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Abstract—A quickest change detection problem is consid-
ered in a sensor network with observations whose statistical
dependency structure across the sensors before and after the
change is described by a decomposable graphical model (DGM).
Distributed computation methods for this problem are proposed
that are capable of producing the optimum centralized test
statistic. The DGM leads to the proper way to collect nodes
into local groups equivalent to cliques in the graph, such that
a clique statistic which summarizes all the clique sensor data
can be computed within each clique. The clique statistics are
transmitted to a decision maker to produce the optimum cen-
tralized test statistic. In order to further improve communication
efficiency, an ordered transmission approach is proposed where
transmissions of the clique statistics to the fusion center are
ordered and then adaptively halted when sufficient information is
accumulated. This procedure is always guaranteed to provide the
optimal change detection performance, despite not transmitting
all the statistics from all the cliques. A lower bound on the
average number of transmissions saved by ordered transmissions
is provided and for the case where the change seldom occurs
the lower bound approaches approximately half the number
of cliques provided a well behaved distance measure between
the distributions of the sensor observations before and after the
change is sufficiently large. We also extend the approach to the
case when the graph structure is different under each hypothesis.
Numerical results show significant savings using the ordered
transmission approach and validate the theoretical findings.

Index Terms—Communication-efficient, CUSUM, decompos-
able graphical models, minimax, ordered transmissions, quickest
change detection, sensor networking.

I. INTRODUCTION

Sensor networks are critical for many applications such
as disaster response, security, smart cities, enhanced building
operation for optimized energy usage, health monitoring and
assisted living, and smart transportation systems [1], [2]. A
fundamental problem is to detect the occurrence of a change.
This can be modeled as a quickest change detection (QCD)
problem, see [3]–[19] and references therein.
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The classical centralized and unconstrained communication
QCD problem in sensor networks is well investigated [13],
[14], [16], [17] where each sensor monitoring the environment
takes a sequence of observations. Based on the data received
from the sensor nodes, a decision maker at a fusion center (FC)
would like to detect the change as soon as possible subject
to a false alarm constraint. Depending on knowledge of the
change time distribution, minimax [3]–[6] and Bayesian [7]–
[9] QCD formulations have been developed, and related theory
and analyses on QCD are given in [10]–[19]. In some previous
work, the distribution of the observations at all sensors changes
simultaneously [13] at an unknown change time. In other
work, the change time at different sensors is modeled to be
different. In [20], a centralized Bayesian version of the QCD
problem is considered where the change propagates across the
sensors and its propagation is modeled as a Markov process.
From a minimax point of view, [21], [22] have considered
rapidly detecting a change in an unknown subset of sensors.
While [21], [22] consider cases with statistically dependent
sensor observations, we have not seen published work on
distributed implementation of QCD for statistically dependent
sensor observations, which is the topic of this paper. Here,
we focus on the minimax formulation where we model the
change time as a deterministic but unknown positive integer
and minimize the worst case average detection delay (WADD)
subject to a false alarm constraint. In many cases, each sensor
in the network carries its own limited energy source, and
thus the energy cost of sensor transmissions is significant.
On the other hand, in many cases the FC may have much
less concern about lowering its own energy usage. Hence,
improving communication efficiency from sensors to the FC
is an important topic for QCD in sensor networks.

A particularly popular approach called censoring has been
shown to be an effective method to improve communication
efficiency where sensors transmit only highly informative
data [23]. In [23], upper and lower thresholds are set and
sensors transmit only very large or small likelihood ratios
because these values provide significant information about
which hypothesis is most likely to be true. Censoring-based
QCD is proposed in [11] where it is shown that censoring
yields transmission savings but always increases detection
delay (the accepted performance measure for QCD). Another
communication efficient QCD approach called top-r local
cumulated sum (CUSUM) [24], [25] only employs the largest
r statistics. Different from this paper where the value of r is
chosen in an adaptive manner, top-r in CUSUM [24], [25] has
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predefined r to save communications although this generally
results in sub-optimal performance through increased detection
delay.

In this paper we introduce an ordered transmission QCD
method that will lower communications without increasing
the detection delay. The ordered transmission approach (also
called ordering) was first introduced for a distributed testing
problem between two fixed hypotheses and employing an FC
[26]. Using ordering the sensors with the most informative
observations transmit first. Transmissions can be halted when
sufficient information is accumulated for the FC to decide
which hypothesis is true. In [26], it was shown that this
ordered transmission approach can reduce the number of
transmissions without losing any detection performance for
cases with statistically independent observations. Under the
restriction of independent observations, an upper bound on the
transmission savings of ordering has been developed in [27]
for a specific signal-in-noise detection problem. Under the as-
sumption of known a priori probabilities, distributed process-
ing for testing the mean or covariance matrix in statistically
dependent Gaussian observations following a decomposable
Gaussian graphical model (GGM) is considered in [28] and
[29], respectively.

The previous work on ordered transmissions [26]–[29] fo-
cused entirely on distributed testing of the mean or covariance
matrix with statistically independent or Gaussian dependent
observations across the sensors where there is no change in the
distributions over time. In practice, the possibly non-Gaussian
and statistically dependent observations at different sensors
might undergo a change at some unknown time and we might
want to detect this change quickly, so QCD is needed. In
this paper we provide a new communication efficient QCD
algorithm for rapidly detecting a change with statistically
dependent observations across the sensors using distributed
processing. The performance metric used in this paper is based
on minimizing the average delay, which is different from the
performance metrics in [26]–[29]. This leads to a different
ordering algorithm than the one employed in [26]–[29]. Given
the different performance metric, a very different approach was
required to develop the analytical lower bound on communi-
cations savings given in this paper as compared to the one
in [26], [28], [29]. Here, the focus is on the case where the
observations follow a decomposable graphical model (DGM)
to characterize the dependence among sensor observations,
completely subsuming the case with independent observations.
This work is a highly nontrivial extension of the preliminary
work in [30], which was limited to independent observations
across sensors and did not provide a communication saving
lower bound.

In this paper we focus on the case where the underlying
graphical model is known. This can be obtained based on
the association with some corresponding physical network or
some system for which we know the model. A few examples
of corresponding physical networks to which the graph may
be related include the electrical grid, a natural gas delivery
network, a water distribution network, and a telecommuni-
cation network. In the electrical grid example, the graph
describing electrical measurements is directly determined by

the known topology of the electrical grid and the components
which connect the nodes [31] using the standard theory of
electrical networks. Natural gas delivery networks are another
case where the graph is determined by the known pipeline
topology and the components which connect the nodes [32].
These same ideas apply for many other examples where a
physical network is present for which a mathematical model
exists. There are other examples where there may not be an
associated physical network but a known model can be used
to determine the graph. For example, economic theory might
be employed to describe a model between several variables
of interest. The work in [33] focuses on one such case where
the related variables are the prime interest rate and the median
house prices in several different cities. Any such model of a
system can be used in a similar way. This opens up many
more cases where the graph structure is essentially known.

A. Our Contributions

This work describes a new methodology/algorithm that pro-
vides a communication efficient distributed processing method
for a sensor networking change detection problem where the
observations follow a statistically dependent distribution be-
fore and after the change. The focus is on the case where both
distributions are characterized by a decomposable graphical
model (DGM) with common graph structure, which com-
pletely subsumes the case where observations follow a GGM
or are independent. We prove that the methodology/algorithm
provides identical performance, in terms of the worst case
average detection delay subject to a false alarm constraint,
to the optimum communication unconstrained performance,
while reducing the number of required communications from
the most energy constrained entities. We also prove that the
communication savings will be significant in some important
cases, saving more than half of the communications from the
most energy constrained entities. In Section IV-D, extensions
are described for the case where the graph structure of the
distributions before and after the change are different. An
approximate, but accurate, approach is described to extend
these results to graphs that are not decomposable.

B. Paper Organization

The paper is organized as follows. In Section II, we first
introduce the problem formulation of QCD and then describe
a brief discussion on mathematical formulations of decom-
posable graph models. In Section III, we describe distributed
computation of the optimum test statistic. Communication-
efficient QCD using ordered transmissions is described in
Section IV and a lower bound on the average number of trans-
missions saved via ordering is provided. Section V presents
some numerical results to demonstrate the communication
efficiency of the proposed algorithm. Finally, we conclude the
paper in Section VI.

II. PROBLEM FORMULATION AND DECOMPOSABLE
GRAPHICAL MODELS

In this section, we first introduce the problem formulation of
QCD which is modeled as a constrained optimization problem.
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Then we briefly describe mathematical formulations of DGMs
which characterize the dependent sensor observations by a
decomposable undirected graph.

A. Problem Formulation

We consider a sensor network with M sensors and a
FC. Sensor m for m = 1, 2, ..,M observes the sequence
{Xn,m}n≥1 with n denoting the time slot index. The objective
is to detect a change as quickly as possible after the change
occurs which implies the goal is to minimize detection delay
if the change occurs. As long as no change is declared, the
sensors will continue observing data. Throughout this paper
we make the following assumption.

Assumption 1: The distributions of the observations at
all sensors change simultaneously at the change time τ . In
particular, at the unknown time slot τ , the distribution of
Xn,[1,M ]

∆
= (Xn,1, Xn,2, ..., Xn,M ) changes from f0 to f1

where f0 and f1 are the known probability density functions
(pdfs) before and after the change time, respectively. The
random variable Xn,m is independent across the time slot
index n but will generally assumed to be dependent across
the sensor index m.

Without a prior on the distribution of the change time,
we model the change time τ as a deterministic but unknown
integer and we employ the constraint

E∞(n′) ≥ γ (1)

where n′ denotes the time slot when the decision maker
declares a change has occurred, E∞(n′) is the average delay
when the change does not occur, and γ is a pre-specified
constant. If the change occurs, then one formulation to evaluate
the detection delay is to employ the WADD defined in [4] as

WADD(n′) = sup
τ≥1

ess supEτ
[
(n′ − τ)+|Iτ−1

]
(2)

where ess supX denotes essential supremum of X , Eτ is
the expectation when the change occurs at time τ , (x)+

∆
=

max{x, 0}, Iτ−1
∆
= (X[1,τ−1],1, ..., X[1,τ−1],M ) denotes

past global information at time slot τ , and X[1,τ−1],m
∆
=

(X1,m, ..., Xτ−1,m) denotes past local information at sensor
m. Thus, the QCD problem in a minimax setting can be
formulated as a constrained optimization problem

min
n

WADD(n′)

s.t. E∞(n′) ≥ γ. (3)

Before proposing the new energy-efficient QCD approach
to solve (3), we review some basic properties of any DGMs
in the next subsection.

B. Decomposable Graphical Models

DGMs have received extensive study in machine learning
[34], [35], sensor networks [36] and electric power systems
[37]. In this section, we briefly describe the basic theory
of DGMs. Consider an undirected graph G = (V , E) with
M vertices, where V = {1, 2, ...,M} is the set of vertices
and E = {(i1, j1), (i2, j2), ..., (i|E|, j|E|)} denotes the set
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Fig. 1. Samples of three graphical models.

of undirected edges of the graph. The graphical model for
a random vector Xi,[1,M ] at each time slot i with graph
G describes the statistical dependency model such that for
each time slot i, Xi,[1,M ] follows a known distribution that
obeys the pairwise Markov property with respect to G. The
distributed observation vector Xi,[1,M ] satisfies the pairwise
Markov property with respect to G if, for any pair (m,m′)
of non-adjacent vertices, i.e., (m,m′) /∈ E , the corresponding
pair of elements of Xi,[1,M ], Xi,m and Xi,m′ , are conditionally
independent when conditioned on the remaining elements.
This can be expressed as

f
(
Xi,m, Xi,m′

∣∣Xi,V\{m,m′}
)

=f
(
Xi,m

∣∣Xi,V\{m,m′}
)
f
(
Xi,m′

∣∣Xi,V\{m,m′}
)

(4)

where we have used f(·) to denote the corresponding pdfs.
To illustrate (4), let Xi,m, Xi,m′ , and Xi,V\{m,m′} in (4)
denote the data at nodes a, b, and c, respectively, in Fig. 1(a).
The result in (4) implies that the data at nodes a and c
are conditionally independent given the data at node b. This
illustrates how the graph describes dependency.

An undirected graph is defined to be decomposable if the
graph has the property that every cycle of length larger than
3 possesses a chord [38]. A cycle is a path which begins and
ends at the same node. A chord is a connection that ensures
that every two non-consecutive vertices in every cycle are
neighbors. For example, the single cycle graph in Fig. 1(b) is
not decomposable but the graph in Fig. 1(c) is decomposable
due to the blue link which is a chord. This definition implies
that a decomposable graph can be successively decomposed
into its largest fully connected subgraphs called cliques.

Let K denote the number of cliques in the decomposable
undirected graph G. The sequence of cliques of the graph G
is denoted by {Ck}Kk=1. Note that each clique Ck is a group of
fully connected nodes. We denote the corresponding histories
{Hk}Kk=1 and separators {Sk}Kk=2 as

Hk = C1 ∪ C2 ∪ · · · ∪ Ck, ∀k = 1, 2, ...,K, (5)

and
Sk = Hk−1 ∩ Ck, ∀k = 2, ...,K. (6)

Note that from (5), the k-th history Hk contains all nodes in
the first k cliques. The k-th separator Sk in (6) is the set of
the common nodes between Hk−1 and Ck such that all paths
from the nodes in Hk−1\Sk to the nodes in Ck\Sk intersect
Sk. Every separator will share nodes with more than one clique
and we say that these cliques are associated with that separator.
In Fig. 2, the cliques labeled C1 and C2 are associated with
the separator labeled S2.

Define q(k) as the smallest index of any clique which is
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Fig. 2. The decomposable graphical model with 4 cliques and numbered
separators.

associated with the k-th separator Sk, that is,

q (k)
∆
= min {j | Sk ⊆ Cj } , ∀k = 2, 3, ...,K. (7)

We have freedom to number the cliques as we like and here
we always use a popular numbering approach that is known to
exist for any DGM (called perfect sequencing) which ensures
the following inequality [38]1:

q(k) < k. (8)

Note that the k-th separator Sk is not only contained in the
q(k)-th clique Cq(k) according to (7), but it is also contained
in the k-th clique Ck based on (6), that is,

Sk ⊆ Cq(k), (9)

and
Sk ⊆ Ck. (10)

The conclusions in (9) and (10) will be employed later in
describing our distributed processing, as will the definitions.

Let Qj denote the set of indices of separators which are
associated with the j-th clique via the mapping q in (7), that
is,

Qj
∆
= {k | q (k) = j } . (11)

Note that by definition Qj will not include the j-th separator.
Thus, Qj∪{j} contains all the indices of the separators which
are contained in the j-th clique. From (8), we know that the
minimal element in Qj satisfies

minQj > j, (12)

which implies that

Qj ⊆ {j + 1, j + 2, ...,K} , ∀j = 1, 2, ...,K − 1, (13)

and
QK = ∅. (14)

1) Illustration of (7)–(14) using Fig. 2: Consider the ex-
ample in Fig. 2. By employing (7), we observe that q(2) =
q(3) = 1 and q(4) = 3 which implies S2 ⊆ C1, S3 ⊆ C1
and S4 ⊆ C3. By employing (10), we also obtain S2 ⊆ C2,
S3 ⊆ C3 and S4 ⊆ C4. As per (8), q(2) < 2, q(3) < 3 and
q(4) < 4. By employing (11), we obtain Q1 = {2, 3} and
Q3 = {4} but Q2 = Q4 = ∅.

At each time slot i, let Xi,Ck denote the set of observations

1A perfect sequence of cliques can be found by using the method in Chapter
2.1.3 of [38]. We note that the existence of perfect sequences of cliques is a
characteristic of decomposable graphs [38].

in Xi,[1,M ] that come from the nodes in the k-th clique. Let
Xi,Sk denote the observations in Xi,[1,M ] that come from the
nodes in the k-th separator set. For any DGM, from the fact
that the ordered sequence of cliques C1, C2, ..., CK forms a
perfect sequence, the joint distribution of Xi,[1,M ] follows the
factorization [38]2

f
(
Xi,[1,M ]

)
=

K∏
k=1

f (Xi,Ck)

K∏
k=2

f (Xi,Sk)

(15)

where f(X) denotes the marginal pdf of X . Note that (15)
can be derived using the pairwise Markov property in (4).
The factorization in (15) provides us with a way to implement
distributed processing among different cliques to solve the
QCD problem which we will describe in detail in next section.

We note that there is extensive literature on manipulating
decomposable graphs, which includes determining decompos-
ability of a graph [39], determining their cliques [40], and
constructing a decomposable version from a nondecomposable
graph [41]. Throughout the paper, we concentrate on decom-
posable undirected graphical models.

III. DISTRIBUTED COMPUTATION OF THE CUSUM
PROCEDURE IN DGM

In this section, we begin by reviewing the well-known
CUSUM procedure in the QCD problem [5], [10]. The QCD
problem can be modeled as a hypothesis testing problem, given
by

H0 : no change occurs
H1 : change occurs at a finite unknown time slot τ. (16)

Note that when the change occurs, all sensors are assumed to
be affected simultaneously as mentioned in Assumption 1.

The centralized CUSUM test statistic up to the current time
slot n for (16) is

W̃n = max

{
0,

max
1≤n′≤n

log

∏n′−1
i=1 f0

(
Xi,[1,M ]

)∏n
i=n′ f1

(
Xi,[1,M ]

)∏n
i=1 f0

(
Xi,[1,M ]

) }
(17)

= max

{
0, max

1≤n′≤n

n∑
i=n′

log
f1(Xi,[1,M ])

f0(Xi,[1,M ])

}
(18)

where W̃n = 0 implies the decision maker does not declare
change up to the current time slot n and will continue acquir-
ing more observations. In this centralized QCD approach, at
each time slot n, each sensor sends its observation to the FC.
After receiving the data from all sensors, the FC calculates (18)
and compares it to a threshold to decide whether to declare a
change or continue to collect observations. In particular, the

2Xi,[1,M ] following a decomposable graph is only a sufficient condition
to guarantee (15). In other cases we can attempt to verify (15) directly.
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classical centralized CUSUM procedure will raise an alarm at
the time given by [10]

TGLR(b) = inf
{
n ≥ 1 : W̃n ≥ b

}
(19)

where the constant b > 0 needs to be chosen properly to
satisfy the false alarm constraint in (1). The procedure in (19)
is shown to be optimal for (3) in [5].

Next we introduce our distributed approach. We make the
following additional assumptions throughout the paper.

Assumption 2: At each time slot i, we assume that
Xi,[1,M ]

∆
= (Xi,1, Xi,2, ..., Xi,M ) satisfies the pairwise

Markov property in (4) with respect to a given decomposable
undirected graph G = (V, E).

Assumption 3: Nodes in the same clique are close so that
the energy cost of intra-clique communications is negligible
compared to that of communications between the cliques to
the FC. Additionally, the cliques have limited energy resources
which are more greatly constrained than the FC. Thus, we
focus on reducing communications from the cliques to the
FC.

Assumption 4: The sets {Sk}Kk=2 and {Ck}Kk=1 do not
change throughout the detection process. We generalize this
in Section IV-D.

Next we develop our distributed computation approach.
From (15), we have

log
f1(Xi,[1,M ])

f0(Xi,[1,M ])

= log

K∏
k=1

f1 (Xi,Ck)

K∏
k=2

f1 (Xi,Sk)

K∏
k=2

f0 (Xi,Sk)

K∏
k=1

f0 (Xi,Ck)

(20)

=
K∑
k=1

log
f1 (Xi,Ck)

f0 (Xi,Ck)
−

K∑
k=2

log
f1 (Xi,Sk)

f0 (Xi,Sk)
(21)

= log
f1 (Xi,C1)

f0 (Xi,C1)
−
∑
k∈Q1

βk log
f1 (Xi,Sk)

f0 (Xi,Sk)

+
K∑
j=2

(
log

f1

(
Xi,Cj

)
f0

(
Xi,Cj

) − αj log f1

(
Xi,Sj

)
f0

(
Xi,Sj

)
−
∑
k∈Qj

βk log
f1 (Xi,Sk)

f0 (Xi,Sk)

)
(22)

=
K∑
k=1

Lk (Xi,Ck) (23)

where Qj is defined in (11), and the set of non-negative
coefficient pairs {(αk, βk)}Kk=2 satisfies

αk + βk = 1, ∀k = 2, 3, ...,K. (24)

Note that (23) expresses log f1(Xi,[1,M ])/f0(Xi,[1,M ]) as a
sum of the clique statistics Lk (Xi,Ck) for k = 1, 2, ...,K
that are computed at each clique. After (15) is used to obtain
(20), we can group the separator terms into the associated
clique terms based on the results in (9) and (10). In fact,
each separator set Sk can be a member of several cliques.

However, according to (9) and (10), we know Sk is always a
member of two associated cliques Ck and Cq(k). For any term
in (22) involving data coming from the k-th separator set Sk,
we allocate αk percentage of that term to the k-th clique and
βk percentage to the q(k)-th clique3 This allows us to obtain
(22) from (21). The centralized change detection test statistic
can always be expressed as the sum in (23) as long as (24)
is satisfied. From (24), there are uncountably many choices of
{αk, βk}Kk=2 which introduces flexibility in the definition of
Lk(Xi,Ck) in (23) while still ensuring local computation. In
(23), Lk(Xi,Ck) is defined as

L1(Xi,C1)
∆
= log

f1 (Xi,C1)

f0 (Xi,C1)
−
∑
k∈Q1

βk log
f1 (Xi,Sk)

f0 (Xi,Sk)
(25)

and for all j = 2, 3, ...,K ,

Lj(Xi,Cj )
∆
= log

f1

(
Xi,Cj

)
f0

(
Xi,Cj

) − αj log f1

(
Xi,Sj

)
f0

(
Xi,Sj

)
−
∑
k∈Qj

βk log
f1 (Xi,Sk)

f0 (Xi,Sk)
. (26)

Plugging (23) and (18) into (19) implies that the FC declares
a change at time

TCS(b) = inf {n ≥ 1 :Wn ≥ b} (27)

where the CUSUM statistic Wn is defined as

Wn
∆
= max

{
0, max

1≤n′≤n

n∑
i=n′

K∑
k=1

Lk (Xi,Ck)

}
. (28)

A nice property of the non-negative CUSUM statistic Wn is
that it can be computed recursively as

Wn = max

{
0, Wn−1 +

K∑
k=1

Lk (Xn,Ck)

}
(29)

with W0 = 0. The above recursion is very useful because
it requires little memory and is easily updated sequentially.
Instead of directly sending all sensor observations to the FC,
the distributed computation method provides the proper way to
partition the sensor nodes into K local groups that correspond
to the cliques. Each clique k will collect the information from
the clique nodes to produce the clique statistic Lk(Xn,Ck)
using (25) or (26) and then transmit it to the FC. The FC
will compute the CUSUM statistic Wn in (29) and compare
it to the threshold b to decide whether to raise an alarm or
continue the process. We note that when we employ (27) with
W0 = 0, WADD(n′) in (2) is equal to [16]

WADD(n′) = E1 [n
′ − 1] (30)

which implies that the average detection delay in the metric
occurs at τ = 1. The result in (30) makes the computation of
the WADD in (2) straightforward.

While the distributed computation method takes advantage
of the graph structure to aggregate the statistics and avoids
unnecessary long range transmissions, it is also of interest to

3We do not allocate this term to other members that might also contain the
k-th separator set.
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further reduce the number of transmissions by the cliques to
the FC. This is addressed in the next section.

IV. ENERGY-EFFICIENT QCD USING ORDERED
TRANSMISSIONS

In the last section the proposed distributed computation
method implements the optimum centralized CUSUM algo-
rithm while taking advantage of the graph structure using
cliques. In order to further reduce the number of long distance
transmissions from the cliques to the FC, in this section we
describe an ordered transmission approach, and a lower bound
on the average number of transmissions saved is provided. The
savings are shown to be large for cases of interest.

A. Ordered Transmissions for QCD
The idea of ordered transmissions for QCD is to order and

then adaptively halt the transmissions of the clique statistics
{Lk(Xn,Ck)}Kk=1 during each time slot n. Specifically, after
grouping the nodes into several cliques, the clique with the
largest clique statistic magnitude transmits first and the cliques
with smaller clique statistic magnitudes possibly transmit later.
This process is repeated during each time slot. We will show
that by sometimes halting transmissions before all K cliques
have communicated their clique statistics, further transmis-
sions can be saved while achieving the same detection delay
as the optimal centralized CUSUM algorithm that requires all
nodes to communicate their observations to the FC.

Algorithm 1 ordered-CUSUM.
Input: a positive constant b.
Initialize: n = 0, W0 = 0 and a positive number η.

1: while Wn < b do4

2: The FC updates time slot n = n+ 1 and sets j = 1.
3: for k = 1, 2, ...,K do
4: Clique Ck summarizes all the clique sensor data to

produce Lk(Xn,Ck) as per (24)–(26) at time tn.
5: Clique Ck determines a time tn,k = tn +
η/|Lk(Xn,Ck)| to transmit Lk(Xn,Ck) to the FC.

6: end for
7: Order cliques using tn < tn,k1 ≤ tn,k2 ≤ ... ≤
tn,kK < tn+1 where kj is the index of the clique which
has the kj-th largest |L̂n,kj | such that (31) holds.

8: while j ≤ K do
9: At time tn,kj , clique kj transmits L̂n,kj to the FC.

10: if Wn,kj ≤ φn,L then
11: The FC decides Wn = 0.
12: break while loop (line 8).
13: else
14: The FC computes Wn,kj via (32).
15: end if
16: The FC sets j = j + 1.
17: end while
18: end while
19: Declare the change occurs at the current time slot n and

set n′ = n.

4In practice it may be desired to stop at some large value of time slot n,
even if Wn ≥ b has not been satisfied.

Our approach, which we call ordered-CUSUM, is summa-
rized in Algorithm 1. At the beginning of the current time
slot n (denoted time tn) each clique k for k = 1, ...,K
determines a time tn,k = tn + η/|Lk(Xn,Ck)| to transmit its
local statistic Lk(Xn,Ck) to the FC, where the positive number
η can be made as small as the system will allow. Thus clique
transmissions are time ordered using tn < tn,k1 ≤ tn,k2 ≤
... ≤ tn,kK < tn+1 where kj is the index of the clique which
has the kj-th largest |L̂n,kj | such that∣∣∣L̂n,1∣∣∣ ≥ ∣∣∣L̂n,2∣∣∣ ≥ ... ≥ ∣∣∣L̂n,K∣∣∣ . (31)

In this way the cliques with larger-in-magnitude local test
statistic transmit earlier. When the FC receives a new trans-
mission from a clique kj , it computes

Wn,kj
∆
=Wn−1 +

kj∑
k=1

L̂n,k (32)

where Wn−1 is the CUSUM statistic at time slot (n−1) , and
compares Wn,kj from (32) with the updated threshold

φn,L
∆
= −(K − kj)

∣∣∣L̂n,kj ∣∣∣ . (33)

By sending a message to all cliques, the FC stops any further
clique transmission when Wn,kj ≤ φn,L. When this occurs the
FC declares Wn = 0 and the system progresses to the next
time slot tn+1. If all cliques transmit prior to Wn,kj ≤ φn,L,
then the current time slot is also ended and a decision is made
using (27) and (32). If all transmission propagation delays
are known and timing is synchronized, one can schedule all
transmissions back to the FC so they arrive in the correct order.
However, the process can easily be implemented with robust-
ness to small timing errors. Even with inaccurate estimates of
propagation delays or imperfect synchronization, since the FC
receives the values to be ordered, the FC can put them back in
order correctly as long as the FC waits a short period related to
the uncertainty. By design, the ordered-CUSUM algorithm will
always be optimal, as summarized in the following Theorem.

Theorem 1: Ordered-CUSUM achieves exactly the same
performance metric as CUSUM, minimizing the WADD sub-
ject to a given false alarm constraint, while using a smaller
number of transmissions.

Proof: In the ordered-CUSUM algorithm, during time slot
n, when the FC receives a new clique statistic it updates the
threshold φn,L via (33), and compares φn,L with Wn,k′ in
(32). Let the most recent transmission be given by L̂n,kj . Due
to ordering it follows that |L̂n,kj | is an upper bound for those
of the clique statistics which have not yet been transmitted. It
further follows that the sum of the clique statistics that have not
yet transmitted must be less than or equal to (K−kj)|L̂n,kj |,
which is equal to −φn,L. If Wn,kj ≤ φn,L, then Wn has to be
zero according to (29), regardless of the clique statistics that
have not yet been transmitted. Hence, even without receiving
further transmissions, the FC can implement the optimum cen-
tralized communication unconstrained approach and declare
Wn = 0 at time slot n. On the other hand, the optimum
centralized communication unconstrained approach continues
to transmit at time slot n with nonzero probability. Thus, at
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each time slot n, the average number of transmissions required
by ordered-CUSUM is smaller than that of the optimum
centralized communication unconstrained approach while the
detection performance is the same.

While we have shown that the ordered-CUSUM algorithm
built on ordering is more communication-efficient than the
optimum centralized communication unconstrained approach,
it is interesting to consider whether there exists a lower bound
on the average number of transmissions saved by the ordered-
CUSUM algorithm. This question will be addressed in the next
subsection.

B. Lower Bound on the Average Number of Transmissions
Saved

In this subsection, we derive a lower bound on the average
number of transmissions saved by ordered-CUSUM. The fol-
lowing theorem formally describes the communication saving
lower bound for each time slot n.

Theorem 2: Consider the QCD problem described in (3).
When using ordered-CUSUM, for any choice of the pairs
{(αk, βk)}Kk=2 with K ≥ 2 and αk + βk = 1, the average
number of transmissions saved Sn for time slot n is bounded
from below by

Sn>

(⌈
K

2

⌉
− 1

)
Pr (Wn−1 = 0 and Lk(Xn,Ck) < 0, ∀k) .

(34)

Proof: According to ordered-CUSUM, if Wn,kj defined
in (32) is smaller than the threshold φn,L in (33), then
transmissions will be stopped during time slot n and the
algorithm proceeds to the next time slot (n+ 1). Let

k∗n
∆
=min

{
1 ≤ k′ < K :Wn−1 +

k′∑
k=1

L̂n,k

< −(K − k′)
∣∣∣L̂n,k′ ∣∣∣} (35)

denote the number of necessary transmissions during time slot
n using ordered-CUSUM, and define

Sn
∆
= E [K − k∗n] (36)

as the average number of transmissions saved at time slot n.
Then from (36), Sn can be bounded from below by

Sn =

K∑
k=1

(K − k) Pr(k∗n = k) (37)

≥
bK/2c+1∑
k=1

(K − k) Pr(k∗n = k) (38)

>

(⌈
K

2

⌉
− 1

) bK/2c+1∑
k=1

Pr(k∗n = k) (39)

=

(⌈
K

2

⌉
− 1

)
Pr

(
k∗n ≤

⌊
K

2

⌋
+ 1

)
. (40)

The result in (38) is obtained by dropping some non-negative
terms in (37). In going from (38) to (39), we bound (K − k)

by using (dK/2e − 1) for k = 1, ..., bK/2c+ 1. Plugging the
definition of k∗n from (35) into (40), we obtain

Sn >

(⌈
K

2

⌉
− 1

)
Pr

(
Wn−1 +

bK/2c+1∑
k=1

L̂n,k

≤ −
(⌈K

2

⌉
− 1
) ∣∣∣L̂n,bK

2 c+1

∣∣∣) (41)

≥
(⌈

K

2

⌉
− 1

)
Pr

(
Wn−1 = 0, L̂n,k < 0, ∀k, and

Wn−1 +

bK/2c+1∑
k=1

L̂n,k ≤ −
(⌈K

2

⌉
− 1
) ∣∣∣L̂n,bK

2 c+1

∣∣∣)
(42)

≥
(⌈

K

2

⌉
− 1

)
Pr
(
Wn−1 = 0 and L̂n,k < 0, ∀k

)
(43)

=

(⌈
K

2

⌉
− 1

)
Pr (Wn−1 = 0 and Lk(Xn,Ck) < 0, ∀k).

(44)

In going from (41) to (42), we add two extra constraints which
will maintain or reduce the probability. In (42), when Wn−1 =

0 and L̂n,k < 0, ∀k are true, Wn−1 +
∑bK/2c+1
k=1 L̂n,k ≤

−(dK/2e − 1)|L̂n,bK/2c+1| must be true which implies the
result in (43). In going from (43) to (44), we use the fact that
all of the ordered statistics L̂n,k being negative implies all of
the original unordered statistics Lk(Xn,Ck) are negative. This
completes the proof.

We point out that the lower bound in (44) is very general
and is valid for any DGM and any choice of the set of non-
negative coefficient pairs {(αk, βk)}Kk=2 with αk+βk = 1. The
result in (44) indicates that the lower bound on Sn depends
on the number of cliques and the joint statistics of Wn−1 and
Lk(Xn,Ck). In the next subsection we show that the savings
can be large for several cases of interest.

C. Large Saving Gains for Several Cases of Interest

Consider a distance measure s between the distributions of
the sensor observations before and after the change time τ .
The distance measure s is assumed to satisfy the following
mild condition.

Assumption 5: For the hypothesis testing problem consid-
ered in (16) with Lk (Xn,Ck) as per (24)–(26), we assume that
the probability Pr(Lk (Xn,Ck) < 0) → 1 as s → ∞ for all
k = 1, ...,K and n < τ .

Intuitively, with a large distance between the distributions
of the sensor observations before and after the change time, it
should be easy for the FC to decide when the change occurs.
At the end of this subsection, we provide two popular general
QCD problems and the corresponding distance measure to
illustrate that Assumption 5 is reasonable.

Under Assumption 5, the following theorem describes the
limiting behavior of the lower bound on the total number of
transmissions saved by ordered-CUSUM.

Theorem 3: Under Assumptions 1–5, consider the approach
in Algorithm 1 for the QCD problem in (3). With a sufficiently
large s, the total number of transmissions saved over the
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optimum centralized communication unconstrained approach
increases at least as fast as proportional to K while the
detection delay is not affected. In particular, the total number
of transmissions saved is lower bounded by (dK/2e−1)(τ−1).

Proof: From (34) in Theorem 2, we have

Sn >

(⌈
K

2

⌉
− 1

)
Pr (Wn−1 = 0 and Lk(Xn,Ck) < 0, ∀k)

(45)

Next we employ induction to show that as s→∞, for n < τ ,
we have

Pr(Wn−1 = 0 and Lk(Xn,Ck) < 0, ∀k)→ 1. (46)

Throughout this proof, we only consider the time slots before
the change occurs which means we focus on the case when
n < τ . Specifically, we set W0 = 0. For a sufficiently large s,
Assumption 5 implies that all clique statistics are negative for
n < τ . Thus, the probability Pr(W0 = 0 and Lk(X1,Ck) <
0, ∀k) → 1 implies Pr(W1 = 0) → 1. If we assume
Pr(Wn−2 = 0)→ 1 at time slot (n− 1), then under Assump-
tion 5 we have Pr(Wn−2 = 0 and Lk(Xn−1,Ck) < 0, ∀k)→ 1
for n < τ which implies Pr(Wn−1 = 0) → 1. Thus, at time
slot n, we obtain Pr(Wn−1 = 0 and Lk(Xn,Ck) < 0, ∀k)→ 1
for n < τ . From (45), for all n < τ , we have

Sn >

⌈
K

2

⌉
− 1. (47)

Finally, it follows that the total number of transmissions saved
Ks can be bounded by

Ks >

(⌈
K

2

⌉
− 1

)
(τ − 1). (48)

As illustrated by Theorem 3, the total number of trans-
missions saved by ordering the communications from the
cliques to the FC increases at least as fast as linearly propor-
tional to the number of cliques K while achieving the same
detection delay as the optimum centralized communication
unconstrained approach. Theorem 3 also states that more
transmissions can be saved as the change time increases.
In the following, we provide two general problems and the
corresponding distance measure.

Example 1: Consider detecting a change in the mean of a
sequence of sensor observation vectors following a multivari-
ate Gaussian distribution as5

Xn,[1,M ] ∼ N (0,Σ) when n < τ
Xn,[1,M ] ∼ N (µ,Σ) when n ≥ τ , (49)

where µ 6= 0 and the known covariance matrix Σ is assumed
to be positive definite. In this problem, we can choose s =
mink ‖µCk‖ as the distance measure where µCk denotes the
mean vector of the nodes in the k-th clique with `2-norm
‖µCk‖.

Example 2: Consider detecting a change in the covariance
matrix of a sequence of sensor observation vectors following

5N (a,A) denotes the multivariate Gaussian distribution with mean a and
covariance matrix A.

a multivariate Gaussian distribution as

Xn,[1,M ] ∼ N (0, I) when n < τ
Xn,[1,M ] ∼ N (0,Σ) when n ≥ τ , (50)

where I is an identity matrix and the known covariance matrix
Σ is assumed to be positive definite. In this problem, s =
mink λmin,k where λmin,k is the minimum eigenvalue of ΣCk
which denotes the covariance matrix associated with Xn,Ck
for n ≥ τ . The following theorem shows that Assumption 5 is
valid for Examples 1 and 2.

Theorem 4: Consider the problems in Example 1 and
Example 2 and the ordered transmission approach described
in the ordered-CUSUM algorithm which employs (23) with

αk = 1− 2K−kξ, (51)

and
βk = 2K−kξ, (52)

for all k = 2, 3, ...,K using any ξ which satisfies

ξ ∈
(
0,

1

2K−1 − 1

)
. (53)

For any k = 1, 2, ...,K with K > 2, with sufficiently large
mink ‖µCk‖ for (49) or sufficiently large mink λmin,k for (50),
we have for all k = 1, 2, ...,K and n < τ ,

Pr(Lk (Xn,Ck) < 0)→ 1. (54)

Proof: The proof of this theorem is omitted, since it
follows from the proof in [28] and [29]. Specifically, for the
problem in (49), as s → ∞ with s = mink ‖µCk‖, the result
in (54) can be obtained by following Theorem 2 in [28]. For
the problem in (50), as s → ∞ with s = mink λmin,k, then
(54) can be obtained by following Theorem 3 in [29].

D. Extensions: Graph Structure Change and Nondecompos-
able

In this subsection, we generalize Assumption 4 and consider
the case where the graph is fixed under each hypothesis but the
graph structure of f0

(
Xn,[1,M ]

)
(relevant for n < τ ) is not the

same as f1

(
Xn,[1,M ]

)
(relevant for n ≥ τ ). Suppose the sensor

observations Xn,[1,M ] obey the pairwise Markov property with
respect to a decomposable graph G1 = (V1, E1) before the
change (n < τ ) and a decomposable graph G2 = (V2, E2)
after the change (n ≥ τ ) with G1 6= G2. In order to implement
distributed computation and ordered transmissions for this
case, the sequence of cliques {Ck}Kk=1 is derived based on
G = G1 ∪ G2 instead of G1 or G2. Compared to G1 and G2,
the graph structure G possibly increases the size of some
cliques, implying extra node data needs to be collected in
these larger cliques. However, when we employ the known pdf
f0

(
Xn,[1,M ]

)
or f1

(
Xn,[1,M ]

)
in these computations, we use

some of the extra data in computations involving f0

(
Xn,[1,M ]

)
and the rest in computations involving f1

(
Xn,[1,M ]

)
. Thus, the

graph G allows the computations that either G1 or G2 require.
Consider the example illustrated in Fig. 3. Before the

change, the graph structure is indicated by graph G1 which
has two clique sets C1 = {1, 2, 3} and C2 = {2, 4} along with
one separator set S2 = {2}. After the change occurs, the graph
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Fig. 3. Choice of cliques and separator sets when graph structure changes.

structure illustrated in G2 has two clique sets C1 = {1, 2, 3}
and C2 = {3, 4} along with the separator set S2 = {3}. In
order to keep the clique and separator sets the same through
the detection process, we collect nodes into the cliques of the
graph G = G1 ∪ G2 whose clique sets are C1 = {1, 2, 3} and
C2 = {2, 3, 4}. We also employ the separator set S2 = {2, 3}.
These sets are respectively regarded as the clique sets and
the separator set through the whole detection process. Note
that compared to C2 = {2, 4} in G1, G defines a new larger
clique C2 = {2, 3, 4} to indicate that the data at node 3
will be collected at clique C2. However, when we compute
f0

(
Xn,[1,4]

)
in a distributed way, we do not really use the

data from node 3 in C2 to compute f0 (Xn,C2). Similarly, when
we compute f1

(
Xn,[1,4]

)
, we do not really use the data from

node 2 in C2 to compute f1 (Xn,C2). After implementing the
distributed computation using the clique and separator sets
of G, ordered transmissions can be developed according to
Section IV. It is worth mentioning that the union operation
might decrease the number of cliques which can degrade the
gains of distributed processing and ordering.

A nondecomposable graphical model. Throughout the pa-
per we have assumed the graph to be decomposable. However,
we can apply our algorithm to nondecomposable graphs as
follows. If we start with a nondecomposable graph, it is always
possible to add edges to make it decomposable. Then, if we
make the added edge weights sufficiently small, we will get
results very close to those for the original problem. In the next
section, we illustrate these ideas with an example.

V. NUMERICAL RESULTS

In this section, numerical examples for two representative
classes of decomposable graphical models (chain structure
and tree structure) are presented in order to illustrate the
communication saving performance using the proposed or-
dered transmission approach. Chain structure and tree structure
graphs have been employed in studies on feature representation
[42], topology identification [43], structure learning [44] and
electrical power systems [37].

A. Total number of Transmissions Saved versus the Distance
Measure

In this subsection, the lower bound in (34) is compared with
the actual number of transmissions saved by ordered-CUSUM
from Monte Carlo simulations (1000 runs). Consider a graph
with chain structure as illustrated in Fig. 4 where we set the
number of cliques K = 50. As indicated in Fig. 4, each clique

2

1

4

3 5
𝐶𝐶1

𝐶𝐶2 𝐶𝐶3
𝐶𝐶𝐾𝐾

FC

Fig. 4. The decomposable graphical model with chain structure. Clique 1:
Nodes 1,2,3; Separator: Nodes 2,3; Clique 2: Nodes 2,3,4; Separator: Nodes
3,4; and so on down the chain. Each clique communicates with the fusion
center (FC).
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Fig. 5. Impact of mean shift on the total number of transmissions saved when
the change does not occur during these 103 time slots.

has 3 nodes, and every two-connected clique pair are coupled
through a 2-sensor separator set. We first consider the change
detection problem in (49) and generate a covariance matrix
which satisfies the conditional independence specified by the
graph structure in Fig. 4. In the simulation results of Fig. 5,
we set τ = 1, ξ = 0.5/(249 − 1) and µ = c[1, 1, ..., 1]>. In
order to satisfy the false alarm constraint E∞(n) ≥ γ = 103,
the minimum value of the positive constant b is found using
grid search with the grid points spaced 0.01 apart. Note that
hereafter in the simulation results, we only count the number
of transmissions from the cliques to the FC for the first 103

time slots. In Fig. 5, we plot the total number of transmissions
saved versus c when the change does not occur during these
103 time slots. Fig. 5 indicates that our theoretical lower bound
in (34) is valid and its value increases as c increases which
means the distance measure s increases. As expected from
our analysis, Fig. 5 shows that the lower bound on the total
number of transmissions saved nearly equals 24000 when c =
40 which is consistent with Theorem 3 since (dK/2e − 1) ×
103 = 24000 when K = 50.
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B. Total Number of Transmissions Saved versus the Number
of Cliques

In this subsection, using Monte Carlo simulations (1000
runs), we investigate the total number of transmissions saved
for the first 103 time slots by ordering the communications
from the cliques to the FC for different number of cliques
K for the case when no change occurs during these 103

time slots. We consider the testing problem in (49) with
the same class of graph structures as in Fig. 4. We plot
the total number of transmissions saved when no change
occurs during these 103 time slots versus K in Fig. 6 for
the parameters τ = 1, γ = 103, ξ = 0.5/(2K−1 − 1) and
µ = c[1, 1, ..., 1]>. For comparison, the limiting theoretical
lower bound on communication savings in Theorem 3 is also
provided. For the specific cases considered, Fig. 6 indicates
that the total number of transmissions saved by Ordered-
CUSUM increases approximately linearly with K for every
value of c. It also indicates that the rate of increase with K
increases with increasing c for smaller c but eventually, the
rate of increase saturates as c becomes large, corresponding
to a large and easily detectable change.

With the same parameter setting as above, Fig. 7 shows the
WADD, which is computed according to (30), as a function of
the number of cliques K for ordered-CUSUM and CUSUM
with c = 0.1 and c = 0.5. It indicates that our ordered-
CUSUM algorithm provides the same detection delay as
classical CUSUM. It also shows that a larger value of c results
in a smaller WADD which follows because a change with
a larger value of c is easier to detect. The result in Fig.
7 illustrates that the WADD decreases as we increase the
number of cliques K which is consistent with our intuition
that more observations per time slot can help us detect the
change quickly.

Next, we consider a different class of graphs with the tree
structure as illustrated in Fig. 8 where each clique contains 4
nodes and every two-connected clique pair are coupled through
a 1-sensor separator set. Here we consider the testing problem
in (50). We set τ = 1, γ = 103 and ξ = 0.5/(2K−1 − 1).
The diagonal elements of ΣCk for all k are set to be x2

and the other elements of ΣCk are set to equal to x/10
where the minimum value of ΣCk is x2 − x/10, so its value
may be changed by varying x. In Fig. 9, we plot the total
number of transmissions saved by ordered-CUSUM when the
change does not occur during 103 time slots versus K for
different values of x. Fig. 9 implies that the total number of
transmissions saved increases approximately linearly with K
for every value of x. Fig. 9 also indicates that when x is
relatively small then increasing x increases the slope which is
very similar to the result in Fig. 6.

C. Performance of Ordering with Imprecise Model

Now we apply the proposed ordered-CUSUM algorithm
to implement QCD in a real-world Abilene network [45]
for the case when the model is imprecise. The Abilene
network describes internet traffic between universities in the
United States with its topology given in Fig. 10 where
we have 11 routers and 30 links (each edge in Fig. 10

corresponds to two links, one in each direction). Here we
are interested in the relationship between the traffic on the
different links. Similar to [45], we use the links as the vertices
of the conditional independence graph. The graphical model
describing the conditional independence looks different from
the physical network graph in Fig. 10, and is given in Fig.
11. In the resulting conditional independence graph, two sep-
arators S2 = {DNVR-KSCY, SNVA-KSCY,LOSA-HSTN}
and S3 = {KSCY-IPLS,HSTN-ATLA} separate the other
three link subsets, which correspond to three cliques. The
cardinalities of the three cliques and two separator sets are
|C1| = 14, |C2| = 12, |C3| = 14, |S2| = 6, and |S3| = 4.

We consider the change detection problem where
Xn,[1,M ] ∼ N (0,Σ1) when n < τ and Xn,[1,M ] ∼
N (0, 3Σ1) when n ≥ τ , and randomly generate a covari-
ance matrix Σ1 ∈ R30×30 which satisfies the conditional
independence specified by the graphical model in Fig. 10.
In order to mimic an imprecise model, we add independent
uniform random variables, uniformly distributed over (−e, 0),
to those entries of Σ−1

1 describing a precision6 involving
nodes in C1 to obtain a distorted precision matrix Σ̃−1

1 . We
generate Xn,[1,M ] ∼ N (0, Σ̃1) when n < τ to test ordered-
QCD, while using an undistorted model when n ≥ τ . In the
simulation results of Fig. 12, we set τ = 1, ξ = 0.5/(22 − 1)
and γ = 103. In Fig. 12, we plot the Kullback–Leibler
(KL)-divergence [46] between two distributions N (0, Σ̃1)
and N (0, 3Σ1) and that between N (0,Σ1) and N (0, 3Σ1),
denoted as DKL(Σ̃1‖3Σ1) and DKL(Σ1‖3Σ1) respectively,
versus the model error parameter e. In Fig. 12, we also plot the
WADD versus e for ordered-CUSUM with and without model
error. Fig. 12 indicates the WADD increases as we increase
the model error parameter e, which is possible since as model
error e is increased, the KL divergence between Σ̃1 and 3Σ1

in this particular case is decreased which implies that the QCD
problem becomes more difficult. The result in Fig. 12 indicates
that even when the model is imprecise, ordered-CUSUM can
still detect the change but possibly with a larger detection
delay.

D. Nondecomposable Graphical Model

Now we investigate the performance of ordering with a
nondecompoasble graphical model when using the approxi-
mate approach suggested at the end of Section IV. Specifi-
cally, we consider the change detection problem in (49) with
µ = [0.02, 0.02]> and generate a covariance matrix Σ ∈ R2×2

which is specified by the nondecomposable graph in Fig.
1(b) where all nodes need to transmit their data to the FC.
By adding a chord as illustrated in Fig. 1(c) with precision
(edge weight) δ, we can implement ordering and obtain an
approximated version of Σ, denoted as Σ̃, when |δ| is small.
In Fig.13, we plot the WADD versus |δ| for distributed and
centralized processing for the parameters τ = 1, γ = 103, and
α2 = β2 = 0.5 where Σ̃ (distributed) and Σ (centralized) are
employed in (49), respectively. The result in Fig.13 illustrates
that the WADD in the modified decomposable graph case is

6The inverse of the covariance matrix is called the precision matrix whose
entries describe the precision between two variables.
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Fig. 6. The total number of transmissions saved when the change does not
occur during these 103 time slots versus K for the model illustrated in Fig.
4.
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for the model illustrated in Fig. 4.
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Fig. 8. The decomposable graphical model with tree structure. Clique 1:
Nodes 1,2,3,4; Separator: Nodes 3,4; Clique 2: Nodes 3,5,6,7; Separator:
Nodes 6,7; and so on. Each clique communicates with the fusion center (FC).

very close to that for the original problem as |δ| is sufficiently
small (regardless whether δ is positive or negative). Note that
the sign of δ can result in an increase or decrease in the
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Fig. 9. The total number of transmissions saved when the change does not
occur during these 103 time slots versus K for the model illustrated in Fig.
8.

Fig. 10. Topology of the Abilene network [45] where each edge corresponds
to two links.

WADD, because the perturbation can make the test slightly
easier or more difficult.

VI. CONCLUSION

In this paper a new class of communication-efficient QCD
schemes for sensor networks have been developed that re-
duce the number of transmissions without any impact on
detection delay when compared to the optimum centralized
communication unconstrained QCD approach. It is assumed
that the observations follow a decomposable graphical model
(DGM), which is a very broad class of network topologies,
and the observations between sensors may be dependent.
For a QCD problem with sensor observations following any
DGM, we write the optimum centralized change detection
test statistic as a sum of clique statistics where each clique
statistic can be computed only using local data available at
the corresponding clique. To complete the computation of
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Fig. 11. Graphical model of the Abilene network [45] where the links in Fig.
10 are used as the vertices.
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Fig. 12. The KL divergence and the WADD versus the model error e in
a real-world Abilene network in Fig. 10. The KL divergence between two
distributions N (0,Σ1) and N (0, 3Σ1) is denoted as DKL(Σ1‖3Σ1).

the optimum centralized test, each clique forwards its clique
statistic to the FC.

In order to further improve the communication efficiency,
we have applied the ordered transmission approach over the
cliques to reduce the number of transmissions from the cliques
to the FC without performance loss. In the ordered transmis-
sion approach, the cliques with more informative observations
transmit their clique statistics to the FC first. Transmissions are
halted after sufficient evidence is accumulated to save trans-
missions, and a new round of sensing is initiated. Furthermore,
a lower bound on the average number of transmissions saved
has been provided. When a well-behaved distance measure be-
tween the pdfs of the sensor observations before and after the
change becomes sufficiently large, the lower bound approaches
approximately half the number of cliques. Extensions to the
case where the graph structure changes have been discussed.
In order to illustrate our theoretical analysis, two popular
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Fig. 13. The WADD versus |δ| (from large to small) for the model illustrated
in Fig. 1(b) with its decomposable version given in Fig. 1(c).

general QCD problems with sensor observations following a
multivariate Gaussian distribution have been considered and
numerical results have been provided which are consistent with
the analytical findings.

Our results lead to some interesting open questions and
opportunities for further work. First, showing the ordered
transmission approach is optimal in terms of communication
savings or further improving it would be interesting. Second,
this paper only develops a lower bound on communication
savings, but more exact categorization would be useful. Fi-
nally, our study focuses on the case where the distributions
of the observations at all sensor change simultaneously, and
generalizations would be useful.
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