the different methods on the example in Sect. 4.1 using cG(1) with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.3626 – – – −3.267e−04 −3.269e−04 1.000 2

Secant 0.3626 – 0.35 0.375 −3.267e−04 −3.267e−04 1.000 6

Inverse quad. 0.3626 0.325 0.35 0.375 −3.267e−04 −3.267e−04 1.000 7

Table 2 Results of the different methods on the example in Sect. 4.1 using Crank–Nicolson with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.3663 – – – −4.017e−03 −4.056e−03 1.010 2

Secant 0.3663 – 0.35 0.4 −4.017e−03 −4.017e−03 1.000 7

Inverse quad. 0.3663 0.3 0.35 0.4 −4.017e−03 −4.017e−03 1.000 7

4.2 Nonlinear problem

Next we consider the nonlinear initial value problem

ẏ(t) = sin(2π y(t)), t ∈ (0, 1], y(0) = 1

4
.

The analytic solution to this problem is

y(t) = 1

π
arctan(e2π t ).

Let R = 0.4 and S(y(t)) = y(t). The true QoI is

tt = Q(y) = min
t∈[0,1] arg(y(t) = 0.4) = ln(tan(0.4π))

2π
.
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Here, the terms in (31) are

v = 1, f (y, t) = sin(2π y), ∇y f (y, t) = 2π cos(2π y),

so the data needed for (32), (33), and (37) are

ψ1 = −1, ψ2 = 2π cos(2πR), ψ3 = 1.

Figure 4a shows the true values of the linear functional S(y(t)) as well as the event in
question and the true QoI. The values in Tables 3 and 4 indicate that all three methods
are fairly accurate. The two iterative methods again require more adjoint equations to
be solved.
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Fig. 4 a Chosen value of R, true data S(y(t), and true QoI for example in Sect. 4.2. b Chosen value of R,
true data S(y(t), and true QoI for example in Sect. 4.3

Table 3 Results for Sect. 4.2 using the different methods on cG(1) solution with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1790 – – – −1.087e−04 −1.086e−04 1.000 2

Secant 0.1790 – 0.175 0.2 −1.087e−04 −1.087e−04 1.000 6

Inverse quad. 0.1790 0.15 0.175 0.2 −1.087e−04 −1.087e−04 1.000 6

Table 4 Results for Sect. 4.2 using the different methods on Crank–Nicolson solution with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1810 – – – −2.156e−03 −2.141e−03 1.007 2

Secant 0.1810 – 0.15 0.2 −2.156e−03 −2.144e−03 1.001 7

Inverse quad. 0.1810 0.1 0.15 0.2 −2.156e−03 −2.144e−03 1.001 7
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4.3 Linear system

We consider the two dimensional system ẏ + A(t)y = 0,

(

ẏ1(t)
ẏ2(t)

)

+
(

1 + 9 cos2(6t) − 6 sin(12t) −12 cos2(6t) − 9/2 sin(12t)
12 sin2(6t) − 9/2 sin(12t) 1 + 9 sin2(6t) + 6 sin(12t)

)(

y1(t)
y2(t)

)

=
(

0
0

)

, t ∈ (0, 1],

with initial conditions y1(0) = y2(0) = 1. The analytic solution to this problem is

(

y1(t)
y2(t)

)

=
(

3/5 exp(2t)(cos(6t) + 2 sin(6t)) − 1/5 exp(−13t)(sin(6t) − 2 cos(6t))
3/5 exp(2t)(2 cos(6t) − sin(6t)) − 1/5 exp(−13t)(cos(6t) + 2 sin(6t))

)

.

Set R = 0 and S(y(t)) = y1(t) in order to analyze the first component. The true
quantity of interest is

tt := Q(y) = 0.446255366908554

The parameters needed for (31) are

v = (1, 0)�, f (y, t) = −A(t)y, ∇y f (y, t) = −A(t).

For (32), (33), and (37) the values needed are

ψ1 = −(1, 0)�, ψ3 = (1, 0)�,

ψ2 = (1 + 9 cos2(6tc) − 6 sin(12tc) − 12 cos2(6tc) − 9

2
sin(12tc))

�.

The true solution and QoI are shown in Fig. 4b. Tables 5 and 6 show the results for
cG(1) and Crank–Nicolson respectively. Again, all methods are accurate using either
numerical method. The two iterative methods require many more adjoint problems to
be solved than the Taylor series method without any increase in accuracy.

Table 5 Results of the different methods on example in Sect. 4.3 using cG(1) with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.4463 – – – −1.323e−04 −1.322e−04 0.999 2

Secant method 0.4463 – 0.425 0.45 −1.323e−04 −1.323e−04 1.000 6

Inverse quad. 0.4463 0.4 0.425 0.45 −1.323e−04 −1.323e−04 1.000 8
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Table 6 Results of the different methods on example in Sect. 4.3 using Crank–Nicolson with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.4462 – – – 2.675e−05 2.675e−05 1.000 2

Secant 0.4462 – 0.4 0.45 2.675e−05 2.675e−05 1.000 6

Inverse quad. 0.4462 0.35 0.4 0.45 2.675e−05 2.675e−05 1.000 8

4.4 Harmonic oscillator

Consider the harmonic oscillator

ω̈ = − k

m
ω − c

m
ω̇ + F0

m
cos(γ t + θd), t ∈ (0, 2], ω(0) = 5, ω̇(0) = 0.

with
k = 50, m = 0.25, c = 1, F0 = 50, θd = 0, γ = 10.

Rewriting as a system of first-order ODEs, ẏ + Ay = h(t), gives

(

ẏ1(t)
ẏ2(t)

)

+
(

0 −1
200 4

)(

y1(t)
y2(t)

)

=
(

0
200 cos(10t)

)

.

Set R = 0 and S(y(t)) = y1(t) in order to observe when the oscillator first reaches
the origin. The true solution in [5] is used to determine

tt := Q(ω) = 0.14034864129073557.

Here for (31), the values needed are

v = (1, 0)�, f (y, t) = −Ay + h(t), ∇y f (y, t) = −A.

To compute (32), (33), and (37), let

ψ1 = −(1, 0)�, ψ2 = (0, 1)�, ψ3 = (1, 0)�.

The true data S(y(t)) and QoI are given in Fig. 5a and the results using cG(1) and
Crank–Nicolson method are provided in Tables 7 and 8 respectively. All methods
using either numerical method give effectivity ratios close to one. The two iterative
methods require more adjoint problems to be solved than the Taylor series estimate,
but they do lead to a slightly more accurate error estimate.

4.4.1 Harmonic oscillator: effect of the choice of interval

We consider the same equation and function as in Sect. 4.4, except over the time
interval t ∈ (0.2, 2] and with R = 1.8.
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Fig. 5 a Chosen value of R, true data S(y(t), and true QoI Q(y) for example 4.4. b Chosen value of R, true
data S(y(t)), and true QoI Q(y) for example in Sect. 4.4.1

Table 7 Results of the different methods on the example in Sect. 4.4 using cG(1) with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1447 – – – −4.440e−03 −4.449e−03 1.011 2

Secant method 0.1447 – 0.1 0.15 −4.440e−03 −4.440e−03 1.000 7

Inverse quad. 0.1447 0.05 0.1 0.15 −4.440e−03 −4.440e−03 1.000 8

Table 8 Results of the different methods on the example in Sect. 4.4 using Crank–Nicolson with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.1575 – – – −1.715-02 −1.816e−02 1.059 2

Secant method 0.1575 – 0.1 0.2 −1.715-02 −1.715e−02 0.999 8

Inverse quad. 0.1575 0.0 0.1 0.2 −1.715-02 −1.715e−02 0.999 10

Applying the secant method to the true solution results in the true QoI,

tt = 1.2558594599461572.

Since this problemhas the sameODEand functional S as in Sect. 4.4, the parameters
and steps laid out in that section can be used to obtain the error estimates.

The true functional and QoI are shown in Fig. 5b and the results when using the
different methods in Tables 9 and 10. The Taylor series method is slightly less accurate
compared to the iterative methods when using the cG(1) method. This is due to the size
of the second derivative of the functional near the event, leading to a larger absolute
value of the remainder in (26). Since the error estimate (31) neglects this remainder, if
its absolute value is too large the estimate will not be accurate. Examples in Sect. 4.4.2
take a further look into this effect.

Both the Taylor series and iterative methods are poor for the Crank–Nicolson
method. This is due to the low accuracy of the numerical solution as illustrated in
Fig. 6b. The potential inaccuracy of the Taylor series estimate under these circum-
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Table 9 Results of the different methods on example in Sect. 4.4.1 using cG(1) with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.2637 – – – −7.887e−03 −8.623e−03 1.093 2

Secant 1.2637 – 1.235 1.37 −7.887e−03 −7.887e−03 0.999 8

Inverse quad. 1.2637 1.19 1.235 1.37 −7.887e−03 −7.887e−03 0.999 9

Table 10 Results of the different methods on example in Sect. 4.4.1 using Crank–Nicolson with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.3674 – – – −1.116e−01 −1.542e−02 0.138 2

Secant method 1.3674 – 1.28 1.37 −1.116e−01 −1.746e−02 0.156 8

Inverse quad. 1.3674 1.19 1.28 1.37 −1.116e−01 −1.746e−02 0.156 10
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Fig. 6 a Figure detailing issue with iterative methods in Sect. 4.4.1 and Sect. 4.4.2 when the numerical
solution is not accurate near the event. The iterative methods result in t∗ = ηi t , which is the second
occurrence of the event rather than the first. This figure specifically details the case when R = 2. b
Numerical values for example in Sect. 4.4.1 when using Crank–Nicolson method with 21 nodes

stances is discussed in Remark 2. The root-finding methods are converging to the
second time the event occurs (which is 1.3237), rather than the first. Because of the
small difference in time between the locations of the two roots (see Fig. 6a), the prox-
imity of the second root to the numerical QoI, and the size of the numerical time step,
both roots are contained within the initial interval over which the iterative methods
are applied. It is therefore possible for the iterative methods to converge to the larger
of the two roots.

4.4.2 Harmonic oscillator: effect of the choice of R

Again consider the harmonic oscillator of Sect. 4.4.1, and estimate the error of the
QoI (2) with several different values of R, increasing R until it is very close to the
maximum of the true data. The maximum value of the true data is approximately
2.05015 (see Fig. 7). Results are provided in Tables 11, 12 and 13 for increasingly fine
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Table 11 Effectivity ratio for the different methods for varying values of R on example in Sect. 4.4 using
cG(1) with 40 elements

Method R=1.95 R=2.0 R=2.01 R=2.02 R=2.03 R=2.04 R=2.05

Taylor series 1.061 1.095 1.251 1.603 3.470 −1.137 0.427

Secant method 0.999 −11.305 −4.952 −2.650 −1.405 1.000 Fail

Inverse quad. 0.999 −11.305 −4.952 −2.650 −1.405 Fail Fail

Table 12 Effectivity ratio for the different methods for varying values of R on example in Sect. 4.4 using
cG(1) with 60 elements

Method R=1.95 R=2.0 R=2.01 R=2.02 R=2.03 R=2.04 R=2.05

Taylor series 1.033 0.999 1.043 1.100 1.179 1.283 0.758

Secant 1.000 0.999 0.999 0.999 −6.545 −4.520 3.133

Inverse quad. 1.000 0.999 0.999 0.999 −6.545 −4.520 3.133

Table 13 Effectivity ratio for the different methods for varying values of R on example in Sect. 4.4 using
cG(1) with 100 elements

Method R=1.95 R=2.0 R=2.01 R=2.02 R=2.03 R=2.04 R=2.05

Taylor series 1.017 1.001 1.019 1.100 1.039 0.998 0.588

Secant 0.999 0.999 0.999 1.000 0.999 0.999 0.999

Inverse quad. 0.999 0.999 0.999 1.000 0.999 0.999 0.999

finite element meshes. The tables contain the effectivity ratios, ρeff , for each method
and each value of R.

Notice that the iterative methods appear to be more sensitive to the accuracy of
the numerical solution than the Taylor series method. In extreme cases, the iterative
methods fail to converge. This occurs when a root-finding iteration falls outside of the
domain of the IVP (1), i.e., if xn the approximation to the root at the nth iteration,
xn < 0 or xn > T . As the number of finite elements used to solve the ODE increases,
the two iterative methods eventually recover their accuracy even when the threshold
value is very close to an extremum. For the cases where the iterative methods are
inaccurate, note that the root-finding schemes do not converge to the true QoI. Instead,
the convergence is to the second occurrence of the event rather than the first (see
Fig. 6a).

The estimate derived from Taylor’s theorem is generally more accurate for the
less accurate numerical solutions, However, even when using an accurate numerical
solution, the Taylor series approach becomes inaccurate when the curvature of S as a
function of t is large near the threshold value. The remainderR1(tt , tc), given by (21),
is one half of the second derivative of S with respect to t at some point between tt and
tc. As the threshold value R moves closer to the local maximum, this derivative grows
and the assumption thatR1(tt , tc) is small is no longer valid, resulting in an inaccurate
estimate. The iterative methods do not depend on the values of the second derivative of
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Fig. 7 True data for example in
Sect. 4.4.1, showing max value
of ≈ 2.05015
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the solution and those methods are able to produce accurate error estimates provided
the numerical solution is sufficiently accurate near the event.

4.5 One dimensional heat equation

We consider the one dimensional heat equation with boundary and initial conditions

ut (x, t) = uxx (x, t) + 3et sin(πx), (x, t) ∈ (0, 1) × (0, 1],
u(x, 0) = 0, x ∈ (0, 1),

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1].

This section analyzes the system of ordinary differential equations that arises from a
spatial discretization of (4.5) using a central-difference method. In particular using a
uniform partition of the spatial interval [0, 1] with 22 nodes:

{0 = x0 < x1 < · · · < x21 = 1}.

Since boundary values are specified, this semi-discretization leads to a system of 20
first-order ODEs of the form ẏ(t) = Ay(t) + k(t), where h = 1

21 and

A = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3et sin(πx1)
3et sin(πx2)
3et sin(πx3)

...

3et sin(πx19)
3et sin(πx20)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Since this problem will only analyze the semi-discrete system and not the full PDE,
a reference solution is obtained using an accurate time-integrator (SciPy’s solve_ivp)
using an absolute tolerance of 10−15. Let R = 0.33 and S(y(t)) = 1

20

∑20
i=1 yi (t) in

order to analyze the discrete average of the solution over the spatial domain at a time
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Fig. 8 a Chosen value of R, true data S(y(t), and true QoI for example in Sect. 4.5. b Chosen value of R,
true data S(y(t), and true QoI for example in Sect. 4.6

Table 14 Results of the different methods on the example in Sect. 4.5 using cG(1) with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.5834 – – – 6.157e−05 6.151e−05 0.999 2

Secant 0.5834 – 0.575 0.6 6.157e−05 6.150e−05 0.999 6

Inverse quad. 0.5834 0.55 0.575 0.6 6.157e−05 6.150e−05 0.999 7

t . This library function also has the capability of tracking when specified events occur,
which is used to obtain a reference for the true QoI,

tt = 0.5834435609935992.

For this problem, the parameters in (31) are

v = 1

20
(1, 1, . . . , 1)�, f (y, t) = Ay + k(t), ∇y f (y, t) = A.

For (32), (33), and (37), set

ψ1 = − 1

20
(1, 1, . . . , 1)�, ψ2 = 1

20h2
(−1, 0, . . . , 0,−1)�, ψ3 = 1

20
(1, 1, . . . , 1)�.

The true solution and QoI are shown in Fig. 8a and the results when using cG(1) or
Crank–Nicolson methods are shown in Tables 14 and 15 respectively. All methods
are accurate using either numerical method. The two iterative methods require more
adjoint problems to be solved than the Taylor series estimate without any noticeable
increase in accuracy.
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Table 15 Results of the different methods on the example in Sect. 4.5 using Crank–Nicolson with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 0.5830 – – – 4.457e−04 4.457e−04 1.000 2

Secant 0.5830 – 0.55 0.6 4.457e−04 4.456e−04 0.999 6

Inverse quad. 0.5830 0.5 0.55 0.6 4.457e−04 4.456e−04 0.999 7

4.6 Two body problem

We consider the two body problem

ẏ1 = y3,

ẏ2 = y4,

ẏ3 = −y1
(y21 + y22 )

3/2
,

ẏ4 = −y2
(y21 + y22 )

3/2
,

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t ∈ (0, 1.5], y(0) = (0.4, 0, 0, 2.0)�,

whichmodels a small body orbiting amuch larger body in two dimensions. Here y1, y2
are the spatial coordinates of the orbiting body relative to the larger body, and y3, y4 are
the respective velocities. The initial conditions are chosen so that the analytic solution
is [22]

y =
(

cos(τ ) − 0.6, 0.8 sin(τ ),
− sin(τ )

1 − 0.6 cos(τ )
,

0.8 cos(τ )

1 − 0.6 cos(τ )

)�
,

where τ solves τ − 0.6 sin(τ ) = t . Let R = 0 and S(y(t)) = y1(t) + y2(t). The true
QoI can be found exactly:

tt = Q(y) = cos−1((15 − 16
√
2)/41) − 0.6 sin

(

cos−1((15 − 16
√
2)/41)

)

.

The values needed to compute (31) are

v = (1, 1, 0, 0)�, f (y, t) =
(

y3, y4,
−y1

(y21 + y22 )
3/2

,
−y2

(y21 + y22 )
3/2

)�
,

and

∇y f (y, t) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0
0 0 0 1

2y21−y2
(y21+y22 )5/2

3y1y2
(y21+y22 )5/2

0 0

3y1y2
(y21+y22 )5/2

2y21−y2
(y21+y22 )5/2

0 0

⎞

⎟
⎟
⎟
⎟
⎠

.
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Table 16 Results of the different methods on the example in Sect. 4.6 using cG(1) with 40 elements

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.1601 – – – 8.262e−03 8.287e−03 1.003 2

Secant method 1.1601 – 1.125 1.1625 8.262e−03 8.287e−03 1.003 5

Inverse quad. 1.1601 1.0875 1.125 1.1625 8.262e−03 8.287e−03 1.003 6

Table 17 Results of the different methods on the example in Sect. 4.6 using Crank–Nicolson with 21 nodes

Method tc tLL tL tR eQ η ρeff nadj

Taylor series 1.2091 – – – −4.068e−02 −4.078e−02 1.002 2

Secant 1.2091 – 1.2 1.275 −4.068e−02 −4.077e−02 1.002 5

Inverse quad. 1.2091 1.125 1.2 1.275 −4.068e−02 −4.077e−02 1.002 6

For (32), (33), and (37), the data needed are

ψ1 = (−1,−1, 0, 0)�, ψ2 = (0, 0, 1, 1)� ψ3 = (1, 1, 0, 0)�.

The true data S(y(t)) and QoI are shown in Fig. 8b and the results using the cG(1) and
Crank–Nicolson method appear in Tables 16 and 17 respectively. All methods have
larger error than in other examples so far, probably as a result of the non-linear nature
of (4.6). However the error estimates are still accurate using either numerical method;
each with an effectivity ratio close to one.

4.7 Logistic equation

Consider the Logistic equation

ẏ = ky
(

1 − y

K

)

, t ∈ (0, 20], y(0) = 1

2
, (57)

where k = 0.25 and K = 1. The analytic solution is,

y(t) = K y(0)

y(0) + (K − y(0))e−kt
= 1

1 + e−0.25t
. (58)

Let S(y(t)) = y(t) and consider several threshold values, R ∈ {0.55, 0.8, 0.9, 0.94,
0.98, 0.99, 0.995}. The values needed for (31) are

v = 1, f (y, t) = ky(1 − y

k
), ∇y f (y, t) = k − 2k

K
y,
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Fig. 9 True values of functional
and QoI for example in
Sect. 4.7, when R = 0.94
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Table 18 Error in QoI and effectivity ratio of the different methods for varying values of R on example in
Sect. 4.7 using cG(1) with 5 elements

R=0.55 R=0.8 R=0.9 R=0.94 R=0.98 R=0.99 R=0.995

eQ −0.090 −0.117 −0.166 0.194 0.829 0.610 1.513

Taylor series 1.001 1.021 1.041 0.957 0.902 0.919 0.830

Secant 0.999 0.987 0.977 1.023 1.007 1.011 1.005

Inverse quad. 0.999 0.987 0.977 1.023 1.007 1.011 1.005

so the data needed for (32), (33), and (37) are

ψ1 = −1, ψ2 = k − 2k

K
R, ψ3 = 1.

The numerical solution is computed using the cG(1)methodwith five elements. Figure
9 shows the true functional and QoI for a chosen threshold value. Table 18 shows the
true error in the QoI and the effectivity ratio for each method as the threshold value
increases. As the error in the QoI increases, the Taylor series method loses accuracy,
presumably since the remainder terms are no longer negligible, despite the fact the
second derivatives with respect to t are small. However, the iterative methods are
accurate even when the true error is large.

4.8 Conclusions for deterministic examples

Both the Taylor series and the root-finding approaches provide accurate error esti-
mates in most cases. Some limitations of these methods were revealed in Sects. 4.4.1
and 4.4.2. The poor results in Sect. 4.4.1 are caused by the use of a low accuracy
solution and the fact that computed QoI was closer to the second time the threshold
value was crossed than the first. In Sect. 4.4.2, specifically Tables 11, 12 and 13, we
observed that the issue that arose in Sect. 4.4.1 can be remedied by using a numerical
solution that is more accurate near the QoI. Although another issue is revealed in the
final column of Table 13, where the Taylor series approach gives poor results even
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though the numerical solution is quite accurate. In that instance the poor result is due
to the assumption that terms involving the second derivative of S(t) with respect to t
can be neglected. The example in Sect. 4.7 shows that the Taylor series approach may
not be accurate if the error in the QoI is large, but the iterative methods are accurate
provided the root finding technique finds the correct root.

5 Numerical examples for error in the CDF of the non-standard QoI

The techniques outlined in Sect. 3.6 are applied to some examples below. The error
bound (43) relies on accurate error estimates for the non-standardQoI. In the numerical
examples, the estimates for the error in each sample value had an effectivity ratio close
to one.

5.1 Harmonic oscillator

Reconsider the harmonic oscillator from Sect. 4.4 this time with parameters k and m
as random variables:

(

ẏ1(t)
ẏ2(t)

)

+
(

0 −1
k/m 1/m

)(

y1(t)
y2(t)

)

=
(

0
50/m ∗ cos(10t)

)

, t ∈ (0, 2],

with initial conditions (y1(0), y2(0)) = (5, 0). Let k have a normal distribution with
mean 50 and a standard deviation of 5 andm be uniformly distributed over [.125, .325].
For the QoI, set R = −1 and S(y(t)) = y1(t). With ε = 0.05 in (43), the nominal
CDF (42) is computed using the true solution given in [5] with 1000 samples. The
numerical solution is obtained using cG(1) with 40 elements and the approximate CDF
(41) is computed with N = 100 samples (see Fig. 10a). Both sources contribute to the
error, with the sampling error being slightly more dominant (Fig. 11). The computed
bound is indeed larger than the actual error in the distribution. Both the bound and the
error peak near the inflection point of the CDF, with the error bound being about six
times larger than the true error.

5.2 Lorenz system

Consider the Lorenz system (13), where we let one of the initial conditions be a
random variable. More precisely, y1(0) = θ is uniformly distributed over the interval
(0, 2]. Again let σ = 10, r = 28, and b = 8

3 . For the QoI (2), set R = 3 and
S(y(t)) = y1(t). A reference solution and QoI are obtained using an accurate time-
integrator (SciPy’s solve_ivp with event tracker) with an absolute tolerance of 10−15

and a relative tolerance of 10−8. This time, the numerical solution is computed using
the cG(1) method with 30 elements.

The values needed for Eq. (31) are

v = (1, 0, 0)�, f (y, t) = (σ (y2 − y1), r y1 − y2 − y1y3, y1y2 − by3)
�,
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Fig. 10 aNominal CDF using 1000 samples and computed CDF using 100 samples for example in Sect. 5.1.
bComparing nominal CDF using 1000 samples to computed CDF using 80 samples for example in Sect. 5.2
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Fig. 11 Error bound for example in Sect. 5.1. a Comparing computed error bound (43) to true error for the
problem in Sect. 5.1 when using 1000 samples for the nominal CDF and 100 samples for the numerical
CDF. b Breaking the error bound into sampling and discretization contributions for the problem in Sect. 5.1
when using 100 samples. The sampling and discretization contributions are computed as the first and second
terms of (43), respectively

and

∇y f (y, t) =
⎛

⎝

σ −σ 0
r − y3 −1 −y1
−y2 y1 −b

⎞

⎠ .

hence, for (32), (33), and (37) the data are

ψ1 = (−1, 0, 0)�, ψ2 = (−σ, σ, 0)�, ψ3 = (1, 0, 0)�.

The bound (43) is computed with ε = 0.05. The Fig. 10b compares the numerical
CDF computed using 80 samples to the nominal CDF using 1000 samples. Figure 12
shows the discretization and sampling contributions to the calculated error bound. For
this example, the discretization is the larger contributor to the error in the CDF, which
is likely due to the chaotic nature of the system. As in Sect. 5.1 the error bound is
roughly six times the true error at its peak.
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Fig. 12 a Comparing error bound (43) to true error for example in Sect. 5.2 when using 1000 samples
for the nominal CDF and 80 samples for the numerical CDF. b Showing the sampling and discretization
contributions to the error bound for the example in Sect. 5.2 when using 100 samples. The sampling
contribution is computed as the first term of (43), while the second term gives the discretization contribution

6 Conclusions

We develop two different classes of accurate a posteriori error estimates for a QoI that
cannot be expressed as a bounded functional of the solution, namely the first timewhen
a given functional S of the solution achieves a specific value. The first method is based
on Taylor’s Theorem and is accurate whenever the numerical solution is sufficiently
accurate and the curvature of the functional S is not too large. Moreover this method is
cost effective, requiring the solution of only two adjoint problems. The second class of
methods are based on standard root-finding techniques and are accurate provided the
numerical solution is sufficiently accurate near the event of interest. These estimates
however are more costly, requiring an adjoint solution per iteration of the root-finding
algorithm. Both methods can be used as a basis for determining the discretization
contribution to an error bound on a CDF of the functional when one or more of the
parameters governing the system of differential equations are random variables.

Acknowledgements J. Chaudhry’s and Z. Stevens’s work is supported by the NSF-DMS 1720402. S.
Tavener’s and D. Estep’s work is supported by NSF-DMS 1720473.

A Theorem 5

Theorem 5 Numerical solutions obtained via the Crank–Nicolson finite difference
scheme are nodally equivalent to solutions obtained using a cG(1) finite element
method in which the integrals are evaluated with the trapezoidal rule.

Proof The cG(1) formulation over a sub-interval (tn, tn+1), with the constant test
function v(t) = 1 is

∫ tn+1

tn
ẏ dt =

∫ tn+1

tn
f (y, t) dt . (59)
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Where by the fundamental theorem of calculus

∫ tn+1

tn
ẏ dt = y(tn+1) − y(tn). (60)

Using the trapezoidal quadrature rule, we obtain

∫ tn+1

tn
f (y, t) dt ≈ tn+1 − tn

2
( f (y(tn+1), tn+1) + f (y(tn), tn)). (61)

Substituting (60) and (61) into (59) results in the Crank–Nicolson scheme. ��
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