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Abstract—Homicide investigations generate large and diverse
data in the form of witness interview transcripts, physical
evidence, photographs, DNA, etc. Homicide case chronologies are
summaries of these data created by investigators that consist
of short text-based entries documenting specific steps taken
in the investigation. A chronology tracks the evolution of an
investigation, including when and how persons involved and items
of evidence became part of a case. In this article we discuss a
framework for creating knowledge graphs of case chronologies
that may aid investigators in analyzing homicide case data
and also allow for post hoc analysis of the key features that
determine whether a homicide is ultimately solved. Our method
consists of 1) performing named entity recognition to determine
witnesses, suspects, and detectives from chronology entries 2)
using keyword expansion to identify documentary, physical, and
forensic evidence in each entry and 3) linking entities and
evidence to construct a homicide investigation knowledge graph.
We compare the performance of several choices of methodologies
for these sub-tasks using homicide investigation chronologies
from Los Angeles, California. We then analyze the association
between network statistics of the knowledge graphs and homicide
solvability.

Index Terms—Kknowledge graph, named entity recognition,
homicide investigation

I. INTRODUCTION

A large amount of text-based data is produced during a
homicide investigation including basic descriptions of the
event, evidence logs, forensic reports, maps and annotated
photographs, and transcripts of investigator’s notes and witness
interviews. These data are compiled into a so-called “Murder
Book™ that summarizes the paper trail from the time the
incident was reported to the time a case is closed.

In the United States nationally, around 60% of homicides
are solved or cleared via arrest or other exceptional means
such as death of the offender [1]. Several factors appear
to play an important role in homicide solvability [2]. Some
crimes are inherently more difficult to solve than others;
clearance rates generally are lower for homicides that involve
guns, are perpetrated by strangers, lack witnesses, or occur in
neighborhoods where cooperation with police is strained [3]-
[5]. The quality of police investigations also appears to matter

Fig. 1: Example knowledge graph of a homicide investigation
chronology. Entities include witnesses, suspects and detectives
as well as physical, documentary and forensic type evidences.

[6]. High volumes of casework, lack of investigative resources,
investigator inexperience, and variability in investigator moti-
vation (e.g., bias) can all drive down homicide clearance rates
(71, [8].

Our primary interest in this work is to understand the
interactions between the characteristics of a crime, as repre-
sented by collected evidence, and the investigative process. We
hypothesize that some of these interactions are non-obvious
and therefore difficult to leverage using traditional methods
designed to improve homicide solvability. We explore methods
to construct “knowledge graphs” from text-based investigative
information contained within Murder Books and evaluate the
association between structural features of the resulting graphs
and solvability of the cases. We see this as a precursor to
methods that can be used actively during investigations to
improve clearance rates for homicides that would typically



go unsolved.

In Figure 1 we show an example knowledge graph con-
structed from a homicide chronology using the methods de-
tailed in this paper. In the graph there are 3 suspect nodes,
12 witness nodes and a single node for the victim. There are
3 types of evidence nodes connected to these 16 individuals,
including physical evidence nodes (yellow), documentary evi-
dence nodes (cyan), and forensic evidence nodes (orange). Our
ultimate goal is to correlate features of the network with the
outcome of the investigation (whether or not it is solved).

The remainder of this paper proceeds as follows. In Section
II we outline at a conceptual level an ontology for homicide
knowledge graphs. In Section III we describe the data used
in our study. In Section IV we compare four deep learning
approaches for named entity recognition in homicide investi-
gation chronologies. We also introduce a keyword expansion
methodology for extracting evidence from chronology entries.
In Section V we consider two approaches for constructing
knowledge graphs of homicide investigations using the entity
extraction techniques introduced earlier in the paper and in
Section VI we analyze statistics of the constructed knowledge
graphs as they relate to solvability outcomes. We discuss the
implications of our findings and directions for future work in
Section VII.

II. HOMICIDE GRAPH ONTOLOGIES

Our approach to knowledge graph construction starts with
the routine activities theory of crime [9]. RAT outlines a core
ontological framework for any potential threat that arises from
the normal activities that people engage in on a day-to-day
basis. For crime such as homicide, RAT helps delineate the
key elements and contexts that must underlie the crime. It
is this underlying structure that detectives seek to capture in
their investigation and that we seek to represent in a knowledge
graph. The minimal elements necessary for a homicide consist
of an offender (node) killing (edge) a victim (node). The
homicide takes place in a setting (node), which can act
upon both the offender and victim. By virtue of the fact
that an offender and victim must converge in a setting for
a homicide to occur, these core elements necessarily form
a complete graph. The core graph can be further refined
and extended based on other specific knowledge about an
event. For example, the act of killing may be mediated by a
weapon (node) and offenders, victims and settings each may be
conditioned by other characteristics such as motives (nodes),
such as jealousy, and contexts (nodes), such as alcohol and
witnesses. Note that the hypothetical graph for the crime itself
must have elements such as an offender (node) that exist with
certainty. A corresponding investigative knowledge graph may
have elements such as a suspect (node) or evidence (node)
labeled to reflect uncertainty.

There have been a few attempts to map out the ontology of
graphs related to various threats [10], [11], but these remain
relatively simple at present. Homicide investigations can easily
generate tens-of-thousands of unique data points, suggesting
that homicide knowledge graphs will include a proportional

number of graphical elements. We expect the core ontology
suggested above to quickly become challenging to understand
and difficult to analyze for plausible causal pathways (e.g.,
attribution of guilt). We therefore require methods that can
easily extract and accurately label investigative elements and
their relationships according to a specified ontology and then
use the resulting graphical structure for various investigative
tasks.

III. DATA DESCRIPTION

A so-called “Murder Book” is a case file management
structure developed to ensure organization and standardization
in homicide investigations. The Los Angeles Police Depart-
ment (LAPD) has been successfully using Murder Books for
nearly four decades [12]. It allows anyone involved in the
investigation to find investigative reports, crime scene reports,
witness list, interview transcripts, photos and other material.
Every Murder Book contains a case chronology which consists
of a time-ordered list of steps taken by the investigators over
the entire history of the case. The chronology typically starts
with an entry describing which detectives are assigned to the
case and how they were notified, followed by a separate entry
describing arrival at the scene and general scene description
(e.g., state of the victim and initial evidence collected). A
chronology typically ends with an entry describing how a
case was closed (e.g., suspect arrested) or, if the case remains
open, the date and time of the last case review. Hundreds of
entries in between cover investigative events such as the date,
time and location of witness interviews, date of receipt of
forensic reports, and date of warrant requests. Each entry in
the chronology is typically a compact, text-based statement
totalling no more than 120-150 words. The purpose is to
provide a quick reference for the state of the investigation,
rather than a sounding-board for a theory of the crime.

The dataset we analyze at present consists of the case
chronologies for 24 randomly-sampled Murder Books for
homicides that occurred in LAPD’s South Bureau between
1990 to 2010. The data were provided by the LAPD and are
analyzed under UCLA IRB Protocol 19-000588. The 24 cases
generated 2482 unique chronological entries.

For the purpose of named entity recognition (detailed ex-
planation in the next section), we first hand labeled 610
narrative reports from the total of 2482 reports and split
them into a training set (348 reports) and validation set (162
reports). Each word in a sentence was tagged as detective
(Det), witness (Wit), suspect (Sus) or other (O). All of the
detectives, investigators, coroner and supervisors involved in
the case were tagged as Det. People who were interviewed
or provided information related to the case were assigned to
the Wit label. People were tagged as Sus if they were under
investigation at any point during the chronology (for example
if a warrant was issued or they were arrested).

IV. IDENTIFYING NAMED ENTITIES AND EVIDENCE

Named entity recognition (NER) is a framework for identi-
fying named entities from text and classifying them into pre-



TABLE I: NER model comparison for homicide investigation chronologies.

Model Overall Detective Witness Suspect
Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score

o rain 086 091 088 090 094 092 079 093 086 088 077 082
pat-y valid 036 026  0.30 028 017 021 039 053 045 039 006 0.11
) rain 095 096 096 096 097 097 098 092 095 091 099 0095
BiILSTM-CRF  id 074 083 078 082 082 08 084 08 08 017 091 029
) ) tram 008 097 097 099 098 093 099 094 097 096 099 0.7
BiLSTM-BiLSTM-CRF | i4 067 083 074 064 070 067 084 092 08 012 088 021
) tram 099 096 098 099 098 099 098 096 097 099 094 0.97
BiILSTM-CNN-CRF [ 'id 072 079 076 070 065 068 082 092 087 043 076 055

defined categories. Deep learning based approaches for NER
are currently state of the art and we compare four deep learning
models for the task of identifying detectives, witnesses, and
suspects from homicide chronologies. For a review of deep
learning based NER see [13].

A. spaCy

The first deep learning based approach we evaluate is
the NER method implemented in spaCy', a Python based
open source library that provides tools for natural language
processing [14], [15]. The default NER model in spaCy utilizes
subword features and bloom embeddings [16], along with a
convolution neural network with residual connections.

B. Bidirectional LSTM-CRF

We also apply a bidirectional LSTM-CRF (conditional
random field) model for NER [17] and compared it with
two other alternative architectures. The models makes use of
both past and future input features and sequence level tagging
information and use pre-trained GloVe [18] embeddings.

For the implementation of bi-LSTM and CRF, we input pre-
trained GloVe [18] embeddings into the neural network, apply
a dropout to the word representation in order to prevent over-
fitting [19], and then train the Bi-LSTM to get a contextual
representation. The final step in the model includes applying
CRF to decode the sentence [19]. We refer to this model as
BiLSTM-CRF.

In the first alternative [20], we concatenate with character
level word embeddings from a bi-LSTM model. The character
level model uses a forward and backward LSTM to obtain a
representation of the suffix and prefix of a word [20]. After
obtaining the word representation, we apply a bi-LSTM to get
another sequence of vectors providing contextual representa-
tions. Again, at the end we use a CRF to decode sentence level
tag information. We refer to this model as BILSTM-BiLSTM-
CRF.

In the third LSTM-CRF variant, we consider uses a CNN
layer instead of Bi-LSTM to derive character embeddings. We
train a 1-D Convolutional Neural Network (CNN) followed by
a max pooling layer to get the character level embeddings and
concatenate the layer with pre-trained GloVe embeddings. The

Thttps://spacy.io/

CNN is an effective architecture for extracting morphological
information from characters of a word [21]-[23]. This word
representation is then fed to a bi-directional LSTM network
in order to extract a contextual word representation which is
then fed to the CRF model to decode the sequence tags for
the sentence. We refer to this model as BILSTM-CNN-CRF.

C. Application of NER to homicide investigation chronologies

We compare the above four NER models to the LAPD
homicide investigation dataset. We first hand labeled 610
narrative reports from the total of 2482 reports and split
them into a training set (348 reports) and validation set (162
reports). Each word in a sentence was tagged as detective
(Det), witness (Wit), suspect (Sus) or other (O). All of the
detectives, investigators, coroner and supervisors involved in
the case were tagged as Det. People who were interviewed
or provided information related to the case were assigned to
the Wir label. People were tagged as Sus if they were under
investigation at any point during the chronology (for example
if a warrant was issued or they were arrested).

In Table I we show the performance of the four NER
models on our dataset. We evaluate the models in terms
of precision, recall and fl-score. We find that overall, the
BiLSTM-CRF model has the best precision (.74), recall (.83)
and fl-score (.78) on the validation data. We therefore use
the BILSTM-CRF in constructing knowledge graphs in the
following sections. Due to the small dataset, it is likely that
the NER models may be overfitting the data. An example of
the NER extraction is shown in Figure 2a.

D. Identifying evidence using keyword expansion

While NER can be used to extract named entities, we
use domain expertise coupled with a key word expansion to
extract evidence from each sentence. We first start with a
key word list of evidence classified into three types: physical,
documentary and forensic evidence. The list is shown in
Table II. Physical evidence includes tangible objects such as
gun, knife, bullet, etc. Documentary evidence includes tapes,
photos, video, etc. containing pertinent information to the case.
Forensic evidence, on the other hand, includes DNA, blood,
fingerprints, autopsy information, etc.

Next we used a keyword expansion [24] to extract additional
keywords related to evidence from the text. In particular, we



TABLE II: Initial List for Identifying Types of Evidence in Text

Evidence Type

Keywords

Documentary Evidence
Physical Evidence
Forensic Evidence

tapes, recording, surveillance, photo, video, camera, photograph
weapon, gun, knife, gunshot, caliber, casing
dna, blood, fingerprint, autopsy

TABLE III: Evidence List after applying Keyword Expansion

Evidence Type Keywords

Documentary Evidence

tapes, recording, surveillance, photo, video, camera, photograph, print, letter, security, camera, printout, record,

recording, report, notes, document, monitor, footage, warrant, property, picture, chronology, log

Physical Evidence

weapon, gun, knife, gunshot, caliber, casing, handgun, firearm, item, shooting, bullet, murder, crime, scene,

crimescene, shot, kill, stab, revolver, fire, discovery, criminal, kick, vehicle, veh

Forensic Evidence

wound, body, polygraph, exam, examination, test, hair, impression

preprocessed the data by removing stopwords and eliminating
any word with length less than 3 and frequency less than
5. We used Gensim Word2Vec % to embed each word in
the remaining text and computed the similarity (distance)
of each word to those in the defined list in Table II. We
then thresholded the similarity scores and again used domain
expertise to select and prune the resulting expanded keyword
list. We applied this process iteratively three times, the result
of which is shown in Table IIIl. An example sentence with
NER and evidence detection is shown in Figure 2a.

V. BUILDING A KNOWLEDGE GRAPH OF HOMICIDE
INVESTIGATION CHRONOLOGIES

A knowledge graph (KG) is a representation of structured
information in the form of entities and relations (links) be-
tween them. Here we describe our approach to constructing
knowledge graphs of homicide investigation chronologies. We
utilize an end-to-end text to knowledge graph framework, t2kg,
[25] to construct the knowledge graph in four stages:

1) Entity Mapping

2) Coreference Resolution

3) Entity Extraction

4) Entity Disambiguation

During the first stage an entity is mapped to a uniform
resource identifier (URI). In the context of a homicide inves-
tigation, entity mapping can be viewed as identifying law en-
forcement detectives, witnesses, suspects and evidences from
text performed using named entity recognition and keyword
expansion.

In the next stage, we perform coreference resolution which
is the task of finding mentions in text that refer to the same
underlying entity. This is done in order to capture different
expressions of identical entities [26], [27]. For this purpose we
use neuralcoref’ to resolve coreference clusters. In the third
stage we perform entity extraction, for which we considered
the following two approaches:

1) Triple Extraction Approach Subject-object-relation

triples are extracted using the Open Information Extrac-
tion technique implemented in the Stanford CoreNLP

Zhttps://radimrehurek.com/gensim/
3https://spacy.io/universe/project/neuralcoref

library. In Figure 2b we show an example of a sub-
graph created from the paragraph in Figure 2a using the
triple extraction approach. For example, vehicle keys are
provided to a witness leading to an edge between vehicle
and witness being added to the knowledge graph.

2) Domain Knowledge The triple extraction approach uses
grammatical structure to add edges, without regard to
domain knowledge or the fact that all sentences in a
chronology are related. Therefore we consider an alter-
native approach, that we refer to as “domain knowledge,”
where we add a complete (fully-connected) sub-graph of
all extracted entities detected in the chronology entry.
We show an example of this approach in Figure 2c.

Coreference resolution using neuralcoref in stage 2 above
is only able to resolve high level coreference clusters in the
text. We therefore add an entity disambiguation stage, where
identical entities are grouped together and duplicates are elim-
inated. In the entity disambiguation phase, multiple versions
of the same entity are mapped to a unique entity identifier.
For instance, entity John Middle Doe may be referenced in
the text with variations such as John, John M Doe, Doe,
J. Doe etc. To merge these variations we employed partial
string matching. We then merged redundant entities that are
identified in the triple extraction approach. For example, the
triple (DET, interviewed, WIT) is merged with the triple (DET,
interviewed with, WIT) into the single entity-relation tuple
(DET, interviewed with, WIT). They are then matched with
their uniform resource identifier(URI).

Extracted entities and evidence using NER and keyword
expansion play a vital role in knowledge graph generation
both for the domain knowledge graph and triple extraction
approach. In triple extraction approach, triples are mapped to
their URI (extracted in entity mapping stage). The subjects
and object from the triples are then connected for knowledge
graph generation. In domain knowledge approach, extracted
entities in each chronology from stage 1 are fully connected
in order to generate a knowledge graph. Furthermore, each
nodes in a knowledge graph is colored according to different
entity and evidence type.

In Figure 5 and 6 we present example knowledge graphs for
the domain knowledge approach and triple extraction approach



DET1 and DET2 arrived at crime scene, located at ADDRESS .
Victim in streetcovered with sheet . Victim identified at scene by
his Sister WIT as VICT , GENDER/ETHNICITY AGE . Victim had
multiple gunshot \wounds to his chest , back and possibly to
BODYPART . I/O 's conducted crime scene investigation See IR

and_.Recoveredevidence, two .45 caliber casings .
Coroner 's Investigator DET3 took charge of thevictim’s 'body and
assigned Coroner 's Case No . XXXX . DET1 | took possession oftwo
cell phones in victim 's pockets and searched victim 's MODEL
MAKE , parked on westcurb on ADDRESS . Provided victim *
vehicle keys to WIT . SID PhotographerNAME XXXX took
that were directed by DET1 , C # XXXX .
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Fig. 2: Building knowledge sub-graphs using Named Entity
Recognition and Keyword Expansion. (a) Entity extraction us-
ing Named entity recognition and Keyword Expansion. Some
text is redacted such as detective names (replaced with DET),
witness names (replaced with WIT), suspect names (replaced
with SUS), etc. (b) Extracted knowledge sub-graph using
Stanford OpenlE Triple Extraction approach. (c) Extracted
knowledge sub-graph using Domain Knowledge Approach.
Text and nodes are colored by its entity type (Detective- pink,
Witness- green, Suspect- red, Physical evidence- yellow, Doc-
umentary evidence- cyan, Forensic evidence- orange, Other-

gray)

respectively. In general we find that the domain knowledge
graphs are more connected, given the fully connected subgraph
used for each chronology entry. This can be seen in the
degree distributions corresponding to each method in Figure
3. We also note that much of the information contained in the
knowledge graphs is already present after the first week of the
homicide investigation (see Figure 4).

VI. ASSOCIATION BETWEEN KNOWLEDGE GRAPH
FEATURES AND HOMICIDE SOLVABILITY

To evaluate the quality of the knowledge graphs we con-
struct, we investigate the extent to which knowledge graph fea-
tures (statistics) are asssociated with solvability. The methods
we introduce here may be stepping stones towards Al-assisted
homicide investigation, where key elements of the graph may
be identified as playing a role in whether the case is ultimately
solved (a suspect is charged for the crime). We are cautious
in avoiding the term prediction, given the small dataset size
and our inability to disentangle causality from correlation.

First, we create knowledge graphs for each of the 24 cases
provided by the LAPD using the triple extraction and domain
knowledge approaches. After the creation of the knowledge
graphs, we compute network statistics for each KG, e.g.,
number of nodes, number of edges, network density.

In Figure 7, we display the 15 network statistics we compute
for each network along with the AUC of the statistic as it
relates to solvability of the homicide investigation. Here we
find that the number of evidence nodes, suspect nodes and
average degree of detective nodes yield the highest AUC.

For each approach (domain knowledge and triple extrac-
tion), we consider networks where detective nodes are included
and networks where they are removed. While detective node
based features have a high AUC score, causality may be in the
wrong direction. On the one hand, an increase in the number of
detective nodes may be due to the case being solvable. On the
other, cases with more dedicated resources may be more likely
to be solved. We show results for both types of networks.

We next evaluate a simple generalized linear model (GLM)
with binary response for determining solvability:

log(p(y =1)/(1 —p(y = 1)) = co + c15 + cae + ¢35 - € (1)

where s is the number of suspect nodes, e is the number
of evidence nodes, and ¥y indicates whether the homicide is
solved. The features were selected based on their individual
AUC scores in Figure 7 and limited to the top-two (averaged
across network types) to prevent over-fitting.

Due to the small dataset size we use leave-one-out cross
validation (LOOCYV). In Figure 8 we show the AUC scores of
the GLM model for each network type (domain knowledge vs.
tripe extraction, with and without detective nodes) constructed
using data up to a given week past the start of the investigation.
Here we generally find that the domain knowledge approach
outperforms the triple extraction approach. We also do not
find much improvement in the association between the model
scores and solvability past 1-3 weeks in the investigation. In
the case of the triple extraction networks without detective
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Fig. 3: Degree distributions of the 24 homicide investigation knowledge graphs of domain knowledge type (with and without
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Fig. 4: Average number of chronology entries over first 20
weeks into the investigation.

nodes, we find that the GLM model yields AUC scores at or
below .5 (using LOOCYV), indicating that the GLM model is
over-fitting for that type of network.

VII. DISCUSSION

We show that it is possible to construct knowledge graphs
representing homicide investigations from text-based case file
information. The topological features of these knowledge
graphs offers some traction in classifying whether or not
homicides are solvable. Features that prove to be important in
classifying homicide solvability (e.g., evidence nodes, suspect
nodes) are consistent with analysis of investigative process
using other methods [8]. Importantly, the results also suggest
that the most significant topological structure are established
early in an investigation, reinforcing the common view that
cases can be divided into “self-solvers” that produce sufficient
evidence at the scene and “whodunits” that do not [28].

That knowledge graph topological structures appear to pro-
vide useful information suggests that Al could eventually be
used to improve solvability. It is too early to know exactly what
to expect. However, we hypothesize that there will be regular
structural and relational features of solved homicides that
will distinguish them from unsolved ones. When comparing

graphs, we may be able to identify gaps or holes in graphical
structures that, if closed, could improve the chances of a case
being solved. To the extent that such graph-based insights go
beyond what common investigative practice would yield, Al-
assisted homicide investigation may be valuable.

A common expressed view is that solving homicides helps
build community trust in police, while failure to do so erodes
that trust and creates a sense of impunity among offenders
[4], [5]. If AI can help improve homicide solvability, then it
can also be seen to contribute to building community trust.
However, the question is not simply whether such methods
augment the process of homicide investigation. Rather, since
homicide investigations must adhere to the policy requirements
of the organization and the procedural requirements of the
law, so must Al used within those investigations. For example,
if we consider a hypothetical knoweldge graph-based recom-
mender system that suggests investigative steps, then those
recommendations cannot violate policy or the law.

Al-assisted homicide investigation would also need to be
evaluated in terms of fairness. The evidence is mixed on
whether homicide clearance rates are mediated by race and
gender [2], [5], [8], [29], though many expect that clearances
rates are lower when the victim is a person of color [4]. In any
case, Al should not introduce or amplify any clearance rate
imbalances. We should also consider the possibility that Al-
assisted investigation might ease clearance rate imbalances.
Such imbalances may originate with the event itself if, for
instance, so-called “whodunit” cases arise more often in as-
sociation with certain demographic characteristics [30]. They
might also appear if there is “victim devaluing” based on
demographic characteristics [4], [5]. Identifying such biases in
investigative knowledge graphs is a necessary and important
step towards correcting for them.

Finally, we must also be aware of the potential for the
miscarriage of justice. Recent evidence suggests that wrongful
convictions may occur in < 5% of capital cases such as
murder [31]. That wrongful convictions may also differ by
race [32], demands that the contributing factors be taken into
consideration in Al-assisted homicide investigations. While
careful adherence to rules of evidence and procedure may offer



(a) Domain Knowledge Approach (including detective nodes- Week
1

(c¢) Domain Knowledge Approach (not including detective nodes-
Week 1

(b) Domain Knowledge Approach (including detective nodes- Week
10

(d) Domain Knowledge Approach (not including detective nodes-

Week 10

Fig. 5: Knowledge graph using Domain Knowledge Approach with and without detective nodes. Each node is colored by its
entity type (Detective- pink, Witness- green, Suspect- red, Physical evidence- yellow, Documentary evidence- cyan, Forensic

evidence- orange).

some protection, it does not provide a guarantee. Wrongful
convictions can sometimes be linked back to false witness
statements, forensic error, or police misconduct [33]. Even-
tually, whether there are recognizable differences between
knowledge graphs that include corrupted information and those
that do not needs to be investigated.

Ultimately, considerations of fairness, accountability, and
transparency need to be central to the development of machine
learning methods for homicide investigations.
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Fig. 6: Knowledge graph using Triple extraction approach with and without detective nodes. Each node is colored by its
entity type (Detective- pink, Witness- green, Suspect- red, Physical evidence- yellow, Documentary evidence- cyan, Forensic

evidence- orange, Other- gray).
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