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Abstract—Interpretable models for criminal justice forecasting
are desirable due to the high-stakes nature of the application.
While interpretable models have been developed for individual
level forecasts of recidivism, interpretable models are lacking
for the application of space-time crime hotspot forecasting.
Here we introduce an interpretable Hawkes process model of
crime that allows forecasts to capture near-repeat effects and
spatial heterogeneity while being consumable in the form of
easy-to-read score cards. For this purpose we employ penalized
likelihood estimation of the point process with a total-variation
regularization that enforces the triggering kernel to be piece-
wise constant. We derive an efficient expectation-maximization
algorithm coupled with forward backward splitting for the TV
constraint to estimate the model. We apply our methodology
to synthetic data and space-time crime data from Indianapolis.
The TV-Hawkes process achieves similar accuracy to standard
Hawkes process models of crime while increasing interpretability
and transparency.

I. INTRODUCTION

Because of the high-stakes nature of criminal justice fore-
casting, interpretable models are desirable so that users can
understand why algorithmic decisions are being made. Model
transparency facilitates critical assessment and may help high-
light areas where the model should be further assessed in
terms of fairness [6], [32]. For individual-level forecasts (e.g.
recidivism, parole), mixed-integer programming has been used
to create integer score cards where a low number of features
are combined with integer weights to score risk [22], [29]. In
Table I we present an example scorecard for recidivism from
the seminal papers [22], [29]. For example, if an incarcerated
individual has 3 prior arrests and their age is 30, then the score
would be 1 + 1 = 2, indicating a moderate to high level of
risk of recidivism (on a scale of -1 to 4). The model utilizes
three principles that we adopt in this paper:

1) Features should be easy to interpret, preferably binary
indicator variables (something is or is not true).

2) Weights determining a score should be simple and prefer-
ably integers for easier human interpretation.

3) A minimal number of features determining should be
used while still achieving an acceptable level of accuracy.

Spatial crime hotspotting and forecasting models, on the
other hand, assign risk to places and times rather than indi-
viduals. These models can then be used by law enforcement or
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other stake-holders to allocate resources for crime prevention
[16], [19], community policing [1], collective efficacy initia-
tives [21], or other interventions. Point processes are one type
of modeling approach for space-time crime forecasting that
allow for estimation of near-repeat effects [15], exogenous
clustering [7], time of day patterns [28], incorporation of
spatial covariates [12], [20], and point processes themselves
can be used as features in machine learning base forecasts
[13]. Two of the top performing models in the 2017 National
Institute of Justice crime forecasting competition were point
process models [13], [7].

Prior arrests > 2 1 point

Prior arrests > 5 1 point | + ..

Prior arrests for local ordiance 1 point | + ..

Age at release € [18,24] 1 point | + ..

Age at release > 40 -1 point | + ..
Total | = .

TABLE I: Individual-level interpretable model of recidivism
presented in [22].

Did crimes occur in the past 1 days?  (# X 3 points) .
2-3 days?  (# X 2 points) | + .

4-30 days? (# X 1 points) | + .

Did a crime ever occur? (2 points) | + .
Total | = .

TABLE II: Interpretable spatial crime forecast score card.
Each spatial grid cell in a city is scored using the card and
the grid cells with the highest score are flagged as hotspots.
Number of events in a time interval is denoted by # in the
score card.

While interpretable forecasting at the individual level has
been well-studied in the past several years [33], [30], [3],
currently there are no interpretable versions of point process
based spatial forecasting models in criminal justice. Here we
propose to address this gap in research. We introduce an
interpretable Hawkes point process model for crime forecast-
ing that allows for the creation of easy-to-read score cards
analogous to those in [29], [22]. For this purpose we use
maximum penalized likelihood estimation and penalize the
Hawkes process triggering kernel using the total-variation
norm. Example output of the model is shown in Table VII.



The interpretable score card assigns an integer score to each
spatial grid cell (or alternatively patrol beat or street segment)
in a city on a given day. The score is broken down into a
simple calculation that allows the end user to see how the
score was created. For example, if a grid cell had 4 crimes in
the past 2-3 days and 7 crimes in the past 4-30 days then the
score would be 4-2+7-1+2=1T7.

The outline of the paper is as follows. In Section II we
provide the details of our TV-Hawkes process methodology.
We derive an expectation-maximization algorithm for model
estimation where within each EM iteration we solve a TV-
penalized Poisson regression using forward backward splitting.
In Section III we conduct several experiments on synthetic
and real data. We show that the interpretable Hawkes process
model achieves similar accuracy to standard non-interpretable
Hawkes processes while providing a higher degree of model
transparency. In Section IV we discuss directions for future
work in the area of intepretable spatial crime forecasting.

II. METHODOLOGY

A. EM-FASTA Single-cell Model

We consider a Hawkes process model of crime with inten-

sity:
t)=p+> glt—t). (1)

t>t;

Here A(t) is decomposed into a baseline intensity (rate) u that
models spontaneous events, along with a sum of intensities
g(t — t;) that model repeat effects (e.g. the elevated risk
following each crime at time ¢;). The Hawkes process can
be viewed as a branching process where spontaneous events
occur according to a Poisson process with rate 1+ and then each
event triggers a generation of offspring events with Poisson
intensity g(t — ;).

The log-likelihood of the Hawkes process in Equation 1 is
given by:
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where pry is the regularization for the total variational
constraint | Vg|| = [;* |Vg(t)|dt. Here we let f represent the
non-penalized Hawkes process likelihood. We optimize Eq. 2
using forward-backward splitting, where the forward part is
solved by the EM method described below and the backward
part is solved using FASTA. For the triggering kernel g(t)
we discretize time and define g(¢t; — t;) = gy, such that

mot < (t; —t;) < (m + 1)dt. Here the TV norm ||Vgl||
is then discretized as in [14], [8]:
Vgl = lgm = gm-1l- 3)

Given the branching process representation of the Hawkes
process, we can let p;; be the probability that event ¢ is
spontaneous, and p; ; be the probability of event i being
triggered by event j [15]. The expected complete un-penalized
data log-likelihood is then given by:
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With an initial guess for the parameter values of the model,
expectation-maximization then proceeds by alternating at iter-
ation k between the

E-step::
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and the M-step:
With g%, denoting the kernel at iteration k for the interval
[mdt, (m+1)dt), maximizing the complete data log-likelihood
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and 1 is the indicator function. The M-step update rules are
then:
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We then satisfy the total-variation constraint as follows.
Forward-backward splitting alternates between a forward gra-
dient ascent step on the un-penalized log-likelihood

gt =gF +otvy (10)
and then a backward proximal gradient step:
g*t = prox(gF*tt,T) = argm1n7Vg+ f||g kel I OE))

g

where 7 is the backward gradient stepsize. The forward step
in Eq. 10 is equivalent to the EM step in Eq. 9. We can solve
the backward step (Eq. 11) as is done in [8] using FASTA.

Putting the EM algorithm and the FBS splitting together,
the overall algorithm is given by:

o E-step Estimate p; ; and p; ; using Eq 5.

o M-step Update 1 using Eq 8. Estimate §**! using Eq 9.

Update g*+! by solving Eq. 11 using FASTA.

B. Multi-cell Model

In the above we considered the Hawkes process at a single
spatial location. We can then discretize a spatial domain into
grid cells of fixed size and estimate an intensity within each
cell. We denote y; as the base intensity for cell [ and we
assume g¢,, is the same for every cell (though the kernel’s
contribution will vary because it depends on the event history
in each cell). The EM algorithm for a multi-cell model is then
given as:

E-step
pl» . Uf
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where S; is the set of indices for events in cell [ and ¢* (t; —

t;) = gk, such that mdt < (t; —t;) < (m + 1)dt.
M-step
L
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where L is the total number of cells.

III. EXPERIMENTS
A. Synthetic Data

We first examine the TV-Hawkes process model on a
synthetic dataset generated by a Hawkes process with ex-
ponential kernel g(t) = awe™"!. In particular, we perform
Ogata thinning simulation [17] with base intensity p = 10.0,
a = 0.5, and w = 2.0 in a time window [0,T) where
T = 100.0, generating a sequence of 1848 events.

TABLE III: Fitting base intensity p with different regularity
strength ppy . ws is the cutoff length for the estimated kernel
gm. Time step 0t = 0.1. ppy is the regularizer of the TV
constraint. pury = 0 indicates no TV constraint. p is the
estimated base intensity, while the true u is 10.

ws 4 2
HTV 0 0.01 0.02 0 0.01 0.02
o 7.81 10.06 1153 | 9.19 1039 11.83

Upon fitting the models, we test both truncating the kernels
at window sizes of 4 and 2 (i.e. ws = 4 or 2 in Table
IIT). We also vary the strength of the TV-constraint, with
iy = 0, 0.01, and 0.02. We note that the TV-Hawkes estimate
approaches the un-regularized Hawkes model when pry = 0.
In the experiments, we adopt a fix time step 6t = 0.1. The
estimated p values are shown in Table III. We can see that the
models with a TV-constraint are in general better than the ones
without the constraint, in terms of fitting the base intensity. In
particular, when ws = 4 and pury = 0.01, the TV-Hawkes
model gives p = 10.06, closely recovering the true y = 10.0.
We also plot the estimated kernels alongside the true kernels
in Fig. 1. In the left-most column, without a TV-constraint,
the fitted curves exhibit some unrealistic peaks significantly
higher than the true curves. In contrast, the kernels with a
TV-constraint do not have such peaks and fit the true kernels
very well (especially the middle column in Fig. 1). We can
see that the TV-constraint effectively merges consecutive steps
that are close in intensity. As a by-product, it also prevents a
bin from being significantly different from its neighbors. In
addition, we observe that when a stronger pry is used, the
fitted models tend to have a greater base intensity u (Table
IIT) but a lower first stair in the kernels (the right column in
Fig. 1).

B. IMPD Crime Data

Next we apply the TV-Hawkes methodology to reported
crime incidents in Indianapolis where each event consists of
a date and geolocation (latitude and longitude). The dataset
contains 53771 burglary, robbery and vehicle theft events and
covers the time period of January 1, 2012 to December 31,
2015. We divide the Indianapolis metropolitan area into a grid,
using boxes of 150 x 150 m as is done in [16]. The resulting
grid contains 48614 cells. We then distribute the events into
these cells based on the coordinates. As crime is highly
concentrated in urban environments [31], we find that 72% of
the cells are empty (without any reported crimes), while the
non-empty cells have a mean and maximum sequence length
of ~ 4 and 149, respectively. Next, we split the sequence into
training (80%), validation (10%), and test (10%) sets based
on the event dates. The model parameters (base intensity p
and kernel g) are estimated using the training set. Specifically
we adopt a fix time step (6t = 1 day) for the kernel (g). We
also apply a cutoff (window size, ws) to g. For instance, for
ws = 30 days and 6t = 1 day, the kernel g becomes the
discrete g, with 30 bins. In addition, we vary the strength of
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Fig. 1: Synthetic experiments. Hawkes process with an exponential kernel. Orange curve: true kernel; Blue curve: estimated
kernel. Top: kernel is truncated at 4; Bottom: kernel is truncated at 2. From left to right, the figures represent Hawkes model,

Hawkes-tv with u7ry = 0.01, and 0.02.

the TV constraint, pry, to control the number of steps in the
step-wise kernels. These hyper-parameters are tuned on the
validation set; while the final forecast results are evaluated on
the test set.

1) Evaluation metric: To evaluate forecasting, we adopt the
metric - predictive accuracy index (PAI) [5], which is an area-
standardized measure of recall@k commonly used in crime
hotspotting applications:

top k recall
k / total # boxes’

It is the fraction of crime falling in the top k forecasted
grid cells divided by the fraction of land area flagged
as a hotspot for intervention. In particular, we select the
top k& boxes (ranked by intensity), and calculate the recall
( true positive ) (i.e. the top k recall). We then

true positive + false negative

divide it by m, the fraction of the boxes flagged as
a hotspot.

2) Results: In Table IV, we show the experimental results
on the validation set. The window size is taken as 14, 30,
and 90 days. Different p7y values are tested, among which
we show those leading to well-behaved kernel curves. The
#stairs column indicates the number of flat components
(stairs) in the estimated kernel. The ratio of #stairs and
the window size is calculated (the fourth column), to indicate

PAI =

15)

the compactness of the kernel. In general, a ratio closer to
zero suggests better interpretability. To evaluate the forecast
accuracy, we estimate the top-20 recall (the rate column) and
the PAI score introduced in Eq. 15. From this table, we can
see that a stronger TV constraint would lead to a simpler but
less accurate model. However, the degradation in accuracy is
not significant. For instance, for the 14-day window, our TV-
Hawkes model reduces #stairs by two thirds, while only
dropping the PAI score by 2%. Similarly, comparing to the un-
regularized Hawkes model, TV-Hawkes decreases #stairs by
83% for the 30-day window and 95% for the 90-day window,
with a cost in PAI of only 4% and 8%, respectively.

To compare the models listed in Table IV, we quan-
tify three properties - simplicity, interpretability, and ac-
curacy. Specifically, we define simplicity = 1/#stairs,
interpretability = 0.1/ratio, and accuracy = PAI/100.
Note the scaling factors in these definitions are introduced
to make the quantities have the same scale. The simplicity
is defined as the inverse of #stairs, since a simpler model
should have less parameters (stairs). The interpretability is in-
versely proportional to the ratio, as a model describing a larger
window with less parameters (stairs) should be considered as
more interpretable. In Fig. 2, we represent the models in radar
charts with the three properties as axes. In these charts, the
triangle area can be viewed as a comprehensive evaluation of



a model. A larger area can indicate a better balance among
the three properties. Compared to the regular Hawkes models,
our TV-Hawkes models are significantly higher along the
simplicity and interpretability axes, while only slightly lower
along the accuracy axis. Our TV-Hawkes models also show
larger area than the Hawkes models. Among the models listed,
TV-Hawkes-14, TV-Hawkes-30-3, and TV-Hawkes-90-4 have
the largest triangle area in the corresponding windows. In Fig.
3, we plot the estimated kernels of these three models along
with the ones given by the Hawkes process. We can see that
multiple bins in the Hawkes kernels merge into one large step
in the TV-Hawkes kernels. Meanwhile, the TV-Hawkes kernels
show similar trends as the Hawkes kernels.

Next, we apply these models to the test set for forecasting.
The results over the test set are shown in Table V. We also
perform forecasting using the un-regularized Hawkes process
and a hotspot mapping model where the flagged area is
comprised of the hotspots that have the most crimes in the
previous window. Our TV-Hawkes model performs better than
the Hawkes model in top 20 accuracy when ws = 14 days, top
100 accuracy when ws = 14 or 30 days, and top 200 accuracy
when ws = 90 days. In the other cases, our TV-Hawkes
model has accuracy only slightly lower than the Hawkes
model. Noticeably, our TV-Hawkes model outperforms the
hotspot mapping model, by a margin that becomes significant
in the top 100 and top 200 cases. The top 20 and 200
scores suggest that using a larger window might improve
performance; however, such effect is not obvious in the top
100 case. We also observe that from top 20 to top 200, the
PAI score decreases, although the rate increases. This suggests
that it is more difficult for these models to forecast a crime in
the locations with lower risk.

To further compare TV-Hawkes against Hawkes, we plot
the intensity in grid cells for a random day picked from the
test set, on a map of Indianapolis metropolitan area (roughly
inside 1-465) in Fig. 4. Note here we illustrate the models
with a 30-day window, i.e. Hawkes-30 and TV-Hawkes-30-
3 (Table IV). Color represents greater (red) or lower (green)
intensity. The transparent regions have an intensity of zero, and
are very unlikely to have a crime. The colored cells in both
figures show very similar patterns. In both figures, we find
that the high intensity cells (red or orange) are distributed in a
predominantly yellow and green background. In particular, the
high intensity cells indicate that the area near the Children’s
Museum, the area near the Motor Speedway, and the area in
the east side between East 21st and 10th streets are among
the riskiest. The blue triangles (hotspots) mark the top-20
locations most likely to have a crime. Both models show
similar hotspots, except for one near the left boundary of the
map.

3) Simplified score cards: Finally, we detail our method for
constructing interpretable score cards. We construct the score
card (SC-1) in Table VII based on the model TV-Hawkes-30-
3, where ws = 30 days and ury = 3e — 4. The model gives

the following intensity:

A(t) = 0.0029 x # crimes in (¢,t — 1]

+0.0025 x # crimes in [t — 2,¢ — 3]
+ 0.0014 x # crimes in [t —
# -4t-7
8,t — 15]

+ 0.0013 x # crimes in [t —
+0.0011 x # crimes in [t — 16, ¢ — 30]
+ Ko,

where ¢ is the current date and g is the mean base intensity.
We have o = 4.9218e — 4 over all cells, and po = 0.0019
over the cells with crimes. We can simplify SC-1 by scaling the
coefficients to the range of [0, 10], leading to the second score
card (SC-2) in the introduction in Table II. We can further
substitute the number of crimes in Eq. 16 by the mean crime
counts in the corresponding intervals, and scale the resulted
terms to between [0, 10]. This renders the third score card
(SC-3) in Table VIII. We apply these three score cards to the
IMPD crime data (test set), and show the forecasting results in
Table VI. The first score card (SC-1) has the highest accuracy
among the three, and the accuracy decreases as the score
card becomes less complex. Noticeably, SC-1 outperforms the
hotspot mapping model in rate@20 and PAI@20, by ~ 2%.
Compared to the TV-Hawkes and Hawkes models, the score
cards are less accurate, however, they are much easier to use
and interpret. We also see that from top 20 to 200, the rate
increases while the PAI score decreases, a phenomenon similar
to the more complicated models.

We also plot the intensity maps given by the score cards in
Fig. 4. Notice that the maps on the bottom have more cells
colored in orange or red than those on the top. This suggests
that the score cards can in general assign higher intensity to the
cells than the more complex Hawkes and TV-Hawkes models,
which is likely the result of rounding the parameters in TV-
Hawkes. The top 20 forecasted cells (blue triangles) show
similar pattern across score cards. Although the forecasted
locations may not exactly overlap with those given by the
Hawkes and TV-Hawkes models, they appear to be in close
proximity.

IV. CONCLUSION

Here we showed how to construct interpretable Hawkes
process crime forecasting models using total-variation penal-
ized likelihood estimation. The TV-Hawkes process allows
one to balance accuracy, simplicity and interpretability. The
methodology presented here has the advantage that feature
engineering is not required and cut-offs for the step function
comprising g(t) are automatically generated during inference.
This is in comparison to interpretable models of recidivism
where hand-crafted feature engineering is required before the
mixed-integer optimization. One disadvantage of our method-
ology is that we used post-processing to convert the model
into an integer score. Future work in this area will focus on
solving a non-linear TV-MPLE integer programming problem
similar to what is done in [26] for logistic regression (where
piece-wise linear approximate MIP is used).



TABLE IV: IMPD experimental results on the validation set. ws is the window size for g, (# of days). We use 0t = 1 day,
and 150 x 150 m boxes. The ratio is #stairs/ws. Top 20 boxes are used to calculate the recall.

model WS nry # stairs  ratio rate PAI

Hawkes-14 14 0 - - 1.51%  36.7534

TV-Hawkes-14 14 I1x1e-4 5 036  1.49%  36.2012

Hawkes-30 30 0 - - 1.53%  37.2926

TV-Hawkes-30-1 30 1x1e-4 8 027 1.52%  36.8698

TV-Hawkes-30-2 30 2xle-4 6 020 1.49% 36.1138

TV-Hawkes-30-3 30 3xle-4 5 017  1.47%  35.6976

Hawkes-90 90 0 - - 1.56%  37.9458

TV-Hawkes-90-1 90 1x1e-4 11 0.12  1.56%  37.9458

TV-Hawkes-90-2 90 Sxle-4 9 0.10 1.48%  35.8963

TV-Hawkes-90-3 90 Ixle-3 6 0.07 1.45%  35.2293

TV-Hawkes-90-4 90 1.2x1e-3 5 0.06 1.43% 34.8751
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Fig. 2: Model comparison using IMPD dataset. The three axes in the radar chart are simplicity, interpretability, and accuracy.
From left to right, the charts represent models with window sizes of 14, 30, and 90 days.
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Fig. 3: Estimated kernels using the IMPD data. From left to right, the window sizes are 14, 30, and 90 days; ury = 1 x le—4,
3 x le—4, and 1.2 x 1le — 3. Blue curve: TV-Hawkes; Red curve: Hawkes.

Our results inform several demands and realities grounded
in the application of identifying crime hotspots and crime
forecasting. First, we believe these models will be useful in
meeting the growing demand for transparency and perceived
fairness in hotspot policing [24], [27]. Advocacy groups and
scholars have voiced various concerns over the process through
which crime hotspots and forecasting are calculated, thus our
proposed methodology offers an alternative approach which
begins to answer these calls. Second, despite advancements in
information technology and availability of point-level data, the
majority of police departments lack the appropriate personnel
— either technical skills or time availability — to engage in

meaningful crime analysis [2], [18]. Moreover, spatiotemporal
analyses and identification of micro-time hotspots to direct
police resources is even less likely to occur within the average
police department [10], [23]. This reality is unfortunate given
recent studies have shown the promise of near-repeat, micro-
time hotspotting interventions to have crime reduction benefits
[9], [11], [25]. Lastly, police agencies struggle to navigate
effective hotspotting techniques in light of sparse event counts
[7]. Inappropriate techniques are likely to lead to the identifica-
tion of statistically random locations when the number of po-
tential crime places exceeds the number of events [4]. For these
reasons, we believe our proposed methodology better enables



TABLE V: IMPD experimental results on the test set. ws is the window size for g,, (# of days). We use 6t = 1 day, and
150 x 150 m boxes. Rate and PAI are calculated using top 20, 100, and 200 recalls.

TV-Hawkes Hawkes Hotspot
top ws rate PAI rate PAI rate PAI
14 1.54% 37.5418 1.53% 37.1646 1.37%  33.2356
8 30 1.61% 39.0435 1.61% 39.1838 | 1.47%  35.6655
90 1.68% 40.8551 1.73% 41.9390 | 1.68%  40.8238
14 5.76% 279778 | 5.73% 27.8763 3.50%  17.0237
§ 30 5.83% 28.3535 5.73% 27.8562 4.44%  21.5816
90 5.70% 27.6959 5.77%  28.0456 | 4.90% 23.7972
14 9.72% 23.6277 9.74% 23.6723 | 5.01% 12.1832
§ 30 9.88% 24.0245 9.89% 24.0362 | 6.78% 16.479
90 | 10.05% 24.4383 | 10.01% 24.3247 8.58%  20.8585

TABLE VI: Forecasting results with the score cards (SC). The results are evaluated on the IMPD crime data (test set), with
a 30-day window. We set 0t = 1 day, and use 150 x 150 m boxes. Rate and PAI are estimated on top 20, 100, and 200
forecasted hotspot grid cells. As comparison, results by other models in the 30-day window are listed.

SC-1 SC-2 SC-3 TV-Hawkes Hawkes Hotspot
rate@20 1.50% 1.36% 1.25% 1.61% 1.61% 1.47%
PAIQ20 36.3596  33.0772  30.4465 39.0435 39.1838  35.6655
rate@100 | 4.25% 4.06% 4.01% 5.83% 5.73% 4.44%
PAIQ100 | 20.6653  19.7543  19.4889 28.3535 27.8562 21.5816
rate@200 | 6.47% 6.33% 5.88% 9.88% 9.89% 6.78%
PAIQ200 | 15.7164 153641  14.2906 24.0245 24.0362 16.479
Did crimes occur in the past L days? (3 X 29 points) a randomized controlled trial. Journal of Experimental Criminology,
2-3 days? (4 X 25 points) | + .. 12(3):277-317, 2016.
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