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Abstract—Homicide investigations generate large and diverse
data in the form of witness interview transcripts, physical
evidence, photographs, DNA, etc. Homicide case chronologies are
summaries of these data created by investigators that consist
of short text-based entries documenting specific steps taken
in the investigation. A chronology tracks the evolution of an
investigation, including when and how persons involved and items
of evidence became part of a case. In this article we discuss a
framework for creating knowledge graphs of case chronologies
that may aid investigators in analyzing homicide case data
and also allow for post hoc analysis of the key features that
determine whether a homicide is ultimately solved. Our method
consists of 1) performing named entity recognition to determine
witnesses, suspects, and detectives from chronology entries 2)
using keyword expansion to identify documentary, physical, and
forensic evidence in each entry and 3) linking entities and
evidence to construct a homicide investigation knowledge graph.
We compare the performance of several choices of methodologies
for these sub-tasks using homicide investigation chronologies
from Los Angeles, California. We then analyze the association
between network statistics of the knowledge graphs and homicide
solvability.

Index Terms—knowledge graph, named entity recognition,
homicide investigation

I. INTRODUCTION

A large amount of text-based data is produced during a

homicide investigation including basic descriptions of the

event, evidence logs, forensic reports, maps and annotated

photographs, and transcripts of investigator’s notes and witness

interviews. These data are compiled into a so-called “Murder

Book” that summarizes the paper trail from the time the

incident was reported to the time a case is closed.

In the United States nationally, around 60% of homicides

are solved or cleared via arrest or other exceptional means

such as death of the offender [1]. Several factors appear

to play an important role in homicide solvability [2]. Some

crimes are inherently more difficult to solve than others;

clearance rates generally are lower for homicides that involve

guns, are perpetrated by strangers, lack witnesses, or occur in

neighborhoods where cooperation with police is strained [3]–

[5]. The quality of police investigations also appears to matter
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Fig. 1: Example knowledge graph of a homicide investigation

chronology. Entities include witnesses, suspects and detectives

as well as physical, documentary and forensic type evidences.

[6]. High volumes of casework, lack of investigative resources,

investigator inexperience, and variability in investigator moti-

vation (e.g., bias) can all drive down homicide clearance rates

[7], [8].

Our primary interest in this work is to understand the

interactions between the characteristics of a crime, as repre-

sented by collected evidence, and the investigative process. We

hypothesize that some of these interactions are non-obvious

and therefore difficult to leverage using traditional methods

designed to improve homicide solvability. We explore methods

to construct “knowledge graphs” from text-based investigative

information contained within Murder Books and evaluate the

association between structural features of the resulting graphs

and solvability of the cases. We see this as a precursor to

methods that can be used actively during investigations to

improve clearance rates for homicides that would typically



go unsolved.

In Figure 1 we show an example knowledge graph con-

structed from a homicide chronology using the methods de-

tailed in this paper. In the graph there are 3 suspect nodes,

12 witness nodes and a single node for the victim. There are

3 types of evidence nodes connected to these 16 individuals,

including physical evidence nodes (yellow), documentary evi-

dence nodes (cyan), and forensic evidence nodes (orange). Our

ultimate goal is to correlate features of the network with the

outcome of the investigation (whether or not it is solved).

The remainder of this paper proceeds as follows. In Section

II we outline at a conceptual level an ontology for homicide

knowledge graphs. In Section III we describe the data used

in our study. In Section IV we compare four deep learning

approaches for named entity recognition in homicide investi-

gation chronologies. We also introduce a keyword expansion

methodology for extracting evidence from chronology entries.

In Section V we consider two approaches for constructing

knowledge graphs of homicide investigations using the entity

extraction techniques introduced earlier in the paper and in

Section VI we analyze statistics of the constructed knowledge

graphs as they relate to solvability outcomes. We discuss the

implications of our findings and directions for future work in

Section VII.

II. HOMICIDE GRAPH ONTOLOGIES

Our approach to knowledge graph construction starts with

the routine activities theory of crime [9]. RAT outlines a core

ontological framework for any potential threat that arises from

the normal activities that people engage in on a day-to-day

basis. For crime such as homicide, RAT helps delineate the

key elements and contexts that must underlie the crime. It

is this underlying structure that detectives seek to capture in

their investigation and that we seek to represent in a knowledge

graph. The minimal elements necessary for a homicide consist

of an offender (node) killing (edge) a victim (node). The

homicide takes place in a setting (node), which can act

upon both the offender and victim. By virtue of the fact

that an offender and victim must converge in a setting for

a homicide to occur, these core elements necessarily form

a complete graph. The core graph can be further refined

and extended based on other specific knowledge about an

event. For example, the act of killing may be mediated by a

weapon (node) and offenders, victims and settings each may be

conditioned by other characteristics such as motives (nodes),

such as jealousy, and contexts (nodes), such as alcohol and

witnesses. Note that the hypothetical graph for the crime itself

must have elements such as an offender (node) that exist with

certainty. A corresponding investigative knowledge graph may

have elements such as a suspect (node) or evidence (node)

labeled to reflect uncertainty.

There have been a few attempts to map out the ontology of

graphs related to various threats [10], [11], but these remain

relatively simple at present. Homicide investigations can easily

generate tens-of-thousands of unique data points, suggesting

that homicide knowledge graphs will include a proportional

number of graphical elements. We expect the core ontology

suggested above to quickly become challenging to understand

and difficult to analyze for plausible causal pathways (e.g.,

attribution of guilt). We therefore require methods that can

easily extract and accurately label investigative elements and

their relationships according to a specified ontology and then

use the resulting graphical structure for various investigative

tasks.

III. DATA DESCRIPTION

A so-called “Murder Book” is a case file management

structure developed to ensure organization and standardization

in homicide investigations. The Los Angeles Police Depart-

ment (LAPD) has been successfully using Murder Books for

nearly four decades [12]. It allows anyone involved in the

investigation to find investigative reports, crime scene reports,

witness list, interview transcripts, photos and other material.

Every Murder Book contains a case chronology which consists

of a time-ordered list of steps taken by the investigators over

the entire history of the case. The chronology typically starts

with an entry describing which detectives are assigned to the

case and how they were notified, followed by a separate entry

describing arrival at the scene and general scene description

(e.g., state of the victim and initial evidence collected). A

chronology typically ends with an entry describing how a

case was closed (e.g., suspect arrested) or, if the case remains

open, the date and time of the last case review. Hundreds of

entries in between cover investigative events such as the date,

time and location of witness interviews, date of receipt of

forensic reports, and date of warrant requests. Each entry in

the chronology is typically a compact, text-based statement

totalling no more than 120-150 words. The purpose is to

provide a quick reference for the state of the investigation,

rather than a sounding-board for a theory of the crime.

The dataset we analyze at present consists of the case

chronologies for 24 randomly-sampled Murder Books for

homicides that occurred in LAPD’s South Bureau between

1990 to 2010. The data were provided by the LAPD and are

analyzed under UCLA IRB Protocol 19-000588. The 24 cases

generated 2482 unique chronological entries.

For the purpose of named entity recognition (detailed ex-

planation in the next section), we first hand labeled 610

narrative reports from the total of 2482 reports and split

them into a training set (348 reports) and validation set (162

reports). Each word in a sentence was tagged as detective

(Det), witness (Wit), suspect (Sus) or other (O). All of the

detectives, investigators, coroner and supervisors involved in

the case were tagged as Det. People who were interviewed

or provided information related to the case were assigned to

the Wit label. People were tagged as Sus if they were under

investigation at any point during the chronology (for example

if a warrant was issued or they were arrested).

IV. IDENTIFYING NAMED ENTITIES AND EVIDENCE

Named entity recognition (NER) is a framework for identi-

fying named entities from text and classifying them into pre-



TABLE I: NER model comparison for homicide investigation chronologies.

Model
Overall Detective Witness Suspect

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

spaCy
train 0.86 0.91 0.88 0.90 0.94 0.92 0.79 0.93 0.86 0.88 0.77 0.82
valid 0.36 0.26 0.30 0.28 0.17 0.21 0.39 0.53 0.45 0.39 0.06 0.11

BiLSTM-CRF
train 0.95 0.96 0.96 0.96 0.97 0.97 0.98 0.92 0.95 0.91 0.99 0.95
valid 0.74 0.83 0.78 0.82 0.82 0.82 0.84 0.83 0.84 0.17 0.91 0.29

BiLSTM-BiLSTM-CRF
train 0.98 0.97 0.97 0.99 0.98 0.98 0.99 0.94 0.97 0.96 0.99 0.97
valid 0.67 0.83 0.74 0.64 0.70 0.67 0.84 0.92 0.88 0.12 0.88 0.21

BiLSTM-CNN-CRF
train 0.99 0.96 0.98 0.99 0.98 0.99 0.98 0.96 0.97 0.99 0.94 0.97
valid 0.72 0.79 0.76 0.70 0.65 0.68 0.82 0.92 0.87 0.43 0.76 0.55

defined categories. Deep learning based approaches for NER

are currently state of the art and we compare four deep learning

models for the task of identifying detectives, witnesses, and

suspects from homicide chronologies. For a review of deep

learning based NER see [13].

A. spaCy

The first deep learning based approach we evaluate is

the NER method implemented in spaCy1, a Python based

open source library that provides tools for natural language

processing [14], [15]. The default NER model in spaCy utilizes

subword features and bloom embeddings [16], along with a

convolution neural network with residual connections.

B. Bidirectional LSTM-CRF

We also apply a bidirectional LSTM-CRF (conditional

random field) model for NER [17] and compared it with

two other alternative architectures. The models makes use of

both past and future input features and sequence level tagging

information and use pre-trained GloVe [18] embeddings.

For the implementation of bi-LSTM and CRF, we input pre-

trained GloVe [18] embeddings into the neural network, apply

a dropout to the word representation in order to prevent over-

fitting [19], and then train the Bi-LSTM to get a contextual

representation. The final step in the model includes applying

CRF to decode the sentence [19]. We refer to this model as

BiLSTM-CRF.

In the first alternative [20], we concatenate with character

level word embeddings from a bi-LSTM model. The character

level model uses a forward and backward LSTM to obtain a

representation of the suffix and prefix of a word [20]. After

obtaining the word representation, we apply a bi-LSTM to get

another sequence of vectors providing contextual representa-

tions. Again, at the end we use a CRF to decode sentence level

tag information. We refer to this model as BiLSTM-BiLSTM-

CRF.

In the third LSTM-CRF variant, we consider uses a CNN

layer instead of Bi-LSTM to derive character embeddings. We

train a 1-D Convolutional Neural Network (CNN) followed by

a max pooling layer to get the character level embeddings and

concatenate the layer with pre-trained GloVe embeddings. The

1https://spacy.io/

CNN is an effective architecture for extracting morphological

information from characters of a word [21]–[23]. This word

representation is then fed to a bi-directional LSTM network

in order to extract a contextual word representation which is

then fed to the CRF model to decode the sequence tags for

the sentence. We refer to this model as BiLSTM-CNN-CRF.

C. Application of NER to homicide investigation chronologies

We compare the above four NER models to the LAPD

homicide investigation dataset. We first hand labeled 610

narrative reports from the total of 2482 reports and split

them into a training set (348 reports) and validation set (162

reports). Each word in a sentence was tagged as detective

(Det), witness (Wit), suspect (Sus) or other (O). All of the

detectives, investigators, coroner and supervisors involved in

the case were tagged as Det. People who were interviewed

or provided information related to the case were assigned to

the Wit label. People were tagged as Sus if they were under

investigation at any point during the chronology (for example

if a warrant was issued or they were arrested).

In Table I we show the performance of the four NER

models on our dataset. We evaluate the models in terms

of precision, recall and f1-score. We find that overall, the

BiLSTM-CRF model has the best precision (.74), recall (.83)

and f1-score (.78) on the validation data. We therefore use

the BiLSTM-CRF in constructing knowledge graphs in the

following sections. Due to the small dataset, it is likely that

the NER models may be overfitting the data. An example of

the NER extraction is shown in Figure 2a.

D. Identifying evidence using keyword expansion

While NER can be used to extract named entities, we

use domain expertise coupled with a key word expansion to

extract evidence from each sentence. We first start with a

key word list of evidence classified into three types: physical,

documentary and forensic evidence. The list is shown in

Table II. Physical evidence includes tangible objects such as

gun, knife, bullet, etc. Documentary evidence includes tapes,

photos, video, etc. containing pertinent information to the case.

Forensic evidence, on the other hand, includes DNA, blood,

fingerprints, autopsy information, etc.

Next we used a keyword expansion [24] to extract additional

keywords related to evidence from the text. In particular, we



TABLE II: Initial List for Identifying Types of Evidence in Text

Evidence Type Keywords

Documentary Evidence tapes, recording, surveillance, photo, video, camera, photograph
Physical Evidence weapon, gun, knife, gunshot, caliber, casing
Forensic Evidence dna, blood, fingerprint, autopsy

TABLE III: Evidence List after applying Keyword Expansion

Evidence Type Keywords

Documentary Evidence tapes, recording, surveillance, photo, video, camera, photograph, print, letter, security, camera, printout, record,
recording, report, notes, document, monitor, footage, warrant, property, picture, chronology, log

Physical Evidence weapon, gun, knife, gunshot, caliber, casing, handgun, firearm, item, shooting, bullet, murder, crime, scene,
crimescene, shot, kill, stab, revolver, fire, discovery, criminal, kick, vehicle, veh

Forensic Evidence wound, body, polygraph, exam, examination, test, hair, impression

preprocessed the data by removing stopwords and eliminating

any word with length less than 3 and frequency less than

5. We used Gensim Word2Vec 2 to embed each word in

the remaining text and computed the similarity (distance)

of each word to those in the defined list in Table II. We

then thresholded the similarity scores and again used domain

expertise to select and prune the resulting expanded keyword

list. We applied this process iteratively three times, the result

of which is shown in Table III. An example sentence with

NER and evidence detection is shown in Figure 2a.

V. BUILDING A KNOWLEDGE GRAPH OF HOMICIDE

INVESTIGATION CHRONOLOGIES

A knowledge graph (KG) is a representation of structured

information in the form of entities and relations (links) be-

tween them. Here we describe our approach to constructing

knowledge graphs of homicide investigation chronologies. We

utilize an end-to-end text to knowledge graph framework, t2kg,

[25] to construct the knowledge graph in four stages:

1) Entity Mapping

2) Coreference Resolution

3) Entity Extraction

4) Entity Disambiguation

During the first stage an entity is mapped to a uniform

resource identifier (URI). In the context of a homicide inves-

tigation, entity mapping can be viewed as identifying law en-

forcement detectives, witnesses, suspects and evidences from

text performed using named entity recognition and keyword

expansion.

In the next stage, we perform coreference resolution which

is the task of finding mentions in text that refer to the same

underlying entity. This is done in order to capture different

expressions of identical entities [26], [27]. For this purpose we

use neuralcoref3 to resolve coreference clusters. In the third

stage we perform entity extraction, for which we considered

the following two approaches:

1) Triple Extraction Approach Subject-object-relation

triples are extracted using the Open Information Extrac-

tion technique implemented in the Stanford CoreNLP

2https://radimrehurek.com/gensim/
3https://spacy.io/universe/project/neuralcoref

library. In Figure 2b we show an example of a sub-

graph created from the paragraph in Figure 2a using the

triple extraction approach. For example, vehicle keys are

provided to a witness leading to an edge between vehicle

and witness being added to the knowledge graph.

2) Domain Knowledge The triple extraction approach uses

grammatical structure to add edges, without regard to

domain knowledge or the fact that all sentences in a

chronology are related. Therefore we consider an alter-

native approach, that we refer to as “domain knowledge,”

where we add a complete (fully-connected) sub-graph of

all extracted entities detected in the chronology entry.

We show an example of this approach in Figure 2c.

Coreference resolution using neuralcoref in stage 2 above

is only able to resolve high level coreference clusters in the

text. We therefore add an entity disambiguation stage, where

identical entities are grouped together and duplicates are elim-

inated. In the entity disambiguation phase, multiple versions

of the same entity are mapped to a unique entity identifier.

For instance, entity John Middle Doe may be referenced in

the text with variations such as John, John M Doe, Doe,

J. Doe etc. To merge these variations we employed partial

string matching. We then merged redundant entities that are

identified in the triple extraction approach. For example, the

triple (DET, interviewed, WIT) is merged with the triple (DET,

interviewed with, WIT) into the single entity-relation tuple

(DET, interviewed with, WIT). They are then matched with

their uniform resource identifier(URI).

Extracted entities and evidence using NER and keyword

expansion play a vital role in knowledge graph generation

both for the domain knowledge graph and triple extraction

approach. In triple extraction approach, triples are mapped to

their URI (extracted in entity mapping stage). The subjects

and object from the triples are then connected for knowledge

graph generation. In domain knowledge approach, extracted

entities in each chronology from stage 1 are fully connected

in order to generate a knowledge graph. Furthermore, each

nodes in a knowledge graph is colored according to different

entity and evidence type.

In Figure 5 and 6 we present example knowledge graphs for

the domain knowledge approach and triple extraction approach



and            arrived at                         , located at ADDRESS . 
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Fig. 2: Building knowledge sub-graphs using Named Entity

Recognition and Keyword Expansion. (a) Entity extraction us-

ing Named entity recognition and Keyword Expansion. Some

text is redacted such as detective names (replaced with DET),

witness names (replaced with WIT), suspect names (replaced

with SUS), etc. (b) Extracted knowledge sub-graph using

Stanford OpenIE Triple Extraction approach. (c) Extracted

knowledge sub-graph using Domain Knowledge Approach.

Text and nodes are colored by its entity type (Detective- pink,

Witness- green, Suspect- red, Physical evidence- yellow, Doc-

umentary evidence- cyan, Forensic evidence- orange, Other-

gray)

respectively. In general we find that the domain knowledge

graphs are more connected, given the fully connected subgraph

used for each chronology entry. This can be seen in the

degree distributions corresponding to each method in Figure

3. We also note that much of the information contained in the

knowledge graphs is already present after the first week of the

homicide investigation (see Figure 4).

VI. ASSOCIATION BETWEEN KNOWLEDGE GRAPH

FEATURES AND HOMICIDE SOLVABILITY

To evaluate the quality of the knowledge graphs we con-

struct, we investigate the extent to which knowledge graph fea-

tures (statistics) are asssociated with solvability. The methods

we introduce here may be stepping stones towards AI-assisted

homicide investigation, where key elements of the graph may

be identified as playing a role in whether the case is ultimately

solved (a suspect is charged for the crime). We are cautious

in avoiding the term prediction, given the small dataset size

and our inability to disentangle causality from correlation.

First, we create knowledge graphs for each of the 24 cases

provided by the LAPD using the triple extraction and domain

knowledge approaches. After the creation of the knowledge

graphs, we compute network statistics for each KG, e.g.,

number of nodes, number of edges, network density.

In Figure 7, we display the 15 network statistics we compute

for each network along with the AUC of the statistic as it

relates to solvability of the homicide investigation. Here we

find that the number of evidence nodes, suspect nodes and

average degree of detective nodes yield the highest AUC.

For each approach (domain knowledge and triple extrac-

tion), we consider networks where detective nodes are included

and networks where they are removed. While detective node

based features have a high AUC score, causality may be in the

wrong direction. On the one hand, an increase in the number of

detective nodes may be due to the case being solvable. On the

other, cases with more dedicated resources may be more likely

to be solved. We show results for both types of networks.

We next evaluate a simple generalized linear model (GLM)

with binary response for determining solvability:

log(p(y = 1)/(1− p(y = 1)) = c0 + c1s+ c2e+ c3s · e (1)

where s is the number of suspect nodes, e is the number

of evidence nodes, and y indicates whether the homicide is

solved. The features were selected based on their individual

AUC scores in Figure 7 and limited to the top-two (averaged

across network types) to prevent over-fitting.

Due to the small dataset size we use leave-one-out cross

validation (LOOCV). In Figure 8 we show the AUC scores of

the GLM model for each network type (domain knowledge vs.

tripe extraction, with and without detective nodes) constructed

using data up to a given week past the start of the investigation.

Here we generally find that the domain knowledge approach

outperforms the triple extraction approach. We also do not

find much improvement in the association between the model

scores and solvability past 1-3 weeks in the investigation. In

the case of the triple extraction networks without detective





(a) Domain Knowledge Approach (including detective nodes- Week
1

(b) Domain Knowledge Approach (including detective nodes- Week
10

(c) Domain Knowledge Approach (not including detective nodes-
Week 1

(d) Domain Knowledge Approach (not including detective nodes-
Week 10

Fig. 5: Knowledge graph using Domain Knowledge Approach with and without detective nodes. Each node is colored by its

entity type (Detective- pink, Witness- green, Suspect- red, Physical evidence- yellow, Documentary evidence- cyan, Forensic

evidence- orange).

some protection, it does not provide a guarantee. Wrongful

convictions can sometimes be linked back to false witness

statements, forensic error, or police misconduct [33]. Even-

tually, whether there are recognizable differences between

knowledge graphs that include corrupted information and those

that do not needs to be investigated.

Ultimately, considerations of fairness, accountability, and

transparency need to be central to the development of machine

learning methods for homicide investigations.
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(a) Triple Extraction (including detective nodes- Week 1 (b) Triple Extraction (including detective nodes- Week 10

(c) Triple Extraction (after removing detective nodes- Week 1 (d) Triple Extraction (after removing detective nodes- Week 10

Fig. 6: Knowledge graph using Triple extraction approach with and without detective nodes. Each node is colored by its
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Fig. 7: AUC and standard error for each network statistic in week 1 of the investigation.
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