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Abstract—Secrecy by design is examined as an approach
to information-theoretic secrecy. The main idea behind this
approach is to design an information processing system from
the ground up to be perfectly secure with respect to an explicit
secrecy constraint. The principal technical contributions are
decomposition bounds that allow the representation of a random
variable X as a deterministic function of (S, Z), where S is a given
fixed random variable and Z is constructed to be independent
of S. Using the problems of privacy and lossless compression
as examples, the utility cost of applying secrecy by design is
investigated. Privacy is studied in the setting of the privacy
funnel function previously introduced in the literature and new
bounds for the regime of zero information leakage are derived.
For the problem of lossless compression, it is shown that strong
information-theoretic guarantees can be achieved using a reduced
secret key size and a quantifiable penalty on the compression
rate. The fundamental limits for both problems are characterized
with matching lower and upper bounds when the secret S is a
deterministic function of the information source X.

Index Terms—Data compression, privacy, information

security, information entropy, random variables.

I. INTRODUCTION

E INTRODUCE an approach to partial secrecy which
W we call secrecy by design and investigate the utility cost
of this approach by applying it to two information processing
problems: data privacy and lossless data compression. The idea
behind secrecy by design is to identify a (possibly random)
function of the data that must be secure from an eavesdropper,
and to assure perfect secrecy for this function during the
design of the information processing system. For example,
for the problem of privacy this is done during the design
of the privacy-assuring mapping, while for the problem of
compression this is done during the design of the compressor.
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Fig. 1. Shannon cipher system. The transmitter (Tx) and the receiver (Rx)
communicate a message over an unsecured channel where this message could
be intercepted by the eavesdropper (E). The advantage that the transmitter
and the receiver have over the eavesdropper is a shared secret key.
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Since perfect information-theoretic secrecy is prohibitive for
many information processing systems [1], developing practical
and theoretically sound approaches to partial secrecy is of
paramount importance.

A. Perfect Secrecy

In his seminal work “Communication theory of secrecy
systems”, Shannon introduced a notion of perfect secrecy as
complete statistical independence between publicly available
data and private data [1]. Specifically, [1] analyzed a commu-
nication system, see Figure 1, in which one of M messages
is transmitted over a communication channel ‘in the clear’.
The legitimate transmitter and receiver have an advantage over
the eavesdropper in the form of a shared secret key, which
is modeled by a random variable supported on {1,..., K}.
Perfect secrecy, in this case, is when the cipher text available
to the eavesdropper is statistically independent from the true
message being transmitted between the two trusted parties.
A fundamental result of [1] is that perfect secrecy is possible
if and only if K' > M that is, the shared secret key is at least
the same length as the message.

Perfect secrecy via complete statistical independence is an
intuitive and appealing notion of secrecy since it insures that
the eavesdropper will not be able to make any inference about
the information source. While perfect secrecy is expensive for
communication systems, it is evidently completely prohibitive
in other information processing settings. Consider a setting,
see for example [2], [3], where an owner of a private database
wishes to publish a sanitized version of the database for
public use. The role of the eavesdropper is now played by
a (not necessarily malicious) data analyst of the publicly
available data who may wish to use it in unintended ways.

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 19,2021 at 13:33:16 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2575-1762
https://orcid.org/0000-0002-2062-131X

SHKEL et al.: SECRECY BY DESIGN WITH APPLICATIONS TO PRIVACY AND COMPRESSION 825

Specifically, the database may contain records Xi,..., X,
which are kept private, and only sanitized or obscured versions
Z1,...,Zy, are released. Perfect secrecy in the sense of [1]
would mean complete statistical independence between the
private data X,...,X,, and the sanitized data Zi,...,Z,.
This would certainly ensure privacy, but would also ren-
der the publicly available data useless for any meaningful
task.

B. Partial Secrecy

Since perfect secrecy is impractical for many information
processing systems, it is necessary to relax the secrecy require-
ment to partial secrecy. A number of approaches to partial
secrecy have been developed. In the setting of communication,
cryptographic approaches assume a computationally limited
eavesdropper and rely on computational hardness of certain
problems. For example, the well-known RSA algorithm is
based on the practical difficulty of factoring the product of
two large prime numbers [4].

In a more general setting, approaches to partial secrecy
focus on limiting the amount of information that is revealed to
the eavesdropper. Traditional approaches to information theo-
retic secrecy focus on mechanisms that minimize measures
of information leakage. For example, the original measure
of leakage proposed in [1] is equivocation, or entropy of
the source given the message; equivocation has been sub-
sequently used as the default measure of partial secrecy in
information-theoretic security [5]-[8]. Other approaches to
partial secrecy — motivated by guessing, maximum infor-
mation leakage, and rate-distortion [9]-[18] — have also
been proposed. The problem of partial secrecy in the set-
ting of database privacy has been widely studied in the
computer science literature; approaches such as differential
privacy [2], [3], (e, d)-differential privacy [19], and local
differential privacy [20]-[22] can also be viewed through the
lens of information leakage [23]-[27].

The leakage-based approach to partial secrecy has a number
of notable advantages. First, it is a relaxation of perfect secrecy
in a sense that zero leakage implies perfect secrecy for all
of the above measures. Secondly, it is convenient to assign
a number to the secrecy level of a system and to use that
number for evaluation and design. Finally, measures like dif-
ferential privacy have been shown to have desirable properties
such as composeability across sequential and parallel usages,
as well as graceful degradation in the presence of correlated
data [3].

Criticisms of the leakage approach come down to two ques-
tions: operational interpretability and utility cost. For example,
equivocation and rate-distortion approaches have been criti-
cized as secrecy measures since their operational implications
are not always clear [16], [28]. Likewise, differential privacy
has been shown to be too restrictive for many applications,
and not restrictive enough for some [29]. In general, one could
argue that different measures of leakage are appropriate for dif-
ferent applications; however, this still leaves open the question
of how to select the best measure of leakage given a specific
application.

C. Secrecy by Design

In this work we propose another path towards relaxing per-
fect secrecy which we call secrecy by design." The main idea
behind this approach is to design an information processing
system from the ground up to be perfectly secure with respect
to an explicit secrecy constraint. For example, suppose X
represents the private data or message and Z represents the
publicly available data or message. If the system designer can
identify some (possibly random) function of X — denoted by
S — that completely and precisely encapsulates the secrecy
needs of the system, the aim of system design should be to
perfectly secure S. Mathematically, we model this by requiring
that Z is statistically independent from S. That is, secrecy by
design imposes the constraint

1(5:2) = 0 (1)
instead of the perfect secrecy constraint
1(X:Z) = 0. @)

An immediate appeal of secrecy by design is that it makes
the secrecy guarantee for the system explicit and easy to
interpret: no statistical inference about S could be made by
the eavesdropper.

Our overarching motivation is the Internet of Things (IoT)
setting in which the information processing components are
resource constrained, have stringent delay requirements, and
may be expected to last for decades after installation. Additive
degradation in privacy offered by many leakage approaches
may not be strict enough for the IoT setting, while limited
computational and memory resources require secrecy solutions
to be specially tailored to each application. Consider, for
example, smart meters for monitoring in-home electricity use
dynamics. A wide adaptation of this technology would offer
great economic and environmental benefits, but they are also
known to pose serious threats to individual privacy by leaking
sensitive information like home occupancy patterns [30].

Potential use cases for secrecy by design are modeled by
the following examples.

Example 1 (N-User Process): Let S = {1,..., N} be the
index of one of IV users and A be an arbitrary finite alphabet
over which some process in the system is taking place.
Suppose that every user has its own probability distribution
Py over A. We consider two versions of this setting.

First, suppose that X = § x A. For example, z = (s,a)
could designate a job that user s € S requested from a list of
possible jobs A. Suppose that

Px(s,a) = Py(a). 3)

In this case the data consists of the job being requested and
the metadata communicating the identity of the user. Next,
suppose that X = A and

Px(a) =) Pi(a)Ps(s). “

seS

IWe borrow this terminology from the software engineering community
where the principle of “security by design” means that the software has been
designed from the foundation to be secure.
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That is, the data consists of the job being requested without
the metadata; however, the distribution of the data still depends
on the identity of the user. Observe that in this case S is a
random function of X.

The secret S in Example 1 could be more than just an iden-
tity of an individual. It could be any combination of features in
the data that are well-known to reveal an individual’s identity.
It could also include other sensitive features: for example,
a presence or absence of a disease in a medical history of an
individual, or features which the data analyst is not allowed to
discriminate against, such as race or gender. Mathematically,
Example 1 captures a very general setting and subsumes most
later examples in this work.

Example 2 (Exponential Family): Suppose X ~ Pz where
Ps belongs to an exponential family which is parametrized
by O and the secret .S is the sufficient statistic for this family.
That is

P(z) =exp (8To(z) —y(B)) r(z) )

for some § € © and S = o(X).

Example 2 models the situation where the eavesdropper
needs to be prevented from inferring the parameter § € ©
in the data. Note that in this case S is a deterministic function
of X.

To the best of our knowledge, this work is the first to focus
on secrecy by design as a principled approach to information
theoretic secrecy. However, there have been a number of
relevant works that study optimal secrecy mechanism that
target a function of data. Most notably, recent work on perfect
privacy [31]-[33] investigates the feasibility of the secrecy
by design principle outlined above in the context of the pri-
vacy funnel function. Other examples include perfect function
secrecy in a rate-distortion setting [34], [35], and securing cor-
related random variables for compression using equivocation
as a leakage measure [36]. Finally, maximal leakage [15], [16]
is defined as the worst-case refinement in knowledge of some
random transformation of data. It identifies securing a function
of the data as the goal of partial secrecy; however, it does not
target a specific function, but rather focuses on decreasing the
leakage across all functions simultaneously.

In this work we investigate the utility cost of applying
secrecy by design to two information processing problems:
privacy and compression. Privacy is studied in the setting of
the privacy funnel function and new bounds for the regime
of zero information leakage are derived. For the problem
of lossless compression, it is shown that strong information-
theoretic guarantees can be achieved using a reduced secret
key size and a quantifiable penalty on the compression rate.
Our lower and upper bounds match for both problems when
the secret S is a deterministic function of the information
source X.

The rest of this paper is structured as follows. We conclude
this section by introducing the information theoretic measures
needed to state our results. In Section IT we give an overview
of our results. In Section III we provide decomposition bounds
that allow us to represent a random variable X as a function
of the secret S and a public random variable Z which is inde-
pendent of S. We discuss applications of our decomposition

bounds to privacy in Section IV and to compression in
Section V. We end with concluding remarks in Section VI.

D. Notation and Preliminaries

Given a random variable Y jointly distributed with X,
information and conditional information are given by?

1
ix(z) =log Pr(e) (6)
and
) zly) =log ——— 7
xiv (=ly) Pxy (z]y)
respectively. The entropy and conditional entropy are given by
H(X) = E@x(X)], (®)
H(XY) = E[uxy(X[Y)], ©)
respectively. Moreover,
H(XY =y) =E [ixp (XYY =9 (10)
It follows that X and Y are independent if and only if
x|y (7ly) = 1x(2), (1)

for all z € X and y € ). Finally, recall that conditioning
reduces entropy and

H(X) > H(XY) (12)

always holds. However, H(X|Y = y) could be greater than
or smaller than H(X); see [37].
Mutual information between X and Y is given by

I(X;Y)=H(X) - H(X|Y) (13)

whenever the entropy of X is finite. It could be defined more
generally [37]. We use the notation

XY —Z (14)

to denote that

I(X; Z|Y) = 0. (15)

In other words, X < Y < Z form a Markov chain. Finally,
we use

1 1
h(p) :plogl—) + (1 —p)log : (16)

to denote the binary entropy function.

II. OVERVIEW OF THE RESULTS

In this work we focus on secrecy by design in the one-shot
setting where a single realization of the information source
X and a correlated secret S with a known joint distribution
Pxgs is given. We study mechanisms for constructing public
information Z that is independent of S. Suppose S is a
deterministic function of X, say S = fs(X) for some secrecy
function

fs: & —=S. 17

Then, we say Z is fs-secure. In general, we say that such Z is
S-secure or simply secure when S is understood from context.

2Throughout this paper all logarithm and exponential functions are assumed
to have base two.
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A. Secure Decomposition Bounds

We begin by answering the following question. Given a
random variable X and an arbitrary correlated random variable
S, is it always possible to decompose X into S and an
S-secure Z while capturing all (or most) of the information
about X?

Example 3: Let X = A" = {0,1}" and S = A%. That
is, the secret information is the first k bits of a™. If the A;’s
are independent and identically distributed (i.i.d) the answer
to the question above is trivially “yes” with Z = A} ;.

Example 3 is well-behaved in a sense that X and S interact
in a manageable way and it is possible to find a secure
decomposition by inspection. Consider a more general setting
of the N-user process given in Example 1. In this case it is
not enough to simply hide the value of s € S since there is a
statistical dependence between X and S.

Our first result, Lemma 1 in Section III, shows that it
is always possible to find a decomposition for arbitrary
correlated random variables X and S provided that some
additional randomness is used. Moreover, the decomposition
(S, Z) captures all information about X in a sense that X
can be perfectly reconstructed from (S, Z); that is, X is a
deterministic function of (.S, Z). Lemma 1 is also known as the
Functional Representation Lemma [38] and has been proved
independently in [39]-[41] where it was shown that Z has
finite support whenever X and S have finite support. Since it
is a conceptual and a technical building block of many of our
results, we present the full proof of Lemma 1.

Once we establish that a secure decomposition (S, Z) of
X always exists, we study other properties of secure decom-
positions. For example, for the problem of compression the
property of interest is the entropy of Z. We extend the analysis
of Lemma 1 to the case when X is countably infinite and show
in Lemma 2 that there exists an S-secure Z such that

H(Z) <) H(X|S=s). (18)
sES
We show a lower bound on the entropy of Z,
H(Z) > manH(X|S =s) (19)
se

in Lemma 3. We conclude Section III with Theorems 1-3
which give bounds on the information spectrum of Z in the
style of [42]. In particular, Theorem 1 is enough to reconcile
the gap between (18) and (19), and to show that (19) is the
asymptotically optimal bound.

The rest of this work deals with applications of our decom-
position bounds to problems of privacy and lossless compres-
sion. For the problem of privacy, X is decomposed into (.5, Z)
and Z is shared publicly, while S is kept private, see Figure 2.
In the setting of the privacy funnel function the goal is to
maximize the mutual information between X and Z. For the
problem of compression, the first stage of our coding strategy
uses the shared secret key to encode S with a one-time pad.
The second stage reconciles the remaining uncertainty about X
by compressing Z using any traditional strategy, see Figure 3.
We show that the constructions in Figures 2 and 3 achieve the

fundamental limits of privacy and lossless compression with
matching converse bounds when S is a deterministic function
of X.

B. Applications to Privacy

In Section IV we apply our decomposition bounds to the
privacy funnel function originally introduced in [43]. The
general privacy funnel function is given by

G1(t, Pxs) = inf{I(S; 2) : I(X;Z) > t,S « X < Z}.
(20)

In [31]-[33], special attention is paid to the perfect privacy?
regime in which I(S;Z) = 0. Formally, this is done by
studying the function

I(X; 7). 1)

go(Pxs) = sup

Z:1(8;2)=0
S—X—Z
A distinguishing feature of the privacy funnel approach is
that it imposes the Markov chain condition,

S X Z (22)

on the S-secure construction of Z. In other words, the
privacy-assuring mapping is required to be a function of
the information source X only, and not of the secret S.
In many applications of interest the value of S may actually
be known and privacy-assuring mechanisms that incorporate
this knowledge may lead to better system performance than the
ones which are blind to the value of S. In order to address this
setting, we define a secret-dependent perfect privacy function:

ho(Pxs) = sup I(X;Z). (23)
Z:1(S;Z)=0
It follows from (21) and (23) that
ho(Pxs) > go(Pxs). (24)

We show in Example 6 that the gap between ho(Pxgs) and
go(Pxs) could be quite large in general.

The decomposition bounds in Section III are not immedi-
ately applicable to (21) since the Markov chain (22) is not
enforced by Lemma 1. Nevertheless, we are able to leverage
these bounds to make strong statements about the relationship
between (21) and (23). Of particular interest is Theorem 7
which shows that

go(Pxs) < ho(Pxs) < H(XIS) (25)

and states the necessary and sufficient conditions for both
inequalities in (25) to be equalities. These conditions hold,
for example, when S is a deterministic function of X; they
hold more generally and we discuss this in more detail in
Section IV.

Finally, we remark that in the privacy funnel setting, mutual
information is used as a proxy for utility. A motivation behind
this is that I(X;Z) shows up as a relevant measure of
statistical dependence between X and Z in many information

3Note that [31]-[33] use perfect privacy to refer to complete statistical
independence between Z and S. Compare this to perfect secrecy which we
use to refer to perfect statistical independence between Z and X, as is done
in [1].
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Decomposition-based coding strategy for privacy. An information source X is represented as (.S, Z) where S is the predetermined secret and Z is

independent of S. Z is shared publicly while S and X are kept private. The goal is to maximize the mutual information between X and Z.

X S A
+ N3

SECRET KEY

COMPRESS

1 [}

Fig. 3.

Two-part coding strategy for secure compression. First, an information source X is represented as (S, Z) where S is the part of data that needs to

be secret, and Z is independent of S. Secondly, S is encrypted using a shared secret key with one-time-pad encryption, while Z is compressed using any
regular compression strategy. For variable-length lossless compression we require that X can be reconstructed from (.5, Z) without error, while for fixed-length

compression a small probability of error is allowed.

processing problems; this makes it a good target to test out
the feasibility of perfect privacy. A more concrete operational
motivation for maximizing mutual information is that it is
equivalent to minimizing the logarithmic loss (log-loss) for a
predictor of X based on Z, see [44]-[47]. From the perspective
of prediction, (25) is equivalent to saying that the smallest
log-loss achievable in secure prediction is I(X;S). In other
words, this is the smallest amount of information that needs
to be hidden from a data analyst to keep S perfectly secure.
We discuss this in more detail in Section IV as well.

C. Applications to Compression

In Section V we apply our decomposition bounds to study
the problems of variable-length and fixed-length compression.
The privacy system studied in Section IV assumes that the
data analyst and the eavesdropper are the same entity. Because
of this, it is generally impossible to completely disclose
X in an S-secure way. Secure compression, on the other
hand, happens over the Shannon cipher system, see Figure 1.
In this setting the decompressor and the eavesdropper are
two separate entities. By using a shared secret key between
the two legitimate parties it becomes possible to losslessly
communicate the value of X while still keeping the system
S-secure. The utility cost of such lossless communication will
be our primary focus and the main quantity of interest will be
the compression rate.

We begin with variable-length compression. Traditional
lossless compression is achieved via variable-length coding
by representing the more likely realizations with shorter
sequences, and the less likely realizations with longer
sequences. When perfect secrecy is desired, variable-length
compression is meaningless since the length of the compressed
sequence would give away something about the sequence. As it
turns out, when only partial secrecy is desired, variable-length
compression is again possible with suitably designed codes.

We show in Theorem 9 that for any S-secure compressor
the compression length of Z is bounded from below by

r;leanH(XLS' =3). (26)

Theorem 9 is a restatement of Lemma 3 with a small caveat
of accounting for the shared secret between the compressor
and the decompressor. This result makes no assumption on
the distribution of the secret key or the amount of shared
secret key available to the legitimate parties. It also makes
no assumptions about the relationship between X and .S or on
whether S is available at the time of encoding.

The rest of Section V will emphasize the case when the
secret key is equiprobable on {1,...,K} and when S is
a deterministic function of X. We also take a perspective
that the shared secret key is a limited resource and focus
on the minimum required secret key needed for a given
secure compression task. Not surprisingly, the smallest amount
of secret key needed will be K |S| and in that case
the fundamental limit of variable-length compression behaves
like*

log | S|+ max H(X|S = s). (27)
ses

Observe that when S is a deterministic function of X, the fun-

damental limit of traditional compression can be written as

H(X) = H(S) + H(X|S). (28)

The utility penalty for secrecy by design becomes readily
apparent when we compare (27) with the right hand side
of (28). This corresponds to the two stages of this encoding
strategy in Figure 3. The partial secrecy constraint is directly
responsible for the penalty observed in the first term, while
in order to construct a Z that is independent from .S we need
local randomness at the compressor; and, this is the source of
the penalty observed in the second term in (27).

We will also study almost-lossless fixed-length compres-
sion. In this setting the compressor and the decompressor are
restricted to a fixed compression budget, but are allowed a
small probability of error. Allowing a small probability of

4When we say “behaves like” we mean that the asymptotic compression
limits are given by (27). In addition, the non-asymptotic codeword lengths
are approximated by log |S| + maxses tx|s(z|s) in the same way that the
nonasymptotic codeword lengths for traditional compression are approximated
by vx ().
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compression error dramatically improves the performance of
secure compressors. That is, the second term in (27) behaves
like H(X|S), an average rather than worst case over s € S.
Such an improvement in performance may seem enticing,
however it is worth highlighting that this holds only if no rec-
onciliation of error will take place after the initial transmission
of the message. A system that would apply these single-shot
results, and then attempt to reconcile the compression error
in an S-secure way is, in fact, a variable-length system and
thus (27) would still the be the relevant bound.

Our bounds on variable-length secure compression demon-
strate that there is a fundamental tension between compression
and secrecy by design. This tension is not usually observed
in information-theoretic security where secrecy is measured
by equivocation. Most notably, in [36] Yamamoto studies a
similar problem of compressing an information source X
while securing a correlated secret S and finds that the rate
of compression remains H(X) under any positive leakage
constraints on S.

III. BOUNDS ON SECURE DECOMPOSITION

In this section we investigate decompositions bounds that
allow us to represent a random variable X as a deterministic
function of (S, Z), where S is a given fixed random variable
and Z is constructed to be independent of S. We establish
that such decomposition always exists in Lemma 1. We then
proceed to extend the analysis of Lemma 1 to the case when
the alphabet of X is countably infinite, as well as provide
a lower bound on the entropy of Z. We end the section
by deriving more refined bounds on the entropy of Z using
information spectrum techniques.

A. Functional Representation Lemma

We begin with the Functional Representation Lemma which
can be found in [38] and was independently derived
in [39]-[41]. While it has been previously used as an auxiliary
result to analyze rate-regions in network information theory
problems, it will be a basic building block in many of our
results.

Lemma 1 (Functional Representation Lemma): Let X and
S be two jointly distributed random variables supported on a
finite or a countably infinite alphabet X and a finite alphabet
S, respectively. There exists a random variable Z on Z such
that S and Z are independent, that is

1(S;7) =0, (29)
X is a deterministic function of S and Z, that is
H(X|Z,S)=0, (30)
and the support of Z is bounded by
2] <[S](1X] = 1) + 1. 3D

Proof: The main idea in the proof is to construct a Markov
chain

(X,S) = U« Z 32)

where U is a uniform random variable on (0, 1) and is indepen-
dent of S. Z will be defined via a suitable quantization of U

this will ensure that (29) holds. We describe the construction
for finite, as well as for countably infinite alphabets.

First, to construct such a U assume without loss of gener-
ality that X = {1,...,|X|} if X is finite and X = {1,2,...}
if X' is countably infinite. Let X; = {z : Px g(z|s) > 0}. For
each s € S and = € X define

ke,s = Fx|s(z]s) (33)

where

Fxy(z[s) = P[X < 2[S = 5] (34)

is the cumulative distribution function (CDF) of X given S
and define ko s = 0 for all s € S. For a given realization
(X, S) define a random variable X as

X =max{z € XsU{0}: 2 < X}. (35)

Then

U =Ulkg.g kx.s) (36)

where Ula,a) denotes a uniform random variable on [a, a).
It is straightforward to check that

u, u€ 0,1
Fyis(uls) = Fy(u) = | : ) (37)
0, otherwise
and therefore U and S are independent.
Next, the alphabet of Z is given by
zZ = U U {kx,s} (38)

seSzeX

and is a countable subset of the unit interval. When X is finite,
(31) follows directly from (38). We define

Z =min{z € Z:U < z}. (39)

Since 7 is obtained by the quantization of U that is indepen-
dent of S, Z and S are also independent and (29) holds.

Observe that by this construction Z may take on the value
kx,s or it may take on some other value Z € (k')?,s’ kx.s)
if such a Z € Z exists. In other words, this construction
guarantees that, for a fixed s € S, each x € X is mapped
to a disjoint segment of the unit interval. More explicitly,
the function

g(s,2z) = argmin{k, s: 2 < kg s} (40)
rEXs
would recover x for a given (s, z) and thus (30) holds. O

Remark 1: When S is a deterministic function of X, and
| X| is finite, (31) could be tightened to

2] < X[ =[S+ 1. (41)

This is because for each x there is a unique s € S such
that = € X,. In other words, X, partition X into |S| disjoint
subsets.

Lemma 1 establishes an existence of a secure decomposition
for a given (X, S). Recall the well-known trick of obtaining an
arbitrary continuous random variable from a uniform random
variable by applying the inverse CDF. The construction of the
uniform random variable U based on the conditional distri-
butions Py g(-|s) could be viewed as a reverse application
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Ub.3) Uls)
(31,2) o) |
(8, X) U, K
(82,21)
U o 3

2 O

Fig. 4. An illustration of the S-secure construction from Lemma 1 for the
joint distribution Px g in Example 4.

of this trick. In the present case the distributions Px|g(-|s)
are discrete; therefore we randomize along the jumps in
the CDF.

Example 4: Let X and S be finite random variables sup-
ported on X' = {z1,22} and S = {s1, s2} with the conditional
distribution Px g given by

Pxs(z]s) = (42)

= (s2,71)

s,x) = (s2,22)

= oo N
—~ —~ O
VA
8

~ O

According to Lemma 1, an S-secure Z supported on
Z = {21, 20, 23} exists and is given by

17 (S,J)) = (51,1‘1)
Ples(21|x,3) = %a (S,J)) = (5251‘1) (43)

0, otherwise

3, (s,2) = (s2,21)
Pyixs(z2|z,s) = ¢ 5, (s,x) = (s1,22) (44)

0, otherwise

%a (S,{E) = (81,$2)
PZ|XS(23|J;;S) =41, (S,{E) = (SanQ) (45)

0, otherwise

The construction of Z is illustrated in Figure 4.

B. Bounds on the Entropy of Z

The analysis in Lemma 1 could be extended to obtain
a bound on H(Z) which is particularly useful when X is
countably infinite. This is done in the next lemma.

Lemma 2: Let X and S be two jointly distributed random
variables supported on a finite or a countably infinite alphabet
X and a finite alphabet S, respectively. There exists a random
variable Z on Z that satisfies (29), (30), and

H(Z) <Y H(X|S=s).

seS

(46)

The next lemma gives a simple but conceptually important
lower bound on the entropy of secure decompositions.

Lemma 3: Let (X, S) be jointly distributed random vari-
ables. If random the variable 7 satisfies (29) and (30) then

H(Z) > max H(X|S = s). (47)

sES

The proof of Lemma 2 is given in Appendix B. The proof
of Lemma 3 is a special case of the proof of Lemma 6 and is
given in Appendix D.

Example 5: Let X, S, and Z be as in Example 4. According
to Lemma 3,

2o ()42} 0 (3) 0 o

According to Lemmas 1 and 2,

H(Z) < min {10g3,h (%) +h (i)} < 1.585 bits. (49)

Then,
Lo,
Py(s) =22 74 (50)
2() {i z € {z2,23}
and
H(Z) = 1.5 bits. 51

C. Refinements via the Information Spectrum

Lemmas 2 and 3 give upper and lower bounds on the
entropy of an S-secure Z in terms of the entropy of X
conditioned on values of s € S§. The next two theorems give
an estimate on the entropy of Z using information spectrum
techniques. That is, instead of directly bounding the entropy
of Z, as in Lemmas 2 and 3, we derive bounds on the
distribution of the information of Z. These bounds are more
refined in a sense that they allow for better estimates of
asymptotic fundamental limits, and are conceptually pleasing
in a sense that they bound the information of Z in terms of
the conditional information of X given S.

To state these theorems we define

a(Py, L) =E[1{wy(Y) <log L} exp (2y (Y) — log L)]
+ Py (Y) > logL] (52)

where Py is an arbitrary distribution and L > 1 is a real
number.

Theorem 1: Let X and S be two jointly distributed random
variables supported on a finite or a countably infinite alphabet
X and a finite alphabet S, respectively. Then, for any real
L > 1 there exists a random variable Z satisfying (29), (30),
and

Plz(Z) >logl] < max o (PX|S:S, L) (53)

< meagcmgxg {P [1x)5(X|S) > log L — 7|S = s] +exp(—7)}.
(54)

A detailed proof of Theorem 1 is given in the Appendix B.
Informally, the proof of Theorem 1 is based on the idea of
constructing a map from (X,S) to Z by breaking up the
probabilities Py g (x|s) into pieces of size 7. The first term
in (52) corresponds to the case when Py |g(z|s) > + and
some amount of probability less than % is left over while
the second term in (52) corresponds to the case when this is
not possible because Py |s(z|s) < +.

Theorem 1 relates the distribution of 17 (Z) to the distribu-
tion of the worst-case (over s € S) distribution of 2| g(X]|s).
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Observe a nice correspondence between (54) and the lower
bound given in the next theorem.

Theorem 2: Let X and S be jointly distributed random
variables supported on a finite or a countably infinite alphabet
X and a finite alphabet S, respectively. If a random variable
Z satisfies (29) and (30) then

Pliz(Z) > logL]
> max O{P [1x5(X]S) >log L+ 7|S = s] — exp(—7)}

sES, T>
(55)

holds for any real L > 1.

Theorem 2 is proved in Appendix B. Theorems 1 and 2
could be used to show that, asymptotically, H(Z) is
maxses H(X|S = s).

The next theorem gives the distribution of Z in the case
when exact lossless reconstruction of X is not required.

Theorem 3: Let (X, S) be jointly distributed random vari-
ables supported on a finite or a countably infinite alphabet X’
and a finite alphabet S, respectively. Fix an integer L > 1.
Then, there exists a random variable Z on Z satisfying (29)
and

P 1x)2,5(X|Z,5) > 0|S =s| < a(Px|s=s,L)  (56)

forall s € S. Moreover, Z is equiprobableon Z = {1, ..., L}.
That is, H(Z) = log L.

Theorems 1 and 3 will be behind the achievability bounds
in Section V. At the same time, we will derive corresponding
lower bounds on the performance of secure compressors when
S is a deterministic function of X.

IV. APPLICATIONS TO PRIVACY

In this section we explore the applications of the decom-
position bounds from Section III to the problem of privacy in
the setting of the privacy funnel function [43]. We focus on
the perfect privacy functions go(Pxs) and ho(Pxs) defined
in (21) and (23), respectively. We begin by reviewing the
necessary and sufficient conditions for go(Pxs) and ho(Pxs)
to be nonzero. We then show that go(Pxs) and ho(Pxs)
achieve the upper bound (25) whenever S is a deterministic
function of X and characterize the necessary and sufficient
conditions for the upper bound (25) to be achieved in general.
We end the section by discussing the problem of perfect
privacy from a perspective of secure prediction with log-loss.

A. On Feasibility of Perfect Privacy
The following
[31, Theorem 10]).
Theorem 4 ( [31], [48]): Let X and S be two jointly
distributed random variables. Then

result is shown in [48] (see also

go(Pxs) >0 (57)

if and only if the rows of [Pg x (-|z)] are linearly dependent.

According to Theorem 4, on the one hand, it is possible to
achieve perfect privacy with non-trivial utility and unknown
S whenever |S| < |X| since in that case there will always
be linearly dependent rows in the matrix [Pg|x (-|z)]. On the

other hand, if |S| > |X| perfect privacy is only achievable if
the joint distribution Py g has a very particular structure.

Example 6 (Erasure Channel): Let X = {0,1} and
S = {0,e,1}. Suppose that (X,S) are jointly distributed
according to

€

3= 5 T=s
Pxs(z,5) =1 %, s=e (58)
0, otherwise

for some 0 < e < 1. Applying the construction in proof of
Lemma 1 we obtain the following lower bound

ho(Pxs) >1—h <%(1 - e)) .

The random variable Z that achieves this lower bound is
supported on {0, 1} and is produced by the joint distribution

(59)

%, r=3s
Pyixs(zlr,s) =<1, z=zs=¢€ (60)
0, otherwise.
However,
1—€ € 0
Paxtil = |15 ¢, ] (o)
and according to Theorem 4
go(Pxs) =0. (62)

As can be seen from Example 6, requiring the S-secure Z to
satisfy the Markov chain condition S < X « Z could impose
a significant cost in terms of utility. In many applications
of interest S may actually be known to the designer of the
privacy-assuring mapping, and it is beneficial to understand
the behavior of ho(Pxs).

We begin with a corollary of Lemma 1 that characterizes
when non-trivial utility is possible under perfect privacy with
known S.

Theorem 5: Let X and S be two jointly distributed random
variables supported on finite or countably infinite X' and finite
S, respectively. Then

ho(Pxs) >0 (63)

if and only if

H(X|S) > 0. (64)

That is, X is not a deterministic function of S.

The proof of Theorem 5 is given in Appendix C. The
same result was also recently shown in [33] by explicitly
constructing a Z on £ = {z1,22} in a manner similar to
the proof of Theorem 4 given in [31].

The functions go(Pxs) and hg(Pxg) can be viewed as two
extremes of a more general privacy problem: at one extreme
the value of S is completely known during the construction of
the privacy preserving mapping, while at the other extreme it
is completely unknown. The feasibility of perfect privacy in
an intermediate regime when some side information about S
is known is also characterized in [33]. Moreover, [33] shows
that go(Pxs) and ho(Pxgs) could be computed by solving a
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standard linear program. In the remainder of the section we
look at a different aspect of this problem and characterize
the conditions under which the spectrum of privacy regimes
defined by go(Pxs) and ho(Pxg) collapses into one.

B. New Lower and Upper Bounds on Perfect Privacy

In order to further explore the relationship between
ho(Pxs) and go(Pxs), we begin with the following basic, but
important, observation. Let X, S, and Z be arbitrary random
variables. Then, by the chain rule

I(X,8:2) = 1(X;Z) + 1(S; Z|X) (65)
=1(S;2)+ 1(X; Z|5) (66)
=I1(S;2)+ H(X|S)— H(X|S, Z). (67)

Therefore, for any S-secure Z it holds that
I(X;Z)=H(X|S) - H(X|S,Z) - I(S; Z|X). (68)

Since (68) holds for any S-secure Z, H(X|S) is an upper
bound on ho(Pxg) and on go(Pxs). This is formalized for
ho(Pxs) in Theorem 7 and was shown for go(Pxs) in [31].
Equation (68) could also be used to lower bound ho(Pxs),
as is shown in the following Theorem.

Theorem 6: Let X and S be two jointly distributed random
variables supported on finite X and S, respectively. Then

ho(Pxs) > H(X|S) — H(S|X) = H(X) — H(S). (69)

The lower bound (69) is tight if and only if S is a deterministic
function of X.

Theorem 6 is proven in Appendix C. When S is a deter-
ministic function of X

go(Pxs) = ho(Pxs) = H(X|S)

since then the Markov chain S < X < Z holds for any
S-secure Z.

Example 7 (Empirical Mean): Consider a special case of
Example 2 where X" is i.i.d. Bernoulli(p) and

1 n

S is a deterministic function of X" and applying Theorem 6
with X «+— X™ and S «+— S,,,

(70)

(71)

_ _ = k n—k n
gMPXMn)—hOU&m&J——Z;p(1—p) bg(k>.
(72)

Using basic techniques from the method of types and
Stirling’s approximation [37] it can be shown that

= lim 7h0(PX”S”) = h(p).

n—oo n
In other words, the amount of mutual information per bit
between X" and an S,,-secure Z asymptotically approaches
H(X) and, asymptotically, there is no penalty for perfect
privacy in this example.

Pxn
lim go(Px Sn)

n—00 n

(73)

Theorem 7: Let X and S be two jointly distributed random
variables supported on finite X and S, respectively. Then

g0(Pxs) < ho(Pxs) < H(X|S). (714

Moreover, the following are equivalent:

D go(Pxs) = H(X|S),

2) ho(Pxs) = go(Pxs),

3) ho(Pxs) = H(X|S).

The proof of Theorem 7 is given in Appendix C. It is based
on (68) which shows that the gap between the performance of a
given S-secure Z and the upper bound H (X |S) is captured by
two terms: 1(Z; S|X) and H(X|S, Z). The term I(Z; S|X) is
equal to zero whenever the Markov chain S < X < Z holds;
that is, Z is a valid candidate for a maximizer of go(Pxs).
The condition H(X|S,Z) = 0, on the other hand, is exactly
the condition guaranteed by Lemma 1 and says that X must
be a deterministic function of S and Z. We show in Lemma 5
in Appendix C that a valid maximizer for ho(Pxs) must also
satisfy H(X1S,Z) = 0.

The necessary and sufficient conditions for equalities in (74)
are satisfied whenever S is a deterministic function of X.
There are two other cases for which these conditions are
trivially satisfied: 1) X and S are independent and 2) X is a
deterministic function of S. The next example shows that these
trivial cases are not the only ones for which the conditions in
Theorem 7 hold.

Example 8 (Reverse Erasure Channel): Let X = {0,e,1}
and S = {0,1}. Suppose that (X,S) are jointly distributed
according to

3= 5 T=s
Pxs(z,5) =1 %, r=e (75)
0, otherwise
for some 0 < e < 1. Then
g0(Pxs) = ho(Pxs) = h(e). (76)

The random variable Z on Z = {z1, 2o} that achieves (76) is
produced by the joint distribution
1, z=2 and z € {0,1}
PZ\X (Z|£C) = 1,
0, otherwise.

z=zyand xz = e (77)

Example 8 is also derived in [32, Lemma 27] where it is
shown that go(Pxs) = H(X|S).

In general, there does not appear to be a better way to
characterize necessary and sufficient conditions for ho(Pxs)
and go(Pxs) to achieve (74) other than the ones given in
Theorem 7. As the next example demonstrates, it is possible
to leverage the insights of Theorem 7 to obtain such conditions
given additional assumptions on .S or X.

Example 9 (Binary Secret):

Define
S: = {s €S : Px|s(x]s) > 0}. (78)
go(Pxs) = H(X|S) only if for all x € X,
Px|s(x]s1) = Px|s(x|s2) for all 51,55 € S,. (79)
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However, suppose |S| = 2. Then go(Pxs) = H(X|S) if and
only if (79) holds for all z € X.

C. Prediction With Log-Loss

Finally, we reformulate the privacy funnel problem
from the perspective of secure prediction with logarithmic
loss [44]-[47]. A widely used loss function in learning theory,
the log-loss is a natural measure of loss in settings where
the reconstructions are allowed to be soft, i.e. the predictor
outputs a distribution over possible values of X rather than a
hard guess. The log-loss between x € X and its reconstruction
P € P(X) is given by

((z, P) = log ;

P(x)

where P(X) is the set of all probability mass functions on X'.
Let

(80)

P:Z2—PX) (81)

denote such a soft predictor of X given an S-secure Z
supported on Z. That is, for a given value of z € Z, P(-|2)
is a distribution on X.

When the joint distribution Pxz is known, deriving the
optimal average-case predictor is straightforward:

. 1
E [K(X, P)} —F |log ) (82)
- Px1z(X12) +H(X|Z) (83)

P(X1|Z)
= D(Pxz||P|Pz) + H(X|Z) (84)
> H(X|2). (85)

Equation (84) is minimized by P = Px |7 and the smallest
attainable log-loss for secure prediction of X based on Z
is H(X|Z). This is equivalent to maximizing the mutual
information between X and Z, as is done in in (21) and (23),
since

I(X;Z2)=H(X)—-H(X|Z). (86)
In light of this discussion, Theorem 7 shows that
inf inf E [e(X, P)} (87)
Z:1(S;2)=0 p: ZP(X)
S—X—Z
> inf inf E [e(X, P)] > I(X;S).  (88)
Z:1(8;2)=0 p. Z-P(x)

In other words, the log-loss suffered by an S-secure predictor
is lower bounded by the mutual information between the
information source X and the secret S. This lower bound is
attainable, for example, when S is a deterministic function
of X.

V. APPLICATIONS TO COMPRESSION

We apply decomposition bounds from Section III to the
problem of lossless compression. We begin with variable
length compression where we require completely lossless
reconstruction of the information source. We then relax the

complete reconstruction requirement and study almost lossless
fixed length compression. We present corresponding converse
bounds for the case when S is a deterministic function of X
and the shared secret key size is i = |S| for both compression
settings. The bounds presented in this section are used to
derive asymptotic fundamental limits in Appendix A.

A. Variable-Length Compression

A prefix-free variable-length code with a secret key of size
K is a pair of mappings:

Encoder: c: X x {1,...,K} — {0,1}"
Decoder: d: {0,1}" x{1,...,K} = X

where no codeword in the image of c is a prefix of any
another codeword. Let U be equiprobable on {1,..., K} and
independent of X. The variable-length code (c,d) is S-secure
if

I(c(X,U); S) =0. (89)

When S is a deterministic function of X, with S = fi(X),
we will also call such a code fs-secure. An S-secure code
(c,d) is lossless if

Pld(c(X,U),U) = X] =1. (90)

We assume that, given a fixed key value k, c(z, k) could be
random, that is, the compressor has access to local random-
ness, in addition to the shared randomness represented by U.

Let ¢(s) denote the length of a string s € {0,1}*. We say
that (c,d) is an (I, K)-variable-length code if

E[(c(X, k)] <1, VEke{l,...,K}. 1)

We say that (c,d) is an (I, K, €)-variable-length source code
if

Pl(c(X, k) > 1] <e, Vke{l,...,K}.  (92)

The non-asymptotic fundamental limits of S-secure lossless
compression are given by

0% g(K) =inf{l : 3 S-secure (I, K)-code} (93)

and

exg(l, K) = inf{e : 3 S-secure (I, K, €)-code}. (94)

We begin with direct lower and upper bound on the average
length of S-secure variable-length codes.

Theorem 8: Let X and S be two jointly distributed random
variables supported on a finite or a countably infinite alphabet
X and a finite alphabet S, respectively. Then

Uies(IS)) <> H(X|S = 5) + 1+ [log [S]]. (95)
seS
If X is finite then
Cxs([S]) < [log(ISN(|X] — 1) + 1)] + [log[S[],  (96)
and if S is also a deterministic function of X then
Cxs(IS]) < log(|X] —[S|+1)] + [log S]] 97)
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Proof: The theorem follows from the two-part coding
construction outlined in Section II and Lemmas | and 2. [J
The next theorem gives a direct lower bound on the average
length of S-secure variable-length codes.
Theorem 9: Let X and S be two jointly distributed random
variables supported on a finite or a countably infinite alphabet
X and a finite alphabet S, respectively. Then

0y g(K) zmaSXH(XLS':s) (98)
s€
holds for any K € {1,2,...}.
If S is a deterministic function of X then for any K > |S|,

% g(K) > log|S| (99)

and f,-secure codes do not exist for K < |S].

Lower bound (98) is a corollary of Lemma 3 with a caveat
of accounting for the shared secret key and (99) is a corollary
of [1]. Theorem 9 is proved in Appendix D. We highlight that,
although our primary focus is on the case K = |S], (98) holds
for an arbitrary value of K and its proof does not use the fact
that U is equiprobable on {1,..., K'}. In general, Theorems 8
and 9 are sometimes asymptotically tight as is shown in the
next example.

Example 10 (Empirical Mean): Let X™ and S be as in
Example 7. Applying Theorems 8 and 9 with X «— X" and
S5,

" *
max{kér%gfl} log (k),log(n + 1)} < lis(n+1) (100)

<log(2" —n) +log(n +1). (101)
It is easy to check that
25 1
lim Cs(n+1) _ 1. (102)

n—oo n

An asymptotic compression of this source is impossible even
under a partial secrecy constraint. However, partial secrecy is
achieved with a reduced secret key size of K = n + 1 as
opposed to K = 2" that would be required for full secrecy.

Theorems 8 and 9 are not tight in general. However, as is
the case in traditional compression [42], it is possible to get
better asymptotic bounds on (93) by leveraging bounds on
the probability of excess length fundamental limit (94). Such
upper and lower bounds on (94) are developed next.

Theorem 10: Let X and S be two jointly distributed random
variables supported on a finite or a countably infinite alphabet
X and a finite alphabet S, respectively. Forany L € {1,2,...}

2" —1
L

sl 151) < mx (P s D 1 -

(103)
where 77 = | — [log|S|]. Moreover,
exs(,|S]) < rglea‘;({a(Pms:S, 27)} (104)

< in {Plixs(X|S)>n—7|S =8 +2°7
< maxmin {Plox|s(X|S) 2n—7]S = s +277}

(105)

where 7 = | — [log|S]].

Note the correspondence between (105) and the lower bound
in the next Theorem.

Theorem 11: Let X and S be two jointly distributed random
variables supported on finite or countably infinite alphabet X’
and finite alphabet S, respectively. Let S be a deterministic
function of X. Then

_max {Fluxs(X[S) > n+ 718 = 5] - 277} < ks, 13))
(106)

where n = [ — log |S|.
Theorems 10 and 11 are proved in Appendix D. Taking

|S| = 1 recovers traditional compression. Particularizing
Theorem 11 to this case we obtain

@35({@[@)(()() >1+7]—-277} <egll,1) (107)

which is exactly [42, Theorem 4].
We show in Appendix A that the asymptotic fundamental
limit of lossless variable-length compression is

log |S] + manH(X|S =5) (108)
s€

whenever K = |S| and S is a deterministic function of X.

B. Fixed-Length Compression
Next, we focus on the special case when S is a deterministic
function of X and relax the requirement that compression must
be completely lossless. A fixed-length source code with M
codewords and a secret key of size K is a pair of mappings:
Encoder: c: X x {1,..., K} —{1,..., M}
Decoder: d: {1,..., M} x{1,...,K} — X.
Suppose S = f5(X). An fs-secure code (c,d) (see (88)) is an
(M, K, €)-almost-lossless code if
Pld(c(X, k), k) € f,1(S)] = 1 and
Pld(c(X, k), k) #X]|<e, VEe{l,...,K}.

(109)
(110)

In other words, the value of a secrecy function must be
reconstructed exactly, but otherwise a small probability of
error is allowed. We assume that c(z, k) could be random, that
is, the compressor has access to local randomness, in addition
to shared randomness represented by U.

The non-asymptotic fundamental limits of fs-secure almost-
lossless compression are given by

éxg(M, K) = inf{e: 3 fs-secure (M, K, ¢)-code} (111)
and
Mxs(e, K) = inf{M: 3 f,-secure (M, K,€)-code}. (112)

In this section we focus on bounding €xs(M, K), but the
presented results could be used to bound Mx s (e, K') by noting

that
Myxg(e, K) = inf{M: éxg(M,K) < €}. (113)

Theorem 12: Let X and S be two jointly distributed
random variables supported on a finite or a countably
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infinite alphabet X and a finite alphabet S, respectively.
Then

_ . M\ ]
exsOLIS) < | _min B pmaxa(Pyisos. D11 - 7 |
(114)
< E [a(Py|s_3, M")] (115)
< E[rTn>18 {Plexs(X]S) 210gM'—T|S]—|—2*T}_
(116)
. o -7
< min {Plix|s(X|S) > log M’ — 7] +277}
117

where M’ = {FMIJ and the expectations are take with respect
to S ~ Ps.

Note the correspondence between (116) and the lower bound
in the next Theorem.

Theorem 13: Let X and S be two jointly distributed
random variables supported on a finite or a countably infinite
alphabet X' and a finite alphabet S, respectively. Let S be a
deterministic function of X. Then

max {Plexs(X|S) > log M' + 7] =277} < éxs(M,[S])
(118)

where M’ = ‘%

It is observed in [42] that for traditional compression the
probability of error in almost-lossless fixed-length coding and
the probability of excess length in variable-length coding
are related even in the single-shot setting. Taking |S| = 1
recovers traditional fixed-length compression. Particularizing
Theorem 13 to this case yields

max {P[ZX(X) >logM + 7] — 277} <éxs(M,1) (119)

which is exactly the application of [42, Theorem 4] to fixed-
length compression.

This equivalence between traditional almost-lossless fixed-
length and variable-length compression provides a general
justification for the focus on fixed-length compression in
the theoretical compression literature. Indeed, given an error
event in the fixed-length setting, the remaining uncertainty
about the information source could be reconciled by adding
more bits to the codeword. Thus, any almost-lossless fixed-
length code could be turned into lossless variable-length code.
However, under secrecy by design this relationship breaks
down. Compare Theorems 10 and 11 with Theorems 12
and 13. In the variable-length setting the bounds depend on the
worst case distribution of the conditional information, while
in the almost lossless fixed-length setting the same bounds
are expressed in terms of the average distribution of the
conditional information. To underscore this point we show in
Appendix A that the asymptotic fundamental limit of almost-

lossless fixed-length compression is
log|S|+ H(X|S) (120)

whenever K = |S|. The argument of simply reconciling the
compression error does not hold under secrecy by design,

even in the asymptotic setting. This is because reconciling the
compression error in the naive way leaks information about
the secret S. On the other hand, reconciling the compression
error in an S-secure way reduces to the variable-length setting.

C. Secrecy by Design Versus Leakage

In [36, Case 6] almost-lossless compression of X with a
random S is studied under leakage (equivocation) constraints;
the same problem with deterministic S is studied in [36,
Case 7]. It is shown that for both cases the asymptotic funda-
mental limit of compression is H(X) and the amount of the
required shared secret key decreases linearly with the leakage
constraint. Note that in the leakage setting of [36] it is possible
to leverage fixed-length compression to achieve variable-length
compression with an asymptotically negligible increase in
leakage. Comparing [36, Case 7] to (108) demonstrates that
there is a distinct compression penalty under secrecy by design
when S'is a deterministic function of X. Even when S is not
a deterministic function of X, the lower bound (98) on the
compression rate will be, in general, above H(X).

A Dbasic building block for S-secure compressors is
Lemma 1 and the two part coding strategy, see Figure 3. The
approach in [36] is similar in that a new notion of common
information is introduced that allows to decompose X into
S and an almost independent Z. In short, [36] allows some
error in the reconstruction of X, as well as some dependence
between S and Z. As the discussion above demonstrates, either
of these relaxations is sufficient to eliminate the asymptotic
compression penalty for secure compression. The stark con-
trast between (108) and [36] shows that, in general, a small
leakage regime is not a good approximation for the zero
leakage regime imposed by secrecy by design.

VI. DISCUSSION
A. Contributions

We have introduced an approach to partial secrecy which we
call secrecy by design. The fundamental idea behind secrecy
by design is to start with an explicit partial secrecy requirement
and to construct the information processing system from the
ground up to satisfy this requirement. This is in sharp con-
trast to commonly used approaches such as equivocation and
differential privacy where a measure of information leakage is
proposed and used as a design guide. We have developed basic
tools that allow us to apply the secrecy by design principle;
this includes decomposition strategies that let us represent an
information source X as a function of the secret S and an
S-secure publicly shareable Z.

We have applied the secrecy by design framework to the
problems of privacy and lossless compression. For the problem
of privacy we studied the privacy funnel setting where the
goal is to maximize mutual information between the private
and public data. We highlighted that there are two extreme
regimes: one where the designer of the privacy assuring
mapping knows the secret S, and one where the mapping
is designed without this knowledge. We have developed new
lower and upper bounds on these regimes and characterized
when the two regimes collapse to yield the same utility.
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Finally, we connected the current privacy problem to predic-
tion with logarithmic loss.

We also applied secrecy by design to compression over
the Shannon cipher system. Although perfect secrecy requires
a shared secret key that is as large as the message set,
we have shown that it is possible to have strong partial secrecy
guarantees with a reduced shared secret key size. However,
the resulting secure compressors do incur a compression
penalty. We have characterized this penalty and shown that
it depends strongly on how the secrecy constraint interacts
with the statistics of the information source.

B. Future Work

The secrecy by design framework could be applied to other
information processing problems such as lossy compression,
channel coding, and multi-terminal coding. There are also a
number of broader questions that could be investigated in
regards to secrecy by design; for example, one such question
is the robustness of the secrecy guarantees to the small errors
in the statistical model. The results presented in this paper
assume that the statistical model for the information source
is known at the time of code design. A natural question
to ask then is how to construct secure compressors that
are universal with respect to a family of statistical models.
As it turns out, the secure variable-length codes studied in
Section V are already universal in that they only depend on
the conditional distribution Px|g and not on Pg. That is,
consider the Empirical Mean in Example 10. In this case the
fundamental limits (as well as the code used to achieve them)
are independent of the parameter p. Although secure lossless
compressors incur a penalty for partial secrecy, this penalty
does make them universal with respect to a family of statistical
models.

APPENDIX
A. Asymptotic Fundamental Limits for Compression

Let X ~ Px and S = f(X) where

fo: X — S. (121)

Given a single letter secrecy function (121), define an n-letter
secrecy function

flr:x" —-8" (122)
via
fr(a™) = (fs(xz1), .. ., fs(zp)).

We assume that X™ is i.i.d. according to Px, and therefore
S™ is also i.i.d. . The asymptotic variable-length fundamental
limit is given by

(123)

! L Cxngn (1S™])
RXS:JLH;O%"

(124)
The asymptotic fixed-length fundamental limit is given by

. 1 -
Rxs = lim lim —log Mxngn(e,|S™]).

e—0n—oo N

(125)

The next theorem characterizes the two fundamental limits
for the product setting.

Theorem 14:

Ry g = log|S| + meag(H(X|S =5s) (126)

and

Rxs = log|S| + H(X|S). (127)

Equation (126) is a direct consequence of Theorems 10
and 11, while (127) is a a direct consequence of
Theorems 12 and 13. A detailed proof of Theorem 14 is given
in Appendix E.

B. Proofs for Section II1

Lemma 2: The construction in the proof of Lemma 1
works for finite and countably infinite X. The Lemma 1
construction guarantees that each x € X, is mapped to
a disjoint segment of the unit interval and thus X is a
deterministic function of (S, Z) given by (40). For each s € S
define

W, =g(s,2) (128)

and observe that W; is distributed according to Px|g—s.
Moreover, by construction,

Z =minkw,_ . (129)

seS

That is, Z is a deterministic function of the set {Ws}ses.
Thus

H(Z) < H ({Ws}ses) (130)
<> HW,) (131)
seS
=Y H(X|S=35) (132)
seS
and this shows (46). O

Theorem 1: Assume without loss of generality that X =
{1,...,|X|} if X is finite and X = {1,2,...}, if X is count-
ably infinite. Fix areal L > 1,and let Z = {1,...,[L]+]|X|}.
Define

Ng.s = LPX\S(x|S)LJ (133)

and note that
Ny = angL, Vs € S.
reX

For a fixed s € S partition {1, ..., N} into subsets M, such
that

(134)

Myl =nzs, VeeX (135)
and construct an auxiliary Z’ on Z:
1
Thass) 2 € Me
PZ’|XS(Z|an) = 59:,5; z = [L] +x (136)
0, otherwise
where
s 1
5ps=1 Nz, (137)

— - < .
" pr‘s(x,s) - L.Px|s(fl,',8)
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This transformation satisfies

1
Py s(z|s) = T 2 <N = m'gNS. (138)

se

Moreover, X is losslessly recoverable from Z’, S.

Finally, Z is obtained by applying transformation from
Lemma 1 to X « (Z',S) and S < S. By construction it
still holds that

1 .
Pz(z) = Py s(z|s) = I ZSNZI(JIEI‘ISIN% (139)

and (29) and (30) hold by Lemma 1.
To complete the proof we need to get a bound on P[Z > N]:

P[Z > N]=P[Z>N|S=5]= meagc]P’[Z > Ngl|S = s].
(140)
Then
P[Z > Ng|S=s]|=P[nx,s=0|S=s]P[Z>Ng,nx,s=0[5S=s]
—G—P[nxﬂ > 1|S = S]IP[Z > Ng,nx,s > 1|S = S] (141)
< P[’I’L}gs = 0|S = S] —l—P[Z > Ng,nx,s > 1|S = S]
(142)
< Plix s(X[S) > log LIS = 5]
+ Elexp(exs(X]5) —log L)1{1x|s(X|S) <log L}[S = s].
(143)
The bound on the second term in (142) follow since
P[Z Z Ns,nX,S Z 1|S = S]
= Z Py xs(z|x, 8)Px|s(x|s)1{z > N} 1{n, > 1}

(z,x)€ZxX
(144)
<Y 6o Pyys(als)1{ng « > 1} (145)
rEX
= Z Px|s(x]s) exp(rx|s(x|s) —log L)1{x € Fs} (146)
reEX
=E [exp(ex|s(X|S) —log L)I{X € Fs}|S=1s] (147

where F, = {x: 1x|5(z[s) < log L}. This shows (53).
Finally, (54) is obtained by loosening (53). That is, fix any
7 > 0, then

Plax|5(X]S) > log L|S = s]

+ E [exp(1x|s(X[S) —log L)1{X € Fs}|S =s] (148)
< Plix|s(X]S) > log LIS = s

+ E [exp(1x5(X|S) —log L)1{X € Fg.}|S =s]

+E [1{logL — 7 < 1x5(X|S) <log L}|S = s] (149)

< Plxs(X|[S) > log L — 7S = s]
+ E [exp(ix|s(X]S) —log L)1{X € Fs,}|S =s] (150)

< Plixg(X1]S) > log L — 7|S = s] + exp(—7) (151)
where F, ; = {z: 1x|g(|s) <log L —7}. O
Theorem 2: Fix an arbitrary s € S, 7 > 0 and define
L={xecX:logL+7 <uxg(x,5s) <oo} (152)
C={z€Z:1z(z) <logL}. (153)

Then

Pliy|s(X|S) > log L+ 7|S = s] = P[X € LIS = s] (154)
=P[(X,Z) € L xC|S = s] + P[(X,Z) € L x C°|S = 3]

(155)
<P[(X,Z) € L xC|S=s]+P[Z cCS = s (156)
< losbo=logL=m 4 Pl7 € C°|S = 4] (157)
=277+ P[Z € C°] (158)
=277+ P[Z > logL] (159)

where (158) follows because Z and S are independent. Equa-

tion (157) follows since
IC| < L =28k (160)

and for any fixed s and z there always exists a unique x € £
such that

Pxz1s(x,2|s) > 0. (161)
Moreover, for any such = € £
PXZ‘S(‘CE’ZLS) = PX‘S(‘CC|S)PZ|XS(Z|$,S) S 2710gL7-r.
(162)

O
Theorem 3: We will ensure that (29) holds by construct-
ing Z in such a way that

pwzqszﬂzmzzdz% (163)
forall s € S and all z € Z.
Let
na,s = | Px|s(z]s)L] (164)
and note that
Ne=) n,s <L, Vs€S. (165)

zeX

For a fixed s € S partition {1,..., N5} into subsets M,
such that

IMy| =ngs, VreX. (166)
Then
1
LPx s (z,s)’ Z € Mm
Py xs(z|z,s) = L(SI—N, z=€{Ny+1,...,L}
0, otherwise
(167)
where
x,Ss 1
Sps =1 Bz, (168)

_ < .
’ LPX‘S(J),S) - LPX|S($,S)

Note that the construction satisfies (163). Indeed, fix s € S
suppose x € M, for some x € X. Then

Py s(z|s) = Pxs(z|s)Pzxs(z|z, s) (169)

1 1
= Py s(als)———— = (170)

LPx|s(zls) L’
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Suppose z € {Ns;+1,...,L}. Then
Pyis(zls) = ) Pxjs(als) (171)
TEX
_ Nz
- P / ) 172
( s (@ls) - =5 (172)
ex
1 N 1
1—— ) =—. 173
T I- N ( L > L (173)
Finally,
< a(PX|S:s7L)' (175)
This follows by exactly the same argument as in proof of
Theorem 1 since N, are defined identically. O

C. Proofs for Section 1V

Theorem 5: Suppose X is a deterministic function of S
and that Z is S-secure. Then

I(X:2) < I(X,S8;Z) = I(S; Z) = 0. (176)

Suppose X is not a deterministic function of S. Then, there
must exist & € A’ and 5 € S such that 0 < Py |g(Z[3) < 1. Let
us assume without loss of generality that £ = 1, and let Z =
min{z € Z}. The particular construction used in the proof of
Lemma 1 has the property that Px|,g(Z|Z,s) = 1 whenever
PX|S(§7|S) > 0. Thus, Px‘Zs(.ili,g) > Px‘s(i‘lg) > 0.
Moreover, Px|zs(Z|Z,s) = 0 whenever Px g(Z|s) = 0.
Putting this all together we obtain

Pxz(%2) = Y Px|zs(&|%,5)Ps(s) (177)
s€S
> Pxs(i|s)Ps(s) = Px (&) (178)
s€S
and Z is not independent from X. 0

Theorem 6: Let Z be the random variable guaranteed by
Lemma 1. Then

I(X;2) = H(X|S) - H(X|S.Z) - [(Z:5]X)  (179)
= H(X|S) — I(Z; S|X) (180)
— H(X|S)— H(S|X)+ H(S|X, Z) (181)
> H(X]S) — H(S|X) (182)

where (180) follows since Lemma 1 guarantees that X is a
deterministic function of (S, Z). This proves the lower bound
in (69).

To prove the if and only if part observe that (68) holds for
any S-secure Z and so

I(X:Z) < H(X|S)—1(Z;5X) (183)
= H(X|S)— H(S|X)+ H(S|X,Z)  (184)
= H(X|S) — H(S|X) (185)

whenever S is a deterministic function of X.

Finally, suppose S is not a deterministic function of X.
Then, there exists £ € X and 51,5 € &S such that
P(z|51) > 0, P(Z|52) > 0, and §; # S2. Assume without

loss of generality that £ = 1, and let Z = min{z € Z}. The
particular construction used in the proof of Lemma 1 has the
property that Pg|;x(51]2,2Z) > 0 and Ps|zx(32|2,Z) > 0.
This implies that H (S| X, Z) > 0 since S is not a deterministic
function of (X, Z) and the inequality in (69) is strict. O

Lemma 4: Let X and S be two jointly distributed random
variables supported on finite or countably infinite X and S,
respectively. Suppose Z* is S-secure and Z is (Z*, S)-secure.

Then Z = (Z*,Z) is S-secure.
Proof:
1(8;2)=1(S;Z*,Z) (186)
=1(8;2*)+1(S; Z2|2*) (187)
= H(Z|Z*) - H(Z|Z*,S) (188)
=H(Z)-H(Z)=0. (189)
O

Lemma 5: Let X and S be two jointly distributed random
variables supported on finite or countably infinite X and finite
S, respectively. Suppose Z is an optimizer for ho(Pxs), then

H(X|S,Z)=0. (190)

Proof: Suppose Z* is an optimizer for ho(Pxgs) and that
H(X|S,Z*) > 0; that is, X is not a deterministic function of
(S, Z*). Let Z be the random variable constructed according
to Lemma 1 with X «— X and S « (S,Z*). According to
Theorem 5

I(X;Z) > 0. (191)

Let Z = (Z*, Z) and observe that Z is S-secure by Lemma 4.
Finally,

I1(S;2) = 1(X; 2%, Z) (192)

= I(X Z)+1(X; 2|12%) (193)

=I1(X;Z)+ (X, 2% 7) (194)

> 1(X; 2"+ 1(X; Z) (195)

> I1(X;77). (196)

This contradicts the optimality of Z*. O]

Theorem 7: The upper bound follows directly from (68)
and 1) = 2) is a trivial consequence of (74). Moreover, it is
shown in [33] that computing go(Pxs) and ho(Pxs) could be
reduced to a standard linear program and therefore go(Pxs)
and ho(Pxg) are always achieved by some Z.

2) = 3): Suppose go(Pxs) = ho(Pxs) and let Z be an
S-secure random variable that achieves go(Pxs). Note that in
this case the Markov chain S «+» X « Z must hold and hence
I1(Z; S| X) = 0. By assumption this Z also achieves ho(Pxs)
and by Lemma 5 it satisfies H(X|Z,S) = 0. It follows
from (68) that (74) holds with equality.

3) = 1): Suppose ho(Pxs) = H(X|S) and let Z be
an S-secure random variable that achieves ho(Pxgs). Note
that in this case I(Z;S|X) = 0 and hence the Markov
chain S < X <« Z must hold. Therefor this Z also
achieves go(Px ) and it follows from (68) that (74) holds with
equality. O
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D. Proofs for Section V

Lemma 6: Let (X,S) be jointly distributed random vari-
ables, and let U be an arbitrary random variable independent
of X and S. Let Z be a random variable on Z such that

I1(S;Z)=0 (197)
and
H(X|Z,U,S) =0. (198)
Then
H(Z) Zr?each(X|S:s). (199)
Proof: Equation (197) implies that
H(Z)=H(Z|S)=H(Z|S=s) VseS. (200)
Equation (198) implies that
H(X|Z,US=s5)=0 VseS8. (201)

Finally, using the chain rule

H(X,Z|U,S =s) = H(Z|U,S = s) + H(X|Z,U,S = s)

(202)
< H(Z|S =5s) (203)
=H(Z) (204)
and
H(X|S=s)=H(X|US=y5) (205)
< H(X,Z|U,S = s) (206)
< H(Z). (207)
Since (207) holds for all s € S it must hold for a maximum
over S. O]

Theorem 9: Fix an fs-secure lossless code (c,d) and let
7 = c(X, U) denote the output of the compressor. The secrecy
constraint (89) can be rewritten as

1(Z;8) = 0 (208)

and therefore

Py 15(z|s) = Pz(2) (209)

for all s,z. As Shannon observed in [1], either Pz (z) = 0
or for every s € S there needs to be a k € {1,..., K} such
that Pz ys(z|k,s) > 0. But, due to the lossless constraint,
Pzus(z|k,s) > 0 for at most one s € S. It follows that
K > S|
Next, we show that
H(Z) > max {mach(X|S =s),log |S|} (210)
se
which is sufficient for (98) and (99) to hold. First, observe
that random variables X, S, U and Z satisfy the conditions
of Lemma 6 and so
H(Z) > max H(X|S = s).

seS

@211)

Secondly, on the one hand, (209) implies that

> Pys(z]s) = [S|Pz(2). (212)
seS
On the other hand,
K
> Prs(zls) =YY Prus(zlk, s)Py(k) (213)
seS s€ES k=1
K
=>"Py(k)>_ Pyus(zlk,s)  (214)
k=1 seS
K
<> Py(k)=1 (215)
k=1

since for a lossless code only one y can encode to z for any k.
Thus, we get

Pz(z) < ﬁ, Vze Z (216)

and
H(Z) > log|S]. (217)
|

Theorem 10: We use a two-part code described in
Section II by representing X as (S, Z2) where I(S;Z) = 0,
H(X|Z,S)=0 and

Plz(z) >logL] < max a(Px|s=s,L). (218)
Recall that the existence of such Z is guaranteed by
Theorem 1.

We use [log|S|] bits to encode S with a one-time-pad.
Z is encoded with a variable-length code that minimizes
the probability of exceeding code length n = I — [log S]],
as in [42]. That is, we encode the first 27 — 1 most likely
elements of Z with strings of length 7, and the rest with an
arbitrary longer strings.

Let
|z:12(2) <log L| = M (219)
and note that M < L. If M < 2" —1 then
Pll(c(X,k)) > 1] <Plz(z) > logL]. (220)

Otherwise, Pz(z) > % for the 27 — 1 most probable z € Z
and we obtain

Ple(c(X, k) > 1] <1— 21

221)

which completes the proof of (103).

Equation (104) is shown by taking L. = 27 and noting that
M > 27 — 1 only if Pz(z) = 1 for all z € Z. In that case,
M = 27" and it is possible to represent all z € Z with strings
of length 7. Finally, (105) is obtained by loosening (104). [

Theorem 11: Fix alossless variable-length code (c,d) and

let Z = c(X,U) be the output of the encoder with Z denoting

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 19,2021 at 13:33:16 UTC from IEEE Xplore. Restrictions apply.



840 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

the space of codewords and U equiprobable on {1, ..., K} and
independent of X. Fix an arbitrary s € S and 7 > 0. Define

L={zef'(s): Pxslzls) <2777} (222)
C={ze€Z: Uz <} (223)
Cm,k = {Z eC: PXZ\SU(:E;Z|5; k) > 0} (224)
Note that
K K
SN Mkl =D DD 1{z € Can} (225)
k=1zeLl k=lzeLl zeC
K
=3 Y > 1{zeCon} (226)
zeCxeLl k=1
<> 1=|c]. (227)
z€eC

Equation (227) holds because the secrecy assumption and the
fact that K = |S| imply that 1{z € C, ;} = 1 for a unique
pair (z, k). That is, there has to be an element from every set
f-1(s) mapping to each z thus an element from £ maps to z
for only one value of k. Because the compressor is lossless,
at most one element of £ maps to z. Then

Plax|g(z|s) >n+7|S = s] = P[X € LIS = §] (228)
=P[(X,Z)e LxC|S=s]+P[(X,Z) € LxC|S = 3]

(229)
<P[(X,Z) € LxC|S =35 +P[Z €S =] (230)
K
<Y PU=kP[(X,2) € LxC|S =5,U =k
k=1
+P[Z €C°|S = 5] (231)
1 K
= EZ]P[(X,Z) €LXC|S=sU=k
k=1
+P[Z €C°|S = 5] (232)
K
1 —nN—T c
SEZZ2 "T|Cp k| + P[Z € C°|S = 5] (233)
k=1lzel
2lp=n=7
< T +PlZeC|S =] (234)
=277+ +P[Z € C°] (235)
=277+ +P[l(c(X,U)) > ] (236)

where (235) follows because Z and S are independent. O
Theorem 12: We use a two-part code described in
Section II by representing X as (5, Z) where I(S;Z) =0,

Plix|z5(X|Z,S) > 0[S = s] < a(Px|s=s, L)  (237)

and Z is equiprobable on Z = {1,...,L}. Recall that the
existence of such Z is guaranteed by Theorem 3.
We use [log|S|] bits to encode S with a one-time-pad. For

a fixed s € S, Z is encoded with a fixed-length code that uses
N =min{M' L} (238)

messages in the following way: N of the elements of Z are
encoded losslessly, while the remaining |Z| — N contribute to

the probability of error. They can, for example, be mapped to
an arbitrary message and ignored by the decoder.

To select the N elements in Z which will be encoded
losslessly, let

Xy ={z: Plix|z5(X]z,5) > 0[S = s] = 0}. (239)

In other words, |Xs| contains all x € X that can be recon-
structed without error for a given z € Z and s € S.

If |Xs| < N then all of X, is encoded losslessly (as well
as some z € Xy which we ignore). Then

Pld(c(X, k), k) # X] < Plox zs(X|Z,5) > 0]5 = s].
(240)

If |X5| > N than arbitrary N elements of X are encoded
losslessly. Note that in this case N = M’ and we obtain
!

PlA(C(X, k), k) # X] < 1 - 2 (241)

Taking the expectation over S completes the proof of (114).
Equation (115) follows by particularizing (114) with
M’ = L. Equation (116) follows by the same relaxation as
in Theorem 10. O
Theorem 13: Fix a fixed-length code (c,d) and let

Z ={1,...,M,e}. Define a random variable

;o {c(X, U), de(x,0) = X 01
e, otherwise.
Fix an arbitrary s € S and 7 > 0. Define
L={zecf}s): Pxglals) <27'sM =71 (243)
C={1,...,M} (244)
Cor ={z€C:d(c(X,U)) =z} (245)
Note that
K K
SN learl =33 1z e i) (246)
k=1zel k=1zeLl zeC
K
=> Y > 1{zelen} (247)
zeCxel k=1
<y 1=[cC]. (248)
zeC

Equation (248) holds because of the secrecy assumption and
the fact that K = |S|. That is, there has to be an element
from every f.!(s) mapping to each z, thus an element from
L maps to z for only one value of k. Because compression is
lossless, only one element of £ maps to z. Then

Plix|s(X]S) >log M’ + 7|S = s] =P[X € L|S = ]

(249)
=P[(X,Z) € LxC|S =s] +P[(X,Z) € L xC|S = 3]
(250)
<P[(X,Z) € LxC|S=s|+P[Z cC|S = s] (251)
K
<Y PU=KP[(X,Z) € L xC|S =5,U =k
k=1
+P[Z € C°|S = 5] (252)
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K
Z (X,Z)e LxC|S=sU=k|
k=
+P[Z €C|S = 5] (253)
1 K
—log M’ —1 c _
SEZZZ g ICok| +P[Z €C°|S =5] (254)
k=lzeLl
2[27logM'7‘r

<
S|
The second term in (255) the is exactly the conditional

probability of error. Averaging over all s € S gives the desired
result. O

P[Z € C°|S = s). (255)

E. Proofs for Appendix A

The proof of Theorems 14 makes use of McDiarmid’s
inequality, see for example [49], applied to the conditional
information.

Theorem 15 (McDiarmid’s Inequality): Let {X;}7, be
independent (not necessarily identically distributed) random
variables taking values in some measurable space X. Consider
a random variable U = f(X"), where f : A" — R
is a measurable function satisfying the bounded difference
assumption. That is,

sup
T1yeeyTp, T E€EX

[f(z1, .. @iy xn) =1, o Ty )| < d;

(256)

for every 1 < i < n where d; are non negative real constants.
Then, for every r > 0,
272 >
2
Z’L 1 dz

Theorem 14: When (X", S™) are distributed i.i.d. accord-
ing to Pxg the function

PllU-EU| >r] < 2exp< (257)

f(a",8") = 1xngn(z"]s") (258)
satisfies the bounded difference assumption with
di=d= 259
xeﬂgfeslms(ﬂ s). (259)
Applying McDiarmid’s inequality we thus obtain
n
P l 1xn|gn (X"]S™) — ZH(X|S =s;)| >ny| 5" = 8”1
i=1
29n
< 2exp Tz (260)

for any s™ € 8" and y > 0. Moreover,

2
P [[oxoisn (X"|S™) = nH(X|S)| > n7] < 2exp (‘%)

for any v > 0.
Fix any v > 0 and let

s* =argmax H(X|S = s).
s€S

(262)

Setting
I = [log|S™T +n(H(X|S =s")+7) (263)
and applying Theorem 10 with 7 = an we have that
Cnse (ln, ")) < 2exp (=13 ) +273m. 264)
Indeed, for every s™ € S™
P [ oxcoyse (X7]8™) > nH(X]S = 5" 7‘ s =]
< ]P) |:ZX77|SW (XTL|STL) > H(XTL|STL _ TL + n_;‘ STL — STli|
(265)
n
< 2exp (—2—2) . (266)
On the other hand, letting
I, = n(log S| + meach(X|S =s)—7) (267)
and applying Theorem 11 with 7 = ln'y we have that
€xng (1 |S™) > 1= 2exp (— 13 ) +2787. 268)
Note that
P [1x0n 50 (X"[s"") < nH (XS = 5" m\ " =s"]
2yn
< 2exp <—%> (269)
follows from (260) and therefore
P [ixnse (X7)s) = nH(X|S = &7 "7\ st =5
29n
<1—2exp (—%). (270)
Putting this together we obtain
g* nan n
lim s (1S™]) <log|S| —|—maxH(X|S =3)+7
n—oo n
+ lim (2exp (—n) (log || +log]|S])) @71)
=10g|8|+m6a§(H(X|S=s)+’y (272)
S

and

O gn (|S™
lim %(D > log|S| +m€a§<H(X|S: s) — 7.

n—oo

(273)

Noting that (272) and (273) hold for all v > 0 gives (126).
Equation (127) follows similarly by applying (27) to
Theorems 12 and 13. O
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