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Variation is characteristic of all living systems. Laboratory techniques such as flow cytometry can probe
individual cells, and, after decades of experimentation, it is clear that even members of genetically iden-
tical cell populations can exhibit differences. To understand whether variation is biologically meaningful,
it is essential to discern its source. Mathematical models of biological systems are tools that can be used
to investigate causes of cell-to-cell variation. From mathematical analysis and simulation of these mod-
els, biological hypotheses can be posed and investigated, then parameter inference can determine which
of these is compatible with experimental data. Data from laboratory experiments often consist of ‘‘snap-
shots” representing distributions of cellular properties at different points in time, rather than individual
cell trajectories. These data are not straightforward to fit using hierarchical Bayesian methods, which
require the number of cell population clusters to be chosen a priori. Nor are they amenable to standard
nonlinear mixed effect methods, since a single observation per cell is typically too few to estimate param-
eter variability. Here, we introduce a computational sampling method named ‘‘Contour Monte Carlo”
(CMC) for estimating mathematical model parameters from snapshot distributions, which is straightfor-
ward to implement and does not require that cells be assigned to predefined categories. The CMC algo-
rithm fits to snapshot probability distributions rather than raw data, which means its computational
burden does not, like existing approaches, increase with the number of cells observed. Our method is
appropriate for underdetermined systems, where there are fewer distinct types of observations than
parameters to be determined, and where observed variation is mostly due to variability in cellular
processes rather than experimental measurement error. This may be the case for many systems due to
continued improvements in resolution of laboratory techniques. In this paper, we apply our method to
quantify cellular variation for three biological systems of interest and provide Julia code enabling others
to use this method.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Variation, as opposed to homogeneity, is the rule rather than
exception in biology. Indeed, without variation, biology as a disci-
pline would not exist, since as evolutionary biologist JBS Haldane
wrote, variation is the ‘‘raw material” of evolution. The Red Queen
Hypothesis asserts organisms must continually evolve in order to
survive when pitted against other – also evolving – organisms
(Ridley, 1994). A corollary of this hypothesis is that multicellular
organisms should evolve cellular phenotypic heterogeneity to
allow faster adaptation to changing environments, which may
explain the observed variation in a range of biological systems
(Fraser and Kaern, 2009). Whilst cell population variation can con-
fer evolutionary advantages, it can be costly in other circum-
stances. In biotechnological processes, heterogeneity in cellular
function can reduce yields of biochemical products (Delvigne
et al., 2014). In human biology, variation across cells can enable
pathologies to develop; it can also frustrate treatment of illness
because key subpopulations are missed by medical interventions
that target ‘‘average” cell properties. For example, cellular hetero-
geneity helps some cancerous tumours to persist (Gatenby et al.,
2007) and can make tumours more likely to evolve resistance to
chemotherapies (Altrock et al., 2015). To discern whether observed
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variation is benign or requires remedy, methods of analysis are
needed that can quantify and help to understand its source.

Mathematical models are essential tools for understanding cel-
lular systems, whose emergent properties are the result of a nexus
of interactions between actors. Perhaps the simplest flavour of
mathematical model used in biological systems is an ordinary dif-
ferential equation (ODE) that aggregates individual actors into
compartments according to structure or function and seeks to
model the mean behaviour of each compartment. Data from
population-averaged experimental assays can determine whether
such models faithfully reproduce system behaviours and can be
used to understand the structure of complex metabolic, signalling
and transcriptional networks. The worth of such ‘‘population aver-
age” ODE models depends on whether averages mask substantial
differences in individual behaviour (Altschuler and Wu, 2010). In
some cases, differences in cellular protein abundances due to bio-
chemical ‘‘noise” are not biologically meaningful (Elowitz et al.,
2002) and the system is well described by average cell behaviour.
In others, there are functional consequences. For example, a labo-
ratory study demonstrated that subpopulations of clonally-
derived hematopoietic progenitor cells with low expression of a
stem cell marker diverged into a separate blood lineage from those
with high expression (Chang et al., 2008).

Many modelling frameworks are available to describe cell pop-
ulation heterogeneity with each posing different challenges for
parameter inference. A recent review is presented in Waldherr
(2018). These approaches include modelling biochemical processes
stochastically, where properties of ensembles of cells are repre-
sented by probability distributions that evolve according to chem-
ical master equations. See Erban et al. (2007) for a tutorial on
stochastic simulation of reaction diffusion processes. Alternatively,
population balance equations (PBEs) are typically partial integro-
differential equations that determine the dynamics of the ‘‘number
density” of differing cell types. In PBEs, cell properties are repre-
sented as points in Rn, with each dimension corresponding to a dif-
ferent attribute. These attributes include parameters controlling
cell life – for example, their rate of death and division, which vary
according to a cell’s location in this ‘‘attribute” space. These func-
tional differences control the rate at which cells progress through
life, which is represented by a ‘‘flow” of cells from certain areas of
attribute space to others – like chemicals diffusing down a concen-
tration gradient. With PBEs, observed variation at a point in time is
due to the initial spread of cells across attribute space coupled with
the differing dynamics of cells in different areas of this space. See
Ramkrishna and Singh (2014) for an introduction to PBEs.

Here, we suppose heterogeneity in quantities of interest across
cells is generated by idiosyncratic variation in the rates of cellular
processes. The modelling approach we follow is similar to that of
Dixit et al. (2018) and is based on an ODE framework. In our model,
each cell evolves according to an ODE, with its progression directed
by parameters whose value varies between cells. To our knowl-
edge, this flavour of model is unnamed, so, for sake of reference,
we call them ‘‘heterogenous ODE” models (HODEs). In HODEs,
the aim of inference is to estimate distributions of parameter val-
ues across cells consistent with observations. A benefit of using
HODEs is that these models are computationally straightforward
to simulate and, arguably, simpler to parameterise than PBEs. By
using HODEs, we assume that most observed variation comes from
differences in biological processes across cells, not inherent
stochasticity in biochemical reactions within cells as is assumed
when employing stochastic simulations algorithms.

Inference for HODEs is problematic due, partly, to the experi-
mental hurdles involved with generating data of sufficient stan-
dard. Unlike models which represent a population by a single
scalar ODE, since HODEs are individual-based, they ideally require
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individual cell data for estimation. A widely-used method for gen-
erating such data is flow cytometry, where a large number of cells
are streamed individually through a laser beam, and, for example,
the concentrations of fluorescently-labelled proteins are measured
(Telford et al., 2012). Other experimental techniques, including
Western blotting and cytometric fluorescence microscopy, can also
generate single cell measurements (Hughes et al., 2014; Hasenauer
et al., 2011). These experimental methods are all, however,
destructive, meaning individual cells are sacrificed during mea-
surement, and observations at each time point hence represent
‘‘snapshots” of the underlying population (Hasenauer et al., 2011).
These snapshots can be described by histograms (Dixit et al.,
2018) or density functions (Waldherr, 2018) fit to measurements
of quantities of interest.

Since HODEs assume the state of each cell evolves continuously
over time, experimental data tracing individual cell trajectories
through time constitutes a richer data resource. Fluorescent Recov-
ery After Photo-bleaching (FRAP) is one such method, which fol-
lows the time-dependent response of cells after an initial
bleaching (Karlsson et al., 2015). Methods exists, broadly under
the banner of ‘‘nonlinear mixed effects models”, which use cell tra-
jectories – individual time series of cellular quantities – to estimate
both cellular variation and qualities of measurement noise. See, for
example, Karlsson et al. (2015), Zechner et al. (2014), and
Dharmarajan et al. (2019). The demands of obtaining such data
are, however, higher and typically involve either tracking individ-
ual cells through imaging methods (Hilsenbeck et al., 2016), or
trapping cells in a spatial position where they can be monitored
over time (Fritzsch et al., 2012). These techniques impose severe
restrictions on experimental practices meaning they cannot be
used in many circumstances, including for online monitoring of
biotechnological processes or analysis of in vivo studies. ‘‘Snap-
shot” data continues to play an important role for determining cell
level variability in many applications, and, in this paper, we restrict
analysis to only such data.

By fitting HODEs to snapshot data, cellular variability can be
estimated, and a number of approaches have been proposed for
doing so. In HODEs, parameter values vary across cells according
to a to-be-determined probability distribution, and the solution to
the inverse problem requires solving the cell-specific ODE system
many times for each individual. The count of cells in experiments
typically exceeds � 104 (Hasenauer et al., 2011), so approaches
where the computational burden scales with this count are usually
infeasible. There are two current approaches for dealing with this
burden, and both involve dimensionality reduction. In other words,
both approaches require preprocessing raw data before analysis, so
result in a degree of information loss. The first involves using pop-
ulation average data – mean values of measurements at different
points in time – yet, explicitly model how this mean represents a
mixture across different subpopulations. Chan et al. (2016) follow
this approach to analyse population substructure in immune cells,
which allows them to employ standard Bayesian approaches to fit-
ting. The alternative approach is to fit probability densities to raw
snapshot data and use these densities, rather than raw data, for esti-
mation (Hasenauer et al., 2011; Hasenauer et al., 2014; Loos et al.,
2018; Dixit et al., 2018). We follow this approach here as it is likely
that more information about the underlying data is retained than in
the ‘‘population average” one.

We now briefly describe the existing approaches for using
HODE models to estimate cell population heterogeneity.
Hasenauer et al. (2011) present a Bayesian approach to inference
for HODEs, which models the input parameter space using an
ansatz of a mixture of densities of chosen types. The authors then
use their method to reproduce population substructure on syn-
thetic data generated from a model of tumour necrosis factor stim-



Table 1
Glossary of variable names used in this paper.

Variable Definition Dimension

x tð Þ ODE solution Rk

h ODE parameters Rp

f x tð Þ; hð Þ ODE RHS Rk

x if g tð Þ ODE solution for cell i Rk

qj ¼ qj x tj
� �

; h
� � ¼ qj hð Þ quantity of interest (QOI) j R1

q> ¼ q1; . . . ; qmð Þ m distinct QOIs Rm

q if g
j ¼ qj x if g tj

� �� � QOI j for cell i R1

y>j ¼ q 1f g
j ; . . . q

njf g
j

� �
QOI j for cells 1; . . . ;nj Rnj

Y ¼ y1; . . . ; ymð Þ ‘‘snapshot” of all QOIs Rn1 � Rn2 � . . .� Rnmð Þ
U parameters of output

target distribution, p qjUð Þ
Rm

N parameters of prior
parameter distribution,
p hjNð Þ

Rp

W parameters of prior output
distribution, p qjWð Þ

Rp

â estimates of any quantity a –
X zð Þ region of parameter space

mapping to q ¼ z
R6p

V zð Þ volume of X zð Þ Rþ

V volume of (bounded)
parameter space

Rþ

a n½ � nth sample of any quantity
a

-

Fig. 1. Data typical of single cell experiments. (A) Time series data. (B) Snapshot data. In A, note cell identities are retained at each measurement time (indicated by individual
plot markers), whereas in the snapshot data in B, either this information is lost, or more often, cells are destroyed by the measurement process, and each observation
corresponds to a distinct cell.
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ulus. Hasenauer et al. (2014) use mixture models to model subpop-
ulation structure in snapshot data with multiple-start local optimi-
sation employed to maximise the non-convex likelihood, which
they then apply to synthetic and real data from signalling pathway
models. Loos et al. (2018) also use mixture models to represent
subpopulation structure and use maximum likelihood to estimate
both within- and between-subpopulation variability, which per-
mits fitting to multivariate output distributions with complex cor-
relation structures. Dixit et al. (2018) assign observations into
discrete bins, then choose likelihood distributions according to
the maximum entropy criterion, which they then use to estimate
cell variability within a Bayesian framework.

Our framework is Bayesian although it is distinct from the
approach used to fit many dynamic models, since we assume out-
put variation arises from parameter heterogeneity across cells,
with no contribution from measurement noise. The approach is,
hence, most suitable when measurement error is minimal. Addi-
tionally, our approach is suitable only for underdetermined models
– which we define as the case where there are fewer output quan-
tities of interest than parameters. Since the generation of snap-
shots is expensive, it is often the case that fewer observables are
recorded than parameters. Hence, we believe that this restriction
does not present particular issue to the generalisability of our
approach. Our method is a two-step Monte Carlo approach, which,
for reasons described in §2, we call ‘‘Contour Monte Carlo” (CMC).
Unlike many existing methods, CMC is straightforward to imple-
ment and does not require extensive computation time. In CMC,
prior probability distributions are used in place of ansatz densities.
It also does not require the number of cell clusters be chosen
beforehand, rather, subpopulations emerge as modes in the poste-
rior parameter distributions. Like Loos et al. (2018), CMC can fit
multivariate snapshot data and unlike Dixit et al. (2018), does
not use discrete bins to model continuous data. As more experi-
mental techniques elucidating single cell behaviour are developed,
interest in models describing measurement snapshots should fol-
low. We argue that due to its simplicity and generality, CMC can
be used to perform inference on the proliferation of rich single cell
data and, thus, is a useful addition to the modeller’s toolkit.

Outline of the paper: In §2, we describe our probabilistic model
of the inverse problem and detail the CMC algorithm for generating
samples from the posterior parameter distribution. In §3, we use
CMC to estimate cell population heterogeneity in three systems
of biological interest.
2. Method

In this section, we first develop a probabilistic framework that
describes our inverse problem before introducing the CMC algo-
rithm in pseudocode (Algorithm 1). We also detail the workflow
3

we have found helpful in using CMC to analyse cell snapshot data
(Fig. 4), and suggest practical remedies to issues commonly
encountered while using this approach. A glossary of variable
names used in this paper is included as Table 1.

Experimental methods such as flow cytometry measure single
cell characteristics at a given time. Cells are typically destroyed
by the measurement process, so the data consists of cross-
sections or ‘‘snapshots” of sampled individuals from the population
rather than providing time series for each individual cell. The con-
trast between these two very different scenarios is highlighted in
Fig. 1. For snapshot data, the cells at time tk are not the same as
those at time tk�1, and, even if they are, there is no way of associ-
ating a particular cell at time tk with the same cell at time tk�1. In
other words, there is no sense of a ‘‘trajectory” of a specific cell, or
of multiple observations assigned to a single cell.

We model the processes of an individual cell using a system of
ordinary differential equations (ODEs), where each element of the
system typically corresponds to the concentration of a particular
species. Our initial value problem is,
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dx
dt
¼ f x tð Þ; hð Þ; f : Rk � Rp # Rk; x 0ð Þ ¼ x0: ð1Þ

Note that in most circumstances, the initial state of the system,
x 0ð Þ, is unknown, and it can be convenient to include these as ele-
ments of h to be estimated.

2.1. Snapshot data

We assume the variation in snapshots arises due to heterogene-
ity in the underlying parameters, h, across cells. Therefore, the evo-
lution of the underlying state of cell i is described by an
idiosyncratic ODE,

dx if g
dt ¼ f x if g tð Þ; h if g

� �
; f : Rk � Rp # Rk;

x if g 0ð Þ ¼ x0:
ð2Þ

where superscript if g indicates the ith cell. The collection of such
idiosyncratic ODEs across all cells is then referred to as the ‘‘HODE
model”.

The traditional (non-hierarchical) state-space approach to mod-
elling dynamic systems supposes that measurement error intro-
duces stochastic variation in the output (Fig. 2A). Our approach,
by contrast, assumes any variation in outputs is solely due to vari-
ation in parameter values between cells (Fig. 2B). Whether the
assumption of ‘‘perfect” measurements is reasonable depends on
experimental details of the system under investigation, but we
argue our method nevertheless provides a useful approximation
in cases where the signal to noise ratio is high. Once again we
emphasize that we are considering distributions of quantities of
Fig. 2. Models of variation in observed outputs. (A) State-space model. (B) Parameter h
‘‘true” latent state, and observations result from an imperfect measurement process (g
generated by differences in cellular processes (black lines) between cells. Note that, in b

Fig. 3. Left: An example output function q h1; h2ð Þ along with iso-output contours indicat
value. Note that here, since parameter space is two dimensional, the ‘‘volume” of each o
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interest with no sense of specific individual trajectories, making
a mixed effects modelling approach problematic.

In an experiment, quantities of interest (QOIs) are measured.
Examples of QOIs include concentrations of compounds at differ-
ent points in time, peak voltages across cell membranes during
an action potential, or measurements of cell volume. Here, we sup-
pose m P 1 QOIs are measured,

q> ¼ q1; q2; . . . ; qmð Þ 2 Rm; ð3Þ
with nj observations of each quantity, qj. Distinct QOIs, qj, may cor-
respond to different functionals of the solution at the same time or
the same functional at different times. The observed data for QOI qj

at the corresponding time tj consists of the nj cellular
measurements,

y tj
� �> ¼ qj x

1f g tj
� �� �

; qj x
2f g tj
� �� �

; . . . ; qj x njf g tj
� �� �� �

2 Rnj : ð4Þ

The raw snapshot data Y is the collection of all measured QOIs,

Y ¼ y t1ð Þ; y t2ð Þ; . . . ; y tmð Þð Þ 2 Rn1 � Rn2 � . . .� Rnm : ð5Þ
The goal of inference is to characterise the probability distribu-

tion p hjYð Þ representing heterogeneity in cellular processes. The
numbers of cells sampled in typical experimental setups is large,
and, following previous work, we represent snapshot data Y using
probability distributions (Hasenauer et al., 2011; Hasenauer et al.,
2014; Loos et al., 2018; Dixit et al., 2018). In the first step of our
workflow (Fig. 4(i)), these distributions are approximated by a
kernel density model with support over the space of the QOI vec-
tor, q 2 Rm. We suppose these kernel density estimates approxi-
mate a true distribution over the observed data, p qjUð Þ and
eterogeneity model. (A) For non-hierarchical state-space models, there is a single
rey histograms). (B) For models with parameter heterogeneity, the uncertainty is
oth cases, individual cells are measured only once in their lifetime.

ed (coloured lines). Right: The ‘‘volume” of output contours as a function of output
utput value corresponds to a length of an iso-output contour.
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denote the estimated density as p qjÛ
� �

. After this initial fitting,

this distribution – which we term the ‘‘target distribution” –
becomes the object we seek to replicate in our inference problem.
We assume there are enough observational data that the estimated
probability distributions are approximate sufficient statistics of the

posterior distribution, meaning p hjÛ
� �

� p hjYð Þ.
The aim of our inverse problem, hence, becomes to derive a

‘‘posterior” parameter distribution, which, when fed through the
deterministic transformation described by the model, q hð Þ, recapit-
ulates the fitted output density,

p hjÛ
� �

�!q hð Þ
p qjÛ
� �

: ð6Þ

In measure theoretic terms, the intrinsic measure p qjÛ
� �

implied by p hjÛ
� �

is known as the push forward of the measure

with respect to the model (Butler et al., 2018).

2.2. Theoretical development of CMC

We consider the under-determined case where there are fewer
QOIs than model parameters (m < p). This means that, provided a
given QOI can be generated by the model, it can be produced from
any member of a subset of parameter space. Unlike the fully-
determined case, these subsets (in general) have non-zero ‘‘vol-
ume”, and we term them ‘‘iso-output contour regions”. Symboli-
cally, we represent the iso-output contour region for a given
quantity of interest ~q (say) by X ~qð Þ ¼ h : q hð Þ ¼ ~qf g.

In general, contour ‘‘volumes” V ~qð Þ depend on the chosen out-
put value ~q (Fig. 3). Further, the interpretation of these ‘‘volumes”
depends upon their dimensions. Considering cases with a single
QOI: for a model with two parameters, iso-output contour regions
are one-dimensional lines, whose size is a length; for a model with
three parameters, the contour regions are surfaces, whose size is an
area; for four-dimensional parameter spaces, the contour regions
are three-dimensional, and their size is a volume; and for models
with p > 4 parameters, the contour regions are p� 1 dimensional
manifolds, whose size is a hypervolume.

MCMC methods aim to approximate a posterior parameter dis-
tribution by sampling from it. In this case, the resultant parameter
samples, when pushed through the model, should approximate
samples from the desired QOI distribution. ‘‘Vanilla” MCMC meth-
Fig. 4. Workflow for Contour Monte Carlo to estimate cell population heterogeneity. Th
output value resultant from applying the functional q to parameter samples h1; h2ð Þ.
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ods, like Random Walk Metropolis (Lambert, 2018), work fine in
more traditional Bayesian analyses but are biased for our inference
problem. Such vanilla MCMC samplers choose where next to step
based on the ratio of probability densities at the proposed param-
eter value and current position. Using a vanilla sampler for our
case, unfortunately, does not work because the Markov chains
are biased towards those regions of parameter space with the lar-
gest iso-output contour volumes. This bias means that the station-
ary parameter distribution obtained, when fed through the model,
does not recapitulate the observed output distribution (Lambert
et al., 2018). We stress again the difference between this problem
and a traditional Bayesian analysis: here, uncertainty is due to the
forward map being many-to-fewer meaning that the inverse map
is indeterminant; in Bayesian inference, it comes from stochastic
processes in the system itself. This difference means traditional
inference methods cannot be used and motivates the method we
introduce here.

Sampling algorithms, therefore, need to explicitly account for
the differential volume of iso-output contours. In applied prob-
lems, however, we do not know the volumes of iso-output con-
tours and they cannot be exactly calculated for all but the
simplest models. Instead in CMC, we estimate them. The following
analysis provides a brief introduction to a probabilistic formulation
of under-determined inverse problems (see our companion paper
Lambert et al., 2018 for a more comprehensive discussion). In
doing so, this suggests a sampling based approach for estimating
contour volumes, which are then exploited by our CMC algorithm.

Solving our inverse problem requires determining the posterior

distribution of parameter values, p hjÛ
� �

, which,when used as input

to the forward map, results in the target distribution, p qjÛ
� �

. To

derive the posterior parameter distribution, we consider the joint

density of parameters and QOIs, p h;qjÛ
� �

. This can be decomposed

in two ways using the law of conditional probability,

p h;qjÛ
� �

¼ p hjq; Û
� �

� p qjÛ
� �

¼ p qjh; Û
� �

� p hjÛ
� �

: ð7Þ

Rearranging Eq. (7), we obtain the posterior parameter
distribution,

p hjÛ
� �

¼
p hjq; Û
� �

� p qjÛ
� �

p qjh; Û
� � : ð8Þ
e distribution targeted in (iii) is given by Eq. (13). Here, ~q is used to represent an



Algorithm1 Pseudocode for the Contour Monte Carlo algorithm for sampling from the posterior parameter distribution of Eq. (13).

procedure CMCðY ;N;N1;N2Þ . Sample from posterior parameter distribution

Û ¼ SnapshotEstimatorðYÞ
Ŵ ¼ ContourVolumeEstimatorðN;N1Þ
h 1½ �; . . . ; h N2½ �
� �

¼ MCMCðÛ;N; Ŵ;N2Þ
converged ¼ CompareOutputToTargetððh 1½ �; . . . ; h N2½ �Þ; ÛÞ
while converged– 1 . Rerun contour volume estimation (if necessary modify vine copula KDE hyperparmeters) and/or
MCMC, with larger sample sizes if required

Ŵ ¼ ContourVolumeEstimatorðN;N01Þ; where N01 P N1

h 1½ �; . . . ; h N2 0½ �
� �

¼ MCMCðÛ;N; Ŵ;N02Þ; where N02 P N2

converged ¼ CompareOutputToTargetððh 1½ �; . . . ; h N2 0½ �Þ; ÛÞ
N1  N10; N2  N20

end while

return h 1½ �; . . . ; h N2½ �
� �

end procedure
procedure SnapshotEstimator(Y) . Fit snapshots with kernel density estimator (KDE)
Û ¼ argmax

U
p Y jUð Þ

return Û
end procedure
procedure ContourVolumeEstimator(N;N1) . Estimate volume of contours
for i in 1 : N1

h i½ � � p hjNð Þ . Sample from prior density

q i½ � ¼ q h i½ �
� �

. Calculate corresponding output value

end for

Ŵ ¼ argmax
W

p q 1½ �; . . . ;q N1½ �� �jW� �
. Fit vine copula KDE

return Ŵ

procedure MCMC(ðÛ;N; Ŵ;N2Þ) . Random Walk Metropolis algorithm targeting posterior parameter distribution
h 0½ � � p :ð Þ . Sample from arbitrary initialisation distribution
for i in 1 : N2

h i½ �0 �N h i�1½ �;R
� �

. Propose new parameter values

. Calculate Metropolis acceptance ratio

r ¼ p h i½ �0 jN
� �

p q h i�1½ �
� �

jŴ
� �

p q h i½ �0
� �

jÛ
� �

= p h i�1½ �jN
� �

p q h i½ �0
� �

jŴ
� �

p q h i�1½ �
� �

jÛ
� �h i

u � U 0;1ð Þ . Sample from uniform distribution
if r > u

h i½ � ¼ h i½ �0 . Accept proposal
else
h i½ � ¼ h i�1½ � . Reject proposal

end if
end for

return h 1½ �; . . . ; h N2½ �
� �

end procedure

procedure CompareOutputToTarget(ðh 1½ �; . . . ; h N2½ �Þ; Û) . Check output distribution close to target
for i in 1 : N2

~q i½ � ¼ q h i½ �
� �

. Compute QOIs for each parameter sample

end for

if p ~qð Þ � p ~qjÛ
� �

? . Compare sampled output distribution with target

return 1 . If sufficiently close then converged
else
return 0

end if
end procedure

B. Lambert, D.J. Gavaghan and S.J. Tavener Journal of Theoretical Biology 511 (2021) 110541
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For a deterministic map, Eq. (8) is only well defined when
q ¼ q hð Þ. (Since the mapping from parameters to outputs is deter-

ministic, p qjh; Û
� �

¼ d q hð Þð Þ, i.e., the Dirac delta function centred

at q ¼ q hð Þ.) Thus Eq. (8) becomes,

p hjÛ
� �

¼ p hjq hð Þ; Û
� �

� p q hð ÞjÛ
� �

: ð9Þ

In the same way that a single output value can be caused by any
member of a set of parameter values, a target output distribution

p qjÛ
� �

can be caused by any member of a set of parameter distri-

butions. To ensure uniqueness of the ‘‘posterior” parameter distri-
butions, we must, therefore, specify ‘‘prior” distributions for the
parameters as in more traditional Bayesian inference. In what fol-

lows, we assume the conditional distribution p hjq; Û
� �

is indepen-

dent of the data, i.e. p hjq; Û
� �

¼ p hjqð Þ, and thus represents a

conditional ‘‘prior” which can be manipulated using Bayes’ rule as,

p hjq hð Þð Þ ¼ p hð Þ
p q hð Þð Þ : ð10Þ

This results in the form of the posterior parameter distribution
targeted by our sampling algorithm,

p hjÛ
� �

¼ p hð Þ
p q hð Þð Þp q hð ÞjÛ

� �
: ð11Þ

Again, we defer to our companion piece (Lambert et al., 2018)
for detailed explanation of Eqs. (10) and (11) and, instead, here
provide brief interpretation when considering a uniform prior on
parameter space. In this case, p hð Þ ¼ 1

V, where V is the total volume
of parameter space. The denominator term of Eq. (10) is the prior
induced on output space by the prior over parameter space. For a
uniform prior on parameter values, this is,

p hjq hð Þð Þ ¼ 1
V q hð Þð Þ ; ð12Þ

where V q hð Þð Þ is the volume of parameter space occupied by the
iso-output contour X q hð Þð Þ (see Fig. 3 for the meaning of this vol-
ume for a two parameter example). Therefore, a uniform prior over
parameter space implies a prior structure where all parameter val-
ues producing the same output are given equal weighting.

2.3. Implementation of CMC

Except for some toy examples, the denominator of Eq. (10) can-
not be calculated, so exact sampling from the posterior parameter
distribution of Eq. (11) is not, in general, possible. We propose,
instead, a computationally efficient sampling method to estimate
p q hð Þð Þ, which forms the first step of our so-called ‘‘Contour Monte
Carlo” (CMC) algorithm (Algorithm 1; Fig. 4ii)), where the volume
of iso-output contours with each feasible output value is esti-
mated. This step involves repeated independent sampling from
the prior distribution of parameters, h i½ � � p hjNð Þ, where N parame-
terises the prior probability density. Each parameter sample is then

mapped to an output value, q i½ � ¼ q h i½ �
� �

. The collection of output

samples is then fitted using a vine copula kernel density estimator

(KDE) (Nagler and Czado, 2016), Ŵ ¼ argmax
W

p q 1½ �; . . . ;q N1½ �� �jW� �
.

Throughout the course of development of CMC, we tested many
KDE methods and found vine copula KDE best suited to approxi-
mating the higher dimensional probability distributions required
in practice – other methods produced coarse estimates of the joint
density and took substantially more computational resource.
Indeed, the ability to do KDE in high dimensions was the motiva-
7

tion behind the creation of vine copula KDE in the first place
(Nagler and Czado, 2016).

The second step in our algorithm then uses MCMC to sample
from an approximate version of Eq. (11), where the estimated den-

sity, p q hð ÞjŴ
� �

replaces its corresponding estimand (Algorithm 1;

Fig. 4iii)),

p hjÛ;N; Ŵ
� �

¼ p hjNð Þ
p q hð ÞjŴ
� � p q hð ÞjÛ

� �
: ð13Þ

The final step in CMC is to compare output samples generated by
MCMC with the target distribution (Fig. 4iv)). As the sample size of
both sampling steps (i.e. the contour volume estimation and MCMC
steps) tends to infinity, CMC produces a sample of parameter values
h 1½ �; h 2½ �; . . .
� �

which, when mapped to the output space, corresponds

to the target distribution p qjŴ
� �

. In developing CMC, we found that

a finite sample of modest size for both steps of CMC results in param-
eter samples that, when transformed, often represented good approx-
imations of the target. There are, however, occasions when this is not
the case, and this final confirmatory step is indispensable since it fre-
quently highlights inadequacies in contour volume estimation or
MCMC, meaning more samples from either or both of these steps
are required. It may also be necessary to tweak hyperparameters of
the KDE in the contour volume estimation step to ensure reasonable
approximation of the distribution of output values obtained by sam-
pling the prior density.

If the target distribution is sensitive to the contour volume esti-
mates, this may also indicate that the target snapshot distribution
is incompatible with the model: here, we make no claims on exis-
tence of a solution to the inverse problem, only that, Contour
Monte Carlo is a pragmatic approach to approximate it by sam-
pling if one should exist. A useful way to diagnose whether the tar-
get distribution can be produced from the model and chosen priors
is to plot the output values from the contour volume estimation
step of CMC: this is akin to visualising the prior predictive distribu-
tion in traditional Bayesian inference (Lambert, 2018). If the bulk of
target probability mass does not overlap with the simulated output
values, then the model and/or chosen prior are unlikely to be
invertible to this particular target. In §3.2.2 and §3.4, we provide
examples that illustrate this aspect of model checking.

2.4. Workflow and CMC algorithm

A graphical illustration of the complete CMC workflow is pro-
vided in Fig. 4. All variables are defined in Table 1. The CMC algo-
rithm is provided in Algorithm 1. In this implementation, MCMC
sampling is performed via the RandomWalk Metropolis algorithm,
but for the examples in §3, we use an adaptive MCMC algorithm to
improve sampling efficiency (Johnstone et al., 2016).

To generate our results in §3, we assumed for the contour vol-
ume estimation step sample sizes were sufficient if the output
samples from MCMC provided a reasonable approximation to the
target, although we recognise that future work should refine this
process further. For the MCMC step, we used adaptive covariance
MCMC (see SOM of Johnstone et al. (2016)) to sample from the tar-
get distribution, as it typically provides a considerable speed-up
over Random Walk Metropolis (Metropolis et al., 1953; Lambert,

2018). We also used the Gelman-Rubin convergence statistic, bR,
to diagnose convergence (Lambert, 2018; Gelman and Rubin,

1992), with a convergence threshold of bR 6� 1:1.
To solve the forward model of each differential equation, we

used Julia’s (Bezanson et al., 2017) ‘‘solve” method for ODE models
from the ‘‘DifferentialEquations.jl” library (Rackauckas et al., 2017),
which automatically chooses an efficient inbuilt solver. To repli-



Fig. 6. Growth factor model. Joint posterior distributions estimated by CMC. Top row (A-B): k1; k�1ð Þ and kdeg ;RT
� �

using uniform priors. Bottom row (C-D): k1; k�1ð Þ and
kdeg ;RT
� �

using Gaussian priors. In all panels, dashed lines indicate the parameter set or distribution used to generate the target distribution given by Eq. (16): for k�1 and kdeg ,
the dashed lines show true parameter values and for k1 and RT , they show the mean of each Gaussian sampling distributions (� two standard deviations shown by shaded
rectangles). See Fig. 5 caption for CMC details and Table 3 for the priors used. Red (blue) indicates areas of relatively high (low) probability density.

Fig. 5. Growth factor model. Target joint output distribution (solid contour lines) and target marginal distributions (solid lines; above and to the right of each figure) versus
outputs sampled by CMC (blue points) and reconstructed marginals (dashed lines). (A) uniform priors. (B) Gaussian priors. In CMC, 100,000 independent samples were used in
the ‘‘ContourVolumeEstimator” step and 10,000 MCMC samples across each of 4 Markov chains were used in the second step, with the first half of the chains discarded as
‘‘warm-up” (Lambert, 2018). For the reconstructed marginal densities in the plots, we use Mathematica’s ‘‘SmoothKernelDistribution” function specifying bandwidths of 100
with Gaussian kernels (Inc. Wolfram Research, 2020).

B. Lambert, D.J. Gavaghan and S.J. Tavener Journal of Theoretical Biology 511 (2021) 110541

8



Fig. 7. Growth factor model. Elasticities of the active ligand-bound receptors Pwith
respect to each parameter as a function of time. When calculating the elasticities of
each parameter, the other parameters were set to their posterior medians given in
Table 2 and L ¼ 2.
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cate the results in this section, we recommend readers execute the
corresponding Julia scripts (one for each result section) at https://
github.com/ben18785/inverse-sensitivity/tree/master/examples.
Note that, these scripts use the ‘‘RCall” library for Julia (Bates et al.,
Fig. 8. Michaelis-Menten model. (A) Bimodal target distribution q (solid contour lines)
and dashed lines above and to the side of panel A indicate the target and estimated marg
shown as the exact solutions are unknown. The orange (blue) points in A were generate
Mathematica’s ‘‘SmoothKernelDistribution” function (Inc. Wolfram Research, 2020) w
bandwidths, and (B) bandwidths of 0.3 (horizontal axis) and 0.03 (vertical axis). Mathem
identify clusters in B. (For interpretation of the references to colour in this figure legend

Table 2
Growth factor model. Estimated quantiles from CMC samples with uniform and Gaussian pr
the 25%-75% posterior interval in each case. The prior hyperparameters used in each case

Parameter Quantiles

2.5% 25% 50%

Uniform p
RT 441,006 548,275 606,439 67
k1 0.90 1.69 2.17 2
k�1 4.35 8.35 11.23 1
kdeg 0.013 0.019 0.021 0

k�deg 0.20 0.34 0.40 0

Gaussian
RT 408,396 487,372 529,558 57
k1 0.39 0.49 0.54 0
k�1 1.39 1.92 2.26 2
kdeg 0.016 0.020 0.022 0

k�deg 0.22 0.29 0.33 0
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2015), which calls R from Julia. This package was necessary to use
the ‘‘kdevine” R package for vine copula kernel density estimation
(Nagler, 2018).
3. Results

In this section, we use CMC to estimate posterior parameter dis-
tributions for four biological systems. In two of the examples, we
assume that the first step of CMC (‘‘SnapshotEstimator” within
Algorithm 1) has already been completed, and we are faced with
inferring a parameter distribution which, when mapped to out-
puts, recapitulates the target density. To accompany the text, we
provide the Julia notebook used to generate the results. A table
of priors used for each example is provided in Table 3.
3.1. Growth factor model

We first consider the ‘‘growth factor model” introduced by Dixit
et al. (2018), which concerns the dynamics of inactive ligand-free
cell surface receptors, R, and active ligand-bound cell surface
versus output samples (points). (B) posterior parameter samples (points). The solid
inal output distributions, respectively. In B, only estimated parameter marginals are
d by the orange (blue) parameter samples in B. See Fig. 5 caption for CMC details.
ith Gaussian kernels was used to construct marginal densities with: (A) default
atica’s ‘‘ClusteringComponents” function (Inc. Wolfram Research, 2020) was used to
, the reader is referred to the web version of this article.)

iors. The last column indicates the proportion of the uniform prior bounds occupied by
are given in Table 3.

Posterior 25%–75%

75% 97.5% True values conc.

rior
7,055 772,484 650,000 23%
.56 2.95 1.70 32%
4.23 18.71 8.00 33%
.024 0.029 0.015 20%
.44 0.49 0.25 27%

prior
7,970 678,632 650,000 16%
.60 0.70 1.70 4%
.63 3.35 8.00 4%
.024 0.027 0.015 16%
.38 0.46 0.25 21%

https://github.com/ben18785/inverse-sensitivity/tree/master/examples
https://github.com/ben18785/inverse-sensitivity/tree/master/examples


Table 3
Priors used for each example in §3. The parameters h1 and h2 indicate the prior hyperparameters: for uniform priors, these correspond to the lower and upper limits; for Gaussian
priors, they correspond to the mean and standard deviation.

Model Target Parameter Prior Prior Prior
density density h1 h2

Growth 2D RT uniform 2:5� 105 8� 105

factor Gaussian k1 uniform 0.25 3.0
k�1 uniform 2.0 20.0
kdeg uniform 0.005 0.03

k�deg uniform 0.1 0.5

Growth 2D RT Gaussian 5� 105 1� 105

factor Gaussian k1 Gaussian 0.5 0.1
k�1 Gaussian 3.0 1.0
kdeg Gaussian 0.02 0.005

k�deg Gaussian 0.3 0.1

Michaelis- bimodal kf uniform 0.2 15
Menten Gaussian kr uniform 0.2 2.0

kcat uniform 0.5 3.0

Michaelis- 4D kf uniform 0.2 15
Menten Gaussian kr uniform 0.2 2.0

kcat uniform 0.2 3.0
E0 uniform 3.0 5.0
S0 uniform 5.0 10.0
C0 uniform 0.0 0.2
P0 uniform 0.0 0.2

TNF bivariate a1 uniform 0.4 0.8
signalling Gaussian a2 uniform 0.1 0.7

a3 uniform 0.3 0.7
a4 uniform 0.1 0.3
b1 uniform 0.5 0.7
b2 uniform 0.4 0.6
b3 uniform 0.4 0.6
b4 uniform 0.2 0.4
b5 uniform 0.2 0.4

TNF bimodal a1 uniform 0.5 0.7
signalling Gaussian a2 uniform 0.1 0.3

a3 uniform 0.1 0.3
a4 uniform 0.4 0.6
b1 uniform 0.3 0.5
b2 uniform 0.6 0.8
b3 uniform 0.2 0.4
b4 uniform 0.4 0.6
b5 uniform 0.3 0.5

hESC 1D-2D p1 uniform 40.0 60.0
differentiation Gaussian p2 uniform 2.0 10.0

p3 uniform 0.5 16
p4 uniform 0.0 0.7
p5 uniform 2.0 4.0
p6 uniform 2.0 20.0
p7 uniform 0.0 0.2
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receptors, P, modulated by an exogenous ligand, L. The governing
dynamics are determined by the following system,

dR
dt
¼ RTkdeg þ k1LR tð Þ þ k�1P tð Þ � kdegR tð Þ ð14Þ

dP
dt
¼ k1LR tð Þ � k�1P tð Þ � k�degP tð Þ; ð15Þ

with initial conditions,

R 0ð Þ ¼ 0:0; P 0ð Þ ¼ 0:0;

and h ¼ RT ; k1; k�1; kdeg ; k
�
deg

� �
are parameters to be determined. In

this example, we use measurements of the active ligand-bound
receptors P to estimate cellular heterogeneity in these processes.
We denote the solution of Eq. (15) as P t; h; Lð Þ. Here we generate a
target model by forward simulations of Eq. (14); in each case
recording P 10; h;2ð Þ; P 10; h;10ð Þð Þ. In each forward simulation, we

fix k�1; kdeg ; k
�
deg

� �
¼ 8;0:015;0:25ð Þ and independently sample val-
10
ues RT �N 6:5� 105;0:6� 104
� �

and k1 �N 1:7;0:05ð Þ. This gen-

erates an output distribution approximately given by,

q ¼
q1

q2

0B@
1CA ¼ P 10; h;2ð Þ

P 10; h;10ð Þ

0B@
1CA �N

2� 104

3� 104

0B@
1CA;

1� 105 0
0 1� 105

0B@
1CA

264
375:

ð16Þ

We note that, whilst the parameters k�1; kdeg ; k
�
deg

� �
are fixed

during this step (to generate output distributions), they are
allowed to vary in §3.1.1 and §3.1.2 (where we use CMC to perform
inference).

3.1.1. Uniform prior
For an under-determined model, the number of QOIs, m, is less

than the number of parameters, p, and there typically exists a non-



Fig. 9. Michaelis-Menten model. QOIs (blue points) obtained by independently sampling the priors versus the target distribution (black solid contours). Left: q1; q2ð Þ. Right:
q3; q4ð Þ. We show 20,000 output samples, where each set of four measurements was obtained from a single sample of all parameters. The output target distribution shown by
the contours corresponds to the marginal densities of each pair of enzyme-substrate measurements given by Eq. (20). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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singular set of parameter distributions mapping to the same target
output distribution. To uniquely identify a posterior parameter dis-
tribution, it is, therefore, necessary to specify a prior parameter
distribution. By incorporating priors, this allows pre-existing bio-
logical knowledge to be included, leading to reduced uncertainty
in parameter estimates. CMC allows any prior with correct support
to be used. Changes to priors affect both the
‘‘ContourVolumeEstimation” and ‘‘MCMC” steps of CMC (Algo-
rithm 1), so that the (changed) posterior parameter distribution
still maps to the target.

To start, we specify a uniform prior for each of the five param-
eters, with bounds given in Table 3, and use CMC to estimate the
posterior parameter distribution. In Fig. 5A, we show the sampled
outputs (blue points) versus the contours of the target distribution
(black solid closed curves), illustrating a good correspondence
between the sampled and target densities. Above and to the right
of the main panel, we also display the marginal target densities
(solid black lines) versus kernel density estimator reconstructions
of the output marginals from the CMC samples (dashed blue lines),
which again highlights the fidelity of the CMC sampled density to
the target.

In Fig. 6A, we plot the joint posterior parameter distribution for
k1, the rate of ligand binding to inactive receptors and k�1, which
dictates the rate of the reverse reaction. A given level of bound
ligands can be generated in many different ways. Not surprisingly,
it is the ratio of the forward and reverse reaction rates, k1 and k�1
respectively, that is of greatest importance, and because of this, the
distribution representing cell process heterogeneity contains linear
positive correlations between these parameters.

In Fig. 6B, we show the posterior parameter distribution for kdeg ,
the rate of degradation of ligand-free cell surface receptors and RT ,
the rate of introduction of ligand-free cell surface receptors. This
plot shows more concentrated posterior mass than in Fig. 6A.

Why do our measurements allow us to better resolve kdeg ;RT
� �

compared to k1; k�1ð Þ? To answer this, it is useful to calculate the
sensitivity of P t; h; Lð Þ to changes in each of the parameters. To
account for the differing magnitudes of each parameter, we calcu-
late elasticities, the proportional changes in measured output for a
proportional change in parameter values, using the forward sensi-
tivities method described in Daly et al. (2018), and these are shown
in Fig. 7. When the exogenous ligand is set at L ¼ 2, these indicate
11
the active ligand-bound receptor concentration is most elastic to
changes in RT and kdeg . This higher elasticity means that their range
is more restricted by the output measurement than for k1 and k�1,
which have much smaller elasticities at t ¼ 10. In Table 2, we show
the posterior quantiles for the estimated parameters, and in the
last column, indicate the ratio of the 25%-75% posterior interval
widths to the uniform prior range for each parameter. These were
strongly negatively correlated with the magnitude of the elastici-
ties for each parameter (q ¼ 0:95; t ¼ �5:22; df ¼ 3; p ¼ 0:01 for
Pearson’s product-moment correlation), indicating the utility of
sensitivity analyses for optimal experimental design, see e.g.,
Banks et al. (2011). We suggest, however, that CMC can also be
used for this purpose. If an experimenter generates synthetic data
for various choices of QOIs, they can use CMC to derive the poste-
rior parameter distributions in each case. They then, simply, select
the particular QOI producing the narrowest posterior for key
parameters.

In both panels of Fig. 6, we also plot the ‘‘actual” parameter val-
ues as dashed lines: for k�1 and kdeg , these indicate the true (fixed)
parameter values, and, for k1 and RT , they show the mean of each
Gaussian sampling distribution (� two standard deviations shown
by shaded rectangles). For most parameters, these indicate that the
area of highest posterior density is close to the causative parameter
values. This is reaffirmed in the top panel of Table 2, where, in all
cases, the actual parameter values lie within the estimated 95%
quantiles for each parameter – indicating that the parameters were
reasonably well identified.
3.1.2. Gaussian prior
We now use CMC to estimate the posterior parameter distribu-

tion, when using Gaussian priors (prior hyperparameters shown in
Table 3), which are more concentrated than the uniform priors
used in §3.1.1. As desired, the target output distribution appears
virtually unaffected by the change of priors (Fig. 5B) although with
substantial changes to the posterior parameter distribution (Fig. 6C
and 6D). In particular, the marginal posterior distributions
obtained from the Gaussian prior are narrower compared to the
uniform case (rightmost column of Table 2).

As in traditional Bayesian inference, prior choice has a greater
influence on the posterior distribution when data provide less
information on the underlying process. This is readily apparent in



Fig. 10. Michaelis-Menten model. Posterior output samples from CMC (coloured
points) versus contour plots (black solid lines) of the joint marginal distributions of
Eq. (20). Enzyme and substrate measurements are given by the horizontal and
vertical axes, respectively. Output functionals for q1; q2ð Þ and q3; q4ð Þ are given by
blue and orange points, respectively. The solid and dashed coloured lines outside
the panels indicate exact target marginals of Eq. (20) and those estimated by CMC,
respectively. In the ‘‘ContourVolumeEstimator” step, 200,000 independent samples
were used, and in the MCMC step, 10,000 samples across each of 4 Markov chains
were used, with the first half of the chains discarded as ‘‘warm-up” (Lambert, 2018).
Mathematica’s ‘‘SmoothKernelDistribution” function, using Gaussian kernels (Inc.
Wolfram Research, 2020) and bandwidths ranging from 0.1 to 0.4, was used to
reconstruct marginal densities.
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comparing the dramatic change from Fig. 6A to 6C for k1; k�1ð Þ,
which have low sensitivities, with the more nuanced change from
Fig. 6B to 6D for kdeg ;RT

� �
, which have high sensitivities. The results

also indicate the bias-variance trade-off inherent in Bayesian anal-
ysis: when relatively uninformative priors are specified
(Fig. 6A&B), the posterior distributions are wider but their centre
lies, in general, closer to the true values (dashed lines) than when
more information is included in the priors (Fig. 6C&D).

3.2. Michaelis-Menten kinetics

In this section, we use CMC to invert output measurements
from the Michaelis-Menten model of enzyme kinetics (see, for
Fig. 11. TNF signalling pathway model. (A) Actual parameter values versus estimated qua
and sampled output distributions (dashed lines). In A, in the vertical direction, red point
2.5% quantiles, respectively; in the horizontal direction, with the exception of a1, red po
indicates the mean of the Gaussian distribution used to generate the data and the whiske
‘‘ContourVolumeEstimator” step, and 5,000 MCMC samples across each of 4 Markov chai
(Lambert, 2018). Mathematica’s ‘‘SmoothKernelDistribution” function, using a Gaussia
reconstruct marginal densities.
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example, Murray, 2007) – illustrating how CMC can determine
resolve population substructure from a multimodal output distri-
bution. The Michaelis-Menten model of enzyme kinetics describes
the dynamics of concentrations of an enzyme, E, a substrate, S, an
enzyme-substrate complex, C, and a product, P,

dE
dt ¼ �kf E tð ÞS tð Þ þ krC tð Þ þ kcatC tð Þ;
dS
dt ¼ �kf E tð ÞS tð Þ þ krC tð Þ;
dC
dt ¼ kf E tð ÞS tð Þ � krC tð Þ � kcatC tð Þ;
dP
dt ¼ kcatC tð Þ;

ð17Þ

with initial conditions,

E 0ð Þ ¼ E0; S 0ð Þ ¼ S0; C 0ð Þ ¼ C0; P 0ð Þ ¼ P0; ð18Þ
where kf is the rate of the forward reaction Eþ S! C; kr is the rate
of the reverse reaction C ! Eþ S, and kcat is the catalytic rate of pro-
duct formation by the reaction C ! Eþ P.

3.2.1. Bimodal output distribution
When subpopulations of cells, each with distinct dynamics, are

thought to exist, determining their characteristics – the propor-
tions of cells in each cluster, their distinct parameter values, and
so on – is often of key interest (Hasenauer et al., 2011; Loos
et al., 2018). Before formal inference occurs, an output distribution
with multiple modes may signal the existence of fragmented sub-
populations of cells, and to exemplify this, we target a bimodal
bivariate Gaussian distribution for measurements of the level of
enzyme and substrate at t ¼ 1 and t ¼ 2 respectively,

q ¼ q1

q2

� �
¼ E 2:0; hð Þ

S 1:0; hð Þ
� �

� p q;l1;R1;l2;R2
� �

¼ 1
2 N q;l1;R1

� �þN q;l2;R2
� �� �

;

ð19Þ
where h ¼ kf ; kr; kcat

� �
. The parameters of the Gaussian mixture

components are,

l1 ¼
2:2
1:6

� �
; R1 ¼

0:018 �0:013
�0:013 0:010

� �
;

l2 ¼
2:8
1:0

� �
; R2 ¼

0:020 �0:010
�0:010 0:020

� �
:

In what follows, we specify uniform priors on each element of h
(see Table 3). Using a modest number of samples in each step, CMC
provides a close approximation to the output target distribution
(Fig. 8A). Without providing a priori information on the subpopula-
tions of cells, two distinct clusters of cells emerged from applica-
ntiles for the output distribution of Eq. (25). (B) Marginal output targets (solid lines)
s indicate 50% posterior quantiles and upper and lower whiskers indicate 97.5% and
ints indicate the parameter values used to generate the data; for a1, the red point
rs indicate its 95% quantiles. In CMC, 10,000 independent samples were used in the
ns were used in the second, with the first half of the chains discarded as ‘‘warm-up”
n kernel (Inc. Wolfram Research, 2020) and a bandwidth of 0.003 was used to



Fig. 12. TNF signalling pathway model. Target output distribution (dashed plots
with grey filling) and unique trajectories (black solid lines) obtained from the
posterior parameter distribution. In CMC, 10,000 independent samples were used in
the ‘‘ContourVolumeEstimator” step, and 5,000 MCMC samples across each of 4
Markov chains were used in the second, with the first half of the chains discarded as
‘‘warm-up” (Lambert, 2018).
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tion of CMC (orange and blue points in Fig. 8A) – each correspond-
ing to distinct modes of the output distribution (corresponding
coloured points in Fig. 8A). It is worth noting, however, that the
issues inherent with using MCMC to sample multimodal distribu-
tions similarly apply here. So, whilst adaptive MCMC (Johnstone
et al., 2016) sufficed to explore this posterior surface, it may be
necessary to use MCMC methods more robust to such geometries
in other cases (for example, population MCMC (Jasra et al., 2007)).

3.2.2. Four-dimensional output distribution
Loos et al. (2018) consider a multidimensional output distribu-

tion, with correlations between system characteristics that evolve
over time. Our approach allows arbitrary covariance structure
between measurements, and to exemplify this, we now target a
four-dimensional output distribution, with paired measurements
of enzyme and substrate at t ¼ 1 and t ¼ 2,
Fig. 13. Embryonic stem cell differentiation model: output targets. In A., we show the
distributions reconstructed from the CMC samples. In B., we show the joint target distri
above and to the right of the plot, we show the target marginals (solid lines) and the ma
samples were used in the ‘‘ContourVolumeEstimator” step, and 50,000 MCMC samples acr
discarded as ‘‘warm-up” (Lambert, 2018). Mathematica’s ‘‘SmoothKernelDistribution” fu
reconstruct marginal densities.
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q¼

q1

q2

q3

q4

0BBB@
1CCCA ¼

E 1:0;hð Þ
S 1:0;hð Þ
E 2:0;hð Þ
S 2:0;hð Þ

0BBBBBB@

1CCCCCCA

�N

0:5
2:8
0:9
1:4

0BBBBBB@

1CCCCCCA;

0:02 �0:05 0:04 �0:05
�0:05 0:30 �0:15 0:20
0:04 �0:15 0:12 �0:17
�0:05 0:20 �0:17 0:30

0BBB@
1CCCA

26666664

37777775:
ð20Þ

Since this target has four QOIs, and the Michaelis-Menten
model has three rate parameters kf ; kr ; kcat

� �
, the system is over-

identified, and so CMC cannot be straightforwardly applied. The
initial concentrations of species in cellular assays are measured
quantities – that is, imperfect representations of the underlying
quantities. We prefer to estimate them through inference rather
than fix them as this better reflects reality. So, we allow the four
initial states E0; S0;C0; P0ð Þ to be uncertain quantities, bringing
the total number of parameters to seven.

We set uniform priors on all parameters (see Table 3). In order
to check that the model and priors were consistent with the output
distribution given by Eq. (20), we plotted the output measure-
ments used to estimate contour volumes (obtained from the first
step of the ‘‘ContourVolumeEstimator” method in Algorithm 1)
against the target (Fig. 9). Since the main support of the densities
(black contours) lies within a region of output space reached by
independent sampling of the priors (blue points), this indicated
the target could feasibly be generated from this model and priors,
and we proceeded to estimation by CMC.

Fig. 10 plots the output samples of enzyme and substrate from
the last step of CMC for t ¼ 1 (blue points) and t ¼ 2 (orange
points) versus the contours (black lines) of the joint marginal dis-
tributions of Eq. (20). The distribution of paired enzyme-substrate
samples illustrates that the CMC output distribution closely
approximates the target density, itself representing dynamic evo-
lution of the covariance between enzyme and substrate measure-
ments. Target marginal distributions (solid lines) along with their
output target distributions described in §3.4 and kernel density estimates of the
bution (contour lines) for the case where we target both q1 and q2 simultaneously;
rginals reconstructed from the samples (dashed lines). In CMC, 50,000 independent
oss each of 4 Markov chains were used in the second, with the first half of the chains
nction, using a Gaussian kernel (Inc, 2020) and default bandwidths were used to



Fig. 14. Embryonic stem cell differentiation model: posterior parameter distribution. In the left panel, we show the posterior distribution for p2; p5ð Þwhen targeting q1; in the
middle, we show the same when targeting q2; and in the right panel, we show the same when targeting q1; q2ð Þ. In CMC, 50,000 independent samples were used in the
‘‘ContourVolumeEstimator” step, and 50,000 MCMC samples across each of 4 Markov chains were used in the second, with the first half of the chains discarded as ‘‘warm-up”
(Lambert, 2018).

Fig. 15. Embryonic stem cell differentiation model: contour volume distribution. In
the main panel, we plot contours (solid black lines) for the joint target distribution
of q1; q2ð Þ and 20,000 samples from the contour volume estimation step of
Algorithm 1 (blue points). Above and to the right of the main panel, we plot the
marginal target distribution in each dimension (solid black lines) and the marginal
contour volume distributions (dashed blue lines). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

B. Lambert, D.J. Gavaghan and S.J. Tavener Journal of Theoretical Biology 511 (2021) 110541
approximations from kernel density estimation (dashed lines) are
also shown above and to the right of the main panel of Fig. 10
and largely indicate correspondence.

3.3. TNF signalling pathway

We now illustrate how CMC can be applied to another ODE sys-
tem: the tumour necrosis factor (TNF) signalling pathway model
introduced in Chaves et al. (2008) and used by Hasenauer et al.
(2011) to illustrate a Bayesian approach to cell population variabil-
ity estimation. The model incorporates known activating and inhi-
bitory interactions between four key species within the TNF
pathway: active caspase 8, x1, active caspase 3, x2, a nuclear tran-
scription factor, x3 and its inhibitor, x4, such that

dx1
dt ¼ �x1 tð Þ þ 1

2 b4 x3 tð Þð Þa1 u tð Þð Þ þ a3 x2 tð Þð Þ½ �
dx2
dt ¼ �x2 tð Þ þ a2 x1 tð Þð Þb3 x3 tð Þð Þ
dx3
dt ¼ �x3 tð Þ þ b2 x2 tð Þð Þb5 x4 tð Þð Þ
dx4
dt ¼ �x4 tð Þ þ 1

2 b1 u tð Þð Þ þ a4 x3 tð Þð Þ½ �;

ð21Þ

with initial conditions,

x1 0ð Þ ¼ 0:0; x2 0ð Þ ¼ 0:0; x3 0ð Þ ¼ 0:29; x4 0ð Þ ¼ 0:625: ð22Þ
The functions ai and bj represent activating and inhibitory inter-

actions respectively,

ai zð Þ ¼ z2

a2
i
þz2 ; i ¼ 1; . . . ;4;

bj zð Þ ¼
b2j

b2j þz2
; j ¼ 1; . . . ;5;

ð23Þ

and the parameters ai for i 2 1;2;3;4ð Þ and bj for j 2 1;2;3;4;5ð Þ
represent activation and inhibition thresholds. The function u tð Þ
represents a TNF stimulus represented by a top hat function,

u tð Þ ¼ 1; if t 2 0;2½ �:
0; otherwise:

�
ð24Þ
3.3.1. Recovering parameter values in under-determined systems
In under-determined models, a set of parameters of non-zero

volume can produce the same output values. A consequence of this
unidentifiability is that we cannot perform ‘‘full circle” inference:
that is, using a known parameter distribution to generate an out-
put distribution does not result in that parameter distribution
14
being recovered through inference. We illustrate this idea by gen-
erating an output distribution by varying a single parameter value
between runs of the forward model (21) and performing inference
on all nine system parameters, whilst collecting only two output
measurements. Specifically, we randomly sample
a1 �N 0:6;0:05ð Þ for each simulation of the forward model, whilst
holding the other parameters constant,

a2; a3; a4; b1; b2; b3; b4; b5ð Þ ¼ 0:2;0:2; 0:5; 0:4; 0:7; 0:3;0:5;0:4ð Þ;
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and measure q1 ¼ x1 2:0ð Þ and q2 ¼ x2 1:0ð Þ in each case. In doing so,
we obtain an output distribution well-approximated by the bivari-
ate Gaussian distribution,

q ¼
q1

q2

 !
¼

x1 2:0ð Þ
x2 1:0ð Þ

0BBB@
1CCCA

�N

0:26

0:07

0BBB@
1CCCA;

2:1� 10�4 5:9� 10�5

5:9� 10�5 1:8� 10�5

0BBB@
1CCCA

26664
37775:

ð25Þ

We now apply CMC to the target output distribution given by
Eq. (25) to estimate a posterior distribution over all nine parame-
ters of Eq. (21). Apart from a few cases, the priors for each param-
eter were chosen to exclude the values that were used to generate
the output distribution (see Table 3) to illustrate how the recov-
ered posterior distribution and data generating distribution differ.
In Fig. 11A, we plot the actual parameter values (horizontal axis)
used to generate the data versus the estimated values (vertical
axis). This illustrates that, due to the chosen priors, there is a dis-
junction between actual and estimated parameter values in all
cases apart from a1. Though, because the model is under-
determined, the corresponding output distribution closely approx-
imates the target despite these differences (Fig. 11B).

3.3.2. Bimodal output distribution
The dynamics of all cells can often be modelled by assuming

cells exist in subpopulation clusters, which evolve differently over
time. A hint that such subpopulation structure may exist is output
distributions with multiple modes. We now apply CMC to investi-
gate a bimodal output distribution for the TNF signalling pathway
model similar to that investigated by Hasenauer et al. (2011). We
aim to estimate the posterior parameter distribution mapping to
the following output distribution,

q ¼
q1

q2

q3

0B@
1CA; ð26Þ

where,

q1 ¼ x2 1:0ð Þ �N 0:06;0:01ð Þ
q2 ¼ x2 2:0ð Þ � 1

2 N 0:1; 0:01ð Þ þN 0:14;0:01ð Þð Þ
q3 ¼ x2 4:0ð Þ � 1

2 N 0:1; 0:01ð Þ þN 0:20; 0:01ð Þð Þ; ð27Þ

where the target distributions for q2 2:0ð Þ and q2 4:0ð Þ indicate mix-
tures of univariate Gaussians, and the priors used are given in
Table 3. This target distribution, along with the unique trajectories
obtained by applying the CMC algorithm, are shown in Fig. 12. This
figure illustrates that a bimodal output distribution causes CMC to
sample clusters of parameter values without the need for subpopu-
lation information to be provided ahead of estimation.

3.4. Embryonic stem cell differentiation

We now demonstrate how CMC can be applied to real data gen-
erated from experiments investigating human embryonic stem cell
(hESC) differentiation. Specifically, we use a reaction kinetics-
based model presented in Tu et al. (2019), which seeks to explain
regulation of three transcription factors involved in hESC fate:
CDH1, ZEB1 and KLF8. The regulation of these three transcription
factors was modelled by the following ODE system involving a
number of Michaelis-Menten-type terms,
15
dC
dt ¼ k1

k2þZ2
þ k3

k4þK2 � d1C

dZ
dt ¼ ak5K

2

k6þK2 � d2Z

dK
dt ¼ rk7

k8þC2 � d3K;

ð28Þ

where C ¼ CDH1½ �; Z ¼ ZEB1½ � and K ¼ KLF8½ �, subject to initial con-
ditions: C 0ð Þ ¼ C0; Z 0ð Þ ¼ Z0;K 0ð Þ ¼ K0, and a ¼ 1 and r ¼ 1 are
nondimensional parameters. We recast this system, using nondi-
mensional variables

y1 ¼
k2d1

k1
C; y2 ¼

k6d1

k4k5
Z; y3 ¼

1ffiffiffiffiffi
k4

p K; ð29Þ

and time scale 1
d1
, so that s ¼ d1t, which results in the following

system,

dy1
ds ¼ 1

1þp1y22
þ p2

1þy23
� y1

dy2
ds ¼ y23

1þp3y23
� p4y2

dy3
ds ¼ p5

p6þy21
� p7y3;

ð30Þ

with initial states y1 0ð Þ ¼ y1;0; y2 0ð Þ ¼ y2;0; y3 0ð Þ ¼ y3;0. (See supple-
mentary files for further details.)

In what follows, we perform parameter inference for Eq. (30) on
single-cell RNA-seq data obtained and processed as described in Tu
et al. (2019) from NCBI’s Gene Expression Omnibus. The dataset
has single-cell gene expression data for 758 cells collected at six
times during the course of experiment (0 h, 12 h, 24 h, 36 h, 72 h,
96 h) for [CDH1], [ZEB1] and [KLF8] with 92, 102, 66, 172, 138
and 188 measurements at each time point respectively.

Here, we consider estimating the posterior parameter distribu-
tions using data obtained at t ¼ 12h for CDH1 and t ¼ 72h for KLF8.
Across the three cases described below, we use CMC with priors for
parameters in Eq. (30) as given in Table 3. We assume the initial
values of each variable are given by: y1 0ð Þ ¼ 1:5; y2 0ð Þ ¼ 0:0;
y3 0ð Þ ¼ 0:0.

We first consider the CDH1 data in isolation. To do so, we fit a
Gaussian distribution to these data and obtain q1 ¼ y1 12ð Þ �
N 5:50;1:05ð Þ. CMC produces samples that closely approximate
this distribution (Fig. 13A; blue lines). The joint posterior distribu-
tion for two model parameters, p2; p5ð Þ, is shown in the leftmost
panel of Fig. 14 and shows a concentrated distribution.

Next we consider the KLF8 data alone. We fit a Gaussian distri-
bution to these data and obtain q2 ¼ y3 72ð Þ �N 3:77;1:37ð Þ.
Again, using CMC, we obtain samples that closely approximates
this target (Fig. 13A; orange lines). The posterior distribution for
p2; p5ð Þ is, however, now quite different to previously (Fig. 14 mid-
dle panel) hinting that it may be quite difficult to determine a pos-
terior distribution where we target both q1 and q2.

Finally, we attempt to target the distribution described by both
q1 and q2. Here, we assume that there is no correlation between
these targets because we have no cells with observations for both
t ¼ 12 and t ¼ 72 since the measurement process is destructive. In
Fig. 13B, we plot the joint target distribution and samples from
CMC. In this plot, it is clear that there is a disjunction between
the target distribution and the samples. In particular, the target
distribution for q2 has a mean that is far below the target value.

The rightmost panel of Fig. 14 shows the posterior parameter
distribution for p2; p5ð Þ when targeting this bivariate output distri-
bution. In comparing it to the other panels in the same figure, it is
clear that the posterior distribution when targeting q1; q2ð Þ is
somewhere between the distributions obtained when targeting
q1 and q2 in isolation; unfortunately, this midway house is not sui-
ted to either case. Indeed, this failure to target both q1 and q2

simultaneously suggests that the model does not actually cohere
with the data.
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To investigate this further, we overlay samples (blue points)
from the contour volume estimation step of Algorithm 1 on the
joint target distribution of q1; q2ð Þ in Fig. 15. In the main panel,
the output samples are concentrated in a band that runs from
the top left of the plot towards the lower right. Because of this,
there is relatively low overlap between the joint target and the
contour volumes, indicating that the model does not cohere well
with the data and illustrates why inference struggles to find a pos-
terior distribution consistent with the joint target. However, as
illustrated in Fig. 13A, it is possible to find posterior distributions
consistent with the target distributions for either q1 or q2 in isola-
tion. Fig. 15 indicates why this is the case. Above the main panel,
we plot these target distributions (black solid lines) and the corre-
sponding contour volume distributions (blue dashed lines). There
is considerably more overlap in these marginals than in the joint
densities, which shows that finding a posterior consistent with
each of these targets in isolation is possible but with them both
is tricky. Overall, it appears that the model is not consistent with
the data.

By ‘‘model” here, it could either be that the ODE system
described in Eq. (30) is inappropriate; it is also possible that this
could be due to failure to include noise in the measurement pro-
cess. Given the extent of the discrepancy between the ODE means
and the target contours, we suggest that it’s most likely that the
ODE model misses or misrepresents key processes. These results
illustrate how CMC can be used to determine when a model is
inconsistent with data and also suggest that extending CMC to
handle noisy measurement is likely worthwhile.
4. Discussion

Determining the cause of variability in cellular processes is cru-
cial in many applications, ranging from bioengineering to drug
development. In this paper, we introduce a Bayesian method for
estimating cellular heterogeneity from ‘‘snapshot” measurements
of cellular properties taken at discrete intervals during experi-
ments. Our approach assumes what we call a ‘‘heterogeneous ordi-
nary differential equation” (HODE) framework, in which
biochemical processes in all cells are governed by a common
ODE. In HODEs, each cell has different rate parameter values caus-
ing a variety of measurements to be obtained across cells. In this
framework, estimating heterogeneity in cellular processes
amounts to determining the probability distributions of parameter
values of the governing ODE. Our method of estimation is a two-
step Monte Carlo sampling process we term ‘‘Contour Monte Carlo”
(CMC), which does not require the number of cell clusters to be
provided before estimation, unlike in other approaches. CMC can
be used to process high volumes of individual cellular measure-
ments since the framework involves fitting a kernel density esti-
mator to raw experimental data and using these distributions
rather than data as the target outcome. CMC can handle arbitrary
multivariate structure in measured outputs, meaning it can cap-
ture correlations between the same cellular species at different
timepoints or, for example, contemporaneous correlations
between different cellular compartments. Being a Bayesian
approach, CMC uses prior distributions over parameter values to
ensure uniqueness of the posterior distribution allowing pre-
experimental knowledge to be used to improve estimation robust-
ness. The flexible and robust framework that CMC provides means
it can be used to perform automatic inference for wide-ranging
systems of practical interest.

Our approach also provides a natural way to test that the pro-
cess is working satisfactorily. Feeding posterior parameter samples
obtained by CMC into forward model simulations results in a dis-
tribution of output values which can be compared to the target.
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Indeed, we have found this comparison indispensable in applying
CMC in practice and include it as the last step in the CMC algorithm
(Algorithm 1). Discrepancies between the target output distribu-
tion and its CMC approximation can occur either as a result of poor
estimates of the ‘‘contour volume distribution” in the first stage of
the algorithm or due to insufficient MCMC samples in the second.
Either of these issues are often easily addressed by increasing sam-
ple sizes or changing hyperparameter settings for the kernel den-
sity estimator. Although kernel density estimation in high
dimensional spaces remains an open research problem, we have
found vine copula kernel density estimation works well for the
dimensionality of output measurements we investigate here
(Nagler and Czado, 2016).

Failure to reproduce a given output distribution can also indi-
cate that the generating model (the priors and the forward model)
are incongruent with experimental results. This may either be due
to misspecification of the ODE system or because the assumption
of a deterministic forward model is inappropriate. Our approach
currently assumes that output variation is dominated by cellular
variation in the parameter values of the underlying ODE with mea-
surement noise making a negligible contribution. Whether this is a
reasonable assumption depends on the system under investigation
and, more importantly, on experimental details. We recognise that
neglecting measurement noise when it is, in fact, important in
determining observed data means CMC will overstate cellular vari-
ation. It may also mean that some output distributions cannot be
obtained by our model system (i.e. HODEs without noise). Future
work incorporating a stochastic noise process or, more generally,
including stochastic cellular mechanisms is thus likely to be
worthwhile.

In Fig. 4, we present the workflow for our approach, which
includes as its last step comparing output samples with the target
distribution. As discussed above, if output samples do not corre-
spond with the target, this may indicate that a model isn’t fit for
purpose. Conversely, if there is correspondence with the target dis-
tribution, it is possible that a simplified model – with (say) one or
more fewer parameters – could also recapitulate the same results.
Thus, a process of repeated rounds of model simplification then
CMC could be pursued to simplify a model until output samples
no longer correspond with the target. The most parsimonious
model would then be the simplest case where the output samples
still match the target. We note however, that such an approach
may be dangerous if the most parsimonious model is then used
to predict the distributions of other functionals.

Whilst we have illustrated our approach by fitting ODE models
to data, we recognise that our approach is applicable to determin-
istic forward models in general. These include a large swathe of
models used in computational biology, such as partial differential
equations and difference equations. Similarly, whilst we have illus-
trated our approach by fitting to models with time-invariant
parameters, it could also be used to determine how parameters
vary throughout the course of an experiment – provided the
dynamic evolution of parameter values is itself parameterised.

We have labelled our approach as Bayesian since it involves
explicit estimation of probability distributions and requires priors.
We recognise, however, that it is not of the form used in traditional
Bayesian inference. This is because, rather than aiming to formu-
late a model that describes output observations, our approach aims
to recapitulate output distributions. Others Butler et al. (2018), (in-
cluding us Lambert et al., 2018), have considered similar problems
before; perhaps most notably by Albert Tarantola in his landmark
work on inverse problem theory (see, for example, Tarantola,
2005). In Tarantola’s framework, a joint input parameter and out-
put space is considered, where prior knowledge and experimental
theory combine elegantly to produce a posterior distribution
whose marginal output distribution is a weighted ‘‘conjunction”
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of various sources of information. This work has seen considerable
interest in areas such as the geosciences (Mosegaard and Tarantola,
1995; Vukicevic and Posselt, 2008), and we propose that Taran-
tola’s approach may prove useful for the biosciences.

The natural world is rife with variation, and mathematical mod-
els represent frameworks for understanding its causes. Typically,
the state of biological knowledge is such that one effect – a given
pattern of variation – has many possible causes. Observational or
experimental data can be used to apportion weight to each cause
in a process that amounts to solving an inverse problem. The
approach we describe here follows the Bayesian paradigm of
inverse problem solving where uncertainty in potential causes
(i.e. parameter values) is described using probability distributions.
Here, we illustrate the worth of our method by using it to estimate
cellular heterogeneity in biochemical processes. However, it could
equally be used to invert other classes of under-determined
systems arising elsewhere. Contour Monte Carlo provides an
automatic framework for performing inference on such under-
determined systems, and the use of priors allows for robust and
precise parameter estimation unattainable through the data alone.
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