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Abstract—The concept of attack surface has seen many applications in various domains, e.g., software security, cloud security,
mobile device security, Moving Target Defense (MTD), etc. However, in contrast to the original attack surface metric, which is formally
and quantitatively defined for a software, most of the applications at higher abstraction levels, such as the network level, are limited to
an intuitive and qualitative notion, losing the modeling power of the original concept. In this paper, we lift the attack surface concept to
the network level as a formal security metric for evaluating the resilience of networks against zero day attacks. Specifically, we first
develop novel models for aggregating the attack surface of different network resources. We then design heuristic algorithms to
estimate the network attack surface while reducing the effort spent on calculating attack surface for individual resources. Finally, the

proposed methods are evaluated through experiments.

Index Terms—Network security, security metrics, attack surface, zero-day attack

1 INTRODUCTION

FOR mission critical computer networks (e.g., those that
play the role of a nerve system in critical infrastructures,
governmental or military systems, and cloud data centers),
the security administrators usually need to look beyond tra-
ditional security mechanisms, such as firewalls and IDSs.
Their worry over the prospect of Advanced Persistent
Threat (APT) and hidden malware usually drive them to
understand the resilience of their networks against potential
zero day attacks (i.e., attacks that involve exploiting previ-
ously unknown vulnerabilities). However, while there exist
standards and metrics for measuring the relative severity of
known vulnerabilities (e.g., CVSS [1]), the task is more chal-
lenging for unknown vulnerabilities, which are sometimes
believed to be unmeasurable [2].

To that end, a promising solution is the attack surface con-
cept [3], which is originally proposed for measuring a
software’s degree of security exposure along three dimen-
sions, namely, entry and exit points (i.e., methods calling
I/0 functions), channels (e.g., TCP and UDP), and untrusted
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data items (e.g., registry entries or configuration files).
Since attack surface relies on such intrinsic properties of a
software, which are independent of external factors (e.g., the
disclosure of vulnerabilities or availability of exploits), it nat-
urally covers both known and unknown vulnerabilities [3]
and becomes a good candidate for modeling the threat of
zero day attacks.

Evidently, in addition to software security, the concept of
attack surface has also seen many applications in other
emerging domains, e.g., cloud security [4], mobile device
security [5], automotive security [6], Moving Target Defense
(MTD) [7], etc. (a detailed review of related work is pro-
vided in Section 6). However, in contrast to the original
attack surface metric, which is formally and quantitatively
defined for a single software, most of the applications at
higher abstraction levels (e.g., the network level) are limited
to an intuitive and qualitative notion [8]. Adopting such an
imprecise notion unavoidably loses most of the original
concept’'s power in formally and quantitatively reasoning
about the relative likelihood of different systems to contain
vulnerabilities.

In this paper, we address this issue by lifting the original
attack surface concept to the network level as a formally
defined security metric, namely, network attack surface, for eval-
uating the resilience of networks against potential zero day
attacks. There are two main challenges in lifting attack surface
to the network level. First, the attack surface model relies on
addition for aggregating scores, which is incompatible with
the causal relationships among different resources inside a net-
work. Second, there exists a challenge that the only way to
avoid the costly calculation of attack surface is to perform that
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Fig. 1. The motivating example.

calculation. We devise models and heuristic algorithms to
address those challenges, and we confirm the effectiveness of
the proposed solutions through experiments (e.g., our algo-
rithms has an error rate of 0.05 when we only calculate the
attack surface for 20 percent of the resources).

The main contribution of this work is twofold. First, to
the best of our knowledge, this is the first work to lift the
attack surface concept to the network level as a formally
defined security metric. It addresses a key limitation of our
previous works [9], [10], [11], [12], i.e., different resources
are assumed to be equally likely to include unknown vul-
nerabilities. Second, our simulation results show that the
proposed algorithms can produce relatively accurate results
with a significant reduction in the costly calculation of
attack surface, paving the way for practical applications at
the network level.

The rest of the paper is organized as follows. Section 2
defines the formal models, and Section 3 designs the heuristic
algorithms. Section 4 discusses how to instantiate the models,
and Section 5 presents experimental results. Section 6 reviews
related work, and Section 7 concludes the paper.

2 THE NETWORK ATTACK SURFACE MODEL

In this section, we first build intuitions through a motiva-
ting example and describe our assumptions in Section 2.1.
Sections 2.2 and 2.3 then convert the attack surface into
attack probabilities. Finally, Section 24 aggregates the
attack probabilities of different network resources into a sin-
gle measure of network attack surface.

2.1 Motivating Example and Assumptions

First, we illustrate the main challenges through a motivating
example. Fig. 1 depicts the network topology of a fictitious
campus network [13]. We assume the External Firewall
allows all outbound connection requests but blocks all
inbound requests to the Mail Server (h2) and File Server (h3),
including those from the Classroom Computers (h25); the
Internal Firewall allows all outbound requests from the
Admin Host h4 but blocks all inbound requests except those
from h2. We also assume our main concern is protecting h4.
Based on such assumptions, we can see that, an attacker at
hO can potentially follow an attack path, e.g., h1 — h2 — h4,
to compromise h4. Keeping this in mind, we consider the
question: How could we apply the attack surface concept [3],

which is only defined for each individual software to such a net-
work to measure its overall security (e.g., in terms of h4)?

Two obvious solutions are to directly apply the metric
either by regarding the whole network as a single software
system, or by first applying it to each resource separately,
and then adding the results together. Since the addition
operation is associative, both solutions actually yield the
same result, i.e., the total numbers of methods, channels,
and untrusted data items, respectively. The main problem
here is that such an addition operation is incompatible with
the causal relationships between network resources, which
can be either conjunctive or disjunctive. For example, in
Fig. 1, while it makes sense to add up the attack surface of
all the Classroom Computers (i.e., a larger number of such
computers means the network is more exposed to attacks),
applying this along an attack path, e.g., h1 — h2 — h4, is
less meaningful, since it means a longer attack path, which
indicates more attacking steps required from an attacker
and hence more security, would yield a larger attack surface
meaning less security. Therefore, our first challenge is how to
aggregate the attack surface of network resources while respecting
their causal relationships, which will be the main topic of the
remainder of Section 2.

The second major challenge lies in the calculation of
attack surface, which is well known to be costly since identi-
fying the source code that lies on the attack surface may
require domain expertise and manual effort [3], [14]. There-
fore, a natural question is whether we can reduce our effort
by avoiding calculating attack surface for those resources
that do not contribute to the final result. For example, in
Fig. 1, since our main concern is h4, we only need to calcu-
late attack surface along the path h1 — h2 — h4, which sig-
nificantly saves the effort by avoiding the calculation for the
25 Classroom Computers. However, the problem is not so
straightforward in general. In this example, suppose we
change the firewall rules such that requests are allowed to
be sent from both h2 and h3 to h4. We now have a challenge
that, in order to know which path, h1 — h2 — h4 or hl —
h3 — h4, should be calculated (the criteria for selecting the
path will be detailed later in this section) such that we can
avoid calculating the other path, we must first calculate and
compare the attack surface of both h2 and h3, which defies
the purpose because by then we would have effectively cal-
culated both attack paths. Therefore, our second challenge
is how to reduce the effort of calculating attack surface for network
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TABLE 1
Mapping Attack Surface to CVSS Base Metrics for Courier IMAP Server v4.1.0 and Cryus IMAP Server v2.2.10
(the Attack Surface Values Borrowed from [3])

CVSS (Base Metric Group) Attack Surface (Methods) Vectors
AV:[L:0.395,A:0.646,N:1.0] anoymous 1 [AV:N,AC:L,Au:N]
AC[H:0.35M:0.61,L:0.71] Access Rights unauthenticated 1 [AV:N,AC:L,Au:N]
Au:[M:0.45,5:0.56,N:0.704] authenticated 3 [AV:N,AC:M,Au:S]
admin 4 [AV:A AC:H,Au:M]
C:[N:0.0,P:0.275,C:0.66] authenticated 3 [C:PI:P,A:C]
1:[N:0.0,P:0.275,C:0.66] Privileges cyrus 4 [C:CL.CAC]
A:[N:0.0,P:0.275,C:0.66] root 5 [C:CI:C,A:C]

resources while keeping the final result sufficiently accurate,
which will be the main topic of Section 3.

Assumptions. We make following assumptions in this
paper. First, similar to other metrics (e.g., temperature,
length, and weight), the attack probability discussed in our
model is only intended as a relative measure for comparison
between different software; the absolute value is less mean-
ingful and not intended to indicate the exact probability of
attacks, which is generally infeasible to obtain in practice.
Second, the metric focuses on remote attacks exploiting net-
work services and does not cover other types of threats, e.g.,
those caused by human errors, social engineering, infected
browsers, phishing attacks, etc. (note that, since the conse-
quence of those attacks is some resources become directly
accessible to external attackers or malware, those attacks
could still be covered in our model, although we do not con-
sider them for simplicity). Third, similar to the original attack
surface concept, our metric only provides a general indicator
of the network’s potential for vulnerabilities but provides no
guarantee for such vulnerabilities to actually exist (however,
we do examine the correlation between the two through
experiments with real world software in Section 5.1).

2.2 CVSS-Based Attack Probability

This section addresses the challenge that the addition opera-
tion used in attack surface is incompatible with the causal
relationships between network resources, as demonstrated
in Section 2.1. Our main idea is to convert the attack surface
of each software resource into an attack probability (the rela-
tive likelihood that the software contains at least one
exploitable zero day vulnerability), which can then be
aggregated for different resources based on their causal
relationships. Since attack surface provides an indication of
both the severity (represented by the weights, i.e., the access
rights and privileges) and the likelihood (represented by
the counts, i.e., the total numbers of methods, channels, and
untrusted data items) of potential vulnerabilities [3], the
conversion will take two steps as follows.

e  First, for each group of methods, we explore a map-
ping between the attack surface and the common
vulnerability scoring system (CVSS) [1] to convert
the access rights and privileges of attack surface to a
CVSS base score.

e Second, at the software level, we aggregate the base
scores of different groups of methods into a single
attack probability for the entire software.

2.2.1 Method Group-Level Conversion

First, we briefly review the concepts of attack surface and
CVSS [1]. As illustrated in the first column of Table 1, the
CVSS defines six base metrics in two groups, and the acces-
sibility group includes the following [1].

e Access Vector (AV): what is required to access this
method; Local (L): requiring physical access to the
host; Adjacent Network (A): requiring access to adja-
cent networks, e.g., local subnet; Network (N):
remotely exploitable.

e  Access Complexity (AC): the complexity of the attack
required to access this method; High (H): requiring
specialized access conditions, e.g., social engineering
or spoofing multiple systems; Medium (M): requiring
somewhat specialized access conditions, e.g., non-
default configuration; Low (L): requiring no special-
ized access condition, e.g., default configuration.

e Authentication (Au): the type of authentication
required to access this method; Multiple (M): requir-
ing authentication two or more times; Single (S):
requiring attacker to login to the system; None (N):
authentication not required.

The impact group includes confidentiality impact (C),
integrity impact (I), and availability impact (A) (the possible
values of each metric and their corresponding numerical
scores are also shown in the table) [1]. The second column
of Table 1 shows the different access rights and privileges
and their numerical values used as weights in the attack
surface metric (the underlined rows will be discussed later).

Since both the accessibility group of CVSS and the access
rights of attack surface represent the pre-conditions for
exploiting a vulnerability, their values may be mapped
together. Similarly, the impact group of CVSS and the privi-
leges of attack surface both represent the post-conditions of
exploiting a vulnerability and are mapped together. As an
example. the mapping for two IMAP daemons are shown in
the last column of Table 1 (three dimensional attack surface
values have been calculated in [3]). Each CVSS vector maps
to the corresponding access right or privilege in the same
row in the second column.

The mapping is established based on understanding the
software, including its channels and untrusted data items
(consequently, we will not count those again later when we
convert base scores into attack probabilities). First, in the
third row, the authenticated access right is mapped to net-
work for access vector (i.e., AV:N), because the UNIX socket
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TABLE 2
Method Groups and their Base Scores for Courier IMAP Serverv4.1.0 and Cyrus IMAP Server v2.2.10
(the Attack Surface Values Borrowed from [3])

Method Group  Privilege Access Rights DEP DExp Vector Base Score  Attack Probability
Courier

M1 root unauthenticated 28 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.000315

M2 root authenticated 21 10 [AV:1.0,AC:0.61,Au:0.56,C:0.66,1:0.66,A:0.66] 85 0.000184

M3 authenticated  authenticated 113 28  [AV:1.0,AC:0.61,Au:0.56,C:0.275,1:0.275,A:0.66] 75 0.000809

Cyrus

M1 cyrus unauthenticated 16 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.000132

M2 cyrus authenticated 12 21 [AV:1.0,AC:0.61,Au:0.56,C:0.66,1:0.66,A:0.66] 85 0.000112

M3 cyrus admin 13 22 [AV:0.646,AC:0.35,A1:0.45,C:0.66,1:0.66,A:0.66] 6.3 0.0000882

M4 cyrus anonymous 12 21 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.000132

in those software has the local authenticated access right,
which means attackers may obtain the local authenticated
access right over the network. Second, we assign access com-
plexity to medium (i.e., AC:M), because the authenticated
access right matches the description of the medium access
complexity: “The affected configuration is non-default, and
is not commonly configured (e.g., a vulnerability present
when a server performs user account authentication via a
specific scheme, but not present for another authentication
scheme)” [1]. Finally, we assign Authentication to single (i.e.,
Au:S), because the access requires a single authenticated
session in those software. Similarly, in the fifth row, the
authenticated privilege is mapped to partial confidentiality
impact, partial integrity impact, and complete availability
impact (i.e., C:P, I:P, A:C), since the authenticated privilege
implies accesses to 13 files in those software, allows modify-
ing some system files or data, and may render the system
unusable by deleting critical files.

Asshown in Table 1, we map all the methods of those two
software to corresponding CVSS base metrics, and then cal-
culate the overall base score according to the CVSS for-
mula [1], as shown in Table 2. The methods are divided into
groups (first column) according to similar privileges (second
column) and access rights (third column). The fourth and
fifth columns show the total numbers of entry and exit points
in each group. The next two columns show the mapped
CVSS vector and the calculated base score for each group.

2.2.2 Software-Level Conversion

Now that we have calculated the base score for each group of
methods, we can convert the attack surface into an attack prob-
ability as follows. Suppose there are totally g groups of meth-
ods in the attack surface. Let b; and s; (1 <i < g) denote the
base score and the number of methods of each group, respec-
tively. Assume on average there will exist one zero day
vulnerability for every n methods, and the probability
for attackers to discover such a vulnerability is pp.' In
Equation (1), the base score divided by its range 10 gives the
probability that a vulnerability in this group is exploitable;

1. Note that, here n and py are both intended as normalizing con-
stants, since their true values are certainly impossible to obtain in prac-
tice; as long as those values stay constant across different software, the
equation will yield a relative metric sufficient for comparing the
exploitability of different software based on both the severity, repre-
sented by the base scores b;, and counts, represented by the number of
methods s;, of potential zero day vulnerabilities.

multiplying this with p, gives the probability that the method
can be both discovered and exploited; s; /n gives the number
of vulnerabilities out of those s; methods in this group; the
equation therefore gives the probability p that the software
contains at least one exploitable zero day vulnerability

5

g bz.)ﬂ
p=1- (l—pﬂ— . (1)
LI(1 -

Example 1. Assuming n = 30 and p, = 0.08, we can calcu-
late p for both software as follows. For Courier, p = 1—
(1 —0.08 = 10/10)*/** % (1 — 0.08 * 8.5/10)*/3 x (1 — 0.08«
7.5/10)"*/* — 0.384, and similarly for Cyrus, p = 0.273.

2.3 Graph-Based Attack Probability

In Section 2.2, the attack probability obtained using
Equation (1) does not yet capture the relationships among dif-
ferent dimensions of attack surface. To address this issue, we
combine different dimensions of attack surface by taking
attackers’ point of view. Specifically, a remote attack over the
network (which is the focus of this paper, as mentioned in
Section 2.1) would typically involve all three dimensions, i.e.,
using communication channels to access and invoke methods
in order to manipulate untrusted data items and fulfill the
attacking goal. This observation shows that there exist causal
relationships between the three dimensions of attack surface,
which will be modeled in two steps as follows.

2.3.1 Method Group-Level Conversion

First, we divide methods into groups based on the pair
(access right, privilege), such that the methods in the same
group require the same access right and lead to the same
privilege. As an example, the first column of Table 2 gives
the group name for each method group. We will simply use
M1 in Courier to refer to the group of methods restricted by
unauthenticated access right and lead to root privilege in
Courier in following discussions. In group M1 of Courier,
attackers only need to exploit one method out of 45 to
gain the corresponding privilege. However, attackers may
exploit multiple methods in one group, e.g., due to the lack
of sufficient knowledge about such methods. Taking this
into consideration, we define the attack likelihood of one
group of methods as the probability of compromising at
least one method out of the group. Suppose we have totally
s; methods in one group, and let b and py denote the base
score and the probability for attackers to discover one
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Fig. 2. The attack surface graph of courier (left) and cryus (right).

method, respectively. In Equation (2), the base score divided
by its range 10 gives the probability of finding a method in a
software application to be exploitable; multiplying this with
po gives the probability that the method can be both discov-
ered and exploited (as mentioned before, p; is only intended
as a normalizing constant)

b\ "
p=1—(1—pu*1—0) . (2)

Example 2. To compare Courier and Cyrus, we take p; as the
ratio of choosing one method per thousand lines of the
source code. The number of lines of source code for Courier
and Cyrus are 138,283 and 236,321, respectively [15]. There-
tore, we have py = 0.00723 for Courier and p, = 0.00423 for
Cyrus. We can calculate p for M2 for both software applica-

tions as follows. For Courier, p = 1 — (1 —0.00723 x 32 =
0.174, and similarly M2 in Cyrus, p = 0.112.

2.3.2 Software-Level Conversion

In order to aggregate the attack probabilities for the entire
software, we first need a model of the relationships among
the three dimensions of attack surface. Our model is syn-
tactically equivalent to an attack graph [16] (we will there-
fore omit its formal definition) although our model focuses
on resources inside a software instead of known vulner-
abilities inside a network. As an example, Fig. 2 depicts
the attack surface graph for both Courier and Cryus based
on the information given in Table 3. Each square box in
the figure represents a resource in attack surface (e.g., TCP,
SSL, and UNIX socket, which are channels in attack sur-
face, are represented as the connectivity for the software
applications); the edges point from the pre-conditions
to corresponding resources (e.g., (TCP connection) and
(remote unauthenticated) to M1) or from resources to their
post-conditions (e.g., M1 to (root)).

Example 3. In Fig. 2 (Left), the remote unauthenticated
privilege is required to establish TCP connections. After a
connection is established, an attacker could invoke the
method under the same privilege graph, e.g., M1. Then,
the attacker could gain the root privilege after accessing
M1, which provides sufficient access right to access all
the file groups.

As shown in the attack surface graph, channels, which
are modeled as the resources with initially satisfied pre-
conditions (initial conditions), can be directly accessed by

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

TABLE 3
Channels and Untrusted Data ltems [3]

Courier Channels Untrusted Data items
Type Access Rights Group  Type Access Rights
TCP remote unauthenticated F1 file root
SSL remote unauthenticated F2 file authenticated
UNIX socket local authenticated F3 file world

Cyrus Channels Untrusted Data ltems

TCP remote unauthenticated F1 file root
SSL remote unauthenticated F2 file cyrus
UNIX socket local authenticated F3 file cyrus

attackers. Methods can be invoked by attackers only if the
corresponding channels are associated with an equivalent
or higher privilege. For example, we consider that attackers
passing from the channel UNIX socket is able to access M1
since UNIX socket has local authenticated privilege which is
higher than the required access right of M1, unauthenticated).
Similarly, when sending untrusted date items, the privi-
leges gained from methods should be equivalent or higher
than the access right of untrusted data items. For example,
as shown in Table 3, root is required to send data to F1 in
Courier, which means M3 with authenticated does not have
sufficient access right to send data to F1.

Based on the attack surface graph, the overall attack prob-
ability can be calculated using Bayesian inferences. The
overall attack probability for courier can be calculated as
0.404 and that for Cryus as 0.329, as depicted in Fig. 2.

2.4 Aggregating Attack Probabilities Inside a
Network

Now that we have converted the attack surface of each soft-
ware to its attack probability, we can easily aggregate
such probabilities for all the network resources into a
single measure of network attack surface. We consider two
different ways for such aggregation, the shortest path-
based approach [9] and the Bayesian network (BN)-based
approach [10], which reflect the worst case scenario (ie.,
attackers take the shortest attack path) and the average case
scenario, respectively.

To illustrate the idea, Fig. 3 shows a partial resource
graph [10] for our example.” Specifically, each pair in plain-
text is a security-related condition, e.g., connection
(source, destination) or privilege (privilege, host), and each
triple inside a box is a zero day exploit (resource,
source, destination). The number inside each box is the cor-
responding attack probability.

Example 4. In Fig. 3, for the shortest path-based
approach [9], we can calculate the attack probability for
the shortest path indicated by the dashed line, (IPCop,
0,F) — (Courier,0,2) — (Firewall Builder, 2,4), the prob-
ability for attackers to reach (user, 4) can be calculated as
p=048%0.384 % 0.04 = 0.0074 (the attack probabilities
are obtained using the method introduced in Section 2.2).
For the BN-based approach [10], the attack probability of

2. Note that, although the resource graph demonstrated here has a
similar syntax as the attack surface graph discussed in the previous sec-
tion, they work at different abstraction levels, ie., the former models
network-level resources and the latter models resources inside a
software.
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Fig. 3. The resource graph.

each resource is regarded as the conditional probability
that the corresponding resource can be exploited given
that its pre-conditions are all satisfied. Bayesian infer-
ences then indicate the probability for attackers to reach
(user,4) is pgoar = 0.016.

More formally, the following formally defines the con-
cept of network attack surface.

Definition 1 (Network Attack Surface). Given a network
with the set of resources R, the attack probability p(r) as defined
in Equations (1) or (2) for each r € R, the resource graph G and
a given condition ¢, € G,

e et AP denote the collection of all attack paths in
G ending at cg, and for each ap € AP, let R(ap)
denote the set of resources involved in ap and
denote p(ap) = [, cp(ap) P(r). We call maz({p(ap) :
ap € AP}) (where max(.) returns the maximum
value of a set) the worst case network attack surface
w.r.t. cg.

e let B= (G',0) bea BN, where G' is G annotated with
the attack probabilities and 6 is the set of parameters of
the BN, and let Cy be the set of conditions without
parents in G', we call p = P(¢y|Veeq,c = True) the
average case network attack surface w.r.t. c,.

Discussions. Our network attack surface metric addresses a
key limitation of the existing k-zero day safety metric [9], i.e., it
cannot discriminate different resources based on their relative
attack probabilities (consequently the metric simply counts
the number of such resources). On the other hand, although
our network attack surface metric is defined as probabilities,
those can be easily converted into other forms for different
applications. For example, given the network attack surface p
as a probability, we can convert p back into the equivalent
number of zero day vulnerabilities along an attack path
as logggg p (here 0.08 is a nominal probability for zero day
vulnerabilities based on CVSS base metrics, as described
in [10]); such a simple count-based metric may be helpful for
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interpretation and comparison purposes (we will use this
method in our algorithms and simulations). As another exam-
ple, we can also convert pinto the equivalent number of meth-
ods s with a given base score b, by inverting Equation (1) as:
s =nlog,_, (1 — p). We can therefore evaluate the network as
a single software system with an attack surface composed of s
methods with the base score b (which can also be mapped
back to access rights and privileges if necessary).

3 HEURISTIC ALGORITHMS FOR CALCULATING
NETWORK ATTACK SURFACE

In this section, we propose heuristic algorithms to reduce the
effort of calculating attack surface for individual resources in
evaluating the network attack surface. We state the problem
in Section 3.1 and design heuristics algorithms in Section 3.2.

3.1 The Problem Statement

The calculation of attack surface is becoming more practical
due to ongoing efforts on automating or approximating the
calculation [14]. However, calculating the attack surface of a
software can still be costly [3], [14] mostly due to the manual
effort and expertise required for analyzing the source code
of the software in order to extract both the counts (e.g., the
total number of methods calling I/O functions) and weights
(e.g., the access rights and privileges). Moreover, even with
automated techniques, the calculation will likely remain a
costly process due to the ever increasing size of modern
software. For example, all the software mentioned in our
running example in Fig. 1 have a large number of lines of
source code: Nginx (171,567), IPCop (271,645), Apache
(1,800,402), MySql (2,731,107), Linux Kernel (18,766,825),
and Google Chrome (14,137,145).

Therefore, we investigate the problem of evaluating the
network attack surface metric proposed in previous section
while reducing the effort of calculating the attack surface of
individual resources. Clearly, there will be a tradeoff
between the cost (i.e., the percentage of network resources
whose attack surface is calculated), and the error in the cal-
culated network attack surface result (due to the estimation
of attack surface for the non-calculated network resources).
Specifically, suppose the true value of the network attack
surface is py.. and the calculated value is p.y (all values
described in this section will be count-based, as described at
the end of Section 2.4), we would like to minimize the error
'”"‘;—wj@'- while calculating the attack surface for no more
than a given percentage of resources (the budget).

Note that, although the above may seem to be a standard
optimization problem, this is not really the case since the
objective function M contains an unknown value py.,.
that can only be obtained by calculating the attack surface
for all the resources (which defies the very purpose of
reducing the cost). Also, since the problem of finding the
shortest path is already NP-hard [9], which is a special case
of our problem (when the budget is unlimited), the latter is
also intractable. Therefore, we study heuristic algorithms in
the coming section.

3.2 The Heuristic Algorithms
Our main observation is that, since we can only calculate a
certain percentage of resources under a given budget, what
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Procedure Mpath-Topo_Heuristic

Input: Resource graph G, parameter M, and budget IV

Output: a sequence of resources P

Method:

1. Let P = ¢ be a sequence of resources

2. Let M S be the sequence of M paths with the least
numbers of exploits in 7, with the paths sorted
ascendingly based on such numbers, and the
resources inside each path topologically sorted

3. Let T = G\ MS, topologically sorted

4. While N >0

5 Ifl MS |> 0

6. Append the first resource » in M S to P
7. Remove r from M S

8 Else If | T |> 0

9. Append the first resource r in T to P
10. Remove r from T

11. Let N= N-1

12.Return P

Procedure Keynode_Heuristic

Input: Resource graph G, po, p1 € [0, 1], and budget N

Output: a sequence of resources P

Method:

1. Let PP = ¢ be a sequence of resources

2. Let KN = ¢ be a sequence of resources

3. Let p be the network attack surface calculated based on
assigning pp to all the resources in G

4. For each resource r in G

5 Calculate p again on G with p; assigned to r

6. If p changes

7

8

Add rto KN
. Sort K N based on topological order
9. While N >0
10. If | KN |>0
11. Append the first resource r in KN to P
12. Remove r from KN
13. ElseIf |G\ KN |>0
14. Append the first resource r to P
15. Remove r from G
16. Let N= N-1
17.Return P

Fig. 4. The heuristic algorithms.

determines the error is the order of calculation among all
resources, e.g., the error would be minimized if we first cal-
culate all the resources appearing on the shortest attack
path (however, recall that the shortest path is unknown
before the calculation, as demonstrated in Section 2.1).
Therefore, we first consider several simple heuristics for
choosing resources in the right order, e.g., by exploring the
structural properties of a resource graph. We will then com-
bine those heuristics into algorithms and evaluate their per-
formance through simulations later in Section 5. We will
focus on the worst case network attack surface, as given in
Definition 1, while leaving the average case network attack
surface to future work.

a) Random Choose. The most obvious solution is to simply
choose resources in a completely random fashion, namely,
the random choose heuristic. This provides a baseline for com-
parison with other heuristic algorithms. For example, in
Fig. 3, if our budget is to calculate the attack surface of at most
two resources, then among the (3) = 15 possible choices, the
worst result is p = 0.46 with an error rate of 0.76, whereas the
best result is p = 1.73 with error rate 0.109. Clearly, this heu-
ristic may lead to a solution that is far from optimal.

b) Frequency Choose. The key idea is that, since the same
resource may appear on multiple hosts inside a network,
calculating the attack surface for the most frequently seen
resources will provide the most information with the same
cost. For example, in Fig. 3, IPCop, Firewall Builder, Courier
and ProFTP all appear twice among totally 10 exploits.
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Therefore, if our budget is two, then calculating any two of
them will unveil 4/10 of the exploits (the best result is
p = 1.73 with an error rate of 0.109 by calculating Firewall
Builder and Courier, and the worst result is p = 0.60 with an
error rate 0.69 by calculating IPCop and ProFTP).

c) Topological Order. The idea is that, since the nodes
closer to the first and last nodes of a resource graph (in the
sense of a topological sorting) tend to be shared among
more attack paths (e.g., the last two exploits are shared by
all paths in Fig. 3), it may help to choose resources based on
a topological order among the exploits. We consider both
the topological order and the reversed topological order heuris-
tics, which choose resources in the same, and opposite order
as topological sorting, respectively. For example, in Fig. 3,
suppose our budget is two, the topological order heuristic
will choose Apache and IPCop (the result is p = 0.60 with
error rate 0.69) while the reversed topological order will
choose Firewall Builder and Courier (the result is p = 1.73
with error rate 0.109).

d) Shortest Path. This heuristic starts the calculation with
the path with the least number of exploits, which, although
not always the right path in terms of the final result, may
serve as a good starting point. For example, in Fig. 3, if our
budget is two, then the shortest path heuristic will choose
Courier and Firewall Builder on the dashed line path (the
result is p = 1.73 with error rate 0.109). In this particular
example, this path happens to be the right path for the final
result, so a larger budget will produce more accurate result.

Although the above simple heuristics may not produce
good results when each of them is used alone, combining
these may lead to algorithms with good performance. The
following presents two such algorithms, whose perfor-
mance will be confirmed through simulations in Section 5.

e) Mpath-Topo Heuristic Algorithm. This algorithm com-
bines the topological order and shortest path heuristics as fol-
lows. First, we choose M (an integer parameter) shortest
paths ranked by the number of unique exploits. We next
apply the topological order heuristic to sort resources along
each path, as well as those not on those paths. The algorithm
is more clearly depicted on the left-hand side of Fig. 4. Lines 1
to 3initialize the algorithm and the main loop between lines 4
and 11 chooses resources for calculation as described above.

Example 5. In Fig. 5, we have three paths with five distinct
exploits; assuming M =2 and N =2, we have MS =
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TABLE 4
Method Groups and Their Base Scores for Amanda and Firewall Builder

Method Group Privilege Access Rights ~ Count Vector Base Score  Attack Probability
Amanda

M1 unauthenticated unauthenticated — 834 [AV:1.0,AC:0.71,Au:0.704,C:0,1:0,A:0] 0 0

M2 root unauthenticated 672 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.0191

M3 authenticated authenticated 1953  [AV:1.0,AC:0.61,Au:0.56,C:0.275,1:0.275, A:0.66] 7.5 0.0415

M4 root authenticated 297 [AV:1.0,AC:0.61,Au:0.56,C:0.66,1:0.66,A:0.66] 85 0.00723
Firewall Builder

M1 unauthenticated unauthenticated 46 [AV:1.0,AC:0.71,Au:0.704,C:0,1:0,A:0] 10 0.082

M2 authenticated authenticated 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,1:0.275,A:0.66] 7.5 0.037

{V1,V4,V3,V5} and P = {V1,V4}; the final result is
p = 0.51 with error rate 0.04.

f) Keynode Heuristic Algorithm. This heuristic algorithm is
based on the idea that a resource is more important for
determining the final value p of network attack surface if
changing its value results in significant changes, e.g., a
change in the path selected for calculating the final result, or
a change in the currently calculated result of p. We combine
this heuristic with the topological order heuristic to form
the algorithm depicted on the right-hand side of Fig. 4 (here
we only show the change in p, which can be replaced with
the change in the optimal path, and we will evaluate both
algorithms in the coming section).

Example 6. Suppose we choose py = 0.08 and p; = 1. In
Fig. 5, we initially calculate p = 5.12 * 10~ and then calcu-
late p again by assigning p, to each resource, e.g., changing
V1 from p, to p; leads to p = 0.0064 so V1 is a key node.
Similarly, we can obtain the key node sequence as KN =
{V1,V4,V3,V5}.Ifourbudget N = 2, then V1 and V4 will
be chosen and the resultis p = 0.51 with error rate 0.04.

4 INSTANTIATING THE NETWORK ATTACK
SURFACE METRIC

This section provides a case study based on 34 real world
software and discusses various practical issues in instantiat-
ing the proposed network attack surface metric.

41 Case Study

To demonstrate how to apply the proposed metric, we
revisit our motivating example shown in Fig. 1. The follow-
ing three stages correspond to the models introduced in
Sections 2.2, 2.3, and 2.4, respectively.

4.1.1 The CVSS-Based Attack Probability

The information for instantiating the CVSS-Based attack
probability listed in Table 4 are collected as follows.

e Attack surface: All the 34 software applications we
have analyzed are based on C or C++ language. The
methods that call I/O functions (from standard C
library [17]) need to be identified as the entry/exit
pointsin attack surface [3]. To this end, we have imple-
mented a script to automatically identify methods
from the call graphs which are generated from
cflow [18] starting from the main function. The

information about channels is gathered from the
application documentations and manually verified.
The connection functions and methods sometimes can
also be found in the developing documentations, e.g.,
Amanda can be connected to in four different ways,
namely UDP, TCP, RSH and SSH [19]. For simplicity,
we only consider one type of untrusted data items in
our case study, which is file, so all the exit points
related to files are captured as the modification to files.

e Accessrightand privileges: We annotate source code
to identify privilege-related functions. For example,
in Amanda, function access-init is used to authenti-
cate user access rights from unauthenticated to authen-
ticated; therefore, the methods appearing before this
function has unauthenticatedaccess right and those
appearing afterwards have authenticated. Also, the
function set_root_privs is used to escalate the privi-
leges, which implies the methods invoked after-
wards have root privilege. Default privilege-related
functions [20], such as setreuid, seteuid, setuid, setf-
suid and suid, are also annotated in source code.

e Mapping table: With the information collected from
previous steps, it is easy to map attack surface to
CVSS base metrics, as already detailed in Section 2.2.

4.1.2 The Graph-Based Attack Probability

To instantiate the graph-based attack probabilities, we col-
lect the following information.

e pg: Different measurements can be used for the size
of software applications, e.g., the number of lines,
the number of functions, or the number of files in the
source code. Our case study is based on the total
number of functions in a software, which is obtained
from the call graph. For example, the Firewall
Builder has 552 functions, and Amanda has 34,768
functions.

e Goal condition: We use the root privilege (or maxi-
mum privilege if root is not applicable) as goal con-
ditions in our case study.

4.1.3 The Network Attack Surface

Once the attack probabilities for individual resources are
calculated, as shown in Table 4, we can instantiate the net-
work attack surface metric by collecting following addi-
tional information.

Authonzed licensed use limited to: George Mason University. Downloaded on July 19,2021 at 14:40:20 UTC from IEEE Xplore. Restrictions apply.



318

e Connectivity: This is obtained from the network
topology, as shown in Fig. 1.

e Security conditions: The access rights for each appli-
cations are used as pre-conditions, and the privileges
are used as post-conditions. For example, Amanda
could lead to root privilege [19], whereas Firewall
Builder can only lead to authenticated privilege [21].
In addition, by studying the existing vulnerabilities
of those applications, we obtain other security-
related conditions. For example, Apache has a vul-
nerability (CVE-2016-1240) allowing local users to
gain root privilege.

e Critical assets: In our study, we consider (user,4) as
the critical asset (system administrators can choose
critical assets based on their priority).

The results of our case study have already been dis-

cussed in Section 2. The lessons learned will be summarized
next as general discussions for instantiating the metric.

4.2 Discussions on Instantiating the

Proposed Metric
We discuss practical issues in instantiating the network
attack surface metric in the following. We focus on open
source projects in this section, and we will discuss how to
estimate the attack surface of closed source software appli-
cations and study the impact of non-calculable software
applications in Section 5.

CVSS-Based Attack Probability. As demonstrated in our
case study, to instantiate the CVSS-Based attack probability,
the key challenge is to collect information about each
dimension (channels, methods, and untrusted data items)
of the attack surface, the access right and privileges, and the
mapping between attack surface and CVSS base metrics.
First, to calculate the attack surface, existing tools, e.g.,
cflow [18], can be used to generate call graphs for source
code written in C language. Automated scripts can then be
developed to identify the entry/exit points as the functions
that call input/output functions. Channels and untrusted
data items can be identified from documentations or
observed at runtime [3]. Second, the privileges for the three
dimensions can be identified based on a set of uid-setting
system calls which associate with change of privileges [20].
The access right requires the study of authentication func-
tions in source code, e.g., the methods can be invoked only
after user authentications should be considered as authenti-
cated access rights [3]. Finally, establishing the mapping
with CVSS vectors requires domain experts to assign
numeric values based on the relationships between attack
surface results and CVSS base metrics. The aggregated
attack surface base score can be calculated using the CVSS
base score calculator [22].

Graph-Based Attack Probability. To instantiate the graph-
based attack probability, we need to collect additional
information as follows. First, we need to identify the size of
each software, e.g., in the number of lines of source code
or the number of functions. It is easy to find such infor-
mation about open source projects, e.g., through the Open
Hub [15], or to calculate it using simple scripts. Second, the
goal condition can be identified by examining which privi-
leges can be obtained by exploiting the software.
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Fig. 6. Correlation between attack surface and the number of vulnerabil-
iies for different software (a) and different versions of OpenSSL (b).

Network Attack Surface. To instantiate the network attack
surface metric, we need to collect following additional infor-
mation. The connectivity information can be obtained either
from existing network topology or using network scanners,
e.g., Nessus [23]. To identify security conditions required
for accessing hosts or resources, the configuration of fire-
walls and hosts, and the local policies, e.g., authentication,
may needed to be examined. Some security conditions asso-
ciated with the resources can also be derived during the
instantiation of attack probabilities of individual software.
Finally, critical assets can be assigned based on organ-
ization’s specific needs and priority.

5 EXPERIMENTAL RESULTS

In this section, we first examine the correlation between our
models introduced in Section 2 and the vulnerabilities of
real world software. We then conduct simulations to evalu-
ate the performance of our heuristic algorithms proposed in
Section 3.

5.1 Correlation between Attack Surface
and Vulnerabilities

Since our model for converting attack surface to attack prob-
ability in Section 2 is based on the hypothesis that attack
surface reflects a software’s likelihood of having vulnerabil-
ities, we investigate this correlation by conducting experi-
ments with real software. We examine the correlation both
for different software and for different versions of the same
software.

First, we examine 34 popular software applications and
their correlation results are presented in Fig. 6a. The main
criteria in choosing those software applications are as fol-
lows. First, we need to ensure their attack surface can be cal-
culated with reasonable effort (e.g., written in C or C++ and
with source codes of reasonable sizes to facilitate the manual
analysis required for calculating attack surface). Second, we
only choose software applications with existing vulnerabil-
ities listed in the NVD vulnerability database to facilitate our
experiments. The name of each software can be found in the
Appendix, which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2018.2889086, based on its index. We manually study
the source code of each software in order to calculate the
attack surface, and subsequently convert the result into
attack probability using the method mentioned in Section
2.2. In Fig. 6a, the left y-axis and the green line with round
markers show the attack surface (converted to attack
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Fig. 7. The cost versus error for simple heuristics (a) for the heuristic algorithms (b), and the processing time (c).

probability) multiplied by the days of exposure (i.e., the
number of days since the software was released) of each soft-
ware since vulnerabilities take time to be discovered even
though the attack surface of the software remains the same
over time. The right y-axis and the red line with star markers
show the number of vulnerabilities found for the same soft-
ware in NVD [24].

Results and Implications. From the results, we can see that
there is a positive correlation between the number of vul-
nerabilities and the attack surface multiplied by exposure
days for most of the software (specifically, 25 out of 34). The
correlation is unclear for the last few software (after index
number 25). We believe the reason lies in other related fac-
tors affecting vulnerability discovery, e.g., the market share
of a software, popularity of a software among attackers, and
the security expertise level of typical users of a software.
For example, index 33 is freetype, a popular software devel-
opment library used for rendering font-related operations,
which is widely used by modern video games, Opera for
Wii, and many other projects [25]. Such a widely used soft-
ware is usually more attractive for attackers to discover vul-
nerabilities, and hence becomes an outlier in our results. As
another example, index 34 is Amanda, a network-based
backup system, which has only one vulnerability, even
though its attack surface multiplied by exposure days is rel-
ative large. We believe the reason could be that such a
backup system is usually hosted in enterprise networks and
operated by administrators with more security expertise
and awareness, which may have rendered the software less
attractive to attackers.

Second, we examine 53 different versions of OpenSSL
along 3 version branches, 1.1.0, 1.0.1, and 1.0.2, respectively,
and theresults are presented in Fig. 6b. The study of different
versions of the same software reduces the influence of afore-
mentioned unrelated factors in discovering the vulnerabil-
ities (e.g., market share). The index indicates the version
numbers in chronologically order. From the results, we can
see that the number of vulnerabilities has a similar trend
with the attack surface multiplied by exposure days for all
three branches. The branch with larger values for attack sur-
face also has more vulnerabilities. For all three branches, we
can see the maximum number of vulnerabilities always
appears somewhere in the middle of the branch likely
because, with a major change of version branch, it takes time
for user adoption and also for attackers to change the focus.

The above experiments, although are still of a limited
scale, show a promising result supporting our hypothesis

that there is a positive correlation between the attack surface
and the number of vulnerabilities. Qur future work will
expand the scope and scale of the experiments.

5.2 Performance of Heuristic Algorithms

In this section, we study the performance of our proposed
heuristic algorithms in general. Since there currently does
not exist any publicly available dataset of resource graphs,
we generate synthetic resource graphs by starting from
small but realistic seed graphs like the one shown in Fig. 3
and then injecting random nodes and edges in a random
but realistic fashion (e.g., each exploit can only have a few
pre- and post-conditions). All the results are collected using
a computer equipped with a 3.0 GHz CPU and 8 GB RAM
in the Python environment under Ubuntu 14.04 LTS.

The objective of the first two simulations is to evaluate
the error rate of our heuristics (presented in Section 3.2).
The error rate is defined in the same way as in Section 2.4.
The cost is defined as the percentage of resources whose
attack surface is calculated, and denoted as «. The reason
we choose the percentage of resources instead of the abso-
lute number is that evaluating a larger network naturally
implies a larger budget will be required.

Fig. 7a shows the error versus the percentage of calcu-
lated resources (@) for simple heuristics and Fig. 7b shows
the same for the heuristic algorithms. The y-axis is shown in
reversed scale in both figures to show the increasing accu-
racy for a larger «. Fig. 7c depicts the processing time of the
algorithms. In all simulations, for each configuration, we
repeat 500 times to obtain the average results.

Results and Implications. From Fig. 7a, we have following
observations. First of all, with the increase of «, the error
generally decreases as expected (e.g., @ = 1 means we calcu-
late all the resources). The green line with round markers is
the baseline for comparison, which represents the results of
the random choose heuristic. The error of this heuristic
reduces almost linearly in both simulations. The frequency
choose heuristic represented by the red line with vertical
markers has the worst error among all the heuristics. The
reason is that, the repetition of a resource does not necessar-
ily mean the importance of this resource in determining the
final result. The blue line with square and purple line with
star represents the reversed topological order heuristic and
the topological order heuristic, respectively. Both heuristics
start worse than the random heuristic, and the reverse topo-
logical order stays worse than the random heuristic, but the
topological order heuristic reduces and later becomes better
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than random. The reason is that, the reversed topological
order tends to choose resources equally among all the paths,
since the paths converge towards the end of the graph. On
the other hand, the topological order heuristic chooses from
initial nodes, which might converge into one path and give
better results. The most accurate is the shortest path heuris-
tic algorithm, which combines the topological order and
shortest path heuristics. The error rate of this algorithm
becomes flat when it finishes calculating the shortest path
and starts to calculate other resources.

Fig. 7b depicts the error rate of the heuristic algorithms
combining multiple heuristics. We can see that the keynode
and the mpath topo algorithms produce very good results,
e.g., less than 0.05 error rate with only 20 percent of resour-
ces calculated. Such results show a promising solution for
obtaining relatively accurate network attack surface results
without incurring too much cost for calculation. From the
results we can see that the mpath topo algorithm has less
error than mpath frequency. For the keynode heuristic algo-
rithm, we test two different variations, one based on the
change of shortest path and the other based on the change
of the calculated result. From the results, we can see that
those have very different error rates, because the result-
based keynode algorithm tends to gather the resources in
the shortest path, whereas the path-based algorithm tends
to avoid such resources.

Fig. 7c depicts the processing time. From the results, we
can see that the keynode path and keynode result algorithms
have almost the same processing time, because the majority
of processing is used to preselect the keynode set. The proc-
essing time for mpath frequency is higher than mpath topo,
because each iteration generates new m-shortest paths and
we need to reorder frequently. For mpah topo, we only
gather m-shortest paths once and then order them by the
topological order. The random choose heuristic has the low-
est processing time as expected. Overall, we can conclude
that the mpath topo algorithm is the best choice in terms of
both error rate and processing time.

5.3 Comparison with k-Zero Day Safety

In this section, we compare the proposed network attack
surface metric (calculated based on the brute force algo-
rithm) and the result of the keynode heuristic algorithm
(with 10 percent of the calculation effort) to the existing
k-zero day safety metric [9]. The objective is to demons-
trate the significance of discriminating different network
resources based on their attack surface, which is a key
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* +  Network Attack Surface A + kOd
+ +
40 4 4T k0d
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Fig. 9. The comparison between the k-Zero day safety metric and the
network attack surface metric (a), the error rate (b) with the increasing
percentage of initially satisfied nodes.

contribution of our metric in contrast to k-zero day safety
(which simply regards all network resources as equally
likely to have unknown vulnerabilities).

First, we study the difference between k-zero day safety
and network attack surface with the increasing length of the
shortest path. Fig. 8a shows the metric results, and Fig. 8b
shows the error rate for the k-zero day safety metric and
keynode heuristic algorithm (both in contrast to the network
attack surface metric).

Results and Implications. As can be seen in Fig. 8a,
although in general the metric values all increase in the
length of shortest path, the network attack surface metric
(as well as the keynode heuristic algorithm) and the k-zero
day safety metric do not follow the same trend. Specifically,
the increase of the network attack surface metric is signifi-
cantly slower than that of the k-zero day safety metric. The
absolute difference between the two metrics increases with
the length of the shortest path. This can be explained by the
fact that, by simply counting the number of distinct resour-
ces on the shortest path, the k-zero day safety essentially
ignores the difference between the attack surface of differ-
ent resources, and consequently yields an upper bound of
the network attack surface metric. The implications of those
results are as follows. First, the error introduced in the k-
zero day safety metric may become significant, especially
for larger and well guarded networks with relatively long
shortest paths (which are the main target of our work). For
smaller networks or networks that are not well guarded
(e.g., campus networks) with shorter shortest paths, the
absolute difference between the two metrics may be smaller
but the relative error rate may still be significant, as shown
in Fig. 8b. Finally, with only 10 percent of calculation effort,
our keynode heuristic algorithm could already estimate the
network attack surface value with reasonably small error,
which shows its potential as a relatively accurate estimation
requiring far less effort.

Fig. 9 shows similar results for the metrics versus the
increasing percentage of the initial satisfied nodes in
resource graphs (i.e., initially exploitable resources, which
provides another indicator about how well guarded the net-
work is). Fig. 9a demonstrate the absolute values of metrics,
while Fig. 9b shows the error rate.

Results and Implications. From Fig. 9, we can have the fol-
lowing observations. First, both network attack surface and
k-zero day safety metrics are less dependent on the initially
satisfied nodes as they did in the previous case. This is
because the initial satisfied nodes may not be directly
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correlated with the length of the shortest path. Second,
despite the lack of clear trends, similar comparison results
between the metrics can still be observed. The larger errors
and error rates between k-zero day safety metric and the
network attack surface metric (as well as the heuristic algo-
rithm) demonstrate the fact that the k-zero day safety metric
may become significantly less accurate, whereas our key-
node heuristic algorithm provides a more accurate
estimation.

5.4 The Impact of Non-Calculatable Resources
Instead of calculating attack surface for a smaller subset of
software in the network, as studied in previous section, esti-
mating the attack surface of a software by only considering a
subset of its resources (e.g., entry/exit points), is another
technique to reduce the total cost. For example, the Microsoft
research team has proposed attack surface approximation
method based on stack trace analysis [14]. In a trial on Win-
dows 8, the authors discover that the approximation selects
only 48.6 percent of the software but includes 94.6 percent of
the known vulnerabilities. In this section, we would like to
evaluate the impact of this idea through simulations.

In addition, fully calculating the attack surface of a
software may become infeasible for either closed source soft-
ware or very large open source software. For example, statis-
tical results show 84.34 percent of desktop operating systems
are Windows [26], and even some open source software may
become too large for the calculation, e.g., Debian’s source
lines of code (SLOC) increases from 55-59 millions (Debian
2.2 in 2000) to 419 million (Debian 7.0 in 2012). Therefore,
we have divided software applications into three categories
in terms of the feasibility of calculating attack surface as
follows.

e  Non-Calculable Resources: The software which do not
have accessible source code and hence their attack
surface cannot be calculated.

e  Partially Calculable Resources: The open source software
with too large SLOCs for fully calculating the attack
surface. A feasible solution is to estimate the attack
surface by only considering part of the software.

e Fully Calculable Resources: The small to medium open
source software for which it is generally feasible to
generate call graphs and fully calculate the attack
surface.

The first simulation studies the impact of partially-
calculable and non-calculable resources. The error rate is
defined in the same way as in the previous simulations. The
budget is defined as the percentage of effort allowed to
spend on calculating attack surface in one network, denoted
as . The partially-calculable rate is defined as the percentage
of attack surface calculated for a resource, denoted as . Cal-
culating B percent of a software application may result in an
approximated value of the attack surface. Compared to the
true value of attack probability, the approximated value may
be either lower or higher because the chosen subset of source
code may include either less or more I/O function calls.
Therefore, in this simulation, we set an estimation range
for the approximated attack probability value. Assuming the
true attack probability in a software application is p, the esti-
mation range is defined as [(1 — B) * p, min((2 — B) = p,1)],

0.0 0.00
0.05
0.2 0.10
En 4 019
e [
B 0.6y Frote =
et mpath topo 0.25 Y237 mpath topo
0. [t mrth frenqency 0301 A mpath frenguency
811 1 ko path 0351 . oo pth
(CHD) random NCHD rendom
o 02 01 o5 o3 10 “fy oz o7 o5 03 1o
il g

Fig. 10. The error of the algorithms with « = 50% (a) and « = 80% (b).

which ranges from (1 — g) = p lower than the true value to
(1 — B) * p higher. An approximated attack probability value
is randomly generated from the estimation range.

Unlike in the previous simulations, « only represents the
percentage of effort to calculate attack surface in this simu-
lation, since the percentage of resources whose attack sur-
face are calculated will depend on both « and B. After
calculating « percent of the resources in one network, we
will still be able to calculate o« — @ *  percent of attack sur-
face with the remaining budget. The overall percentage of
calculated resources can be written as ) a * (1 —B)’,
which is a geometric series with the constant ratio (1 — B)
yielding the final result of £ Notice that when « > B, we
have extra budget calculate attack surface. In this case, we
apply the extra budget to fully calculate the remaining
resources according to the algorithms’ order of calculation.

Results and Implications. In Fig. 10a, « = 50% means the
effort budget is 50 percent of the overall effort to fully calcu-
late every attack surface in the network, so with g < 50%
(§ > 1), we have extra budget to calculate more resources
according to the algorithms’ order. A smaller value of B
means more exira budget will be left for full calculation
after the initial step of partial calculation is done. Com-
paring to @ = 50% in Figs. 7a and 7b, the error rates are
smaller when g is smaller than 30 percent. This is mostly
because the effort spent on the partial calculation provides a
rough ranking of the resources, and the remaining efforts
are used to fully calculate those resources that contribute
the most to the final result of network attack surface. When
p increases to 40 percent, the error rates of algorithms
become worse than those under « = 50% in Figs. 7a and 7b,
because the remaining efforts are not sufficient to fully
calculate the resources on the shortest path.

We can also see the error rate increases until « = g, which
is the worst case in Fig. 10a since « = g means all the attack
probabilities used to calculate the final result are partially
calculated (the attack probability value for each resource
falls in the estimation range mentioned earlier). Similar
trends can be observed in Fig. 10b when g <« = 80%. We
can see that the error rate is 0.5 when 8 = 50% because the
approximation range is set as 50 percent lower to 50 percent
higher than the exact attack surface (the maximum value
for the upper bound is 1). The error rate is (.28 when
« = p = 80% which is still close to our approximation range
of 20 percent lower to 20 percent higher than the true value
of attack probability.

Unlike the increasing trend of the error rates when
B < 50%, the error rates are decreasing when g > « for
all the algorithms in both Figs. 10a and 10b, because the
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Fig. 11. (a) The error of the algorithms with « = 50% and (b) the errorin«
and g.

approximated attack probability is closer to the true value of
attack probability when more source code are used for cal-
culating attack surface. When g = 100%, this simulation is
effectively the same as the previous simulation.

While the previous simulations show the relationships of
error rates and g with fixed « for the algorithms, Fig. 11a
presents the relationships of error rate and « with fixed
p = 60%. When « < B, only « percent of the resources can
be partially calculated, and the error rate decreases with the
percentage of calculated resources. When & > B, extra bud-
get can be applied again to fully calculate resources accord-
ing to the algorithms’ chosen order, and the error rate is
thus different for different algorithms (knode and mpath
topo yield the best chosen order). Fig. 11b shows the overall
relationships among «, # and the error rate. The concave
upward part in the 3D graph corresponds to the special
case of = B, as previously discussed.

Finally, the next simulation focuses on the impact of non-
calculable resources. The definition of « is the same as in the
first simulation, i.e., the percentage of resources whose attack
surface is calculated. We assign the attack probability for
non-calculable resources based on the average value among
the CVSS scores of all vulnerabilities in the National Vulnera-
bility Database (NVD) [24]), which is 0.68, in this simulation.

Results and Implications. Fig. 12a shows the impact on our
algorithms when 50 percent of the resources are non-calculable
in a network. The error rate decreases till « = 50%, while
error rate remains the same when & > 50%. We can see the
algorithms help to reduce the error rate and the knode and
mpath topo algorithms give the best performance in all the
simulations. Next, Fig. 12b studies theimpact of non-calculable
resources compared to a brute force algorithm (i.e., regard-
less of the budget, calculating 100 percent for every calculable
attack surface). The error rate increases linearly with the
increasing ratio of non-calculable resources in the network.
When non-calculable resources reach 100 percent, our metric
essentially becomes equivalent to the k-zero day safety
metric [9] (which is a special case of our metric in which no
attack surface is calculated).

6 RELATED WORK

The concept of attack surface is originally proposed for spe-
cific software, e.g., Windows, and requires domain-specific
expertise to formulate and implement [27]. Later on, the con-
cept is generalized using formal models and becomes appli-
cable to all software [28]. Furthermore, it is refined and
applied to large scale software, and its calculation can be
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Fig. 12. The error versus « of algorithms with 50 percent non-calculable
resources (a) and the percentage of non-calculableresources versus error (b).

assisted by automatically generated call graphs [3], [29].
Attack surface has attracted significant attentions over the
years. It is used as a metric to evaluate Android’s message-
passing system [5], in kernel tailing [30], and also serves as a
foundation in Moving Target Defense, which basically aims
to change the attack surface over time so to make attackers’
job harder [7], [31]. Others aim to expand the scope of this
concept to other domains, such as the six-way attack surfaces
between users, services, and cloud systems [4], and the
approximation of attack surface for modern automobiles [6].
The study on automating the calculation of attack surface is
another interesting domain, e.g., COPES uses static analysis
from bytecode to calculate attack surface and to secure
permission-based software [32]. Stack traces from user crash
reports is used to approximate attack surface automati-
cally [14]. The correlation between attack surface and vulner-
abilities has also been investigated, such as using attack
surface entry points and reachability to assess the risk of vul-
nerability [33]. A study about the relationship between
attack surface and the vulnerability density is given in [34],
although the result is only based on two releases of Apache
HTTP Server, which gives little clue to the general exist-
ence of such a correlation. The so-called attack graph surface
introduced in [35] is inspired by attack surface but it focuses
onidentifying a critical set of attack paths in an attack graph,
which is complementary to our work in the sense that we can
employ this technique to efficiently identify the shortest
path, whereas our metric may potentially be applied to the
critical attack paths. Despite such interest in attack surface,
to the best of our knowledge, most existing works thatapply
the concept to a higher abstraction level are still limited to
intuitive and informal notions, and this is the first formal
attack surface metric at the network level.

The research on security metrics in general has attracted
much attention lately [8]. There exist standardization efforts
on vulnerability assessment including the Common Vulner-
ability Scoring System [1], which measures vulnerabilities in
isolation. The NIST's efforts on standardizing security met-
rics are also given in [36] and more recently in [37]. Earlier
work include the a metric in terms of time and efforts based
on a Markov model [38]. More recently, several security met-
rics are proposed by combining CVSS scores based on attack
graphs [39], [40]. The minimum efforts required for execut-
ing each exploitis used as a metric in [41], [42]. A mean time-
to-compromise metric is proposed based on the predator
state-space model (SSM) used in the biological sciences
in [43]. While those metrics are mostly developed for known
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vulnerabilities, fewer work are capable of dealing with zero
day attacks. A few exceptions include an empirical study of
the total number of zero day vulnerabilities available on a
single day based on existing data [44] and an effort on order-
ing different applications in a system by the seriousness of
consequences of having a single zero day vulnerability [45].
More recently, the k-zero day safety model [9], [11] and the
network diversity model [10], [12] both attempt to model the
risk of zero day vulnerabilities, but their common limitation
is the lack of capability in distinguishing between different
resources based on their relative likelihood of having such
vulnerabilities. In other words, those works essentially reg-
ard all resources as equally likely to include zero day vulner-
abilities. This is a limitation since different software may
have significantly different attack surface and thus the likeli-
hood of such vulnerabilities may also differ. The key contri-
bution of this paper is exactly to address this limitation
through lifting the attack surface concept to the network
level. On the other hand, this paper leverages the resource
graph concept and the Bayesian model in [10], [12] and the
k-zero day safety model in [9], [11] (attack surface is not
mentioned in those works).

7 LIMITATIONS AND CONCLUSION

An intuitive notion of attack surface at the network level has
prevented applications from inheriting the formal and
quantitative reasoning power of the original attack surface
metric. In this paper, we have designed methods for lifting
this concept to the network level as a formal security metric
for measuring networks’ resilience against zero day attacks.
Specifically, we have shown two ways for converting the
attack surface of each individual software into an attack
probability and subsequently aggregating such attack prob-
abilities into a single measure of network attack surface
based on the causal relationships between different resour-
ces. We have also presented heuristic algorithms which can
evaluate the network attack surface while limiting the effort
of calculating the attack surface for individual software
within a given budget. To evaluate the proposed models,
we have studied the correlation between attack surface and
vulnerabilities using real world software, and our experi-
mental results show a positive correlation does exist
between the two. To evaluate the proposed heuristic algo-
rithms, we have shown through simulations that the net-
work attack surface metric can be accurately estimated by
calculating the attack surface for only a small percentage of
resources.

The following discusses limitations and future directions.

e First, our experiments on the correlation between
attack surface and vulnerabilities are still of rela-
tively small scale and scope; a future direction is to
expand these and to consider also other factors, such
as market share data and exploit information.

e Second, there lack automated and mature tools for
assisting the calculation of attack surface. One of our
ongoing work is the development of an automated
tool for calculating the attack surface for open source
software.

e Third, the calculation of attack surface requires
source code and thus is not applicable to closed

source software. An interesting future direction is to
address this through adapting binary analysis tech-
niques (e.g., clone detection).

e Fourth, we have not considered the average case net-
work attack surface in the study of heuristic algo-
rithms, and this will be a future direction.
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