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Abstract— Fingerprint embedding at the physical layer is a
highly tunable authentication framework for wireless commu-
nication that achieves information-theoretic security by hiding
a traditional HMAC tag in noise. In a multiantenna scenario,
artificial noise (AN) can be transmitted to obscure the tag even
further. The AN strategy, however, relies on perfect knowledge
of the channel state information (CSI) between the legitimate
users. When the CSI is not perfectly known, the added noise
leaks into the receiver’s observations. In this article, we explore
whether AN still improves security in the fingerprint embedding
authentication framework with only imperfect CSI available at
the transmitter and receiver. Specifically, we discuss and design
detectors that account for AN leakage and analyze the adver-
sary’s ability to recover the key from observed transmissions.
We compare the detection and security performance of the
optimal perfect CSI detector with the imperfect CSI robust
matched filter test and a generalized likelihood ratio test (GLRT).
We find that utilizing AN can greatly improve security, but suffers
from diminishing returns when the quality of CSI knowledge is
poor. In fact, we find that in some cases allocating additional
power to AN can begin to decrease key security.

Index Terms— Authentication, fingerprint embedding, physical
layer security, multiple-input, multiple-output (MIMO), artificial
noise (AN).

I. INTRODUCTION

THE need for authentication in communication systems
is readily apparent. By enabling trusted users to verify

the source of received transmissions, the integrity of the
system can be maintained and trustworthy communication
can take place. Its importance is further amplified in the
wireless setting where potential adversaries can easily observe
and interact with the legitimate parties in an attempt to
communicate under the guise of a legitimate transmitter. Tradi-
tionally, authentication is handled via cryptographic protocols
in the MAC layer or above. Recently, though, it has been
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shown that authenticating at the physical layer can offer
many benefits, including not requiring a secret key, offering
information-theoretic guarantees, and/or providing covertness,
e.g., [1]–[10].

The typical message authentication model consists of three
parties, the legitimate transmitter, legitimate receiver, and an
adversary whom we will refer to as Alice, Bob, and Eve,
respectively. In the model, Alice sends a message to Bob
who wishes to decode it and determine whether it came
from Alice or not. Authentication is required here because
of the presence of Eve who may try to impersonate Alice by
sending messages of her own. In order for Bob to authenticate
the message, Alice must include, deliberately or not, some
evidence in the transmission that identifies her as the sender.
The effectiveness of an authentication system is measured by
its ability to accurately identify authentic transmissions and
reject inauthentic ones. Its success is complicated by the fact
that Eve can learn the unique identifying information used by
Alice and Bob to establish authenticity by observing authentic
transmissions. Therefore, it is important to both limit and keep
track of Eve’s knowledge before the system is compromised.

In this article, we consider key-based authentication in
which a shared secret key between Alice and Bob is used
to facilitate authentication. Existing key-based cryptographic
methods [11], however, rely only on computational complexity
to protect the key from Eve and are instantly defeated by a
computationally unlimited adversary. Meanwhile, other key-
based works that do consider such adversaries over noiseless
channels, e.g., [12], [13], still reveal the key in relatively few
observations depending on key length [14], [15]. Therefore,
exploiting physical layer security for information-theoretic
authentication is a worthwhile endeavor that can extend the
amount of times a key can be used securely.

Authentication via fingerprint embedding is a physical layer
authentication framework that combines the practicality of the
cryptographic methods with the advantages of the physical
layer to provide information-theoretic guarantees and covert-
ness [5]. In the traditional hash-based message authentication
code (HMAC) approach, a tag is generated from both the
message and a shared secret key using a cryptographic hash
function [11]. The tag is then transmitted with the message
to Bob who computes the expected tag using the received
message and shared key. Bob authenticates if the expected
tag matches the received tag. The fingerprint embedding
framework follows the same concept, but hides the tag from
adversaries by superimposing it upon the message waveform
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at low power. The deliberate low signal-to-noise ratio (SNR)
of the tag ensures that even with computationally unlimited
resources, Eve will be mostly unsuccessful in her attempts
to extract the correct key while allowing Bob to still detect
its presence. While the framework has been shown to work
well in single-input, single-output (SISO) scenarios in both
simulation [5] and practice [16], its capabilities can be further
improved by utilizing multiple-input, multiple-output (MIMO)
communications [17] and employing a secrecy technique
known as artificial noise [18]. In the SISO case, the only
degree of freedom available to increase detection performance
is the total energy of the transmitted tag. MIMO communi-
cations, on the other hand, offer more degrees of freedom to
achieve desired results.

In this article, we study the use of artificial noise (AN) [19],
[20], called masked beamforming in some articles [21], which
is a technique in which a jamming signal that only affects Eve
is broadcast simultaneously with the traditional signal. This is
achieved by designing the AN to be orthogonal to the main
channel, i.e., the channel from Alice to Bob. The role of AN
is to further increase the security of the shared key such that
we can increase the amount of times a single key can be used
before it is compromised. This is the first use of beamforming-
based AN in an authentication setting. Some other works that
deploy artificial noise to aid authentication are different from
our approach. For example, Wu et al. use it in such a way that
it affects both Bob and Eve evenly in a SISO setting [22] and
also apply it in a different challenge-response authentication
model [23], while Tugnait uses added noise to aid detection
rather than enhance security [24].

Since the design of this type of AN is deeply dependent
on knowledge of the channel state information (CSI) of the
main channel, we address the very practical problem of having
only imperfect CSI knowledge. In doing so, we make the
framework more robust to channel estimation errors, and
present analysis that allows users to identify when and how
much AN is worth using depending on the quality of their
channel estimate and desired performance. More specifically,
we provide the following contributions in the context of
MIMO systems with imperfect CSI:

1) A highly tunable authentication framework that utilizes
AN to increase security and is robust to channel estima-
tion error

2) A new security analysis that precisely tracks the vulner-
ability of the key by analyzing an adversary’s ability to
infer the secret key from observations

3) Numerical results that show the design trade-offs of the
framework, show that desirable operating regimes exist,
and show that allocating additional power to AN is not
always beneficial

The article is organized as follows. Section II provides
background on MIMO secrecy capacity, authentication, and
artificial noise. Next, Section III details the specific procedures
and analysis of the MIMO framework while Section IV
considers security from an adversarial capabilities perspective.
Finally, numerical results are provided in Section V before
making concluding remarks in Section VI.

II. BACKGROUND

In this section, we briefly review secrecy in MIMO systems,
including artificial noise and levels of CSI knowledge, and how
it pertains to authentication.

A. Notation
Matrices are represented by bold capital letters while vectors

are bold lower case letters and scalars are non-bolded upper
and lower case letters. Subscripts of matrices denote particular
elements, i.e., Ai j is the i th column, j th row element of A.
Additionally, A j

i denotes the columns i through j of matrix
A. The operators E[·], Var(·), det(·), Tr(·), �(·), and † denote
the expectation, variance, determinant, trace, real, and Her-
mitian transpose of their arguments, respectively. Probability
distribution functions and cumulative distribution functions are
denoted as p(X) and P(X), respectively.

B. MIMO Secrecy Capacity, Authentication,
and Artificial Noise

The main focus of physical layer security research is the
analysis of secret communications in which a message is sent
between trusted parties that must not be successfully decoded
by an eavesdropper. The maximum possible rate at which
the message can be sent securely and reliably is known as
secrecy capacity [25]. A lot of work has been dedicated to
characterizing secrecy rate and capacity while information-
theoretic authentication, on the other hand, has not received
nearly the same amount of attention, especially in MIMO
communications with imperfect CSI. Since authentication has
different goals and thus has different performance metrics
than secrecy, the existing analysis does not readily apply.
Recently, though, physical layer authentication has received
more interest and different approaches and models have been
proposed. For example, some work derives its authentication
capabilities from a shared key only [13], [26], [27] in a
noiseless setting while some utilize a noisy channel only [1],
[3], [10], [28]. Some even utilize both [2], [9], [29].

Our framework falls into the final category where the advan-
tage over the adversary is in the form of a shared secret key and
where differences between the main and adversarial channel
are exploited. Since the key is the source of authentication,
it must be protected from the adversary to maintain security.
So, rather than using secrecy techniques and analysis to protect
a message, we instead apply them to the key by way of the tag
in order to keep it secret from the adversary. One of the major
issues with applying information-theoretic security concepts
in practice, though, is the assumptions that must be made
about the model or adversary. For example, in the wire-tap
channel [25], it must be assumed that the main channel is
“less noisy” than the channel to the adversary, denoted the
adversarial channel, in order to extract any secrecy from the
channel. These types of strong assumptions also extend to
analysis of the MIMO wire-tap channel in which it is assumed
that the main and adversarial channels, denoted as H and G,
respectively, are perfectly known [30], [31].

Fortunately, in MIMO systems, some secrecy can still be
guaranteed even when G is unknown, through the use of a
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Fig. 1. System diagram of the physical layer fingerprinting authentication framework. A legitimate transmitter-receiver pair share the same secret key that
is then used to create an identifying tag that enables authentication.

technique called artificial noise which requires only knowl-
edge of H. First introduced in [19] and [20], the technique
achieves secrecy by simultaneously transmitting additional
noise that is orthogonal to the main channel such that it cancels
out at the receiver. In doing so, it degrades an adversary’s
channel, but not the legitimate receiver’s, effectively lowering
the adversary’s SNR and thereby increasing security. This
scheme can sustain rates that approach secrecy capacity in the
high SNR MISO regime [21], but unfortunately bounds rates
arbitrarily far from secrecy capacity in the MIMO regime [31].
Nonetheless, artificial noise is a viable approach to increasing
secrecy in MIMO communications with the more realistic
assumption that communicating parties know their channel H,
but not the adversary’s G.

In practice, however, even H cannot be perfectly known,
further complicating the deployment of AN. In this case,
the null space of H, which is needed to design an orthogonal
signal, will not be known exactly. Then, if the imperfect CSI
is used to design the AN, it will leak into the legitimate
receiver’s observations degrading their channel in addition to
the adversary’s, albeit to a lesser degree. Some work to address
imperfect CSI in regards to physical layer authentication
has been done using machine learning [8] and in regards
to secrecy capacity with and without artificial noise [32].
In the studies, the imperfection of CSI knowledge is due to
things such as general channel estimation errors [33], limited
feedback [34], and delayed feedback [35]. Since the optimal
secrecy coding approach cannot be determined and secrecy
capacity itself cannot be calculated in these scenarios, most
works instead attempt to first optimize performance of the
main channel under some metric, e.g., minimum mean squared
error (MMSE) of the message [36] or maximizing signal-
to-interference-plus-noise (SINR) [37], and then allocate any
remaining power to AN after a certain performance metric is
met, essentially maximizing the amount of power available
for AN.

In this article, we utilize AN to increase the secrecy
of the key. We will primarily focus on optimizing
authentication/detection performance, before analyzing the
trade-offs with security. The straightforward approach of allo-
cating as much power to AN after certain metrics are met,
as in [35] and [37], does not always result in the best security
in our framework.

III. MIMO WITH AN AUTHENTICATION FRAMEWORK

In this section, we present the fingerprint embedding authen-
tication framework with artificial noise for the imperfect CSI
MIMO regime.

We follow the same basic principles of tag embedding
as the SISO framework [5] and the overall structure of its
MIMO extension [17], but enhance it to include artificial noise
and to be robust to imperfect CSI. A brand new security
analysis is given in Section IV. A block diagram of the
authentication framework can be found in Figure 1. The
goal still remains to enable Bob to successfully decode and
authenticate messages from Alice while rejecting messages
from Eve, but the presence of imperfect CSI requires major
changes to the detection procedure to maintain optimality and
other desired properties.

A. MIMO System and CSI Model
We first give the basic structure of the transmitted signal

and the channel and then detail the design of each component
in the subsequent subsections. The framework is primarily
based on the HMAC protocol [11], but adapts it for the
physical layer to take advantage of the noise inherent in
the wireless medium. Before communications begin, Alice
and Bob generate and share a κ-bit secret key kvalid that
is chosen uniformly at random from K, the set of all κ-bit
keys. Eve begins ignorant of the shared key, but can learn it
by observing Alice and Bob’s communications. Additionally,
besides possibly sending messages of her own, we assume
that Eve is not actively jamming or interfering with Alice’s
transmissions. Alice, Bob, and Eve are equipped with NT ,
NR , and NA antennas, respectively.1

When Alice is ready to communicate, she generates an
ND × L complex message S where ND ≤ min{NT , NR } and
each of the L ND symbols are drawn from any desired mod-
ulation constellation, e.g., QPSK or 16-QAM, with average
unit power. The number of dimensions, ND , is chosen by the
designer and provides a trade-off between message rate and
security. A larger ND allows more streams of data (higher
rate), but leaves less dimensions for AN. It has been shown
that increasing the number of dimensions of AN increases
security [20]. The parameter ND is important in that it allows
Alice to send AN in the range space of H in cases where
transmitting AN in only the null space is not sufficiently
secure for her needs or if there is no null space at all,
i.e., NR ≥ NT .

Then, following the HMAC protocol, an ND × L complex
tag T is generated using the tag-generating function g(·, ·) as

T = g(S, kvalid), (1)

1Eve can also be interpreted as being multiple colluding adversary’s that
have a total of NA antennas with a fusion center that has access to all
observations.
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where the symbols of T can be from a different constellation
than S. The function g(·, ·), commonly implemented in prac-
tice via a cryptographic hash function, is specifically designed
to appear as though the outputs are chosen uniformly at ran-
dom, but are actually deterministic for fixed inputs. The effect
of this is that minor variations in the input cause very different
outputs with high probability. For authentication purposes, this
means that producing T for a given S without knowledge of the
specific key kvalid is unlikely. The determinism of the function
ensures that anyone with access to kvalid will produce the same
tag T for the same S, enabling authentication.

Next, Alice generates the (NT − ND) × L artificial noise
matrix W whose entries are zero-mean complex Gaussian
with unit variance. She then embeds the tag into the message
waveform using power allocation parameters p2

s and p2
t for

the message and tag, respectively, and loads the AN into the
remaining transmit dimensions with power allocation p2

w. The
final transmitted NT × L matrix X is of the form

X = V

⎡
⎣Q

1
2
S psS + Q

1
2
T ptT

pwQ
1
2
WW

⎤
⎦ , (2)

where V is the NT × NT precoding matrix, QS and QT are the
ND × ND diagonal power loading matrices of the message and
tag, respectively, and QW is the (NT −ND)×(NT −ND) diago-
nal power loading matrix of the AN. The precoding and power
loading will be designed such that X satisfies a total power

constraint P0 where Tr(E[XX†])/L = p2
s Tr(VND

1 QSVND
1

†
)+

p2
s Tr(VND

1 QTVND
1

†
) + p2

w Tr(VNT
ND+1QWVNT

ND+1
†
) ≤ P0.

The power allocation of the tag is typically chosen such
that p2

t � p2
s as to have negligible impact on message

decoding [16], [38].
Bob observes the transmitted vector through the NR × NT

channel matrix H while Eve observes it through the NA × NT

channel matrix G. In other words, Bob will receive the NR ×L
matrix

Y = HX + Nb (3)

while Eve will receive the NA × L matrix

Z = GX + Ne , (4)

where Nb and Ne are the NR × L and NA × L matrices of
i.i.d. zero-mean circularly-symmetric complex white Gaussian
noise (CWGN) with variance σ 2

b and σ 2
e , respectively. From Y,

Bob tries to detect the presence of T to determine authenticity,
while Eve tries to determine which key was used from Z.
It is assumed that the entries of both H and G are i.i.d. zero-
mean complex Gaussian distributed with unit variance and are
determined before each round of communication such that they
remain constant for the entire message. We consider the case
where H and G are independent. The gain of the channel is
accounted for in the transmit power of X.

We assume that Alice and Bob have (im)perfect knowledge
of H and no knowledge of G while the adversary has perfect
knowledge of both channels. In this article, we consider the
case where the CSI imperfection is due to channel estimation
errors. Specifically, we model the channel estimate Ĥ as a

perturbation of the true channel with an error matrix defined
as

E = H − Ĥ . (5)

We assume that Ĥ is found through minimum mean square
error (MMSE) estimation and is thus uncorrelated with the
error matrix [39]. We then assume that Ĥ and E, are both
i.i.d. zero-mean complex Gaussian with variances 1 − σ 2

E and
σ 2

E, respectively [39]. The value of σ 2
E characterizes the quality

of the estimate and can be determined from estimation para-
meters such as training interval length, pilot symbol transmit
power, and channel coherence time depending on the technique
used [39]. The case of perfectly known H is included in
this model by setting σ 2

E = 0. We consider the cases where
the value of σ 2

E is either known or unknown to all. In both
cases, we assume that Alice and Bob have access to the same
estimate Ĥ. Mismatched estimates can be explored in future
work.

We will focus on optimizing authentication/detection perfor-
mance first, before analyzing the trade-offs with security. This
strategy is motivated by the fact that the adversarial channel is
unknown to the legitimate parties so design can only be catered
to the main channel. Additionally, optimal tag detection by
the receiver results in a lower tag power requirement to
achieve a given detection probability. This increases security
since a lower tag power makes it more difficult for the
adversary to recover the key. For the perfect CSI case, optimal
tag detection/authentication is easily obtained and feasible,
whereas for imperfect CSI, the optimal test is infeasible due
to the lack of a closed-form expression of the underlying dis-
tributions. Therefore, we provide alternative sub-optimal tests
for two different CSI scenarios in Section III-E and compare
them to the perfect CSI test to judge the performance loss.
More specifically, when all distributions and their parameters,
such as error variance, are known, we propose using a robust
matched filter tag detection test, while for cases where the
distribution of the error is unknown, we propose the GLRT.

B. Legitimate Transmitter Design
We now discuss the design of the precoding and power

loading matrices in the transmitted vector in Eq. (2). The
matrices V, QS, QT, and QW are determined by the framework
and the given channel H while p2

s , p2
t , p2

w, and ND are
parameters that are chosen by the user. The parameter ND ,
in particular, controls the number of dimensions over which
data is sent and allows users to sacrifice data rate in order
to send AN over additional dimensions. This flexibility is
especially important for cases like NT = NR in which there is
no null space to send the artificial noise and AN must be sent
over dimensions in the range space of H normally reserved
for data. Without knowledge of G, we design the precoding
and power loading for the message, tag, and AN to optimize
reception at Bob.

When H is perfectly known, the singular value decompo-
sition (SVD) precoding approach along with water-filling for
power loading achieve main channel capacity [40]. The use of
SVD allows for the decomposition of the MIMO channel into
independent parallel channels while water-filling optimally
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allocates power to those parallel channels by prioritizing the
stronger ones. In the case of imperfect channel knowledge,
however, these two strategies cannot be executed precisely.
For example, performing SVD with the channel estimate Ĥ
will cause the individual channels to not be fully orthogonal
leading to leakage between them while naively performing
water-filling using Ĥ will lead to suboptimal rate. Additionally,
the estimated null space will cause the artificial noise to leak
into Bob’s observations since it will not cancel perfectly.
Nonetheless, the optimal design of V still begins with SVD
of Ĥ [39]:

Ĥ = UDV†, (6)

where D is an NR × NT diagonal matrix of singular values
and U and V are unitary matrices of singular vectors. The
precoding matrix V is then the right singular matrix of Ĥ.
The unitary structure of V reduces the power constraint to
Tr(E[XX†])/L = p2

s Tr(QS)+ p2
t Tr(QT)+ p2

w Tr(QW) ≤ P0.
Next, for the design of QS, we adopt the approach in [39]

in which a spatio-temporal modified water-filling algorithm is
presented that maximizes a lower bound on the main channel
capacity under an average transmit power constraint. While
there are two parts of the approach, we only consider the
spatial aspect which slightly modifies the traditional water-
filling algorithm depending on the quality of the channel
estimate via σ 2

E and with constant P0. For a channel estimate
Ĥ, the modified water-filling algorithm produces a diagonal
ND × ND power loading matrix QS as follows

QS(i, i) =
(

μ − (σ 2
b + σ 2

E P0)

λi

)+
(7)

s.t. P(μ) =
ND∑
i=1

QS(i, i) ≤ P0 , (8)

where λi is the i th eigenvalue of Ĥ†Ĥ, μ is chosen to satisfy
the data and tag power constraint such that Tr(QS) = P(μ) =
P0, and (·)+ = max{·, 0}. When considering perfect CSI,
i.e., when σ 2

E = 0, the modified water-filling approach reduces
to standard water-filling. Note that there are cases in which
the algorithm decides that not all desired dimensions should
be used for optimal data transmission. In that event, ND in
the subsequent analysis should be changed to the number of
nonzero entries in QS from (7) and (8) rather than the value
chosen by Alice and Bob.

For the tag, we consider two embedding strategies as in [17]
termed the all mode (AM) and strongest mode only (SM)
embedding approaches. In the first, the tag is embedded across
the same eigenmodes as the message, so the power loading
is the same as the message, i.e., QT = QS, just scaled by
p2

t . In the second approach, the tag is embedded in only the
strongest mode in which only the first diagonal element of
QT is nonzero and is set to P0. For an analysis of optimal
joint message and tag precoding, see [41]. Finally, since G
is unknown, the artificial noise is transmitted isotropically
such that QW = P0

NT −ND
INT −ND . Therefore, the final transmit

power satisfies the constraint, Tr(E[XX†])/L = p2
s Tr(QS) +

p2
t Tr(QT)+ p2

w Tr(QW) = p2
s P0 + p2

t P0 + p2
w P0 = P0, when

p2
s + p2

t + p2
w = 1.

C. Authentication and Tag Detection Assumptions
Bob’s goal is to decode the message S and determine its

authenticity by detecting the presence of the valid tag T in the
received signal Y. He is successful when he correctly accepts
a message containing a valid tag or when he rejects a message
that does not. The problem is a binary hypothesis test where

H0 : valid tag is not present in received signal
H1 : valid tag is present in received signal .

Choosing the hypotheses as such allows us to provide security
guarantees such that the probability of falsely accepting an
inauthentic message is limited to a user-specified level while
providing the best detection of authentic signals as possible.
This is achieved through the Neyman-Pearson style approach
to detection which maximizes the probability of detection PD
for a given false alarm probability PFA, which in this case
represents the false acceptance of an inauthentic message.
When the value of PFA is guaranteed, the detector is said to
have a constant false alarm rate (CFAR) which is very valuable
in authentication.

Since the Neyman-Pearson approach utilizes the likelihood
ratio, the structure and distributions under each hypothesis
must be well-defined to determine the optimal test. While the
structure of the signal under H1 is known since it is explicitly
designed by Alice and Bob, the structure under H0 depends on
Eve’s attack strategy, or lack thereof. Since her goal is to have
one of her messages accepted as though it was from Alice,
we assume that she selects a key, either naively or based on
her observations, and then follows the same procedure as Alice
via Eq. (2) following the design from Section III-B. According
to consequences of Sanov’s theorem [42], the best way to
cause errors in Bob’s test, i.e., have him accept Eve’s message,
is to induce a distribution at Bob that is as close to H1 as
possible. Another way to justify this attack model as opposed
to allowing Eve to do anything is that any transmission that
does not adhere to the communication protocol/standard used
by Alice and Bob will likely be flagged or cause errors,
so Eve’s possible signal structures are restricted. Alternatively,
game theory could be used to formulate the attack model and
detector as a game to determine a possible Nash equilibrium
like in [6], but this is out of the scope of this article. Since
a correct key choice will have a high probability of being
accepted, we model H0 as a uniformly random tag generated
by an incorrect key choice to create a baseline level of security.
This ensures that Eve is limited to PFA until she gains enough
information about the key to guess with probability greater
than PFA.

The random tag may be allocated a different power level
than Alice’s, so we denote the tag power as p2

eve in H0 to
differentiate it from p2

t in H1. However, we will assume that
p2

eve is known and p2
eve = p2

t unless otherwise specified since
Bob might be able to detect the increased power using a simple
energy detector thereby decreasing the success probability of
an attack. The amount of additional power Eve could allocate
to her random tag is also limited by its interference with the
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message which would cause more errors in Bob’s decoder.
The assumption of known p2

eve is removed later on for the
GLRT detector and the performance of such an energy detector
is omitted for conciseness. Eve’s randomly chosen tag in
noise is distributed as a Gaussian mixture model where each
component represents a tag in T , i.e.,

p(y|H0)

= 1

|T |
|T |∑
i=1

1

π Lσ 2L
b

exp

(
− 1

σ 2
b

(y − peveti )
†(y − peveti )

)

(9)

To simplify the problem, our final assumption under H0
is that the random tag symbols are distributed as zero-
mean complex Gaussian with variance p2

eve. This allows us
to develop closed-form, i.e., feasible, tests that are easily
implemented in practice. The assumption is motivated by the
fact that the modes of the Gaussian mixture tend to overlap
one another and tend towards a zero-mean Gaussian since the
tag SNR, p2

eve
σ 2

b
, is designed to be very low. In other words,

as p2
eve becomes small, (9) is well approximated as zero-mean

complex Gaussian with variance σ 2
b + p2

eve.

D. Legitimate Receiver Procedure: Perfect CSI
We first describe the fairly straightforward perfect CSI,

i.e., σ 2
E = 0, authentication/detection procedure before dis-

cussing the imperfect case. After having received

Y = HV

[
Q

1
2
S psS + Q

1
2
T pt T

pwQWW

]
+ Nb, (10)

Bob performs SVD receiver beamforming by multiplying by
U† to obtain

Ỹ = U†Y

= D

[
Q

1
2
S psS + Q

1
2
T ptT

pwQWW

]
+ U†Nb

= D′(Q
1
2
S psS + Q

1
2
T pt T) + U†Nb, (11)

where D′ is an ND × ND diagonal matrix of singular values
creating ND independent parallel channels. In the case of
ND ≤ NR , the last NR − ND rows of Ỹ are ignored since
AN will be loaded into those channels leaving an ND × L
matrix. The remaining artificial noise is not present in the
final equation since it is loaded into the null space of the
channel, i.e., the all zero columns of D. Since U is unitary,
the distribution of U†Nb is the same as Nb and no adjustments
must be made.

Next, Bob obtains a message estimate Ŝ by conventional
demodulation techniques, ignoring the presence of the tag. He
then forms the ND × L residual

R = Ỹ − D′Q
1
2
S ps Ŝ

= D′Q
1
2
T ptT + U†Nb , (12)

by removing Ŝ from the observation. By assuming that decod-
ing is successful, Ŝ = S, Bob is left with ND independent
blocks of noisy tags with varying SNR due to the gains of the
channel. The optimal detector for the hypothesis test outlined

in Section III-C in this case is a weighted combination of a
matched filter and an energy detector [43]. From our assump-
tion that p2

eve = p2
t , the distribution of the total energy of

the signal will be the same under both hypotheses. Therefore,
for simplicity, we omit the energy detector portion of the test
and only use a matched filter test since the performance will
be approximately equal. Accounting for the channel gain and
power loading, the matched filter (MF) test can be written in
matrix form as

T (Y) � �[Tr(R†R̃)] H1
≷
H0

τ (13)

where R̃ = D′Q
1
2
T pt T̃ is the expected residual with T̃ being the

expected tag computed from (1) using kvalid and Ŝ. Since Y is
Gaussian and (13) is a linear transformation, the distribution of
the test statistic T (Y) under both H0 and H1 is also Gaussian.
Then, the threshold τ given a desired false alarm probability
PFA and the detection performance can be easily calculated
using the Q-function [17].

E. Legitimate Receiver Procedure: Imperfect CSI
We now focus on developing the authentication test in the

case of imperfect CSI knowledge, i.e., σ 2
E > 0. The goal still

remains to find the best test possible such that minimal tag
power p2

t is required for a desired probability of detection PD .
Finding the optimal test is complicated by the artificial noise
leakage in the main channel and the imperfect parallelization
of channels. This necessitates a different approach to detection
since unknown imperfections are introduced.

There are two main approaches to dealing with unknowns
in hypothesis testing, the choice of which depends on the
model. If the distributions of the unknowns are available,
then optimal performance in the Neyman-Pearson sense can
be developed through the Bayesian approach to composite
hypothesis testing. If, instead, the unknowns are simply treated
as deterministic values or the distributions are not known,
then the generalized likelihood ratio test (GLRT) can be
employed. Although the Bayesian approach is known to be
optimal, it has some undesirable properties and can often
lead to solutions that are not closed-form and thus difficult
to implement, as is the case here. Therefore, we recommend
two alternatives that address two different scenarios. More
specifically, a matched filter robust to the channel uncertainties
is recommended for known error distributions and p2

eve while
the GLRT is recommended for when the structure/distribution
of E is unknown or parameters σ 2

E or p2
eve are unknown.

Before forming our tests for either approach, we first deter-
mine the specific structure of Y under each hypothesis such
that the distributions can be obtained. First, let Ẽ = U†EV
where U and V are the singular vectors from the SVD of the
channel estimate, Ĥ = UDV†. Since U and V are both unitary,
Ẽ will have the same distribution as E. This allows us to write
the actual channel as H = Ĥ + E = U(D + Ẽ)V†. Then, after
multiplying Y from (10) by U†, Bob receives

Ỹ = U†Y

= (D + Ẽ)

⎡
⎣Q

1
2
S psS + Q

1
2
T ptT

pw

√
P0

NT −ND
W

⎤
⎦ + U†Nb . (14)
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In the perfect CSI case, the presence of only the diagonal
matrix D ensured that each row of the data matrix separated
perfectly and that the artificial noise canceled out successfully.
In this case, however, the error matrix Ẽ causes the individual
data streams to interfere with each other in addition to the AN
leaking into the observation.

If we separate the matrix D + Ẽ into the first ND columns
as the NR × ND matrix A and the last NT − ND columns as
the NR ×(NT − ND) matrix �, we can rewrite the observation
as

Ỹ = AQ
1
2
T pt T + �pANW + U†Nb , (15)

with S removed and where p2
AN = p2

w
P0

NT −ND
. The perfect

removal of S is justified by the fact that after successfully
decoding, it can be used to estimate its unknown amplitude
using maximum likelihood estimation before subtracting it
from (14). Since L and p2

s P0 are large relative to σ 2
E, the esti-

mate will be very good and S will be canceled almost perfectly.
After this process, Ỹ can be interpreted as a deterministic
signal with a random/unknown complex amplitude matrix A in
the presence of complex Gaussian noise with random/unknown
covariance �1 = p2

AN��† +σ 2
b I. The probability distribution

function (PDF) of (15) under H1 and H0 conditioned on the
actual amplitude and covariance is then

p(Ỹ|Hi , A,�1) = 1

π L ND det (�i )
L

exp
(
− Tr

(
�−1

i Ỹi Ỹ
†
i

))
(16)

for i = 0, 1 where Ỹ1 = Ỹ − AQ
1
2
T pt T, Ỹ0 = Ỹ, and �0 =

p2
eveAQTA† + p2

AN��† + σ 2
b I. Now that our hypotheses are

defined, we can construct our tests.
1) Robust Matched Filter: Since the optimal Bayesian

detector lacks a closed-form expression in this problem,
we propose adjusting the MF to account for the channel
estimate error and AN leakage. Although it is suboptimal,
we will show that it performs well. The premise is that the
matched filter is tuned as though the channel estimate is
correct, but the threshold calculation is modified to ensure
that the desired probability of false alarm is maintained. The
change in threshold calculation is due to the change in the test
statistic’s distribution caused by the unknown parameters. The
test, denoted as the robust matched filter (RMF), is given as

T RMF(Y) � �[Tr(R†R̃)] H1
≷
H0

τRMF (17)

where R is the residual of Y after the contribution of S is
removed and R̃ = DQ

1
2
T pt T̃ is the expected residual with

T̃ being the expected tag computed from (1) using kvalid

and Ŝ. The test differs from (13) in the calculation of the
threshold τRMF.

For sufficiently large tag length L, we can invoke the
central limit theorem (CLT) to approximate the distribution of
(17) as Gaussian under both hypotheses. Since our zero-mean
Gaussian approximation of H0 (introduced in Section III-C)
has the same mean and variance as the true distribution of
a randomly chosen tag, the distribution of the test statistic
under H0 will be the same for both the approximation and the

true distribution. In other words, the presented distributions
apply to both a random tag and a random zero-mean Gaussian
signal. For the sake of brevity, we do not include proofs for the

following identities. Let T̃ = AQ
1
2
T pt T, where once again A

is the first ND columns of D + Ẽ, then the mean and variance
under H0 is

E
[
T RMF(Y|Ĥ)

∣∣∣H0

]
= μ0,b = 0 (18)

var
(

T RMF(Y|Ĥ)
∣∣∣H0

)
= σ 2

0,b

= 1

2
p2

eve Tr
(

AQTA†T̃T̃†
)

+1

2

(
p2

eveσ
2
E P ′

0 + σ 2
b

)
Tr

(
T̃T̃†

)
(19)

while for H1 it is

E
[
T RMF(Y|Ĥ)

∣∣∣H1

]
= μ1,b = Tr

(
T̃T̃†

)
(20)

var
(

T RMF(Y|Ĥ)
∣∣∣H1

)
= σ 2

1,b

= 1

2
σ 2

E p2
t Tr

(
T†QTTT̃†T̃

)
+1

2

(
p2

ANσ 2
E + σ 2

b

)
Tr

(
T̃T̃†

)
.

(21)

The threshold τRMF and performance PRMF
D are then cal-

culated as

τRMF = min τ s.t. 	

(
τ − μ0,b

σ0,b

)
≤ 1 − PFA, (22)

PRMF
D = 1 − 	

(
τRMF − μ1,b

σ1,b

)
, (23)

where 	(·) is the cumulative distribution function (CDF) of
the standard normal distribution.

2) GLRT Approach: When the variables are modeled as
deterministic unknowns, the GLRT can be utilized for detec-
tion. The GLRT is especially useful when the assumption that
p2

eve is known is no longer made as the test accounts for any
value of p2

eve while maintaining the CFAR property. It is also
useful when the structure of the error E or the error variance
σ 2

E is unknown. Instead of marginalizing out the unknown
variables, the GLRT replaces the unknown variables with
their maximum likelihood estimates (MLE) in the likelihood
function to create

LGLRT(Y) = p(Y|θ̂1)

p(Y|θ̂0)

H1
≷
H0

τ , (24)

where θ̂1 and θ̂0 are the MLEs of the unknown parameters θ1
and θ0 in H1 and H0, respectively. A major advantage of the
GLRT is that if the parameter space of the null hypothesis �0
is a proper subset of the alternate hypothesis parameter space
�1, then 2 log LGLRT(Y) is asymptotically χ2

d distributed
under H0 with degrees of freedom d = |�1| − |�0| [44].
For sufficiently large L, this fact, known as Wilks’ theorem,
can be utilized to produce a CFAR detector since the test
statistic under H0 will always be χ2

d regardless of the channel
estimate or Eve’s transmit power.
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Whenever NR > NT − ND , though, the null hypothesis
parameter space will not be a proper subset of the full
parameter space and Wilks’ theorem will not apply. This is
due to the difference in structure of the covariance matrices
under each hypothesis and the fact that ��† will not be full-
rank when NR > NT − ND . When this is the case, �1 will
have less than 2N2

R unknowns since it is derived from the
NR × (NT − ND) matrix � whereas �0 will always have 2N2

R
unknowns since it is derived from the full rank NR×ND matrix
A. Specifically, based on the number of dimensions in which
AN is loaded, �1 will contain min{2NR(NT − ND), 2N2

R}
unknowns. While taking advantage of the unique structure
of �1 will lead to better estimates and thus better detection
performance, we will lose the desired CFAR property afforded
by Wilks’ Theorem. Nevertheless, we can ignore this structure
of the AN interference, ��†, in �1 and treat it as a full-rank
covariance matrix to apply Wilks’ theorem and obtain a CFAR
detector.

After invoking Wilks’ theorem, the final GLRT test is

TGLRT(Y)

= −2L log det

(
INR −

(
YY†

)−1
YT†

(
TT†

)−1
TY†

)
, (25)

and it follows that the distribution under each hypothesis is
approximately

TGLRT(Y|H0) ∼ χ2
2NR ND

(26)

TGLRT(Y|H1) ∼ χ2
2NR ND

(λ) , (27)

where λ = 2 Tr
(
�−1

1 ATT†A†
)

is the non-centrality parame-
ter and �1 and A are the true values [45]. These distributions
hold for both the zero-mean Gaussian approximation of H0
and the true distribution due to the CLT. The detection
threshold τGLRT as well as the detection performance PGLRT

D
can then be found via

τGLRT = min τ s.t. Pχ2
2N2

R
(0)(τ ) ≤ 1 − PFA, (28)

PGLRT
D = 1 − Pχ2

2N2
R

(λ)(τ
GLRT), (29)

where Pχ2
2N2

R
(λ)(·) is the CDF of the χ2

2N2
R

distribution with

non-centrality parameter λ. Since the distributions hold for
the actual H0, the CFAR property holds in practice and
performance remains the same whether the adversary transmits
a random tag or a zero-mean Gaussian signal.

IV. SECURITY: ADVERSARIAL PERSPECTIVE

In this section, we analyze a computationally unlimited
adversary’s ability to launch successful attacks as a means of
quantifying authentication security. The adversary’s main goal
is to deceive Bob into falsely accepting one of her messages as
if it was from Alice. Due to the collision resistance property
of the tag generating function and the structure of Bob’s test,
the only guaranteed way to successfully fool Bob is to obtain
the shared secret key kvalid, which allows her to perfectly
impersonate Alice. The justification for this attack model was
given in Section III-C, where we designed the hypothesis
test such that an incorrect key guess is limited to a success

probability of PFA. Once Eve’s ability to recover the correct
key PK exceeds PFA, we can no longer guarantee security at
that level. Therefore, we will quantify security by both PFA and
the key lifespan which we define as the number of observations
required by Eve before PK > PFA.

Eve’s key recovery problem is equivalent to a multiple
hypothesis testing problem where each hypothesis corresponds
to a key in K. It is well known that maximum likelihood (ML)
estimation is optimal in terms of minimizing the probability
of error for uniform priors [43], therefore we analyze its
performance as it is the optimal key recovery algorithm.
We directly compute the expected performance of the ML
estimator of the key for a given channel pair H and G while
the key lifespan itself is computed numerically in Section V-B
by performing Monte Carlo runs over H and G. For more
discussion on using this as a security metric and its relationship
to the information-theoretic quantity min-entropy, please refer
to [46].

In order to provide guarantees for any adversary, we assume
the worst-case scenario (from a security perspective) in which
Eve has complete knowledge of her channel G as well as
Alice and Bob’s channel estimate Ĥ. Due to her knowledge
of Ĥ, Eve is also able to derive both V and QT in the same
way as Alice. If Alice transmits a tagged signal as in (2), Eve
observes

Z = GV

⎡
⎣Q

1
2
S psS + Q

1
2
T pt T

pwQ
1
2
WW

⎤
⎦ + Ne, (30)

which can be rewritten with the message removed as

Z = AG ptT + �G pANW + Ne, (31)

where p2
AN = p2

w
P0

NT −ND
, AG = GVND

1 Q
1
2
T and �G =

GVNT
ND+1 with V j

i indicating columns i through j of V. Upon
reception of Alice’s tagged signal, Eve decodes the message
as Ŝ and, similarly to Bob, obtains a residual by removing the
contribution of Ŝ from Z. From the remaining residual signal
matrix, Eve wishes to estimate which tag is present so that she
can obtain the key by inverting the tag generating function (1).
Unlike traditional information-theoretic authentication [12],
[13], we generally consider the case where |K| < |T | such
that we can assume each tag has a single unique key that could
have produced it. Therefore, determining the most likely key is
tantamount to determining the most likely tag. This assumption
is made because large tag sizes are needed in order to offer
covertness while achieving desirable detection performance.
The larger tag space also allows easier analysis of multiple
uses of the same key.

From the residual, Eve formulates the MAP/ML estimation
problem

arg maxk: Tk=g(Ŝ,k) p(Z|Tk, AG,�G) (32)

where

p(Z|Tk, AG,�G)

= 1

π L ND det (�G)L
exp

(
− Tr

(
�−1

G Z̄Z̄†
))

, (33)
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Z̄ = Z − AG pt Tk , and �G = p2
AN�G�†

G + σ 2
e INA . The

maximization in (32) can be recast as a hypothesis testing
problem consisting of |K| hypotheses corresponding to each
possible key. The optimal test and equivalent ML detector
in this case is given by a bank of |K| generalized matched
filters (GMF) that are tuned to the tags from each possible
key, i.e., tuned to each Tk = g(Ŝ, k) for all k ∈ K. The final
key is then chosen by the tag associated with the GMF with
the largest output.2

Eve uses multiple observations of Alice’s transmissions in
order to gain a satisfactory amount of information about the
key to launch a successful attack. For multiple observations,
the optimal test maintains a similar structure, but where
outputs are summed across each observation such that each
MF bank consists of a separate stage for each observation.
The test consists of concatenating all observations and then
matching it with filters that are each tuned to a concatenation
of tags created from a given key and each observed message
Si . The maximum output determines the most likely key.
Since GMFs prewhiten the noise, the test remains optimal by
accounting for the varying channel quality of each observation
by essentially weighing the better channels more than the
poorer channels in the final summations.

More formally, let Zi denote the i th observation and let
Gi , and Ĥi be its corresponding realizations of the adversarial
channel and main channel estimate for each observation,
respectively. Then, let Z = {Zi }1≤i≤No , G = {Gi }1≤i≤No ,
and Ĥ = {Ĥi }1≤i≤No now represent the collection of channel
realizations for observations 1 to No. Then, Eve’s procedure
using No observations gives the key estimate

k̂ = arg maxk Tk(Z|G, Ĥ) , (34)

where

Tk(Z|G, Ĥ) =
No∑

i=1

�
[
Tr

(
Z†

i �
−1
Gi

T̃k,i

)]
(35)

is the sum of GMFs tuned to T̃k,i = AGi pt Tk,i with Tk,i =
g(Ŝi , k) being the expected tag for key k and message Ŝi pre-
coded according to the given channel Gi and channel estimate
Ĥi . Since we follow the information-theoretic approach to
security where Eve has unlimited computational power, we do
not consider the complexity of such an estimator, but can
compute its expected performance to determine the security
of the framework.

In order for the estimator in (34) to produce the cor-
rect key, the output of the statistic attributed to the correct
key, T valid

k (Z|G, Ĥ), must be larger than the output of all
|K| − 1 other keys. Since we model the key and tags as
being uniformly and independently chosen in (1), the expected
probability of correct key recovery for a given collection of

2We assume that S is recovered correctly by Eve, otherwise, the computed
tags used in Eq. (32) will be incorrectly reconstructed. In practice, though,
the addition of AN will induce more decoding errors at Eve resulting in
improperly tuned GMFs. When this occurs, Eve’s key uncertainty will be
larger than what is presented here. This is an additional indirect security
benefit of AN.

channels, averaged over all possible keys, is given by

PK (G, Ĥ) =
∫ ∞

−∞
p

(
Tk(Z|G, Ĥ)

∣∣∣k = kvalid
)

·P |K|−1
(

Tk(Z|G, Ĥ)
∣∣∣k 
= kvalid

)
dTk, (36)

where p(Tk |k = kvalid) is the PDF of (35) when k = kvalid

and P(Tk |k 
= kvalid) is the CDF of (35) for an incorrect key
k 
= kvalid. Since the distribution of Z in (31) is complex
Gaussian for both cases and the GMF is a linear transforma-
tion, the resulting test statistic (35) is also Gaussian. The mean
and variance of (35) when k 
= kvalid are

E
[
Tk(Z|G, Ĥ)

∣∣∣k 
= kvalid
]

= μ0,e = 0 (37)

var
(

Tk(Z|G, Ĥ)
∣∣∣k 
= kvalid

)
= σ 2

0,e

=
No∑

i=1

1

2
Tr

(
�−1

Gi
T̃kvalid,i T̃

†
kvalid,i

)

+1

2
Tr

(
p2

t �
−1
Gi

AGi A
†
Gi

�−1
Gi

T̃kvalid,i T̃
†
kvalid,i

)
, (38)

while for the correct tag they are [43]

E
[
Tk(Z|G, Ĥ)

∣∣∣k = kvalid
]

= μ1,e

=
No∑

i=1

Tr
(
�−1

Gi
T̃kvalid,i T̃

†
kvalid,i

)
(39)

var
(

Tk(Z|G, Ĥ)
∣∣∣k = kvalid

)
= σ 2

1,e

=
No∑

i=1

1

2
Tr

(
�−1

Gi
T̃kvalid,i T̃

†
kvalid,i

)

= 1

2
μ1,e. (40)

Therefore,

p
(

Tk(Z|G, Ĥ)
∣∣∣k = kvalid

)
= φ

(
T − μ1,e

σ1,e

)
(41)

P
(

Tk(Z|G, Ĥ)
∣∣∣k 
= kvalid

)
= 	

(
T − μ0,e

σ0,e

)
, (42)

where φ(·) and 	(·) are the PDF and CDF of the standard
normal distribution, respectively. The final expected probabil-
ity of correct key recovery using (34) is

PK (G, Ĥ) =
∫ ∞

−∞
φ

(
T − μ1,e

σ1,e

)
	|K|−1

(
T − μ0,e

σ0,e

)
dT .

(43)

Numerical examples will be given in Section V-B

V. NUMERICAL RESULTS

We now present numerical results to show the advan-
tages of utilizing artificial noise in the fingerprint embedding
framework for MIMO communications even when channel
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TABLE I

PARAMETERS FOR EVE PERFORMANCE RESULTS
(UNLESS OTHERWISE SPECIFIED)

state information isn’t known perfectly. We will compare
the performance of the different tag detection approaches
proposed in Section III and the perfect CSI optimal estimation
approach proposed for the adversary in Section IV. While
performance is calculated numerically for a given channel
instance, the expected performance over different channel
realizations is found using Monte Carlo methods. For all
presented plots, a 4 × 4 MIMO system will be considered
and relevant parameters are given above each plot or in the
legend. The more interesting and relevant parameters will be
referenced in the text. We consider normalized CWGN where
σ 2

b = 1 so that transmit SNR is solely controlled by P0.
Although the channel estimation error is related to the transmit
power and the resulting SNR for the pilots at the receiver,
we will assume that σ 2

E is constant and independent of P0 for
simplicity. Finally, we consider the case where H and G are
independent and are both i.i.d. zero-mean complex Gaussian
distributed with unit variance. Please refer ahead to Table I
for a reminder on parameter notation and descriptions.

A. Legitimate Receiver Authentication/Detection Performance
We begin with demonstrating the impact of imperfect CSI

on Bob’s tag detection performance for two different levels
of channel uncertainty where σ 2

E = 0.1 represents moderate
channel estimation error and σ 2

E = 0.5 represent severe
estimation error. The performance of all three tests with
increasing transmit power can be found in Figure 2. Since
we consider a 4 × 4 MIMO system, there is no null space
over which to transmit the AN. In this case, AN is transmitted
over the weakest mode while the data is transmitted over the
remaining ND = 3 modes. Additionally, the tag is embedded
on all ND data modes. For σ 2

E = 0.1, the RMF is fairly close
in performance to the optimal perfect CSI matched filter, but
suffers greatly from increased error and performs worse than
the GLRT at high P0. The GLRT is less affected by additional
uncertainty, but still performs poorly compared to the perfect
CSI case.

Next, in Figure 3, we compare the two tag embedding
approaches and examine how the number of AN dimensions
affects detection. The performance of the AM embedding
approach is depicted by the dashed line while the SM approach
is depicted by both the solid and dotted curves. The dotted

Fig. 2. Transmit SNR versus probability of detection/authentication. The
robust matched filter is affected more by increased channel estimation error
than the GLRT, but is close to the optimal perfect CSI performance for lower
σ 2

E. GLRT generally performs worst except at higher σ2
E and P0.

Fig. 3. Transmit SNR versus probability of detection/authentication. Embed-
ding the tag in the strongest eigenmode produces better detection performance.

curve differs from the solid curve in that more dimensions
are allocated towards AN rather than data. The similarity in
performance between the two show that spreading the AN
across more dimensions does not affect Bob’s performance.
This is useful since increasing the AN dimensions decreases
Eve’s ability to recover the key, so we can do this freely. The
results also show that in this scenario, the strongest mode only
approach has better detection performance for a given p2

t .

B. Security Performance (Adversary Performance)

Next, we evaluate the security of the framework which is
quantified by the performance of the adversary’s key esti-
mator. The main metric is the key lifespan which is the
number of observations the adversary requires before her
probability of successful key recovery exceeds the desired
false alarm probability, PFA. Note that in the noiseless case,
a computationally unlimited adversary will recover the key
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Fig. 4. Number of observations versus probability of successful key recovery.
For constant PD with appropriately adjusted p2

t , the strongest mode only
embedding strategy has superior security performance. As expected, the less
CSI knowledge Bob has, the lesser the key lifespan. More AN dimensions
universally increases security.

perfectly with only one observation since the tag generating
function is one-to-one with high probability when |K| < |T |,
where |T | is the total number of possible tags. In other
words, the key lifespan is only 1 for a traditional (non-
embedded) HMAC since the noiseless tag uniquely identifies
the key. The goal of this section is to determine if AN is
still effective when only imperfect CSI is available and how it
affects the rate vs. security trade-off. To fairly compare the
security performance for Bob’s different detection schemes
and embedding strategies, we adjust p2

t for each case such that
Bob’s probability of detection always remains at PD = 0.999.
This leads to some interesting conclusions regarding the better
embedding strategy. The appropriate p2

t is found using the
bisection method. Table I contains the other parameters values
that were used to obtain the discussed results unless otherwise
specified.

First, in Figure 4, we compare the key lifespans for the two
different tag embedding strategies and all three of Bob’s tests.
The first two sets of curves are the case when ND = 3 in
which AN is only transmitted along one dimension whereas
the last set of three curves are the case where ND = 1 in
which data is sent over only one dimension and AN over three.
The tag embedding strategy of the last set isn’t denoted since
the two provided strategies are equivalent when ND = 1 in
which only 1 dimension is available for embedding. The plot
contains two fairly obvious results, but also one surprising
result. The first result is that as Bob’s CSI knowledge worsens
(switches from RMF to GLRT), he must increase p2

t in order
to maintain PD = 0.999, thus leaking more key information
to Eve. The second result is that transmitting AN over more
dimensions increases the lifespan of the key as seen by
comparing the ND = 3 curves with the ND = 1 curves. This
increase, though, comes with the caveat of reduced data rate
since data dimensions are sacrificed to accommodate the AN.

Finally, the surprising result in Figure 4 is that the SM tag
embedding strategy has superior security to the AM strategy.
The result is surprising since for the straightforward MIMO

Fig. 5. Number of observations versus probability of successful key recovery.
Eve’s number of antennas greatly affects her ability to recover the key from
observations.

system without AN, it was concluded in [17] that for constant
p2

t , SM favors detection while AM favors security. But,
if instead PD is held constant as it is here, SM becomes more
favorable in both cases as demonstrated in the plot. Intuitively,
spreading the tag over more dimensions should make Eve’s
problem more difficult, but the better detection afforded by
SM allows Alice to transmit using a lower p2

t for the same
PD . That decrease is tag power then hinders Eve’s ability to
recover the key to a greater extent than any increase in the
number of dimensions of the tag. Therefore, for the same PD ,
the SM strategy outperforms the AM strategy in terms of key
security.

Next, Figure 5 shows the varying levels of security depend-
ing on the number of antennas with which Eve, or a group
of colluding Eves, is equipped. Naturally, the fewer antennas,
the harder it is for Eve to recover the key. For example, in the
case of NA = 1, the 512-bit key can be used approximately
140 times before being deemed vulnerable, a great improve-
ment over previous results. Alice and Bob must be careful in
their calculation of the key lifespan, though, since it relies on
knowledge of Eve’s antenna count which is the assumption
made here. For all other plots, we assume that NA = NT = 4
since in order to impersonate Alice, Eve would most likely
desire at least the same number of antennas as Alice.

Finally, Figure 6 shows the decaying effectiveness of AN
when the channel estimate is poor. In fact, allocating additional
AN power does not necessarily always increase security when
Bob uses the RMF for constant PD = 0.999. In this case, when
σ 2

E = 0.1, even though allocating additional power towards
AN initially increases the key lifespan, it eventually begins
to decrease it. This is due to the fact that the increase in p2

t
required to compensate for the leaked AN in Bob’s observation
outweighs the advantage of having additional AN in Eve’s
signal. When compared to the no AN case, though, adding AN
does not decrease security at any point in this case, but makes
it less effective at higher power allocations. For σ 2

E = 0 and
σ 2

E = 0.01, on the other hand, increasing p2
w always increases

the key lifespan. However, it is less effective for σ 2
E = 0.01.
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Fig. 6. Key lifespan versus AN power allocation for different quality
of channel estimate. Additional AN does not necessarily increase security
performance.

Finding the optimal p2
w for such a case, as in σ 2

E = 0.1, is the
subject of future research.

VI. CONCLUSION

Although perfect CSI knowledge is required for perfect can-
cellation of artificial noise at the intended receiver, the authen-
tication process can be made robust to imperfect CSI and the
resulting AN leakage. The results presented here show that
great security gains can still be obtained for the fingerprint
embedding framework for MIMO systems even with the
practical assumption of channel estimation errors. We show
it is better to transmit the tag over a single mode rather than
over all modes for constant PD and that allocating additional
AN power does not always increase the key lifespan. In fact,
increasing the power allocation of AN can sometimes decrease
the key lifespan which is a surprising result. Our numerical
results indicate that there are desirable operating regimes that
effectively utilize AN to allow users to maximize the use of
a single key while guaranteeing the security of the system.
The new security analysis precisely tracks Eve’s knowledge
of the key such that Alice and Bob can determine when
key refreshes are necessary to maintain the desired level of
security. Furthermore, Eve’s probability of recovering the key
is related to her min-entropy of the key which has possible
future application in privacy amplification. Finally, although
not analyzed here, the increase in AN also has the potential to
cause errors in the adversary’s decoding of S which disrupts
their construction of their key recovery algorithm since the
tags will not be reconstructed properly.
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