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Abstract

Dynamic estimation of the reproduction number of COVID-19
is important for assessing the impact of public health measures on
virus transmission. State and local decisions about whether to relax
or strengthen mitigation measures are being made in part based on
whether the reproduction number, R;, falls below the self-sustaining
value of 1. Employing branching point process models and COVID-19
data from Indiana as a case study, we show that estimates of the cur-
rent value of Ry, and whether it is above or below 1, depend critically
on choices about data selection and model specification and estima-
tion. In particular, we find a range of R; values from 0.47 to 1.20
as we vary the the type of estimator and input dataset. We present
methods for model comparison and evaluation and then discuss the
policy implications of our findings.
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1 Introduction

During the first months of 2020, nations responded to the COVID-19 pan-
demic by adopting a variety of public health interventions, including contact
tracing, disease surveillance, and mandated social distancing [33, 34, 41].
Within the United States, the ongoing transmission of COVID-19 represents
a serious public health threat and an ongoing strain on local, state, and fed-
eral resources. In the US, direct public health authority is largely vested
in states and localities, with local decision-makers playing a critical role in
shaping public health responses and in deploying resources during times of
crisis. The federal government, meanwhile, seeks to play a coordinating role
through the Centers for Disease Control and Prevention (CDC), funds re-
search through agencies such as the National Institutes of Health (NIH), and
helps shape the regulatory environment through the Food and Drug Admin-
istration (FDA) and other agencies [38, 16, 8, 39).

While this system has the potential to be highly responsive and adaptive,
it is prone to problems including divergent outcomes across political juris-
dictions and difficulty coordinating responses to emergent events. The lack
of widespread testing in the early stages of transmission in the US forced
policymakers to make decisions without high-quality data and foreclosed the
possibility of effective disease surveillance, which might under different cir-
cumstances have proved a powerful public policy tool [20]. In the absence
of testing and of pharmaceutical interventions such as a vaccine or anti-viral
therapies, social distancing measures (including shelter-in-place orders and
mandated closure of non-essential businesses) emerged as the primary tool
at the disposal of state and local decision-makers [17].

Despite the very real public health benefits of such interventions, they
have potentially large economic and social costs, which are distributed un-
evenly across society. As the pandemic has continued, public and political
pressure to relax public health interventions has increased. Policymakers, as
a result, confront a complex set of problems and high levels of uncertainty
4, 12, 19].

Given these circumstances, the swift assessment of how differing public
health strategies impact the transmission of COVID-19 is critical to fos-
tering flexible, focused, and data-driven policy-making [15]. One means of
measuring the impact of public health interventions is through the effective
reproduction number of a virus, R;, e.g. the average number of individuals
an infected person directly infects. When R; > 1 and the majority of the



population is susceptible, as during the initial stages of the pandemic, the
number of new daily infections exhibits exponential growth. However, when
R; < 1, the virus is no longer self-sustaining and will die out before most
people in the population are exposed.

COVID-19’s initial reproduction number, Ry (when the entire population
is susceptible and policy interventions are not in place) has been estimated
across several studies to be around 3.28 (1.4, 6.5) [26]. A study conducted
with data from China through mid February estimated that, as a result of
public health interventions, the effective time-varying reproduction number,
R(t), was reduced from 2 to 1 [44]. In Singapore, the impact of social distanc-
ing on R was estimated to be between 78.2% and 99.3% [25]. Research on
interventions in Europe observed that a combination of school closings, bans
on mass gatherings, and other social distancing measures reduced R(t) below
1 [14]. In the United States, state and local decisions about implementing,
modifying, and relaxing social distancing measures have been informed in
part based on whether the reproduction number, R;, falls below the self-
sustaining value of 1.

1.1 A need for model comparison and evaluation

While many of the forecasting models guiding policy-makers on COVID-19
capture uncertainty in parameter estimates, a large number of these analy-
ses are presented via stand-alone models: model comparison, evaluation, and
goodness-of-fit tests are often not presented. In addition, there are a vari-
ety of data sources available to researchers, ranging from data aggregation
websites [11, 1] to local government data portals [2].

In this article, we show how estimates of the impact of policy interven-
tions can vary depending on modeling and estimation choices, as well as
the dataset that is used as an input. Understanding the role of model and
dataset selection, we argue, is critical to high-quality policymaking during the
COVID-19 pandemic and may help policymakers to more effectively prepare
for and respond during the early stages of future disease outbreaks.

A variety of frameworks have been employed for modeling COVID-19 [5],
including agent based models, compartmental models, and branching point
process models. Given our expertise and their broad use in estimating the
reproduction number of a virus [28, 13, 36, 9, 42], we focus here on the point
process type of model. Within this framework, we compare three choices for
modeling the impact of interventions on the transmission of COVID-19: 1) a



step function modeling an immediate impact on R; at key policy change dates
that is employed in the highly cited paper [14], 2) a constant R; up until a
key policy change date followed by exponential decay [21, 23], and 3) a non-
parametric histogram estimator that adapts to changes in the reproduction
number over time. These choices are not meant to be exhaustive, but rather
illustrative of the variation in estimates that can arise based on differing
model and data choices.

We apply these models to both daily case and mortality COVID-19 data
in Indiana from three different sources: the widely-used COVID-19 data por-
tal hosted at Johns Hopkins University [11] (abbreviated as “jhu” through-
out), the Covid Tracking project [1] (abbreviated as “covidtracking” through-
out), and the local Indiana data portal hosted at [2] (abbreviated as “in.gov”
throughout). Differences in COVID-19 data collection and reporting stan-
dards represent a critical challenge for both researchers and policymakers.
One issue we investigate is the reporting lag of new cases and deaths posted
to the Indiana state department of health dashboard, often several days after
the testing date (with reporting sometimes paused on the weekend). While
data on the Indiana state health department website are retrospectively up-
dated and corrected, data on aggregation websites like covidtracking and jhu
are based on daily updates to cumulative counts and are not retrospectively
corrected. Consequently, artificial peaks and valleys are present in the covid-
tracking and jhu count data. As a result, Indiana provides an excellent test
case to investigate different choices in data processing and their impact on
critical parameters in models for the spread of Covid-19.

In Section 2 we present the branching point process modeling framework
and discuss how these models can be estimated from data. Then, in Section
3 we present our results when the models are applied to Indiana COVID-19
data. We show that estimates of the value of R; in Indiana, and whether it is
above or below 1, depend on the model and dataset used for estimation. We
also present several methods that can either be used to compare competing
models or used to assess the goodness-of-fit of a particular model. We find a
range of R; values from 0.47 to 1.20 as we vary the the type of estimator and
input dataset. In Section 4 we discuss the policy implications of our findings.



2 Methods

We consider a branching point process [29, 18] framework to estimate a time-
varying reproduction number R(t) [9, 42, 31, 37]. The conditional intensity
(rate) of infections is modeled as

At) = p+ Y Ritw(t — ), (1)

t>t;

where R(t) and w(t) are the dynamic reproduction number and inter-infection
time (also known as serial interval [42]) distribution respectively. We also in-
clude an exogeneous rate p modeling imported infections.

The conditional intensity models the rate of new infections and is con-
nected to the reproduction parameter R(t) through the serial interval distri-
bution w(t). In particular, the expected number of new secondary infections
on day t caused by an infection on day t; is given by R(t;)w(t — t;). The
point process governed by Equation 1 can be viewed as an approximation to
the common SIR (susceptible-infected-removed) model of infectious diseases
during the initial phase of an epidemic when the total infections is small
compared to the overall population size and w(t) is specified to be exponen-
tial [35]. When w(t) is chosen to be gamma distributed, the Hawkes process
also can approximate staged compartment models, like SEIR, if the aver-
age waiting time in each compartment is equal [27]. One can also allow the
reproduction parameter to vary parametrically as a function of the overall
infection rate, due to mitigation efforts and herd immunity, as in [37].

We consider three competing models for R(t):

1. A step function that changes at the Indiana stay-at-home order date
tsn, effective on March 24, 2020:

R(t) = {Ro t <ty @

R, t>ty

This is analogous to the step function used in [14] to assess the impact
of public health interventions on COVID-19 in Europe.

2. An exponential decay [21, 23] after the stay-at-home date of the

form:
R t<t,
R(t) =4 " - (3)
Roexp(—ct) t > tg,
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3. A histogram estimator that adapts to dynamic changes in R; over
time

R(t) =) rl{t € I}. (4)

Here the I, are intervals discretizing time, B is the number of such
intervals, and 7y is the estimated reproduction rate in interval k. In
the remainder of the paper we use a bin-width of 1 week. We also
merge the bins of the first 3 weeks due to the low number of events
during that time period.

The branching process can be estimated via an expectation-maximization
(EM) algorithm for maximum likelihood inference [40, 30, 24]. Given initial
guesses for the model parameters and r;, the EM algorithm iteratively up-
dates the parameters and branching probabilities by alternating between the
E-step update:

pij = R(tj)w(t; — t;)/A(t:) (5)
pii = ) A(ti) (6)
and M-step update:

M= Zpii/T (8)
re=Y_ pil{t; € I} /Ny (9)

ti>t;

where T is the total length of the observation period, Ny is the total num-
ber of new infections in interval k, and w(t) is estimated via weighted MLE
(maximum likelihood estimation) using the inter-event times as observations
and branching probabilities as weights. The branching probability p;; corre-
sponds to the probability that secondary infection ¢ was caused by infection
J in the dataset. While w(t) can be estimated using a Weibull, Gamma, or
log-normal distribution, we use a non-parametric histogram estimator with
bin-width of 1 day to prevent model mis-specification.

Competing models can be compared using the Akaike Information Crite-
rion [3], AIC = 2p—2log(L). The AIC balances goodness of fit measured by



the log-likelihood, log(L), and over-parametrization by penalizing the num-
ber of parameters, p (lower AIC is better). Alternatively, the goodness of
fit of a branching process model can be assessed using residual analysis of
rescaled event times [32],

T = / " A(t)dt (10)

The rescaled times are distributed according to a unit rate Poisson process
if the model is correctly specified.

2.1 Using reported death data to estimate the repro-
duction number

We estimate the reproduction number of COVID-19 in Indiana from both new
reported case data and mortality data. While it is standard to use reported
infections to estimate the reproduction number, in the case of Indiana the
daily rate of testing has steadily increased since the start of the pandemic
[2]. In such a scenario, the reproduction number may be over-estimated as
the rate of increase of reported infections is partly explained by an increase
in testing. On the other hand, reported death counts also suffer from under-
counting [43].

We note that under certain modeling assumptions, the reproduction num-
ber can be estimated from either reported infections or deaths, though the
latter estimate will be lagged due to the time between a confirmed case and a
subsequent fatality. For example, consider a Susceptible-Infected-Recovered-
Death (SIRD) model governed by dS/dt = —5SI/N, dI/dt = BSI/N —~I,
dR/dt = (1 —c)yl, and dD/dt = c¢yI. Here it is assumed that some fraction,
¢, of those who are infected will subsequently correspond to a fatality. In Fig-
ure 1, we simulate such a model with N = 10%, v = .2, 3 = .2 and ¢ = .01.
We note that during the initial phase of the simulation when S ~ N, the
exponential growth rates of new daily infections and new daily deaths are
the same. When we apply the EM algorithm with the histogram estimator
in Equations 5-9 to the simulated SIRD data, we obtain similar estimates for
Ry, close to the true value of Ry = 2, when using new infections (5SI/N) or
new deaths (cy[I).

Similarly, in Figure 1 we also display a simulation of a Hawkes process of
the form of Equation 1 with = 1, Ry = 2, and inter-infection time distribu-
tion w(t) given by a Weibull(6,2). We assume a fraction ¢ = .1 of infections



lead to a fatality where the infection-death inter-time distribution is given
by a Weibull(5,3). Again, we observe that the growth rate of new infections
and new deaths is the same. When we apply the EM algorithm with the
histogram estimator in Equations 5-9 to the simulated Hawkes process data,
we obtain similar estimates for R;, close to the true value of Ry = 2, when
using new infections or new deaths.

However, there are certainly scenarios where the estimated reproduction
number will be different when infections or deaths are analyzed. For example,
transmission may not be a homogeneous process across the population, and
instead sub-populations with higher (or lower) case-fatality rates could have
higher (or lower) contact rates. There also could be temporal trends, for
example the case-fatality rate could go down over time as the quality of
medical interventions improves. Including these types of effects in estimates
of the dynamic reproduction number are outside of the scope of this paper.

3 Results

We apply the estimation procedure outlined above to Indiana COVID-19 case
and mortality daily counts (new cases rather than cumulative) from March
5, 2020 to April 26, 2020. While school and business closings occurred on
March 16, 2020, there is limited case data available before this date and we
therefore assume Ry is constant across all models up until the stay-at-home
order on March 24, 2020.

We present estimated R; curves in Figure 2, estimated intensities \; (Fig-
ure 3) and inter-infection time distributions w(t) (Figure 4), and in Table
1 we present the corresponding AIC values for the different models (step,
exponential, histogram), different data sources (Johns Hopkins [11], Covid
Tracking Project [1], State of Indiana [2]), and different data types (case
counts or mortality).

The first observation of note is that the AIC values are lower for all models
using the local in.gov data rather than data from aggregation websites. In the
case of Indiana, new cases and deaths on a given date are routinely reported
to the state department of health several days after the fact (with reporting
often paused on the weekend). While the data on Indiana’s state health web-
site are retrospectively updated and corrected, the aggregation website data
are based on daily updates to cumulative counts. Importantly, these sites
do not go back and correct historical cumulative count data. Consequently,
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Figure 1: New infections and new deaths in a SIRD model simulation with
N =10 v = .2, 8 = .2 and ¢ = .01 (top left) along with estimated re-
production number R; (bottom left). New infections and new deaths in a
Hawkes process simulation with p = 1, Ry = 2, inter-infection time distri-
bution Weibull(6,2), infection-death time distribution Weibull(5,3), and case
fatality rate .1 (top right) and estimated reproduction number R; using EM
algorithm with histogram estimator (bottom right).

artificial peaks and valleys are present in the covidtracking and jhu estimates
(see Figure 3). Our findings are consistent with recent recommendations to
use local data whenever possible [22].

Variation in estimates of R, that arise from using either case or death
counts is higher earlier in the Indiana epidemic. Estimates of R, are initially
as high as 5 when using case data but are between 2 and 4 using death
counts. The high value of R; early on for cases may be due to the initial lack
of testing followed by a rapid growth in testing over a several week period.

We find a larger variation in R; across models than across data sources.
For example, when applied to jhu case data the models provide final R; values
(at our study’s end date of April 26th) of 1.20 (histogram), 0.83 (step) and
0.66 (exponential). Across the datasets, the estimated value of R, at the final
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Figure 2: Fitted R; curves for histogram estimator (blue), step function (red)
and exponential decay (yellow) applied to different Indiana COVID-19 data
types and data sources.

time tends to be higher for the histogram as it adapts to changes in repro-
duction after Indiana’s March 24th stay-at-home order. While R; fell below
1 according to the histogram several weeks after the order, it later rose back
above 1 (possibly due to lack of adherence to social distancing or the emer-
gence of new clusters in counties outside of the Indianapolis Metropolitan
area). The histogram estimator also consistently has the lowest AIC values
of the competing models because of its ability to adapt to local changes in
time.

While the AIC is useful for comparing competing models, goodness-of-fit
of a point process model can be evaluated using residual analysis. In Figure 3
we plot point process intensities fit to Indiana COVID-19 cases and deaths per
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model dataset datatype log-likelihood AIC Rinai (s.€.)
hist covidtracking deaths 1965.80 -3921.60 1.17 (.40)
step  covidtracking deaths 1824.10 -3644.20 0.68 (.14)
exp covidtracking deaths 1947.40 -3890.90 0.49 (.12)
hist in.gov deaths 1980.10 -3950.20 0.97 (.37)
step  in.gov deaths 1951.50 -3899.00 0.95 (.16)
exp in.gov deaths 1967.50 -3931.00 0.59 (.13)
hist jhu deaths 1954.60 -3899.30 1.12 (.39)
step  jhu deaths 1877.30 -3750.60 0.85 (.16)
exp jhu deaths 1944.60 -3885.20 0.47 (.11)
hist covidtracking cases 81521.00 -163030.00 1.19 (.41)
step  covidtracking cases 80809.00 -161610.00  0.83 (.15)
exp covidtracking cases 80838.00 -161670.00  0.67 (.14)
hist in.gov cases 81534.00 -163060.00 1.19 (.41)
step  in.gov cases 80727.00 -161450.00  0.83 (.15)
exp in.gov cases 80853.00 -161700.00  0.67 (.14)
hist jhu cases 81516.00 -163020.00 1.20 (.41)
step  jhu cases 80741.00 -161480.00  0.83 (.15)
exp jhu cases 80793.00 -161580.00  0.66 (.14)

Table 1: Comparison of dynamic R; model fits across estimator type, data
sources and data types for Indiana COVID-19 data. Number of bins is B =5
for the histogram estimator. The other two models each have p = 2 param-
eters for the dynamic reproduction number.
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Figure 3: Fitted intensity A; curves for histogram estimator (blue), step
function (red) and exponential decay (yellow) applied to different Indiana
COVID-19 data types and data sources. Example realizations of \; simu-
lated for 14 days past the current date (dashed line) show growth or decay
depending on whether R; > 1 or R; < 1.

day from March 5, 2020 to April 26, 2020. We again use a histogram estimate
for the inter-infection time distribution w(t) which we plot in Figure 4. In
Figure 5, we plot the normalized cumulative distribution of rescaled event
times and compare them to confidence bounds of the cumulative distribution
for a unit rate Poisson process. We find that the estimated intensity using
the histogram and exponential decay for R, provides a good fit to Indiana
new deaths per day, whereas the intensity that uses a step function for R;
under-estimates the empirical death rate. This is in comparison to Figure
3, where all of the intensities appear to give plausible fits to the data based
upon visual inspection.
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Figure 4: Fitted inter-infection time distribution w(t; — t;) curves for his-
togram estimator (blue), step function (red) and exponential decay (yellow)
applied to different Indiana COVID-19 data types and data sources.

4 Discussion

Over the course of the COVID-19 pandemic, state and local policymakers
have employed mathematical models and projections to inform decisions
about implementing, relaxing, and reimposing a variety of public health
interventions. Policymakers and public officials have at times focused on
the predictions of individual models without making comparisons to other
models that might yield different results. During the first months of the
pandemic, notably, top presidential advisors regularly referenced the Insti-
tute for Health Metrics and Evaluation (IHME) model [10], which generated
more optimistic projections than several high-profile alternatives [7].

It is critical that policymakers and political leaders consider the role of
model and data selection when attempting to respond to an outbreak such as
the COVID-19 pandemic. Focusing on one model and data source, decision-
makers might easily draw misleading conclusions about the impacts of pub-
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Figure 5: Normalized cumulative distribution of rescaled event times along
with 95% error bounds of the Kolmogorov-Smirnov statistic for histogram-
based intensity (left), step function (middle), and exponential (right) applied
to in.gov daily death counts.

lic health interventions on the transmission of COVID-19. Confronted with
the social and economic costs that flow from stringent social distancing mea-
sures, political leaders may be drawn towards the most optimistic projections.
Here, however, we show that conclusions about when COVID-19 transmis-
sion might peak depend on the type of model that is used and on the data
that is used.

In the present study, we find that a histogram estimator for dynamic
R(t) provides the most accurate fit to Indiana COVID-19 data during the
early stages of the COVID-19 pandemic, with the exponential model also
providing a plausible fit according to residual analysis. We emphasize, how-
ever, that these results may not generalize to other datasets and time peri-
ods. For other data and for different time periods, model comparison and
goodness-of-fit analysis should again be applied. We also note that while
this analysis was limited to temporal data, in the future, access to detailed
spatial-temporal data on individual cases may enable more precise estimation
of spatial-temporal triggering in these types of models.

During the early stages of the COVID-19 pandemic, it was important that
forecasting models be rapidly developed in order to inform decision-making.
Now that these models have been implemented and knowledge of COVID-
19 transmission dynamics has matured, research is needed on the trade-offs
between competing model and data choices. Here, we showed that, when
varying the estimator of dynamic R; between three simple choices, along
with 3 different data sources, we get dramatically different answers to the
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question of whether public health interventions in Indiana during Spring 2020
reduced the reproduction number to below one.

As the COVID-19 pandemic has progressed, decision-makers have faced
a myriad of new challenges and cross-pressures. Economic concerns, social
costs, and public fatigue with health interventions have interacted with mis-
information and partisan positioning to help foster an environment in which
key political leaders have publicly expressed comfort with ongoing commu-
nity spread. As COVID-19’s reproduction number declined during the late
spring and early summer of 2020, states and localities began relaxing man-
dated social distancing measures. Often framed in terms of the need for
increased economic activity, these policy changes had a substantial impact
on individual behavior and on public perceptions of the threat of ongoing
transmission. In many areas, relaxation was followed by periods where R,
again rose above 1, resulting in new cases and deaths.

In several high-profile cases, state Governors implemented a new round of
public health interventions. In California and Texas, for instance, Governors
allowed bars to reopen and then moved to close them again as they became
associated with increases in COVID-19 transmission. Similar patterns were
observed during the 1918 Influenza pandemic [6]. In Indiana, meanwhile,
Governor Eric Holcomb announced a new set of restrictions in November
2020 as case counts and hospitalizations began to soar. As of November
15, 2020, the histogram model estimate for the reproduction number was
R; = 1.3 in Indiana.

Moving forward, modelling will continue to play a critical role in inform-
ing policy decisions. The results presented here emphasize both the complex
nature of the pandemic and the critical importance of acknowledging that
findings about the impacts of public policy interventions will vary as a re-
sult of model and data selection. In making decisions about public health
measures and in gauging the impact of various interventions, policy-makers
should be careful to consider model specification, goodness-of-fit, and the
sensitivity of models to the choice of input data.
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