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1 INTRODUCTION

Mobile texting mainly relies on on-screen keyboards that display characters visually, posing barriers to people who
are blind and visually impaired (BVI) [2, 40]. Even when keyboards have accessible overlays (such as VoiceOver),
they remain screen-centric: manipulating text is generally bound to holding a device out at all times and interacting

with visual keypads primarily designed for sighted users, or with accessible keyboards that read aloud keys upon



touching [15, 23, 26, 41, 43]. Screen-bound interaction is especially problematic in nomadic contexts, when blind
users are on-the-go, have to keep a cane in one hand and the other hand free to touch objects nearby. Users can
resort to voice input [6] but are still often required to be bound to a mobile device for dictation and go through
several repetitions to overcome recognition problems and ambient noise [5]. Studies have shown that users who
are blind tend to prefer not to use speech-based interfaces in public places, due to concerns for privacy and social
conspicuousness [1]. Another major issue of current mobile messaging is that, whereas daily routines and recurrent
situations often lead users to periodically re-send similar messages, current approaches always require users to
initiate an open-ended text composition. As a consequence, there is an undue burden to blind users, especially in
light of the severe mechanical and interaction constraints they have to overcome to complete a text. Can we re-
imagine entirely non-visual texting in a way that is quiet, proactive and untethered from a screen? To explore this
question, the paper makes three main contributions:

e An Al model for generating short text suggestions from a large-scale dataset and driven by key contextual
and situational factors such as user current location, activity, and time of the day. Message topics are
informed by a study we conducted with 20 BVI users on their needs and practices of texting.

e TextFlow: a mixed-initiative context-aware system that generates entirely auditory message options
potentially relevant to the user situation. TextFlow enables users to listen to, browse and send suggested
aural messages without holding or attending to a mobile screen, using nimble finger-taps supported by an
off-the-shelf finger-worn device. The system operates as a sequential auditory stream of fast-spoken
topics and messages that can be browsed and selected for composing a text.

e  Anevaluative study with 10 blind participants who interacted with TextFlow through 15 tasks focused on
daily text messaging. With an average task success rate of 88.6%, all participants were able to interact
with TextFlow and send messages in entirely screenless mode. Participants consistently appreciated the
positive experience of bypassing screen-centric methods for typing or voice input, especially when they
are mobile and need to send short notifications without taking the phone out of their pocket.

2 RELATED WORK

2.1 Eyes-Free Mobile Text Input

Navigating mobile keyboards using touchscreen devices has been widely adopted by blind users. Technologies such
as Apple’s VoiceOver [28] allow users to touch the screen and get feedback via voice. While voiceover interaction
makes mobile keyboards accessible, it requires users to continuously move the finger on the screen to find and
select the intended letter. Researchers introduced better typing methods by rearranging the alphabets of mobile
keypads. BrailleTap [22] and NavTap [23], for example, eliminate the need to memorize the letter position by
grouping 3 or 4 letters as keys. Other technologies combine multi-touch input with audio feedback to enable fast
typing. No Look Notes [10] is a multi-touch text entry that arranges letters in pie menus. Users can tap the finger on
the screen to switch to the desired pie menu. These approaches enhance the accessibility of typing, but are still
screen-centric, thus requiring the blind to hold out a phone at all times to interact with a visual display.

Speech input is now broadly available and enables voice dictation for texting [6]. When used outside, however,
besides causing issues when background noise is present [5], speech input also introduces barriers to effective use.
For example, it is challenging for the blind to review and edit the dictated text on the screen [6]. Social and privacy



boundaries can also be easily broken by voice input, and this is problematic especially when the blind prefers not
to draw unwanted attention in public spaces [16,42].

Wearable devices including armbands, hand- and finger-worn devices open additional input channels that can
potentially bypass the constant reliance on a reference screen. NailO [27], for example, is a nail-mounted wearable
surface that detects various swipe gestures to input emoticon or punctuation without the need to use the screen.
However, users still have to rely on the mobile screen due to the difficulty of typing using only the nail surface.
Recent work has shown the use of the Myo [37], a hand-worn band that recognizes and uses as input the arm’s
muscle movement, to control entirely auditory keyboards for the blind without the need for a reference screen [34].
The approach still requires performing quite ample hand gestures that are not as discreet as users would like, and
may unnecessarily fatigue the arm.

2.2 Context-Aware Mobile Communication

Research in ubicomp has studied the potential of leveraging contextual dimensions, such as location and time, to
facilitate human communication through text messages. Location is a common type of contextual cue deployed in
ubicomp applications [3]. LAMMS [9], for example, demonstrates the notion of location-based text messaging,
enabling people to communicate locally with each other and receive messages related to that area. Time is another
dimension often used when sending text messages. LATTE [39], for example, is an email-based system that
incorporates both time and location to dynamically expand emails with the corresponding temporal and spatial
information. Other forms of context-based mobile messaging systems allow users to define the context while
sending a text. Jones and Neil [25] introduced a contextual constraints model, in which the user can place
constraints on whom to send the message to (i.e. personal dimension), where the message has to be sent (i.e. spatial
dimension), and when the message has to be sent (i.e. temporal dimension). Contextual information has also been
used to provide feedback about the environment while an individual is on the go and holding the phone for typing
[36]. Many people experience walking and typing at the same time they often fail to perform both tasks perfectly
[35]. One method for providing feedback about the user’s ambient environment is through audio [14, 32]. These
systems provide real-time feedback to users allowing them to focus on typing while reducing errors by increasing
awareness about the environment. However, the method can create difficulties for BVI users due to receiving
auditory information from both typing and their ambient environment.

2.3 Use of Context in Recommender Systems

Context-aware recommender systems use the concept of ‘context’ to recommend items that are both relevant to the
user’s preferences and their specific context such as time and location [4, 7]. Magitti [8], for example, is a context-
aware mobile recommender system that automatically detects a user’s activity based on the user’s context and
behavior to recommend personal and timely leisure activities associated with a local environment. SoCo [30] is a
social network aided recommender system that combines location and time with social information learned from
friends with similar tastes to provide highly accurate recommendations. Bouidghaghen et al. [11] introduce a
situation-aware recommender system to alleviate the problem of information overload. The system retrieves
contextual information related to the user’s location and time and provides a mobile user with personalized search
results. However, context-aware recommender systems that rely on past experiences (i.e. exploitation) cannot
model user’s interest evolution because the learned rules will only reflect past user behavior; for this reason, a
fraction of recommendations are selected at random or using a heuristic to obtain information about the user and



discover better recommendations (i.e. exploration). In [29] authors use a bandit algorithm to exploit well-
established advertisements for short-term capitalization as well as exploring less-known cases to find out potential
advertisements that can be recommended in the future. Bouneffouf et al. [13] introduce a hybrid-e-greedy algorithm
that takes into account the context to deliver recommendations that are bound to the user’s current situation and
interests. The algorithm combines the user’s situation based on time, location, and social ontologies with an e-
greedy algorithm and content-based filtering techniques.

3 ELICITING MOBILE TEXTING NEEDS AND PRACTICES

We conducted a formative, interview-based (IRB-approved) study to better understand the practice of text
messaging adopted by blind and visually impaired individuals. The goal of our user study is twofold: 1) elicit
recurrent messaging topics associated to BVI specific needs for mobile text communication; 2) explore the types of
daily situations where BVI engage in text-based messaging.

3.1 Participants and Procedure

The study engaged 20 BVI participants (12 females and 8 males). Eight participants identified as totally blind, four
legally blind, five had minimal light perception, and three had low vision. Participants’ ages ranged from 35-79
(n=51.7, 0=11.2) years old. 19 participants used iOS devices and one used Android. The average length of mobile
usage was 11 years. We conducted the interviews through phone calls or Zoom meetings, depending on the
participant’s preference. Each interview lasted approximately 1 hour. Interview questions covered three foci: (1)
places participants typically visit during daily routines and modes of transportation; (2) situations and
circumstances in which they might send a text; (3) recurrent topics of their texts and most recent text messages
they sent to others. Interviews were audio-recorded for transcription and analysis. Upon completing the study, each

participant received a $30 Amazon gift card via email for their participation.

3.2 Analysis and Results

We performed a thematic analysis of the participants' responses. Overall, six high-level themes emerged that
represent different types of text messages participants send on a regular basis: notifying someone; offering

assistance; scheduling/rescheduling plans; coordinating with someone; reminding someone; requesting assistance.

3.2.1 Notifying someone. Participants send different types of notifications according to their immediate situation.
One such notification is to let others know that they might arrive late or specify their arrival time. For instance, P1
commented: “If I'm running late to work, I may send a message to my boss saying, hey, I'm running late, I'll be there in
20 minutes.” In other instances, participants send a text to let others know they are on their way. For example, P7
would say “The bus is ready to come, I am on my way” when going to an appointment to meet a friend. Participants
mentioned that when they are on their way to a specific location, it is common to inform their close ones that they
arrived safely or to signal their location. For example, P3 described the type of message they would send when they
are outside: “I send a text to my husband and say I got here okay or I'll tell him that I got to the bus stop safely.” In
some cases, users might not be able to talk due to privacy concerns and therefore might send a text stating that they
will call back later. P2 gave an example of when they are waiting at the bus stop: “Let me get back with you later, I
am in the middle of commute.” Another typical notification that participants mentioned was to let others know that
their initial plan has changed. For instance, P6 described their experience of sending a text while they were on their



way to work, stating: “while waiting at the bus stop, I was notified that our school trip that was supposed to go to
Chicago got canceled, and so I had to text to colleagues that the plan for that day has changed.” On some occasions,
participants specified that they had to send a text to emphasize that they are waiting. P11 gave an example of a text
message they would send when they are waiting at the bus stop: “Are you almost here? I am waiting for a long time.”

Other, less frequent topics included letting others know they are in a meeting and on their way to go shopping.

3.2.2 Requesting assistance. Participants may send a text asking for help due to access barriers, in particular
when they need to get to a location. Most participants mentioned that when they reach a destination or they are
inside a building, it is often difficult for them to find the entrance or exit. In these situations, they send a text to the
person they planned to meet to look for them and guide them to the place. For instance, P2 explained an experience,
stating: “One time I was in a building, and I couldn't find my way. I was on my way, but I could not find my way back
because I did not have my GPS on. So, I sent a text, and I said I got lost, and then I asked for help.” P8 described the
type of text message they would send if they could not find the entrance: “Come outside and get me.” Another type
of request that participants mentioned is to ask someone to be picked up. P15 gave an example of the type of text
message they typically send while walking to reach the bus stop: “pick me up in five minutes.” In a few cases,
participants mentioned they might ask someone to bring food when they are at work.

3.2.3 Scheduling/rescheduling plans. When on the go or at work, it is common among BVI users to send texts to
make or change plans for both formal and informal commitments. For instance, P5 provided an example of a text
they would send to a friend when they are at work: “where would you like to go for dinner?” The same participant
gave an example of a text sent on their way to meet a friend: “I'll see you at 2 for our appointment.” Users may also
need to reschedule existing plans. P10 gave an example of a message they would send when at work: “9’o0 clock
meeting is canceled; meeting is at 10.” Participants also described sending a text to friends or family members about
a change of plans. P16 explained a text sent to a friend when they realized they couldn’t meet as planned: “I told him
I had the flu and I wouldn't be able to make it. And then I said could we reschedule?” On other occasions, users might
send a text to schedule a phone call. P3 gave an example of a text they would send on their way to work: “when can
we set up a call?” Thus, BVIs need to be able to communicate their plans quickly while on the go or at work.

324 Coordinating with someone. When on the go or in public places, users often need to text others to
coordinate about location, time, and number of people they expect for a gathering. For instance, P1 gave an example
of a text message they sent when meeting a friend at a restaurant: “are you here at the restaurant yet?” The
participant is trying to check-in location to find out whether their friend has arrived at the restaurant or not. P9 gave
an example of coordinating a group meeting: “if we're supposed to be like a group of people, I can't remember
everybody who's supposed to be there. So, I will send a text and say: who's going to be for dinner?” The participant is
checking-in guests, as they may not have instant access to a phone to verify the number of friends who confirmed
coming for dinner. When asked about the context of the messages sent while returning from work, P15 stated:
“Since everybody is on a different schedule, we mostly text and say what time you're going to be home for dinner.”

3.2.5 Reminding someone. Unlike sighted users, BVIs experience more difficulties accessing their calendar to
check their appointments. In these situations, they often send each other reminders to confirm the upcoming
appointment or meeting. P17 provided an example of a message sent to a friend while walking to the bus stop: “See
you tonight at dinner.” When at work, participants might send reminders related to meetings or ask for



confirmation. P10 provided an example of a text message they might send to a colleague: “is the meeting today at
9:30?" On other occasions, users might send a reminder related to an upcoming meeting to verify if others will be
there. P13 commented: “our meeting is today at 11 o'clock, please let me know if you can attend.” Therefore, users
send reminders to confirm meetings and/or appointments both for themselves and others.

3.2.6 Offering assistance. When on the way, users offer assistance to others regarding daily activities. For
instance, P5 stated: “If I'm in a vehicle, I have [to] kind of hover a lot to send a text to my son and say, do you want
something specific from [the] drugstore?’ The participant emphasizes the amount of time it can take to send a text
to someone and ask a question related to shopping. Users might also be in a specific store and send a text to ask if
the recipient needs anything from that store. P15 gave an example of this type of text message: “I'm here at the
dollar store. Do you need anything?” Both participants in these examples are offering help to avoid an extra trip to
go to a store. Other types of offering assistance include picking up someone on the way or helping to get to a location.
P15 explained their experience when they have an appointment with a friend, stating: “I might text my friend and
say, do I need to meet you at the bus stop to help guide you in?” Therefore, BVIs frequently offer assistance to each
other and to members of their household while outside the home.

In total, 17 specific topics emerged: arrive late, arrival time, on my way, get to a location, check-in location, check-
in guest, signal my location, appointment, meeting, shopping, making plan, changing plan, pick up, waiting, phone call,
not able to talk, and bring food. In addition, we identified specific situations in which some of these topics emerged
frequently. Figure 1 shows the occurrence of topics that appeared three or more times for four different situations.

3.3 Generating Messages from Elicited Topics

For each topic, we generated a list of short candidate messages. For instance, if the topic is ‘arrive late’, a potential
message would be ‘I will arrive a few minutes late.” The dataset we used to generate messages is called Weibo [44]
and it includes short text conversations from a Chinese microblog service. Weibo has more than 4.4 million samples,
divided into posts and comments associated with each post. We selected this publicly available dataset because it
contains a very large number of instances of the specific textual genre we are seeking to model, rather than
broadcast, one-to-many communications typical of social media platforms. Samples are translated from Chinese to
English using a tool called Youdao [45]. We performed data cleaning by removing redundant words such as ‘come
on’ or ‘oh’ and discarding generic topics such as politics or advertisement. Given a topic, we used a pre-trained
language model called RoBERTa [31] to retrieve related sentences from the dataset. The model has been trained on
the Multi-Genre Natural Language Inference (MultiNLI) corpus [38] with pairs of sentences annotated as entailed,
contradictory or neutral. For each topic, a reference text sample was selected from the user study. If the topic
belongs to more than one category of text message, a sample was selected from each category. For example, if the
topic ‘appointment’ belongs to both reminding someone and coordinating with someone, we selected a reference
sample from both categories. We compared the reference sample with all the sentences in the dataset using
pairwise sentence classification. We then retrieved the sentences classified as “entailment”, i.e., the meaning of the
query sentence is implied by the retrieved sentences, and “contradiction”, i.e., the retrieved sentences imply the
negation of the query sentence. The model returns a probability for each class as a function of the sentence pair:

(pc;pn;pe) = f(leSZ)
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Figure 1: The frequency of topics identified by participants as relevant to four different situations: in-vehicle, traveling on-foot, nearby
or inside points of interest, and when going to a frequently visited location (e.g. workplace).

where s; and s, are the two compared sentences and p,, p,,, p. are the probability of contradiction, neutral and
entailment respectively. We ranked the results by p, and p,, i.e., the entailment and contradiction confidence scores.
For entailment, we considered sentences with p, higher than 0.2 (20%), whereas for contradiction we considered
only sentences with p, greater than 0.1 (10%). The choice was motivated by the fact that the entailment class
provided more diverse and related sentences for the given query, whereas the retrieved sentences for the
contradiction class were limited to a few samples. Low-scoring sentences, i.e., below 20% for entailment and 10%
for contradiction, were not considered as they were often unrelated to the query.

Starting from the first retrieved recommendation, we selected those that included the topic and a single instance
of contextual information based on factors such as time, location, audience (e.g., with someone), purpose (e.g., for
dinner), or method (e.g., with Uber). For instance, the sentence “I've been waiting for a long time” consists of our
topic (waiting) and information that concerns time. Recommendations that were not relevant to our topic or that
had the same contextual information as the selected sentences are skipped. The third column in Table 1 shows the
selected recommendations for the topic ‘waiting’. Selected recommendations were then refined to represent a short
message (fourth column of Table 1). The steps for refining sentences are the following: 1) we added or modified the
subject to be in the first person; 2) recommendations that included more than one sentence were refined by
removing sentences that did not contain the keyword related to the topic; 3) selected sentences that referred to

specific locations or times were replaced by either the user’s current situation or a plan elicited from the calendar.

4 TEXTFLOW: MIXED-INITIATIVE AND SCREENLESS TEXTING

Based on the results of our study, we developed TextFlow (https://github.com/Banus/Textflow), a mixed-initiative

text messaging system that enables BVI users to receive and interact with suggested messages relevant to their
immediate situation, while at the same time bypassing the reliance on a visual screen. The system is made of three

parts: a User Model, a Reasoning Model, and a Task Model (Figure 2).

4.1 The User Model

The User Model captures key aspects of the user’s daily routine. The model adapts to the specific needs of BVI users
for manipulating a text message and contains four types of data: the user’s context, the user’s situation, personal-
related commitments, and a dynamic profile. To formally define the elements of the User Model, inspired by [12],
the user’s context C is defined as the ontology of location, time, and activity and we represent it as C =
(Orocations Otimer Oactivity)- An instance of the user’s context is a user’s situation, defined as:



Table 1: Generating messages for the topic ‘waiting’

Reference Sample Class Type Selected Recommendations Messages

I am still waiting Entailment I am waiting for you to come I am waiting for you to come
I've been waiting for a long time! where have you been?  I've been waiting for a long time!
[ am waiting at the dentist [ am waiting at *
I am still waiting for someone I am still waiting for someone
Wait a few minutes! Wait a few minutes!
Waiting outside the maternity ward I am waiting outside the *
Waiting for dinner! I am waiting for **
Still waiting for my ride I am still waiting for my ride
Wait a few seconds Wait a few seconds

Contradiction There is no need to wait for this photo There is no need to wait for me

I am not waiting anymore I am not waiting anymore

* current location based on the map. ™ breakfast, lunch, or dinner based on the time.

S = (OiocationXis Otimexjr Oactivityxk)

where x; is the location instance, x; is the time instance, and x is the activity instance. We define two types of
locations, retrievable from Google Maps: known locations and unknown locations. Known locations require either
the user to manually label work, home, and school locations or the system to recognize a point of interest (e.g., train
stations and restaurants). Locations that are not recognized as known are categorized as unknown locations. The
location is represented as a longitude, latitude pair (log, lat).

To detect points of interest and labeled locations, we set a threshold to 0.1 miles on the distance from the user’s
current location. Time is divided into three periods of morning (5am-12pm), afternoon (12pm-5pm), and evening
(5pm-9pm). The user activity is classified into three categories of still, walking, and in-vehicle. A confidence score is
assigned to each activity and the one with the maximum score is detected as the user’s current activity.

Personal-related commitments (PRCs) signal the user’s recurrent and non-recurrent routines, and they are
elicited from the personal calendar available on the mobile device and the data from the map. The calendar includes
a list of commitments for each day with title, location, start and end time. The location must belong to one of the
known locations and its coordinates are retrieved from the map. By combining the user’s PRCs and the current
situation we generate a dynamic profile that integrates real-time data from the user.

When the user initiates an interaction for sending a message, the system suggests topics and messages based on
the User Model data. Topics are the entry points of TextFlow, and their order is determined by the user’s situation,
which is constituted by the type of activity, location and time (see Figure 1). When the activity is in-vehicle the
system re-ranks topics for an in-vehicle situation regardless of the location. When the activity is classified as still or
walking and the location is unknown, the system re-ranks topics for an on-foot situation. If the location is recognized
as known, the system re-ranks topics either by frequent location or point of interest. Each topic corresponds to a
list of messages, such that some of the messages depend on the location, time of the day, and PRC (see Table 1).

4.2 The Reasoning Model

The Reasoning Model provides rules to detect inconsistencies and infer new data [33]. These rules lead to ‘high-
level critical situations’ [12], a class of situations in which the system initiates the interaction and selects topics
bound to a specific rule. Based on the situations and messages learned from the initial study, we define four generic
rules to determine when the system initiates the interaction and what topics are presented to the user.

Missing formal commitments: BVIs may miss important commitments due to limited access to time and traffic
information. For each formal commitment, we estimate the arrival time based on the speed of the user. While users
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Figure 2: Three parts compose TextFlow: 1) the User Model leverages user’s situational factors to generate a dynamic user profile; 2)
the Reasoning Model operates on four rules based on the topics elicited from the initial study; 3) To support the user interaction, the
Task Model enables the blind to listen to and select aural prompts in screenless mode via an existing finger-worn device (TapStrap).

are en route, starting 15 minutes before their scheduled commitment, the distance to the destination is recorded
every 5 minutes and the average speed is computed as the distance covered in the last interval. The arrival time is
estimated by extrapolating the average speed to the destination, and the rule is activated when the arrival time
exceeds the time of commitment by 10 minutes. An example is when a person should be at work before 9 am, and
the current situation is S = (in — vehicle, 8: 45am, Vlocation). If the user’s distance from work is 26 miles and 5
min later is 21 miles, the rule will be activated. The selected topics for this rule are ‘arrive late’ and ‘changing plan’.

Shifting informal commitments: When BVIs are busy with one activity, they may forget to inform others about
informal commitments, such as meeting a friend at Starbucks or going home. Shifting informal commitments are
elicited from PRC based on the ending time of their formal commitments. In this study, the rule is activated when a
person is not in the expected location or en route 15 minutes after the end of the commitment. An example is when
a person leaves their place of work at 5: 30 pm and the situation is S = (still, 5: 45pm, work). Chosen topics for this
rule are 'arrive late’, 'arrival time', and 'changing plan'.

Waiting for too long: When BVIs wait in a specific place they may not realize the length of the time they spent
there. Waiting for too long is defined as when the user stays still for at least 30 minutes and the location is labeled
as ‘station’ or ‘unknown’. An example is when a person is in the bus station and the situation is S =
(still, 2: 15pm, bus — station) and after 30 minutes itis S = (still, 2: 45pm, bus — station). The selected topics for
this rule are ‘waiting’ and ‘arrive late’.

Getting lost: Finding the exact location of known places is not always feasible. While GPS is a possible solution, it
may not always be accurate enough to support BVI users. In our study, getting lost occurs when a person is walking
for at least 15 minutes in the same general area outdoors. An example is when a person has an appointment with
their friend in a restaurant and after reaching the place the situation is: S = (walking, 2pm, restaurant) and after
15 minutes is: § = (walking, 2: 15pm, restaurant). The selected topic for this rule is ‘get to a location’.



4.3 The Task Model

Task models incorporate the logical steps associated with activities that an individual must perform to achieve their
goal [21]. With TextFlow the user is either notified proactively of relevant topics based on the situation or the user
can initiate the texting action, and this input triggers the User Model. A list of relevant topics and messages are
offered to the user for interaction and topics are ordered based on the frequencies obtained from the initial user
study. Topics with high frequency (shown in Figure 1) are read individually, whereas topics with a frequency of 2
or less are collected in a ‘More’ category, which plays on-demand after the last topic (Figure 3-c). These outputs are
then fed into the Task Model.

The interaction is supported by a wearable device called TapStrap [24] (Figure 3-b) which uses finger
movements to perform various operations such as selection or deletion to send a message via a messaging app
(Figure 3-a). The system supports two different interaction modalities: self-disclosing flow and topic-by-topic
browsing. Topic-by-topic browsing allows the user to navigate the system’s suggestions with explicit forward and
back commands, whereas self-disclosing flow reads the system’s suggestions sequentially. We describe the steps
that the user has to perform when interacting with each of the modalities:

Topic-by-topic browsing: In this interaction modality, users tap their index finger to listen to topics individually.
They can navigate backward through suggestions by using the middle finger, tap their thumb to select a topic and
then browse the message list in the same way. Users have the option to tap their ring finger to cancel the selection.
When the system initiates the interaction, users can either tap their pinky finger to ignore the system’s suggestions
or continue browsing topics one by one.

Self-disclosing flow: To mitigate the need for using multiple fingers, we introduce an alternative TextFlow layout
in which the system’s suggestions are self-play, i.e., read out sequentially. We define three different dwell times,
that is, the pause between the system suggestions. The first is node-to-node dwell time (150ms), which is the pause
between topics or the pause between messages. The second is the dwell time between topics and messages (1s).
The third is the flow-to-flow dwell time (1s), that is, upon hearing the intended topic, the user can tap their thumb
to make a selection and if no selection is made the system will repeat the topics from the start after the dwell time.
The user can tap their index finger to cancel the selection. Upon selecting a topic, the system will transition to
messages. Similarly, the user can tap their thumb or index finger to make or cancel a message selection respectively.

We implemented and deployed TextFlow on a Nexus 6x phone with Android 10.0 and Android SDK v.29.0; the
TapStrap device was interfaced using Android Tap SDK 0.3.3, while the aural rendering of the message options was
realized through the default Android text-to-speech (TTS) engine [18]. To feed contextual data, we used Google
Location and Context services [20] for the points of interest, the Google Calendar API [19] for personal-related
commitments (PRC), and the Android Activity Recognition API [17] for data on the current user activity.

5 STUDY WITH BLIND PARTICIPANTS

We conducted an evaluative, in-person user study (IRB-approved) of TextFlow to scrutinize the usability and the
user experience with the system for first-time users.

5.1 Participants, Setting and Procedure

We recruited 10 BVI individuals (6 females and 4 males) in the Indianapolis urban area. Six of them already
participated in the initial study (Section 3). The participants’ ages ranged from 33 to 68 years old (u=47.7, 6=10.37).
Eight used iOS and two used Android. The length of mobile usage ranged from 6 to 18 years (u=11.8, 0=4.66). Five
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Figure 3: Detailed view of the Task Model. Users browse topics either as self-disclosing flow or by scanning them one-by-one (c);
Messages are selected through an off-the-shelf device that supports five tapping gestures (b) and sent via a messaging app (a).

participants were identified as totally blind, three legally blind, and two had retinopathy of prematurity (ROP). The
study was conducted in a conference room, with a table and chairs. Each participant remained standing while
interacting with our system, and could rest, sit or take a break at any time. Based on our first study, we defined
three scenarios to capture specific situations where a blind person might need to send a message: (1) On my way
to meet a friend at Starbucks at 2 pm; (2) On my way to work riding with a friend; (3) Leaving the house at 1 pm to
meet a friend for lunch. For each scenario, we asked participants to complete five tasks, such as “Letting a friend
know I'll be late”, or "Reminding a colleague about an upcoming meeting". Our study utilized a within-subject design
where each participant completed 15 different tasks distributed evenly over three scenarios. In the first and third
scenarios, four tasks required the user to initiate the interaction with TextFlow, whereas one task was associated
with a rule in which the system initiated text suggestions. In the second scenario, two tasks were associated with
rules and three tasks required the user to start messaging. When the user started messaging, the default interaction
modality was topic-by-topic browsing. However, when the system initiated the interaction, the default modality
was self-disclosing flow. The order of the three scenarios was counterbalanced to account for any ordering effects.
Each scenario was executed indoors and described verbally to each participant to help them understand both the
situation and the type of message they could send for each task. Participants were first introduced to the TapStrap,
the hand position required while tapping with the device, and the role of each finger in sending a text message. In
the first phase, we explained the purpose of each topic with one or two examples of text messages associated with
the topic and introduced the two interaction modalities—topic-by-topic browsing and self-disclosing flow. In the
second phase, participants were asked to practice and send a text message using the two modalities. Participants
were provided with feedback and assistance if needed during the second training phase.

After training, participants were required to start the tasks associated with the first scenario, and each scenario
was read aloud by the researcher. During the interaction, users could tap on any part of the body that was
convenient for them. Once the user sent a message, they were asked to determine whether the selected message
was relevant to the context or not. Each scenario was video recorded, followed by a five-minute break. After the last
session, we asked participants interview questions. The questions focused on situations in which the system could
be useful, advantages and disadvantages of the system versus accessible keyboards and dictation, and comparison
between the two interaction modalities. Answers to interview questions were audio recorded. For approximately
two hours of participation, each participant received a $60 Amazon gift card.
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5.2 Results

5.2.1 User Performance analysis. To assess efficiency, we tracked the time participants took to send a message
and computed the average time (i) and standard deviation (o) for task completion across all participants. To assess
effectiveness, we defined and analyzed key measures of the task success for each task and participant.

Time on task. For the 11 tasks associated with topic-by-topic browsing, the time spent depended on where the
target topic and message were in the auditory flow. Out of 11 tasks, six had both the target topic and the message
among the top in the list and yielded the highest performance (pn = 17.42; 0 = 9.43), between 10.5 to 17.5 seconds.
For three out of 11 tasks, either the target topic or the message was close to the end of the list: it took longer to
identify and select the message (i = 33.97; 0 = 11.3), between 29 to 35 seconds. Finally, for the two tasks where
both the target topic and the message were at the end of the list, users selected the target message between 42 to
44.5 seconds (i = 43.7; 0 = 6.48). The narrow range of standard deviations across all tasks (between 5.58 and 13.48
seconds) indicates that the performance was quite uniform across participants, with few exceptions. The
exceptions are due to two main factors: the number of times that the user had to go backward (18 times in 11 tasks)
and the number of times they had to cancel the selected topic (15 times in 11 tasks). The former occurred when the
user browsed system suggestions very rapidly, inadvertently skipping the target topic or message. The latter
happened when the user could not find the intended message within the first topic and had to get back to the list to
select another topic. For the 4 tasks associated with the self-disclosing flow, the average time (u = 35.6) ranged
between 28.7 to 46.3 seconds, while the standard deviation (o = 23.52) sat between 18.30 to 27.92 seconds. Two
factors affected the time spent on these tasks. The first factor was the number of times a selected topic or message
was canceled (30 times in 4 tasks): when participants failed to select the target topic or message within one second,
the system selected the next suggestion. The second factor was that 3 out of 10 participants preferred to listen to
the system'’s suggestions for one or two loops to memorize choices and avoid canceling a selection.

Task success. For each task, we identified one or multiple target messages, defined as the messages that were
designed and generated as most pertinent to a given situation. To determine task success, we defined the following
criteria: Success (1): the participant selected the target message and confirmed it was relevant to the situation;
Partial Success (0.5) captures two cases: when the message was off target but perceived as relevant; or when the
message was on target, but the participant found it not relevant; Failure (0): the message was off target and deemed
not relevant by the participant. To compute the task success, we normalized the value assigned to each task over
the number of participants. The average task success rate across the three scenarios is 88.66% (see Figure 4). On
average, 4 out of 15 tasks had a 100% success rate across all 10 participants. In the remaining 11 tasks, an average
of 1.6 participants per task had partial success and an average of 0.72 failed. We observed that when users had to
continuously search by either browsing over more topics or canceling their initial choices, they forgot the details of
the task and ended up selecting a message that was either outside the target message or perceived as not relevant.

5.2.2  Analysis of Experiential Themes. The open coding thematic analysis of each participant’s responses revealed
that participants had a very positive experience with TextFlow and offered important insights, presented below:
Bypassing the phone: A theme that emerged from the participants' reflection on their experience is that
TextFlow significantly reduces interaction barriers to access everyday texting in entirely auditory mode, especially
when traveling. For example, P1 articulates how the phone-free approach of TextFlow can help him by saying: “The
system helps you send text messages without using your hands for the phone. And so, you could use your cane and fully
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Figure 3: All participants successfully sent screenless messages. In five tasks, two participants on average selected a message off-
target; in nine tasks, two participants on average did not perceive the message as relevant to the situation.

concentrate on traveling as opposed to texting and traveling at the same time.” Another participant, P6, remarked:
“It can be very useful when traveling and you have a whole lot of items with you so that you do not have to remove your
cell phone and run the risk of losing it or having it stolen.” P2 expressed a similar sentiment of comfort when able to
rapidly access recurrent and ready-to-use messages, saying: “I feel secure knowing that I got some quick access that
I can contact my friend[s], to be able to say I am here, I am lost, or send my location.”

When reflecting on daily situations, participants appreciated how by initiating and suggesting message options
relevant to the context, TextFlow partially relieves blind users from having to constantly monitor their
surroundings. P7 described an exemplary scenario, stating: “If you're on a bus, you're trying to listen to when it's
moving, or when it stops and what's the next stop. So, if the system could pull one or two topics up automatically based
on the situation, then you don't have to be worried about the time or what is going on.”

Privacy, efficiency, and accuracy: When reflecting on how TextFlow compares to dictation, users pointed to
privacy, efficiency, and accuracy as key advantages with TextFlow. P4 stated: “With dictation, I have to
speak...everybody else can hear what I'm saying. But, if I was using this system and I had earphones on, nobody else

» o«

can hear. So, there's privacy, which is a big deal for blind people.” “You might end up saying something two or three
times, which makes Siri less efficient. Whereas with this, you can get to your message in a much shorter time.” [P9]
When comparing their use of TextFlow to accessible keyboards (e.g., VoiceOver), P6 shared: “The thing about the
keyboard is that a lot of times when you select the wrong letter, you have to delete and go back, whereas with this it's
not like you're doing individual letters. You may send the wrong message, but you can go back and fix that.”

Control preferred over self-disclosing flow: Participants expressed that browsing the messages one by one
gives them more time to think before moving to the next item, whereas the self-disclosing flow requires heightened
attention and more practice. P6 commented: “when you browse, you can control the way it repeats them for you. The
one that reads topics it takes more time before it becomes visible for most people and you have to memorize them first.”
Similarly, P3 stated: “the browsing work/[s] better for me because you can pick the speed at which you're going.” Other
participants indicated that the self-disclosing flow has the potential to better support multi-tasking. P2 stated: “If
I'm in the middle of doing something [...], I think the one that reads suggestions is better. I think that would be quicker.

» o«

The browsing is better when you're calm, and not rushed.” “If you're walking using a cane, it'll be more convenient to
use the one that the system reads the suggestions to you and you have to use only your thumb.” [P1]

Envisioned use in additional scenarios: When reflecting on additional circumstances in which TextFlow could
be useful, participants mentioned: ‘finding a place’, ‘standing on public transportation’, ‘being in crowded places’,
and ‘being in a meeting’. P7 commented: “Even though I can get to the building, but I have a hard time finding a way
to get in or to actually even get back out of the place. Because GPS works to get me to the spot, but it won't tell me

» o«

where the door itself is.” “if I got lost on the wrong street, I could text somebody to help me out faster, get me in the
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right direction.” [P8] Another setting mentioned is public transportation, when it is difficult to type. P3 stated: “It is
useful like if you 're standing in a train station or on the bus where your hands are full, but you could use the one hand
to send a quick message whereas you wouldn't be able to type.” P10 expressed that the system would be useful when
standing in crowded places, stating: “when I'm in a crowd of people, noise and like say, I'm standing at the door of the
market.” Participants also commented on the benefit of the system when they are in a meeting: “When I am in a
meeting, I can inform my family or friends without leaving the meeting or interrupting others.” [P2]

6 DISCUSSION AND FUTURE WORK

Users who are blind or visually impaired face an additional overhead of mechanical constraints and cognitive effort
to access basic mobile services such as texting. The problem has two sources. On the one hand, users have to
overcome a screen-centric visual paradigm to interact with entirely aural prompts; on the other hand, current text
entry methods require users to initiate text composition from scratch even for frequently sent messages. To address
this problem, TextFlow uniquely combines in one solution three interactive approaches: (1) Al-driven, mixed-
initiative interfaces that generate suggested, situationally relevant content for candidate messages; the specific
intelligent components of our system include the recognition of the user’s activity (e.g. in-vehicle, still, walking),
which in turn influences the order of the message topics presented to the user in the auditory flow. (2) Entirely
auditory, accessible interfaces that leverage the BVI’s auditory bandwidth to attend to and rapidly process aural
prompts; (3) Screenless input techniques that leverage finger-worn devices to discreetly control, browse and
manipulate text, thus bypassing the reliance on a visual display. Overall, our approach provides the basic
foundations to generate accessible auditory messages based on a variety of contextual cues. Although our system
instantiates specific rules that are empirically informed from the results of a user study, the three conceptual
components of the system (the user model, the reasoning model, and the task model) are generic enough to cater
to a variety of message types and contextual dimensions. The results of our evaluative study show that the overall
experiential response of participants toward TextFlow is positive. Participants were able to interact fluidly with the
TextFlow system and send messages quickly and discreetly. Users emphasized that the system bypasses the
limitations of existing technologies in terms of reliability, time efficiency, and privacy, in particular when users are
mobile and need to send a quick text message while focusing on their surroundings. The feedback from the
participants has also pointed to relevant limitations and directions for future work: (1) The paradigm of the
messages is still quite limited and does not cover the variety of messages that the user might like to send. For
instance, participants mentioned the desire to add important details to a message, such as: ‘I am lost, [ have a red
dress’. It is in fact critical for a blind person to communicate visual signals to be found by friends in public spaces.
(2) A second limitation is the extent of personalization. Participants expressed the desire to access the most
frequently used topics at beginning of the aural stream, and to add custom messages for rapid re-use. We are
working on extending the paradigm of messages supported and on the order of the auditory flow of messages based
on the user’s history. A major challenge is to strike a balance between message options suggested by the system
and the complexity of text editing when manipulating strings in screenless, aural environments.
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