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Abstract

Graph synthesis is a long-standing research problem. Many

deep neural networks that learn about latent characteristics

of graphs and generate fake graphs have been proposed.

However, in many cases their scalability is too high to

be used to synthesize large graphs. Recently, one work

proposed an interesting scalable idea to learn and generate

random walks that can be merged into a graph. Due to its

difficulty, however, the random walk-based graph synthesis

failed to show state-of-the-art performance in many cases.

We present an improved random walk-based method by

using negative random walks. In our experiments with 6

datasets and 8 baseline methods, our method shows the

best performance in almost all cases. We achieve both high

scalability and generation quality.

1 Introduction

Graphs are one of the most popular data types in many
fields. Graph synthesis has also become a popular
task [4–6, 8, 9, 16, 24, 27, 29–31]. In general, graph
synthesis problems can be categorized into the following
two types: i) training with and synthesizing many small
graphs (cf. Fig. 1 (b)), and ii) training with and
synthesizing one large graph (cf. Fig. 1 (c)).

Graph synthesis methods to solve the first type
typically learn and synthesize either an upper triangle
of adjacency matrix or a list of edges [8, 16, 24, 27, 29–
31]. They typically synthesize graphs with hundreds of
vertices, e.g., molecular graphs, (see Fig. 1 (b)).

Recently, a generative adversarial network (GAN)
based on random walk sampling, called NetGAN [4],
has been proposed to solve the second type. Their main
idea is to learn and generate short random walks that
will be eventually merged into a graph (see Fig. 1 (c)).
The scalability of the GAN model is one or two orders of
magnitude larger (in terms of the number of vertices or
edges) than the first type methods. To our knowledge,
NetGAN is the state-of-the-art GAN in scalable graph
generation, e.g., tens of thousands of vertices.
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NetGAN’s generation quality is, however, sub-
optimal in many cases. It is very hard to achieve good
results in both scalability and generation quality. For
instance, some statistics of graphs generated by Net-
GAN are not close to real graphs even though other
non-deep learning based generative methods show rea-
sonable similarity. In response, we propose NetGAN+
in this paper, and achieve the best performance in al-
most all cases for graph similarity and link prediction
in a shorter training time than that of NetGAN.

Our main idea is to use both positive and negative
random walks to train our NetGAN+ (see Section 3.6
on why it is theoretically better than NetGAN). Positive
random walks are the random walks explicitly contained
in an original graph, and negative random walks are not
contained in the original graph. Positive random walks
are safe to include in the synthesized graphs, whereas
negative random walks are not always favorable to syn-
thesize (see Fig. 1 (a) and Def. 1). One can consider that
our method uses both what-to-generate and what-not-
to-generate simultaneously whereas previous research
on GANs usually rely on what-to-generate only (e.g.,
NetGAN uses only positive random walks).

However, one challenge is that some negative ran-
dom walks are semantically safe (favorable) to synthe-
size (hereinafter, we refer those random walks as safe-
negative random walks) and thus, should not be sup-
pressed during the generation process. As a matter of
fact, the link prediction task is to reveal those unknown
true edges from the negative class. Because of this rea-
son, one should be very careful about utilizing negative
random walks. We show that it is sub-optimal to sup-
press the generation of all negative random walks.

Correctly distinguishing between safe-negative and
unsafe-negative random walks is difficult in our case.
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Figure 1: (a) The Venn diagram of all possible cases of random walks (RWs). Positive random walks are already
included in a graph. Note that negative random walks consist of two cases: one represents negative random walks
that contradict positive ones and the other represents random walks that are safe but mistakenly excluded from
the graph. (b) Existing small graph synthesis methods (c) Our large graph synthesis

Thus, we add an additional neural network based on
an attention mechanism to identify and exclude safe-
negative random walks from the negative class. There-
fore, our NetGAN+ consists of three neural networks:
a generator, a discriminator, and an attention network.
In our setting, the discriminator considers safe-negative
and positive random walks as real, and unsafe-negative
and fake random walks as fake (see Fig. 2 (a)).

We conduct experiments with six standard graphs.
For graph similarity and link prediction, our NetGAN+
significantly outperforms other baseline methods. We
also prove that NetGAN+ reduces to NetGAN if the
attention network is ill-trained and does not contribute
to the training process. This is, however a rare case,
and NetGAN+ has a theoretical ground that guarantees
improvements over NetGAN (see Section 3.6).

2 Related Work

Many graph synthesis methods have been proposed
[4–6, 8, 9, 16, 24, 27, 29–31] to name a few. Graph
syntheses can be categorized into the following two
types: i) training with and synthesizing many small
graphs as shown in Fig. 1 (b), and ii) training with

Some papers use GANs to extract features from graphs [17,
28], whose main goals are not generation.

and synthesizing one large graph as shown in Fig. 1 (c).
In general, they are not compatible to each other (See
Section 3.7).

In the first type, neural networks, such as
GraphRNN [30], GRAN [16], GraphGen [6], and so
forth, synthesize an upper triangle of adjacency ma-
trix, whose complexity is O(|V|2), or a list of edges,
whose complexity is O(|E|). For instance, GraphRNN
uses two recurrent neural networks, one to generate a
sequence of vertices and the other to generate an adja-
cency list for each generated vertex, which correspond
to an upper triangle of adjacency matrix. GraphGen
learns and synthesizes a list of edges after an expen-
sive pre-processing step, called graph canonicalization,
to convert a graph into a unique sequence of edges. Its
worst-case canonicalization time is O(|V|!) which can be
improved if vertices and/or edges have labels.

Both GraphRNN and GraphGen did experiments
with CITESEER/CORA after randomly sampling
many small subgraphs so their synthesis size is same as
that of random subgraphs. After setting the size of their
synthesis to that of the original CITESEER/CORA
graph, they are not properly executed for spatial scal-
ability issues. (See Section 3.7 for their empirical and
theoretical complexity issues.).

NeVAE [24], D-VAE [31], and CondGen [29] are
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variational autoencoder approaches to generate small
molecular or citation graphs which typically consist
of hundreds of vertices. There also exist some other
adjacency matrix-based methods. For instance, Guo et
al. deal with graphs whose vertex numbers are no larger
than hundreds [8, 9].

To our knowledge, NetGAN is the state of the art
method for the second graph synthesis type, i.e., train-
ing with and synthesizing one large graph. NetGAN
is similar to other GANs generating texts because it
generates random walks that are similar to sentences,
i.e., a sequence of vertices vs. a sequence of words. In
NetGAN, the generator is an LSTM network that pro-
duces a sequence of vertices and the discriminator is
also an LSTM network that distinguishes real and fake
sequences. NetGAN uses the Gumbel-softmax which is
a reparameterization trick of categorical sampling [15].
The dimensionality of the categorical sampling is the
same as the number of vertices. For efficiency, Net-
GAN uses a three-step method where i) the generator
LSTM produces a latent vector with a small dimension,
ii) the latent vector is projected into a space whose di-
mensionality is the same as the number of vertices (this
projection is also trained), and iii) the Gumbel-softmax
performs the categorical sampling in the higher dimen-
sional space. NetGAN uses the following (regularized)
Wasserstein GAN (WGAN-GP [7]) loss to train:

min
G

max
D

E
[
D(G(z))

]
z∼pz

− E
[
D(x)

]
x∼ppos

+ λE
[
(‖∇x̄D(x̄)‖2 − 1)2

]
x̄∼pg◦x

,

where pz is a prior distribution; ppos is a distribution
of positive random walks; G is a generator function; D
is a discriminator function; x̄ is a randomly weighted
combination of G(z) and x. The discriminator provides
feedback on the quality of the generation. In addition,
we let pg be a distribution of fake data induced by the
function G(z) from pz and pg◦x be a distribution created
after the random combination. We typically use N (0,1)
for the prior pz.

In fact, generating graphs is a long-standing re-
search problem and there have been proposed many
other non-machine learning methods [3,10,12,13,20,26].
We will compare with these baseline methods for our ex-
periments.

3 Proposed Method

We introduce our proposed method. We first present
an overview of our framework and then describe the
technical details.

3.1 Overall Architecture We use lower boldface to
denote vectors and upper boldface to denote matrices.

Let us first define positive and negative random walks
as follows:

Definition 1. Given a graph G = (V , E) and its adja-
cency matrix Adj ∈ {0, 1}|V|×|V|, positive random walks
are random walks on Adj and negative random walks
are random walks on 1−Adj.

Our proposed architecture is shown in Fig. 2 (a).
Our NetGAN+ consists of the following three neural
networks. The generator produces fake random walks.
The discriminator is a binary classifier to distinguish
the following two classes: i) safe-negative/positive class,
and ii) unsafe-negative/fake class. We note that safe-
negative and positive (real) random walks constitute
a class and unsafe-negative and fake random walks
constitute the other class (cf., Fig. 1). The attention
network assigns weights to negative random walks. The
attention weight is designed to be high for random walks
dissimilar to positive ones (i.e., unsafe-negative random
walks), and low for those similar to positive ones (i.e.,
safe-negative random walks). By referring to attention
weights, therefore, the discriminator can know which
ones are safe-negative and unsafe-negative.

3.2 Generator and Discriminator Networks We
adopt the original generator and discriminator networks
of NetGAN. They are LSTM networks for dealing with
a sequence of vertices. Generating and classifying ran-
dom walks is very similar to generating and classifying
sentences. Thus, standard LSTM networks, which have
been shown to perform well at sentence generation and
classification, work well in our task.

To further increase scalability, NetGAN uses two
transformation matrices to scale down and up inputs
and outputs of the two LSTM networks, respectively.
For instance, the discriminator reads one-hot vectors
but if there are many vertices, the dimensionality of
the one-hot vectors will be very large, which is not
desired for scalability. Thus, the i-th LSTM output
of the generator produces a latent vector oi ∈ Rh,
where h=128, that will be transformed to a large vector
li ∈ R|V| to be processed by Gumbel-Softmax as follows:

oi = LSTMgenerator(hi−1, ci),

li = oiWup,

vi = categorical sampling(li),

where oi ∈ Rh is i-th output from the generator, Wup ∈
Rh×|V| is a projection matrix for scaling up, and vi is a
vector representing i-th vertex in the generated random
walk. In particular, NetGAN uses the Gumbel-softmax
for the last sampling function to make the entire process
differentiable and trainable without policy gradients.
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Figure 2: (a) The conceptual workflow of NetGAN+. The attention network assigns weights to negative random
walks and the discriminator is trained with all of positive, negative, and fake random walks. (b) Red means
negative random walks and blue means positive random walks in the feature space right before the attention
network’s final sigmoid activation.
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Figure 3: (a) Attention weights of 128 negative random walks of CORA-ML in a mini-batch at the last epoch.
Note that the majority of them have large weights close to 1.0, which means the semantically unsafe-negative
random walks outnumber the semantically safe-negative random walks. (b) The detailed architecture of the
attention network. The attention network takes the last output, denoted as olast, of the discriminator.

The input to the discriminator is scaled down to a latent
vector after the multiplication with Wdown ∈ R|V|×h
for the same reason.

3.3 Attention Network We introduce our atten-
tion network in this subsection. Our key idea is us-
ing negative random walks to improve the generation
quality. Specifically, we can suppress many semanti-
cally unsafe random walk generations. Fig. 1 shows all
possible categories of random walks. The generation
should happen with all the safe random walks, which
means we have to identify which negative random walks
are semantically safe, and which are unsafe. However,
the majority of negative random walks will fall into the
category of “semantically unsafe” and correctly identi-
fying them is very challenging. This problem is, in fact,
similar to noisy data classification [11, 18, 23] in an un-
supervised manner.

To this end, we design an attention mechanism.
Our proposed attention network is to assign a weight
to each negative random walk, which we call sample-

wise attention. Its neural network is defined as follows:

r = swish(olastW1 + b1),

m = olast + r,

l = mW2 + b2,

attention = sigmoid(l),

where olast is the last latent vector output of the
discriminator; W1 ∈ Rh×h, b1 ∈ Rh, W2 ∈ Rh×1 and
b2 ∈ R are parameters; swish is the swish activation [22]
which is similar to the concept of leaky ReLU; l is a
logit value. Fig. 3 (b) is a diagram representing this
architecture.

How to calculate the logit is inspired by residual
networks. In residual networks, given an input vector

For a better illustrate, we show the discriminator and the

attention network as separate networks in the conceptual diagram
of Fig. 2 (a). To reduce the processing overhead, however, the
attention network does not process from scratch. Referring to

the discriminator’s opinion (i.e., olast), the attention network
independently continues to decide the attention weight.
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y each residual block learns only f(y) that will be
later added with y, i.e., y + f(y) or in our case, m =
olast + swish(olastW1 + b1). There are two advantages
in using the residual approach: i) Learning only the
residual part, i.e., f(y), is much easier than learning
the entire value, i.e., y + f(y), from scratch, and ii)
y+f(y) means basically an ensemble. By nesting many
residual blocks, we can have a more complex ensemble.
For instance, by nesting two residual blocks, we can have
an expanded ensemble of y+f(y)+f ′(y+f(y)), where
f and f ′ mean the first and second residual block. We
use two residual blocks if the number of edges is larger
than 20K. This number was empirically found in our
experiments after some preliminary tests. We train the
attention network using the following loss:

Lattn = E
[
A(x)

]
x∼ppos

− E
[
A(n)

]
n∼pneg

,

where A outputs scalar attention weights, ppos is a pos-
itive random walk distribution, and pneg is a negative
random walk distribution. pneg is further separated into
psafe and punsafe.

The intuition behind this loss is that i) for an
obviously positive random walk x ∼ ppos, A(x) will
be close to zero, ii) for an obviously negative random
walk n ∼ pneg, A(n) will be close to one, and iii) for
those that are neither obviously positive nor negative,
the attention network should decide a value between 0
and 1. For instance, for the two negative random walks
n and n′ in Fig. 2 (b), the attention network classifies n
as positive because n has many positive neighbors in the
feature space. By strategically classifying n as positive,
the attention network can minimize the loss. This is
also the case in many other binary classifications with
noisy data. Fig. 3 (a) shows an attention example.

3.4 Overall Training Method The original Net-
GAN uses the training loss defined by WGAN-GP. We
use the same loss for the generator. However, the dis-
criminator in our work uses both positive and negative
random walks, and we propose the the following loss —
the parts modified by us are denoted in red:

L′D =E
[
D(G(z))

]
z∼pz

− E
[
D(x)

]
x∼ppos

+E
[
A(n)D(n)

]
n∼pneg

− E
[
(1−A(n))D(n)

]
n∼pneg

+ λE
[
(‖∇x̄D(x̄)‖2 − 1)2]

x̄∼p
g,neg+◦x

.

(3.1)

Before discussion, recall that D in WGAN-GP,
NetGAN, and our NetGAN+ returns the Wasserstein
distance which theoretically ranges in [0,∞]. In the first
red term, the Wasserstein distance of negative random
walk n will be multiplied with its attention weight A(n).

In the second red term, it is multiplied with 1 − A(n).
A(n) ≈ 0 (resp. A(n) ≈ 1) means that a negative
random walk n is semantically safe (resp. unsafe). Only
if A(n) = 0.5, i.e., neutral, the two terms cancel each
other. One of the two terms is more emphasized than
the other if A(n) 6= 0.5.

The third penalty term should also be modified.
In WGAN-GP and NetGAN, they do not use nega-
tive samples and require unit gradients for all sam-
ples interpolated between real and fake samples (ran-
dom walks). In NetGAN+, however, the unit gradi-
ent requirement should be adjusted accordingly. pg,neg+

means a mixture distribution of fake and negative ran-
dom walks whose attention weights are larger than ths
(we use ths = 0.9 in default after some preliminary
experiments). This is based on our heuristic because
the Wasserstein distance cannot be defined over sam-
ples with uncertainty. For those negative random walks
with large attention weights close to one, however, we
are certain that they are most likely to be semantically
unsafe. Thus, our modified regularization term requires
unit gradients only when it is certain that they are se-
mantically unsafe. Each of the discriminator, generator,
and attention network is alternately trained as in other
GANs.

3.5 Merge Random Walks To generate a graph,
both NetGAN and our NetGAN+ should generate many
random walks and merge them into a graph. We use the
method proposed in NetGAN for this. We repeatedly
sample many random walks and count the number
of occurrences for each edge. After normalizing the
number of occurrences, this becomes the probability of
the existence of the edges. Lastly, edges are sampled
one more time following the probability distribution.

3.6 Theoretical Results It has been known that
WD(pg, pdata), the Wasserstein distance between the
original and generated data distributions, is minimized
in the equilibrium state of WGAN-GP. In our case, we
prove that WD(pg, ppos,safe), where ppos,safe means a
mixture of the two distributions for positive and safe-
negative random walks, can be minimized. In NetGAN,
however, only WD(pg, ppos) is minimized.

Theorem 3.1. If A(n), where n ∼ pneg, is able to cor-
rectly identify safe and unsafe-negative random walks,
WD(pg, ppos,safe) is minimized in the equilibrium state.

Proof. If A(n) is always correct, the discriminator con-
siders ppos and psafe are in a class, and pneg and punsafe
are the other class in Eq. (3.1). This implies that
ppos,safe corresponds to pdata in the original GAN defi-
nition and the remaining proof follows the original equi-
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librium state proof.

Theorem 3.2. If the attention network produces neu-
tral predictions, i.e., A(n) = 0.5, ∀n ∼ pneg, then
WD(pg, ppos) is minimized in the equilibrium state.

Proof. If A(n) = 0.5, the middle two red terms cancel
each other in Eq. (3.1) and pg,neg+ becomes pg by
the definition of pneg+ . Therefore, L′D reduces to the
discriminator loss of NetGAN and the remaining proof
follows the original equilibrium state proof.

In particular, the second theorem teaches us that
even when our attention network is not capable of doing
a proper task and just outputs neutral opinions, our
method guarantees the quality as good as NetGAN.

3.7 Comparison with Existing Work GraphRNN
produces an upper triangle of adjacency matrix and
GraphGen produces a canonical sequence of edges.
There are pros and cons in their approaches. GraphGen
requires O(E) steps (excluding the canonicalization pre-
processing step) to generate a graph. More precisely,
GraphGen uses a custom LSTM whose sampling size is
O(E + 2V) every step. Thus, GraphGen requires O(E)
steps, each of which steps has the sampling space of
O(E + 2V). GraphRNN, which does not have any such
pre-processing step, has O(V2)

As mentioned at the end of Section 4.1.3 of the
GraphGen paper [6], the sizes of the sampled subgraphs
range from 1 ≤ |V| ≤ 102 and 1 ≤ |E| ≤ 121 in
CITESEER, and 9 ≤ |V| ≤ 111 and 20 ≤ |E| ≤ 124 in
CORA in their experiments. In other words, they did
not use the full-sized CITESEER and CORA graphs
but their random subgraphs. Therefore, the number
of vertices in a graph is about a hundred in their
experiments.

Both GraphRNN and GraphGen produce GPU
memory limitation errors in the final generation phase
after training with the random subgraphs and setting
their generation sizes to the original CITESEER and
CORA sizes — training with the original sized CITE-
SEER and CORA graphs produces the same errors even
in the training phase for their high spatial complexity.

On the other hand, NetGAN and NetGAN+ syn-
thesize many short random walks that will be merged
into a graph, which enables large scale graph synthe-
ses. A data sample in NetGAN+ is a random walk
whose length is pre-determined, i.e., O(l), where l is

The graph canonicalization of GraphGen augments a se-
quence of edges with some additional information (to make it
unique) and thus, what it has to generate is more than a sequence

of vertex identification numbers. Therefore, the sampling size in
a step becomes large.

Table 1: Statistics of six graphs we used. Their types are
either citation network, knowledge graph, or political
sentiment network. Note that each of them is a large
graph, rather than consisting of many small graphs.

Name |V| |E| Name |V| |E|
CORA-ML [19] 2,810 7,981 PUBMED [25] 19,717 44,324

CORA [19] 18,800 64,529 DBLP [21] 16,191 51,913

CITESEER [25] 2,110 3,757 POLBLOGS [2] 1,222 16,714

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Max Degree (Normalized) Wedge Count  (Normalized)
Claw Count  (Normalized) Triangle Count  (Normalized)
Power Law Exponent  (Normalized) Gini  (Normalized)
Edge Dist. Entropy  (Normalized)  Assortativity  (Normalized)
 Clustering Coefficient  (Normalized) Edge Overlapping

Figure 4: Graph statistics in CORA-ML are saturated
around the epoch number 18K where the edge overlap
is 70% and do not improve more even with a larger edge
overlap — for NetGAN, this statistics saturation occurs
around 40K epochs with the edge overlap of 50%.For
better visualization, we normalize statistics.

the length of random walk. l = 16 is used in our ex-
periments. The sampling size at each random walk step
in NetGAN and NetGAN+ is O(|V|). Therefore, our
O(l) steps of a sampling complexity O(|V|) are much
more scalable than GraphGen’s O(E) steps of a sam-
pling complexity O(E + 2V).

4 Experimental Results

We evaluate our graph generation method in two dif-
ferent tasks with six datasets. First, we compare var-
ious graph statistics (such as degree, clustering coef-
ficient, edge distribution, etc.) between ground-truth
graphs and generated graphs. We consider many
other baseline graph synthesis methods: CM [20], DC-
SBM [12], ERGM [10], BTER [26], VGAE [14], and
NetGAN [4]. We exclude all other non-scalable meth-
ods [8,16,24,27,29–31] because i) their task is different
from our task, and ii) they mostly produce GPU mem-
ory limitation errors for our large graphs.

Second, we perform link prediction. For this
task, we consider a different set of link prediction-
oriented baseline methods: Adamic-Adar [1], DC-SM,
node2vec [13], VGAE, and NetGAN. We perform all
these experiments using the six datasets summarized in
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Table 2: Graph statistics of real and fake graphs for CITESEER and CORA-ML. The best results that are closest
to the ground truth values are marked in bold font. LCC stands for the size of the largest connected component
and Assort. means assortativity.

Method
Max

Degree
LCC

Wedge

Count

Claw

Count

Triangle

Count

Power Law

Exponent
Gini

Edge Dist.

Entropy
Assort.

Clustering

Coefficient

C
IT

E
S

E
E

R

Ground Truth 77 2,110 16,824 125,701 451 2.239 0.404 0.959 -0.022 1.08e-2
DC-SBM 53 1,697 15,531 69,818 257 2.066 0.502 0.938 0.022 7.75

ERGM 66 1,753 16,346 80,510 416 2.0 0.474 0.945 0.052 1.49e-2

BTER 70 1,708 18,193 113,425 449 2.049 0.491 0.940 0.065 1.22e-2

VGAE 92 2,110 8,141 6,611 2 2.039 0.256 0.986 -0.057 1.35e-3

NetGAN 63 2,053 15,202 94,149 227 2.204 0.385 0.963 -0.054 7.71e-3
NetGAN+

(w/o Attn)
67 2,044 15,654 100,756 377 2.165 0.392 0.943 -0.052 9.54e-3

NetGAN+ 77 2,023 16,819 130,821 417 2.231 0.399 0.959 -0.048 0.96e-2

C
O

R
A

-M
L

Ground Truth 240 2,.810 101,872 3.1e6 2,814 1.86 0.482 0.942 -0.075 2.73e-3

DC-SBM 165 2,474 73.921 1.2e6 1,403 1.814 0.523 0.934 -0.052 3.30e-3

ERGM 243 2,489 98,615 3.1e6 2,293 1.786 0.517 0.932 -0.077 2.17e-3
BTER 199 2,439 91,813 2.0e6 3,060 1,787 0.515 0.935 0.033 4.62e-3

VGAE 13.1 2,810 31,290 46,586 14 1.674 0.223 0.990 -0.010 1.17e-3

NetGAN 233 2,807 86,763 2.6e6 1,588 1.793 0.42 0.954 -0.066 2.44e-3
NetGAN+

(w/o Attn)
208 2,808 83,926 2.03e6 1,477 1.813 0.443 0.950 -0.080 2.17e-3

NetGAN+ 240 2,802 99,243 3.03e6 2,815 1.847 0.474 0.942 -0.083 2.78e-3

Table 1.
For the validation in the first graph synthesis exper-

iments, the original NetGAN uses the overlapping edge
ratio of 50% (i.e., half of generated edges exist in the
original graph) as an early stopping criterion because
it gives the most similar graph statistics to the original
graph. If the ratio is larger than 50%, its graph statistics
similarity is rather decreased. However, our NetGAN+
shows different behaviors and its best performance is
made around the ratio of 70%. We think this is due to
our inclusion of negative random walks during training.
We use the overlapping edge ratio of 70% as the best
model selection criterion (see Fig. 4). Note that each
original graph is known for training so we can directly
compare graph statistics between synthesized and real
graphs.

For the validation in the second link prediction ex-
periments, we used the official validation set contained
in each dataset.

After contacting the authors of NetGAN, we could
get all recommended hyperparameter configurations.
We use the following improved hyperparameter configu-
rations after preliminary experiments, which are a little

This is somewhat counter-intuitive. We analyzed about
this phenomenon and concluded that it recalls existing edges to

capture latent characteristics but too much recall decreases the
flexibility of generation.

different from the recommended configuration: i) For
CORA, DBLP, and POLBLOGS, the generator LSTM
has 100 units, and the discriminator LSTM has 80 units;
ii) The L-2 regularization coefficients of the discrimina-
tor and the generator are 5e-5 and 1e-7 respectively; ii)
The positive random walk sampling has two parameters,
p = {0.5, 1.0, 2.0, 4.0} and q = {0.5, 1.0, 2.0, 4.0}. The
length of random walks is 16 in all experiments. We run
on machines with Tesla V100 (32GB VRAM), i7 CPU,
and 256GB RAM. We execute with five different seed
values and report their average performance.

4.1 Graph Statistics We use CITESEER and
CORA-ML for this task and compare the following
graph statistics: the maximum degree, the number of
vertices in the largest connected component, the num-
ber of wedge/claw/triangle-shaped connections, the ex-
ponent of the fitted power-law degree distribution, and
so forth. Detailed statistics are summarized in Table 2.

For CORA-ML, our NetGAN+ shows the best simi-
larity for the max degree, wedge/triangle count, cluster-
ing coefficient, etc. NetGAN+ significantly outperforms
NetGAN and other baseline methods. For some metrics
such as the max degree, triangle count, and edge distri-
bution entropy, NetGAN+ successfully reproduces all
the ground truth values. NetGAN also shows a reason-
able generation for the largest connected component.
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Table 3: Link prediction in AUCROC and Average
Precision (AP)

Method
CORA-ML CORA CITESEER
AUC AP AUC AP AUC AP

Admic/Adar 92.16 85.43 93.00 86.18 88.69 77.82

DC-SBM 96.03 95.15 98.01 97.45 94.77 93.13

node2vec 92.19 91.76 98.52 98.36 95.29 94.58

VGAE 95.79 96.30 97.59 97.93 95.11 96.31

NetGAN (500K) 94.00 92.32 82.31 68.47 95.18 91.93

NetGAN (100M) 95.19 95.24 84.82 88.04 95.30 96.89

NetGAN+

(w/o Attn, 2.5M)
94.54 95.03 95.89 96.08 96.31 96.89

NetGAN+ (2.5M) 96.10 96.49 97.94 97.10 96.46 96.90

Method
DBLP PUBMED POLBLOGS

AUC AP AUC AP AUC AP

Admic/Adar 91.13 82.48 84.98 70.14 85.43 92.16

DC-SBM 97.05 96.57 96.76 95.64 95.46 94.93

node2vec 96.41 96.36 96.49 95.97 85.10 83.54

VGAE 96.38 96.93 94.50 96.00 93.73 94.12

NetGAN (500K) 82.45 70.28 87.39 76.55 95.06 94.61

NetGAN (100M) 86.61 89.21 93.41 94.59 95.51 94.83

NetGAN+

(w/o Attn, 2.5M)
94.23 94.54 91.65 94.78 95.46 94.95

NetGAN+ (2.5M) 96.35 96.63 96.95 96.11 95.73 95.34

For CITESEER, NetGAN+ still shows the best perfor-
mance and clearly outperforms NetGAN.

Fig. 4 shows the improvement pattern of graph
statistics over training time. Around the epoch number
18,000, all the statistics are stabilized and the best
result reported in Table 2 is produced. For the same
chart of NetGAN, readers are referred to Figure 3 in
their paper [4]. After the epoch number 40,000 in their
figure, there are no more improvements for the graph
statistics and edge overlapping. This proves the efficacy
of our NetGAN+ over the original NetGAN. In less
than 50% of the training epochs, NetGAN+ achieves
the overwhelming performance.

4.2 Link Prediction We evaluate link prediction
in AUCROC and average precision (AP) and summa-
rize the results in Table 3. NetGAN+ achieves the
best link prediction performance for CORA-ML, CITE-
SEER, PUBMED, and POLBLOGS. For this task, we
generate 2.5M random walks with our NetGAN+ and
construct the normalized frequency (probability) matrix
described in Section 3.5 and use the same protocol as
was done with NetGAN. Note that NetGAN requires
at least 100M for stable predictions whereas NetGAN+
requires 40 times smaller random walks (2.5M). Thus,

Our attention network is parasitic on the discriminator and
does not have many parameters to learn so it incurs small

additional overheads. So NetGAN+ converges about 50% faster
than NetGAN in our machine.

Figure 5: The interpolation of fake graphs for CORA-
ML

NetGAN+ not only improves the link prediction accu-
racy but also decreases the generation time.

4.3 Without the Attention Network To check
the efficacy of the proposed attention mechanism, we
fix the attention weight to 1.0 for all negative random
walks and repeat the experiments. This is equivalent
to removing the attention network and considering all
negative random walks as semantically unsafe.

For graph statistics, NetGAN+ without the atten-
tion network (marked with “w/o Attn” in Table 2) is
comparable to (or slightly better than) NetGAN but
worse than NetGAN+. In the link prediction results in
Table 3, NetGAN+ consistently outperforms NetGAN+
(w/o Attn).

5 Interpolation of Latent Vectors

Interpolation is one way to sample generations and
check the diversity of generations in GANs. After
training, we project the latent vectors used as inputs to
the generator and their corresponding graph statistics
onto a 2-dimensional space.

Fig. 5 shows the interpolation for CORA-ML. It
is obvious that there exist several patterns that graph
statistics are gradually changed in the latent vector
space. A wide range of graph statistics can be generated
as shown in the figure, which means we can generate a
diverse set of fake graphs.

6 Conclusions

We presented an advanced, random walk-based graph
generating method. To identify semantically safe and
unsafe negative random walks, we designed one sample-
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wise attention mechanism. We conducted in-depth
experiments with six datasets. Our approach equipped
with the proposed method significantly outperforms
all the baseline methods for graph statistics and link
prediction in almost all cases. We also theoretically
proved that NetGAN+ is as good as NetGAN even when
the attention network is not trained properly.
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