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Abstract—Interpretable models for criminal justice forecasting
are desirable due to the high-stakes nature of the application.
While interpretable models have been developed for individual
level forecasts of recidivism, interpretable models are lacking
for the application of space-time crime hotspot forecasting.
Here we introduce an interpretable Hawkes process model of
crime that allows forecasts to capture near-repeat effects and
spatial heterogeneity while being consumable in the form of
easy-to-read score cards. For this purpose we employ penalized
likelihood estimation of the point process with a total-variation
regularization that enforces the triggering kernel to be piece-
wise constant. We derive an efficient expectation-maximization
algorithm coupled with forward backward splitting for the TV
constraint to estimate the model. We apply our methodology
to synthetic data and space-time crime data from Indianapolis.
The TV-Hawkes process achieves similar accuracy to standard
Hawkes process models of crime while increasing interpretability
and transparency.

I. INTRODUCTION

Because of the high-stakes nature of criminal justice fore-

casting, interpretable models are desirable so that users can

understand why algorithmic decisions are being made. Model

transparency facilitates critical assessment and may help high-

light areas where the model should be further assessed in

terms of fairness [6], [32]. For individual-level forecasts (e.g.

recidivism, parole), mixed-integer programming has been used

to create integer score cards where a low number of features

are combined with integer weights to score risk [22], [29]. In

Table I we present an example scorecard for recidivism from

the seminal papers [22], [29]. For example, if an incarcerated

individual has 3 prior arrests and their age is 30, then the score

would be 1 + 1 = 2, indicating a moderate to high level of

risk of recidivism (on a scale of -1 to 4). The model utilizes

three principles that we adopt in this paper:

1) Features should be easy to interpret, preferably binary

indicator variables (something is or is not true).

2) Weights determining a score should be simple and prefer-

ably integers for easier human interpretation.

3) A minimal number of features determining should be

used while still achieving an acceptable level of accuracy.

Spatial crime hotspotting and forecasting models, on the

other hand, assign risk to places and times rather than indi-

viduals. These models can then be used by law enforcement or

other stake-holders to allocate resources for crime prevention

[16], [19], community policing [1], collective efficacy initia-

tives [21], or other interventions. Point processes are one type

of modeling approach for space-time crime forecasting that

allow for estimation of near-repeat effects [15], exogenous

clustering [7], time of day patterns [28], incorporation of

spatial covariates [12], [20], and point processes themselves

can be used as features in machine learning base forecasts

[13]. Two of the top performing models in the 2017 National

Institute of Justice crime forecasting competition were point

process models [13], [7].

Prior arrests ≥ 2 1 point
Prior arrests ≥ 5 1 point + . . .

Prior arrests for local ordiance 1 point + . . .

Age at release ∈ [18, 24] 1 point + . . .

Age at release ≥ 40 -1 point + . . .

Total = . . .

TABLE I: Individual-level interpretable model of recidivism

presented in [22].

Did crimes occur in the past 1 days? (#× 3 points) . . .

2-3 days? (#× 2 points) + . . .

4-30 days? (#× 1 points) + . . .

Did a crime ever occur? (2 points) + . . .

Total = . . .

TABLE II: Interpretable spatial crime forecast score card.

Each spatial grid cell in a city is scored using the card and

the grid cells with the highest score are flagged as hotspots.

Number of events in a time interval is denoted by # in the

score card.

While interpretable forecasting at the individual level has

been well-studied in the past several years [33], [30], [3],

currently there are no interpretable versions of point process

based spatial forecasting models in criminal justice. Here we

propose to address this gap in research. We introduce an

interpretable Hawkes point process model for crime forecast-

ing that allows for the creation of easy-to-read score cards

analogous to those in [29], [22]. For this purpose we use

maximum penalized likelihood estimation and penalize the

Hawkes process triggering kernel using the total-variation

norm. Example output of the model is shown in Table VII.



The interpretable score card assigns an integer score to each

spatial grid cell (or alternatively patrol beat or street segment)

in a city on a given day. The score is broken down into a

simple calculation that allows the end user to see how the

score was created. For example, if a grid cell had 4 crimes in

the past 2-3 days and 7 crimes in the past 4-30 days then the

score would be 4 · 2 + 7 · 1 + 2 = 17.

The outline of the paper is as follows. In Section II we

provide the details of our TV-Hawkes process methodology.

We derive an expectation-maximization algorithm for model

estimation where within each EM iteration we solve a TV-

penalized Poisson regression using forward backward splitting.

In Section III we conduct several experiments on synthetic

and real data. We show that the interpretable Hawkes process

model achieves similar accuracy to standard non-interpretable

Hawkes processes while providing a higher degree of model

transparency. In Section IV we discuss directions for future

work in the area of intepretable spatial crime forecasting.

II. METHODOLOGY

A. EM-FASTA Single-cell Model

We consider a Hawkes process model of crime with inten-

sity:

λ(t) = µ+
∑
t>ti

g(t− ti). (1)

Here λ(t) is decomposed into a baseline intensity (rate) µ that

models spontaneous events, along with a sum of intensities

g(t − ti) that model repeat effects (e.g. the elevated risk

following each crime at time ti). The Hawkes process can

be viewed as a branching process where spontaneous events

occur according to a Poisson process with rate µ and then each

event triggers a generation of offspring events with Poisson

intensity g(t− ti).

The log-likelihood of the Hawkes process in Equation 1 is

given by:

L =
n∑

i=1

log λ(ti)−

∫ T

0

λ(t)dt− µTV ‖∇g‖

=

n∑
i=1

log(µ(ti) +
∑
ti>tj

g(ti − tj))−

∫ T

0

µ(t)dt−

∫ T

0

∑
t>ti

g(t− ti)dt− µTV ‖∇g‖

= f − µTV ‖∇g‖,

(2)

where µTV is the regularization for the total variational

constraint ‖∇g‖ =
∫
∞

0
|∇g(t)|dt. Here we let f represent the

non-penalized Hawkes process likelihood. We optimize Eq. 2

using forward-backward splitting, where the forward part is

solved by the EM method described below and the backward

part is solved using FASTA. For the triggering kernel g(t)
we discretize time and define g(ti − tj) = gm such that

mδt ≤ (ti − tj) < (m + 1)δt. Here the TV norm ‖∇g‖
is then discretized as in [14], [8]:

‖∇g‖ ≈
∑
m

|gm − gm−1|. (3)

Given the branching process representation of the Hawkes

process, we can let pi,i be the probability that event i is

spontaneous, and pi,j be the probability of event i being

triggered by event j [15]. The expected complete un-penalized

data log-likelihood is then given by:

Ep(L) =
n∑

i=1

pi,i log(µ
k)− µkT + (4)

n∑
i=2

i−1∑
j=1

pi,j log(g
k(ti − tj))−

n∑
i=1

∫ T

ti

gk(t− ti)dt.

With an initial guess for the parameter values of the model,

expectation-maximization then proceeds by alternating at iter-

ation k between the

E-step::

pi,i =
µk

µk +
∑i−1

j=1 g
k(ti − tj)

pi,j =
gk(ti − tj)

µk +
∑i−1

j=1 g
k(ti − tj)

.

(5)

and the M-step:

With gkm denoting the kernel at iteration k for the interval

[mδt, (m+1)δt), maximizing the complete data log-likelihood

involves solving:

∂Ep(L)

∂µk
=

∑n

i=1 pi,i
µk

− T = 0

∂Ep(L)

∂gkm
=

αm

gkm
− βmδt = 0

(6)

where

αm =

n∑
i=2

i−1∑
j=1

pi,j✶(mδt ≤ ti − tj < (m+ 1)δt)

βm =

n∑
i=1

✶(T − ti ≥ mδt)

(7)

and ✶ is the indicator function. The M-step update rules are

then:

µk+1 =

∑n

i=1 pi.i
T

(8)

and

gk+1
m =

αm

βmδt

=

∑n

i=2

∑i−1

j=1 pi,j✶(mδt ≤ ti − tj < (m+ 1)δt)∑n

i=1 ✶(T − ti ≥ mδt)δt

(9)



We then satisfy the total-variation constraint as follows.

Forward-backward splitting alternates between a forward gra-

dient ascent step on the un-penalized log-likelihood

ĝk+1 = gk + δt∇f (10)

and then a backward proximal gradient step:

gk+1 = prox
g

(ĝk+1, τ) = argmin
g

τ∇g+
1

2
||g− ĝk+1||2 (11)

where τ is the backward gradient stepsize. The forward step

in Eq. 10 is equivalent to the EM step in Eq. 9. We can solve

the backward step (Eq. 11) as is done in [8] using FASTA.

Putting the EM algorithm and the FBS splitting together,

the overall algorithm is given by:

• E-step Estimate pi,i and pi,j using Eq 5.

• M-step Update µ using Eq 8. Estimate ĝk+1 using Eq 9.

Update gk+1 by solving Eq. 11 using FASTA.

B. Multi-cell Model

In the above we considered the Hawkes process at a single

spatial location. We can then discretize a spatial domain into

grid cells of fixed size and estimate an intensity within each

cell. We denote µl as the base intensity for cell l and we

assume gm is the same for every cell (though the kernel’s

contribution will vary because it depends on the event history

in each cell). The EM algorithm for a multi-cell model is then

given as:

E-step

pli,i =
µk
l

µk
l +

∑i−1

j=1;i,j∈Sl
gk(ti − tj)

pli,j =
gk(ti − tj)

µk
l +

∑i−1

j=1;i,j∈Sl
gk(ti − tj)

(12)

where Sl is the set of indices for events in cell l and gk(ti −
tj) = gkm such that mδt ≤ (ti − tj) < (m+ 1)δt.

M-step

µk+1
l =

∑n

i=1 p
l
i.i

T
(13)

and

gk+1
m = (14)∑L

l=1

∑
i,j∈Sl

pli,j✶(ti − tj ∈ [mδt, (m+ 1)δt))∑L

l=1

∑n

i=1 ✶(T − ti ≥ mδt)✶(i ∈ Sl)

where L is the total number of cells.

III. EXPERIMENTS

A. Synthetic Data

We first examine the TV-Hawkes process model on a

synthetic dataset generated by a Hawkes process with ex-

ponential kernel g(t) = αwe−wt. In particular, we perform

Ogata thinning simulation [17] with base intensity µ = 10.0,

α = 0.5, and w = 2.0 in a time window [0, T ) where

T = 100.0, generating a sequence of 1848 events.

TABLE III: Fitting base intensity µ with different regularity

strength µTV . ws is the cutoff length for the estimated kernel

gm. Time step δt = 0.1. µTV is the regularizer of the TV

constraint. µTV = 0 indicates no TV constraint. µ is the

estimated base intensity, while the true µ is 10.

ws 4 2
µTV 0 0.01 0.02 0 0.01 0.02
µ 7.81 10.06 11.53 9.19 10.39 11.83

Upon fitting the models, we test both truncating the kernels

at window sizes of 4 and 2 (i.e. ws = 4 or 2 in Table

III). We also vary the strength of the TV-constraint, with

µtv = 0, 0.01, and 0.02. We note that the TV-Hawkes estimate

approaches the un-regularized Hawkes model when µTV = 0.

In the experiments, we adopt a fix time step δt = 0.1. The

estimated µ values are shown in Table III. We can see that the

models with a TV-constraint are in general better than the ones

without the constraint, in terms of fitting the base intensity. In

particular, when ws = 4 and µTV = 0.01, the TV-Hawkes

model gives µ = 10.06, closely recovering the true µ = 10.0.

We also plot the estimated kernels alongside the true kernels

in Fig. 1. In the left-most column, without a TV-constraint,

the fitted curves exhibit some unrealistic peaks significantly

higher than the true curves. In contrast, the kernels with a

TV-constraint do not have such peaks and fit the true kernels

very well (especially the middle column in Fig. 1). We can

see that the TV-constraint effectively merges consecutive steps

that are close in intensity. As a by-product, it also prevents a

bin from being significantly different from its neighbors. In

addition, we observe that when a stronger µTV is used, the

fitted models tend to have a greater base intensity µ (Table

III) but a lower first stair in the kernels (the right column in

Fig. 1).

B. IMPD Crime Data

Next we apply the TV-Hawkes methodology to reported

crime incidents in Indianapolis where each event consists of

a date and geolocation (latitude and longitude). The dataset

contains 53771 burglary, robbery and vehicle theft events and

covers the time period of January 1, 2012 to December 31,

2015. We divide the Indianapolis metropolitan area into a grid,

using boxes of 150× 150 m as is done in [16]. The resulting

grid contains 48614 cells. We then distribute the events into

these cells based on the coordinates. As crime is highly

concentrated in urban environments [31], we find that 72% of

the cells are empty (without any reported crimes), while the

non-empty cells have a mean and maximum sequence length

of ∼ 4 and 149, respectively. Next, we split the sequence into

training (80%), validation (10%), and test (10%) sets based

on the event dates. The model parameters (base intensity µ
and kernel g) are estimated using the training set. Specifically

we adopt a fix time step (δt = 1 day) for the kernel (g). We

also apply a cutoff (window size, ws) to g. For instance, for

ws = 30 days and δt = 1 day, the kernel g becomes the

discrete gm with 30 bins. In addition, we vary the strength of



(a) ws = 4, µTV = 0 (b) ws = 4, µTV = 0.01 (c) ws = 4, µTV = 0.02

(d) ws = 2, µTV = 0 (e) ws = 2, µTV = 0.01 (f) ws = 2, µTV = 0.02

Fig. 1: Synthetic experiments. Hawkes process with an exponential kernel. Orange curve: true kernel; Blue curve: estimated

kernel. Top: kernel is truncated at 4; Bottom: kernel is truncated at 2. From left to right, the figures represent Hawkes model,

Hawkes-tv with µTV = 0.01, and 0.02.

the TV constraint, µTV , to control the number of steps in the

step-wise kernels. These hyper-parameters are tuned on the

validation set; while the final forecast results are evaluated on

the test set.

1) Evaluation metric: To evaluate forecasting, we adopt the

metric - predictive accuracy index (PAI) [5], which is an area-

standardized measure of recall@k commonly used in crime

hotspotting applications:

PAI =
top k recall

k / total # boxes
. (15)

It is the fraction of crime falling in the top k forecasted

grid cells divided by the fraction of land area flagged

as a hotspot for intervention. In particular, we select the

top k boxes (ranked by intensity), and calculate the recall

( true positive
true positive + false negative

) (i.e. the top k recall). We then

divide it by k
total # boxes

, the fraction of the boxes flagged as

a hotspot.

2) Results: In Table IV, we show the experimental results

on the validation set. The window size is taken as 14, 30,

and 90 days. Different µTV values are tested, among which

we show those leading to well-behaved kernel curves. The

#stairs column indicates the number of flat components

(stairs) in the estimated kernel. The ratio of #stairs and

the window size is calculated (the fourth column), to indicate

the compactness of the kernel. In general, a ratio closer to

zero suggests better interpretability. To evaluate the forecast

accuracy, we estimate the top-20 recall (the rate column) and

the PAI score introduced in Eq. 15. From this table, we can

see that a stronger TV constraint would lead to a simpler but

less accurate model. However, the degradation in accuracy is

not significant. For instance, for the 14-day window, our TV-

Hawkes model reduces #stairs by two thirds, while only

dropping the PAI score by 2%. Similarly, comparing to the un-

regularized Hawkes model, TV-Hawkes decreases #stairs by

83% for the 30-day window and 95% for the 90-day window,

with a cost in PAI of only 4% and 8%, respectively.

To compare the models listed in Table IV, we quan-

tify three properties - simplicity, interpretability, and ac-

curacy. Specifically, we define simplicity = 1/#stairs,

interpretability = 0.1/ratio, and accuracy = PAI/100.

Note the scaling factors in these definitions are introduced

to make the quantities have the same scale. The simplicity

is defined as the inverse of #stairs, since a simpler model

should have less parameters (stairs). The interpretability is in-

versely proportional to the ratio, as a model describing a larger

window with less parameters (stairs) should be considered as

more interpretable. In Fig. 2, we represent the models in radar

charts with the three properties as axes. In these charts, the

triangle area can be viewed as a comprehensive evaluation of



a model. A larger area can indicate a better balance among

the three properties. Compared to the regular Hawkes models,

our TV-Hawkes models are significantly higher along the

simplicity and interpretability axes, while only slightly lower

along the accuracy axis. Our TV-Hawkes models also show

larger area than the Hawkes models. Among the models listed,

TV-Hawkes-14, TV-Hawkes-30-3, and TV-Hawkes-90-4 have

the largest triangle area in the corresponding windows. In Fig.

3, we plot the estimated kernels of these three models along

with the ones given by the Hawkes process. We can see that

multiple bins in the Hawkes kernels merge into one large step

in the TV-Hawkes kernels. Meanwhile, the TV-Hawkes kernels

show similar trends as the Hawkes kernels.

Next, we apply these models to the test set for forecasting.

The results over the test set are shown in Table V. We also

perform forecasting using the un-regularized Hawkes process

and a hotspot mapping model where the flagged area is

comprised of the hotspots that have the most crimes in the

previous window. Our TV-Hawkes model performs better than

the Hawkes model in top 20 accuracy when ws = 14 days, top

100 accuracy when ws = 14 or 30 days, and top 200 accuracy

when ws = 90 days. In the other cases, our TV-Hawkes

model has accuracy only slightly lower than the Hawkes

model. Noticeably, our TV-Hawkes model outperforms the

hotspot mapping model, by a margin that becomes significant

in the top 100 and top 200 cases. The top 20 and 200

scores suggest that using a larger window might improve

performance; however, such effect is not obvious in the top

100 case. We also observe that from top 20 to top 200, the

PAI score decreases, although the rate increases. This suggests

that it is more difficult for these models to forecast a crime in

the locations with lower risk.

To further compare TV-Hawkes against Hawkes, we plot

the intensity in grid cells for a random day picked from the

test set, on a map of Indianapolis metropolitan area (roughly

inside I-465) in Fig. 4. Note here we illustrate the models

with a 30-day window, i.e. Hawkes-30 and TV-Hawkes-30-

3 (Table IV). Color represents greater (red) or lower (green)

intensity. The transparent regions have an intensity of zero, and

are very unlikely to have a crime. The colored cells in both

figures show very similar patterns. In both figures, we find

that the high intensity cells (red or orange) are distributed in a

predominantly yellow and green background. In particular, the

high intensity cells indicate that the area near the Children’s

Museum, the area near the Motor Speedway, and the area in

the east side between East 21st and 10th streets are among

the riskiest. The blue triangles (hotspots) mark the top-20

locations most likely to have a crime. Both models show

similar hotspots, except for one near the left boundary of the

map.

3) Simplified score cards: Finally, we detail our method for

constructing interpretable score cards. We construct the score

card (SC-1) in Table VII based on the model TV-Hawkes-30-

3, where ws = 30 days and µTV = 3e− 4. The model gives

the following intensity:

λ(t) = 0.0029×# crimes in (t, t− 1]

+ 0.0025×# crimes in [t− 2, t− 3]

+ 0.0014×# crimes in [t− 4, t− 7]

+ 0.0013×# crimes in [t− 8, t− 15]

+ 0.0011×# crimes in [t− 16, t− 30]

+ µ0,

(16)

where t is the current date and µ0 is the mean base intensity.

We have µ0 = 4.9218e − 4 over all cells, and µ0 = 0.0019
over the cells with crimes. We can simplify SC-1 by scaling the

coefficients to the range of [0, 10], leading to the second score

card (SC-2) in the introduction in Table II. We can further

substitute the number of crimes in Eq. 16 by the mean crime

counts in the corresponding intervals, and scale the resulted

terms to between [0, 10]. This renders the third score card

(SC-3) in Table VIII. We apply these three score cards to the

IMPD crime data (test set), and show the forecasting results in

Table VI. The first score card (SC-1) has the highest accuracy

among the three, and the accuracy decreases as the score

card becomes less complex. Noticeably, SC-1 outperforms the

hotspot mapping model in rate@20 and PAI@20, by ∼ 2%.

Compared to the TV-Hawkes and Hawkes models, the score

cards are less accurate, however, they are much easier to use

and interpret. We also see that from top 20 to 200, the rate

increases while the PAI score decreases, a phenomenon similar

to the more complicated models.

We also plot the intensity maps given by the score cards in

Fig. 4. Notice that the maps on the bottom have more cells

colored in orange or red than those on the top. This suggests

that the score cards can in general assign higher intensity to the

cells than the more complex Hawkes and TV-Hawkes models,

which is likely the result of rounding the parameters in TV-

Hawkes. The top 20 forecasted cells (blue triangles) show

similar pattern across score cards. Although the forecasted

locations may not exactly overlap with those given by the

Hawkes and TV-Hawkes models, they appear to be in close

proximity.

IV. CONCLUSION

Here we showed how to construct interpretable Hawkes

process crime forecasting models using total-variation penal-

ized likelihood estimation. The TV-Hawkes process allows

one to balance accuracy, simplicity and interpretability. The

methodology presented here has the advantage that feature

engineering is not required and cut-offs for the step function

comprising g(t) are automatically generated during inference.

This is in comparison to interpretable models of recidivism

where hand-crafted feature engineering is required before the

mixed-integer optimization. One disadvantage of our method-

ology is that we used post-processing to convert the model

into an integer score. Future work in this area will focus on

solving a non-linear TV-MPLE integer programming problem

similar to what is done in [26] for logistic regression (where

piece-wise linear approximate MIP is used).





TABLE V: IMPD experimental results on the test set. ws is the window size for gm (# of days). We use δt = 1 day, and

150× 150 m boxes. Rate and PAI are calculated using top 20, 100, and 200 recalls.

TV-Hawkes Hawkes Hotspot
top ws rate PAI rate PAI rate PAI

2
0

14 1.54% 37.5418 1.53% 37.1646 1.37% 33.2356
30 1.61% 39.0435 1.61% 39.1838 1.47% 35.6655
90 1.68% 40.8551 1.73% 41.9390 1.68% 40.8238

1
0

0

14 5.76% 27.9778 5.73% 27.8763 3.50% 17.0237
30 5.83% 28.3535 5.73% 27.8562 4.44% 21.5816
90 5.70% 27.6959 5.77% 28.0456 4.90% 23.7972

2
0

0

14 9.72% 23.6277 9.74% 23.6723 5.01% 12.1832
30 9.88% 24.0245 9.89% 24.0362 6.78% 16.479
90 10.05% 24.4383 10.01% 24.3247 8.58% 20.8585

TABLE VI: Forecasting results with the score cards (SC). The results are evaluated on the IMPD crime data (test set), with

a 30-day window. We set δt = 1 day, and use 150 × 150 m boxes. Rate and PAI are estimated on top 20, 100, and 200
forecasted hotspot grid cells. As comparison, results by other models in the 30-day window are listed.

SC-1 SC-2 SC-3 TV-Hawkes Hawkes Hotspot

rate@20 1.50% 1.36% 1.25% 1.61% 1.61% 1.47%
PAI@20 36.3596 33.0772 30.4465 39.0435 39.1838 35.6655

rate@100 4.25% 4.06% 4.01% 5.83% 5.73% 4.44%
PAI@100 20.6653 19.7543 19.4889 28.3535 27.8562 21.5816

rate@200 6.47% 6.33% 5.88% 9.88% 9.89% 6.78%
PAI@200 15.7164 15.3641 14.2906 24.0245 24.0362 16.479

Did crimes occur in the past 1 days? (#× 29 points) . . .

2-3 days? (#× 25 points) + . . .

4-7 days? (#× 14 points) + . . .

8-15 days? (#× 13 points) + . . .

16-30 days? (#× 11 points) + . . .

Did a crime ever occur? (19 points) + . . .

Total = . . .

TABLE VII: Interpretable crime forecast score card. Each

spatial grid cell in a city is scored using the card and the

grid cells with the highest score are flagged as hotspots.

Did crimes occur in the past 1 days? (3 points) . . .

2-3 days? (2 points) + . . .

4-7 days? (1 points) + . . .

8-15 days? (1 points) + . . .

16-30 days? (2 points) + . . .

Did a crime ever occur? (1 points) + . . .

Total = . . .

TABLE VIII: (Further simplified) Interpretable crime forecast

score card. Each spatial grid cell in a city is scored using the

card and the grid cells with the highest score are flagged as

hotspots.

police agencies to leverage their existing data to maximize

police resources through empirically-driven interventions.

TV-Hawkes code available at https://github.com/daDiz/TV-

Hawkes
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