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Abstract— We study alternating minimization for matrix
completion in the simplest possible setting: completing a
rank-one matrix from a revealed subset of the entries. We
bound the asymptotic convergence rate by the variational
characterization of eigenvalues of a reversible consensus
problem. This leads to a polynomial upper bound on the
asymptotic rate in terms of number of nodes as well as the
largest degree of the graph of revealed entries.

Index Terms— Markov processes, network analysis and
control, time-varying systems.

I. INTRODUCTION

MATRIX completion refers to the problem of completing
a low rank matrix based on a subset of its entries. Al-

gorithms for matrix completion have found many applications
over the past decade, e.g., recommendation systems and the
Netflix prize [1], [2] or triangulation from incomplete data
[3], [4]. However, despite much research into the topic, under-
standing the exact conditions under which matrix completion
is possible remains open.

Formally, the problem may be stated as follows. Given a
rank r matrix M ∈ Rn×n, let E be a subset of indices
such that the entries of M corresponding to the subset E
are revealed, i.e., we know the values of elements Mij if
(i, j) ∈ E . We use the standard notation [n] = {1, . . . , n}
so that E ⊂ [n] × [n]. The goal is to find a rank r matrix
Me such that PE(Me) = PE(M), where PE(·) is defined as

[PE(M)]ij =

{
Mij if (i, j) ∈ E

0 otherwise .

A popular approach is to solve matrix completion through
convex relaxation [5]. However, this approach is computa-
tionally expensive, and runs into difficulties for large scale
systems, as each step of convex relaxation methods often
need to truncate SVDs, which could take O(n3) operations.
An alternative might be gradient descent on the Grassmann
manifold [6], but to compute the gradient over the Grassmann
manifold is also computationally intensive.

In contrast to this, alternating minimization algorithm is
a cheap and empirically successful approach. Alternating
minimization writes the low rank target matrix M as αβT ;
then the algorithm alternates between finding the best α and
the best β to fit the revealed entries [7]. It has been applied
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to clustering [8], sparse PCA [9], non-negative matrix fac-
torization [10], signed network prediction [11] among others.
The main advantage of alternating minimization algorithm is
the small size of the matrices one needs to keep track of
(especially when the rank r is much smaller than n) and
smaller amount of computations. It was shown in [7] that
alternating minimization converges geometrically. However,
the convergence time of alternating minimization is not fully
understood, and its analysis often relies on either incoherence
of the underlying matrix, random revealed pattern E , or the
assumption that the algorithm has a “warm start” – or all of
the above.

Alternating minimization without any of these assumptions
was considered in [12], but only for the rank-one case.
Although the problem of completing a rank-one matrix is
trivial (indeed, one can find a factorization M = xyT just
by recursively going through the revealed entries), it serves as
the simplest possible setting where alternating minimization
can be studied. Indeed, as we will see, a complete analysis
even in this simple case remains open.

It was established in [12] that if the graph corresponding
to the revealed entries has bounded degrees and diameter
which at most logarithmic in the size of the matrix, alternating
minimization converges in polynomial time. In this paper, we
are interested in studying the convergence time for rank-one
matrices, but without any assumptions on degrees or diameter.

Our main result is a polynomial time bound on the asymp-
totic convergence rate of the process, obtained by drawing on
the connection to reversible consensus dynamics. An implica-
tion of our result is that the convergence time of alternating
minimization to shrink the distance to the optimal solution by a
factor of ε can be upper bounded by O(n(n−1)∆ log(1/ε)) for
all small enough ε (as a function of n and the initial condition),
where ∆ is the largest degree in a graph corresponding to the
revealed entries.

A number of papers analyze algorithms for rank-one matrix
completion. Gradient descent for sparse rank-one estimation
of square symmetric matrices are studied in [13]. Our paper
analyzes rank-one matrix completion in general, not only
for symmetric matrices, and using alternating minimization
rather than gradient descent. A very recent work [14] is con-
cerned with recovering the dominant non-negative principal
components of a rank-one matrix precisely, where a number
of measurements could be grossly corrupted with sparse and
arbitrary large noise, a nice feature that we do not address in
this work. For recovering a rank-one matrix when a perturbed
subset of its entries with good sensitivity to perturbations, two
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algorithms are presented in [15].
We begin by describing formally the main algorithm ana-

lyzed here.

A. Alternating Minimization for Rank-one Matrix
Completion Problem

Consider a rank-one matrix M = αβT , where α, β ∈ Rn.
Abusing notation slightly, let VR and VC denotes the sets of
rows and columns of matrix M respectively; of course, both
VR and VC are equal to [n], but writing i ∈ VR vs i ∈ VC
will be convenient in terms of making it clear whether we are
considering a row or a column i.

We let V = VR ∪ VC be the vertex set of the graph G =
{V, E}, a bipartite undirected graph. The graph G has vertices
corresponding to every row and column of the target matrix,
and the edge (i, j) is present in G precisely when the (i, j)’th
entry of M is revealed.

For this bipartite graph G, we write i ∼ j if i ∈ VR is
connected to j ∈ VC . We let A be the adjacency matrix of

G, i.e., Aij =

{
1 if i ∼ j
0 otherwise

, and we denote by ∆ the

maximum degree and by d the diameter of G.
The matrix completion problem is the minimization problem

min
x,y∈Rn

∑
(i,j)∈E(xiyj−Mij)

2. Note that the sum is taken over

all the revealed entries; the goal is to find x, y with a zero
objective value.

Our starting point is the alternating minimization method
given in the box below, which was called Vertex Least Squares
(VLS) in [12]. The convergence result proved in [12] is given
in the subsequent theorem.

Algorithm 1 Vertex Least Squares (VLS)
1: For i ∈ VR, j ∈ VC , initialize xi,0, yj,0
2: for t = 1 to T do
3: for i ∈ VR do
4:

xi,t+1 = arg min
x∈R

∑
j∈VC :i∼j

(xT yj,t −Mij)
2 (1)

5: end for
6: for j ∈ VC do
7:

yj,t+1 = arg min
y∈R

∑
i∈VR:i∼j

(yTxi,t+1 −Mij)
2 (2)

8: end for
9: end for

Theorem 1.1 (Theorem 2.1 in [12]): Let M = αβT with
α, β ∈ Rn and suppose the following assumptions hold:

(a) There exists 0 < b < 1 such that for all i, j ∈ [n], we
have b ≤ αi, βj ≤ 1/b.

(b) The graph G is connected.
(c) The graph G has diameter d ≤ c log n for some fixed

constant c, and maximum degree ∆.
Then, there exists a constant a > 0 which depends on c, ∆

and b only, such that for any initialization b ≤ xi,0, yj,0 ≤

1/b, i ∈ [n] and ε > 0, there exists an iteration number
T = O(na log n) such that after T iterations of VLS, we have
1
n‖xT y

T
T −M‖F < ε.

B. Our Contributions and Outline
Theorem 1.1 gives a polynomial convergence time, but

under relatively strong assumption on degrees and diameter.
In this paper, we want to remove this assumption; however,
this will be obtained at the cost of obtaining bounds on the
asymptotic convergence rate instead.

We begin with Section 2, where we define the asymptotic
convergence rate of the VLS and connect it to a reversible
consensus problem; we then exploit this to obtain a quadratic
optimization problem which bounds this convergence rate. In
Section 3, we prove combinatorial bounds for the convergence
rate implied by this connection. Finally, Section 4, numerically
evaluates our bounds on various classes of graphs via simula-
tion, and Section 5 contains some brief concluding remarks.

II. THE CONNECTION TO REVERSIBLE CONSENSUS

In this section, we begin by describing a connection to
the consensus problem made in [12]. We then show that the
resulting consensus problem is reversible, which allows us to
write down a variational characterization of the convergence
rate.

The following steps follow the proof of Theorem 1 in [12].
From the update rules for VLS in (1) and (2), we have

xi,t+1 =

∑
j:i∼jMijyj,t∑
j:i∼j y

2
j,t

and yj,t+1 =

∑
i:i∼jMijxi,t+1∑
i:i∼j x

2
i,t+1

.

(3)
Define

ui,t =
xi,t
αi

and vj,t =
yj,t
βj

, (4)

where, recall, M = αβT . By using (3), the updates for ui,t
can be written as:

ui,t+1 =
xi,t+1

αi
=

∑
j:i∼jMijyj,t

(
∑
j:i∼j y

2
j,t)αi

=

∑
j:i∼j βjyj,t∑
j:i∼j y

2
j,t

=

∑
j:i∼j y

2
j,t/vj,t∑

j:i∼j y
2
j,t

=
∑
j:i∼j

y2
j,t∑

k:i∼k y
2
k,t

1

vj,t
.

(5)

Similarly, we have
1

vj,t
=
∑
i:i∼j

αixi,t∑
k:k∼j αkxk,t

ui,t. (6)

Note that ui,t+1 can be expressed as a convex combination
of
{

1
v1,t

, 1
v2,t

, · · · , 1
vn,t

}
and 1

vj,t
can be expressed as a

convex combination of {u1,t, u2,t, · · · , un,t} for all i, j ∈ [n].
Rewriting (5) and (6) in the compact form:

ut+1 = Bt

(
1

v

)
t

and
(

1

v

)
t

= Ctut ∀t ≥ 0, (7)

where Bt = (bij,t)n×n and Ct = (cij,t)n×n are n×n stochas-

tic matrices, and bij,t =
y2j,t1(Aij=1)∑

k:i∼k y
2
k,t

, cij,t =
αjxj,t1(Aji=1)∑

k:k∼i αkxk,t
.

Combining the two updates in (7), it follows that

ut+1 = Ptut, (8)



where Pt = BtCt is also a stochastic matrix. Thus alternating
minimization in this context can be written in terms of
a consensus iteration. This concludes our summary of the
connection between rank-one alternating minimization and
consensus which was discovered in [12].

We now begin our analysis by observing that the matrices
Pt appearing above correspond to reversible Markov chains.

Lemma 2.1: The Markov chain with transition probability
matrix Pt is reversible for all t ≥ 0.

Proof: Recall that a Markov chain with transition matrix
P and invariant measure π = (π1, · · · , πn) is reversible if and
only if πipij = πjpji for all i and j.

We have that Pt = BtCt, where

pij,t =
αjxj,t∑
k:i∼k y

2
k,t

n∑
l=1

y2
l,t1((i, l) ∈ E)1((j, l) ∈ E)∑

k:k∼l xk,tαk
. (9)

Letting
π̂i,t = αixi,t

∑
k:i∼k

y2
k,t, (10)

it is now immediate that π̂i,tpij,t = π̂j,tpji,t. Normaliz-
ing πi,t =

π̂i,t∑n
i=1 π̂i,t

, we have a stochastic vector πt =

(π1,t, · · · , πn,t) such that πi,tpij,t = πj,tpji,t for each i, j ∈
[n] and t > 0.

The previous lemma will be the launching point of our
analysis. To analyze the asymptotic convergence rate, we need
to look at the limit of the matrices Pt as t → ∞; for this,
we need to assert that xt, yt converge, which we do in the
following lemma.

Lemma 2.2: Under the assumptions that (i) G is connected,
(ii) b ≤ αi, βj ≤ b−1, (iii) b ≤ xi,0, yj,0 ≤ b−1, we
have that ut approaches a point in span{1} and the the cost∑

(i,j)∈E(xi,tyj,t −Mij)
2 approaches zero.

Proof: The proof follows straightforwardly from the
observation that the positive entries of the matrices Pt con-
structed above are bounded away from zero. Indeed, by
definition we have b2 ≤ ui,0, vj,0 ≤ 1

b2 for all i, j ∈ [n].
Then since the updates of (5) and (6) are convex combinations,
we get b2 ≤ ui,t, vj,t ≤ 1

b2 for all t ≥ 0, i, j ∈ [n]. From
the definition of ui,t and vj,t in (4), we can conclude that
b3 ≤ xi,t, yj,t ≤ 1

b3 for all t ≥ 0, i, j ∈ [n]. Putting this
together with the expression for pij,t from (9), we obtain
that the positive entries of Pt are uniformly bounded below.
Furthermore, since we can always take i = j in (9), we see
that every Pt has positive diagonal. Standard consensus theory
(e.g., Theorem 1 in [16]) gives that ut converges to a multiple
of the all-ones vector.

If ut → c1, then equation (7) implies that vt → c−11. Thus
if xt → cα, then yt → c−1β. Thus xtyTt approaches αβT and
the cost approaches zero.

Our next lemma collects some properties of the matrix P
which is the limit of the matrices Pt as t→∞.

Lemma 2.3: Under the conditions of Lemma 2.2, we have
that P is a stochastic matrix corresponding to a reversible
Markov chain. It has real eigenvalues 1 = λ1, λ2, · · · , λn,
listed in order of decreasing magnitude. Furthermore, λn >
−1. Moreover, if π is the stationary distribution of P and
z is any non-principal eigenvector (i.e., not corresponding to

eigenvalue 1), then πT z = 0. Finally, we have that ρ(P −
1π) = max{λ2(P ),−λn(P )}, where ρ(·) denotes the spectral
radius.

Proof: That P is a stochastic matrix corresponding to a
reversible Markov chain follows that it is the limit of Pt, and,
as we showed in Lemma 2.1, each Pt has these properties, and
one is a simple eigenvalue of P . The reversibility condition
πiPij = πjPji may be written as diag(π)P = PTdiag(π). An
implication of this is that P is self-adjoint in the inner product
〈x, y〉π =

∑n
i=1 πixiyi. Thus the eigenvalues of P are real,

and the eigenvectors of P are orthogonal in this inner product.
Since the top eigenvector is 1, this implies that for any other
eigenvector z, we have 0 = 〈1, z〉π = πT z.

Moreover, that 1 is the largest eigenvalue of P follows
(for any stochastic matrix) from the Perron-Frobenius theorem.
That the smallest eigenvalue is strictly above −1 follows by
Gershgorin circles as P is a stochastic matrix with positive
diagonal.

Finally, let z1 = 1, z2, · · · , zn be the eigenvectors of P
corresponding to eigenvalues λ1 = 1, λ2, · · · , λn. Then z1 =
1, z2, · · · , zn are also eigenvectors of P − 1π corresponding
to eigenvalues 0, λ2, · · · , λn, since πT zi = 0 for any i ≥ 2,
we have that

(P − 1π)z1 = 0,

(P − 1π)zi = Pzi − 1πzi = λizi ∀i ≥ 2. (11)

It follows that ρ(P − 1π) = max(λ2,−λn).
We define the asymptotic convergence rate as γasym =

supu0 /∈U limt→∞

(
‖ut−u∗‖2
‖u0−u∗‖2

)1/t

, where U = {c1 : c ∈ R}
and u∗ = limt→∞ ut. Naturally, the quantity γasym is related
to the matrix P , and the following lemma makes a precise
statement of this.

Lemma 2.4: Under the conditions of Lemma 2.2, we have
that γasym ≤ ρ(P−1π) where ρ(·) denotes the spectral radius.

Proof: Observe that for any stochastic matrix Q, (I −
1π)Q(I − 1π) = (I − 1π)Q.

As a consequence, if we define for any stochastic matrix Q,
the matrix Q′ as Q′ = (I−1π)Q, we have that Q′(I−1π) =
(I−1π)Q. Then (I−1π)Pt · · ·P1u0 = P ′t · · ·P ′1(I−1π)u0,
and therefore ||ut − πut1||2 ≤ ||P ′t · · ·P ′1||2||(I − 1π)u0||2.
Since u∗ = c1 where c lies in the convex combination of the
entries of u0, we have that

||ut − u∗||2 ≤
√
n||ut − u∗||∞ ≤ 2

√
n||ut − πut1||∞

≤ 2
√
n||P ′t · · ·P ′1||2||(I − 1π)u0||2.

Therefore

γasym = sup
u0 /∈U

lim sup
t→∞

(
||ut − u∗||2
||u0 − u∗||2

)1/t

≤ lim sup
t
||P ′t · · ·P ′1||

1/t
2 .

Next, observe that we can repeat the same argument but
beginning at iteration k rather than iteration 1. That is:

γasym ≤ sup
uk /∈U

lim sup
t

(
||ut − u∗||2
||uk − u∗||2

)1/(t−k)

≤ lim sup
t
||P ′tP ′t−1 · · ·P ′k||1/(t−k).



In particular, we have that for every k,

γasym ≤ ρ({P ′k, P ′k+1, . . .}), (12)

where ρ(M) is the joint spectral radius of the matrix set
M, defined as ρ(M) = limm→∞ sup ||Πm||1/m2 , where the
supreme is taken over all products Πm of m matrices from
the set M. We refer the reader to [17] for background on the
joint spectral radius. In particular, by Lemma 1.2 of [17], we
have that for any bounded set M, we have that for any fixed
m, ρ(M) ≤ sup ||Πm||1/m2 .

We next argue that the right-hand side of (12) can be
bounded by ρ(P ′) as k → ∞. Indeed, for any ε > 0, by
definition of joint spectral radius there is a large enough integer
m so that ρ({P ′}) > max ||Πm||1/m−ε, keeping in mind that
the max on the right-hand side is over a single product, namely
(P ′)m. Next, choose r small enough so that if M is taken to
be the ball of radius r around P ′, then the right-hand side of
the last inequality only changes by ε. Finally, choose k large
enough so that every P ′t , t ≥ k lies in a ball of radius r around
P ′. Putting all this together, we have that

ρ({P ′k, P ′k+1, . . .}) ≤ρ(Br(P
′)) ≤ max

M.=Br(P ′)
||Πm||1/m

≤ max
M.=P ′

||Πm||1/m + ε ≤ ρ({P ′}) + 2ε.

Since ε is arbitrary, we have that lim sup
k→∞

ρ({P ′k, P ′k+1, . . .})
≤ ρ(P ′). Putting this together with (12), we conclude that
γasym ≤ ρ(P ′) as desired.

Finally, we note that because π is a left-eigenvector of P
with eigenvalue 1, we have that P ′ = P − 1π. Thus γasym ≤
ρ(P − 1π) and the proof is concluded.

We conclude this section by putting together all the previous
lemmas to obtain a variational upper bound on the convergence
rate.

Corollary 2.1: Under the conditions of Lemma 2.2, we
have that

γasym ≤ max{1− 1

2
min
x∈S

n∑
i=1

n∑
j=1

πipij(xi − xj)2,−λn(P )},

where S = {x|
∑n
i=1 πixi = 0,

∑n
i=1 πix

2
i = 1}.

Proof: Lemma 2.4 shows that γasym ≤ max{λ2(P ),
− λn(P )}. This corollary simply replaces λ2(P ) with its
variational characterization; these were proved for reversible
P in [18].

We note that it is also possible to replace −λn(P ) by the
variational characterization of it, but we will just leave it as
−λn(P ) above, as it turns out that there are easy ways to
bound it.

III. AN UPPER BOUND ON THE CONVERGENCE RATE

We can use the main result of the previous section, namely
Corollary 2.1, to obtain an upper bound on the asymptotic
convergence rate associated with alternating minimization.
This is given in the following theorem, which is our main
result.

Theorem 3.2: Suppose the assumptions of Lemma 2.2 hold,
and additionally the graph G has maximum degree ∆. Then,

γasym < 1− b12

n(n− 1)∆
< 1− b12

n3
.

Proof: Glancing at Corollary 2.1, we see that we need
to bound the variational characterizations of λ2(P ) in the
statement of the corollary, as well as −λn(P ). Our first step
is to analyze the variational expression for λ2(P ) in that
corollary.

Note that the support of P is same as the support of
AAT ; indeed, P is the transition probability matrix of a
certain random walk on (VR, ER)

∆
= GP , where (i1, i2) ∈ ER

if and only if i2 is a distance two neighbor of i1 in G.
This new graph GP is connected because, by assumption
G is connected. Therefore, for any x ∈ Rn, we have that∑n
i=1

∑n
j=1 πipij(xi − xj)2 =

∑
(i,j)∈ER πipij(xi − xj)

2.

Observe that in Corollary 2.1, the optimal value does not
change when we multiply the vector π by a constant factor.
Consequently, we will instead deal with the un-normalized
quantities π̂i defined in (10), which will lead to less cumber-
some expressions.

We now bound the optimal value of optimization problem
for λ2(P ) appearing in Corollary 2.1. Let x be any element of
S. Without losing generality, we can assume that x1 < x2 <
· · · < xn and assume that xn denotes the component of x
which is largest in magnitude (replace x by −x if this is not
true). Consider∑

(i,j)∈ER

π̂ipij(xi − xj)2

(a)
= 2

∑
(i,j)∈ER,i<j

π̂ipij(xj − xi)2

(b)

≥2
∑

(i,j)∈ER,i<j

π̂ipij

j−1∑
k=i

(xk+1 − xk)2

(c)
=2

n−1∑
i=1

∑
k≤i,l≥i+1

π̂kpkl(xi+1 − xi)2

(d)
=2

n−1∑
i=1

∑
k≤i,l≥i+1

α4
k

∑
p:k∼p,l∼p

β2
p∑

q:q∼p α
2
q

(xi+1 − xi)2,

where (a) follows by reversibility; (b) is because that x1 <
x2 < · · · < xn; in (c), we rearrange two summations; we
use definitions of pkl and π̂k in (d), as well as the fact that
xt → cα, yt → c−1β for some c. Using the assumption that
b ≤ αi, βj ≤ b−1 and letting d(j) denote the degree of j ∈
VC , we have that∑

(i,j)∈ER

π̂ipij(xi − xj)2

≥2b8
n−1∑
i=1

 ∑
k≤i,l≥i+1

∑
p:k∼p,l∼p

1

d(p)

 (xi+1 − xi)2

(e)

≥b8
n−1∑
i=1

(xi+1 − xi)2, (13)



where (e) is followed by (5) in [19] which has proved that
on any undirected connected graph, regardless of the node
labeling we have that

∑
k≤i,l≥i+1

∑
p:k∼p,l∼p

1
d(p) ≥

1
2 .

Next, let π̂max denote the component of π̂ which has the
largest value. Then 1 =

∑n
i=1 π̂ix

2
i ≤ nπ̂maxx

2
n and hence

xn ≥ (nπ̂max)−
1
2 (because by construction, xn is the entry

of x with the largest value). Since
∑n
i=1 π̂ixi = 0, then all

components of x cannot be positive, so x1 < 0. Consequently,
xn − x1 > (nπ̂max)−

1
2 . By CauchySchwartz inequality, we

have that

(nπ̂max)
−1 <(xn − x1)

2

=[(xn − xn−1) + (xn−1 − xn−2) + · · ·+ (x2 − x1)]
2

≤(n− 1)

n−1∑
i=1

(xi+1 − xi)
2.

Dividing by n−1 on both sides and using (10), it is immediate
that

n−1∑
i=1

(xi+1 − xi)2 >
b4

n(n− 1)∆
. (14)

Plugging (14) into (13) and by variational characterizations,
we have that

λ2(P ) < 1− b12

n(n− 1)∆
. (15)

It remains to obtain an upper bound on −λn. It turns out that
this is done in the easiest possible way with the Gershgorin
circle theorem. Indeed, for the matrix P , recall that its diagonal
entries are [P ]ii =

α2
i∑

k:i∼k β
2
k

∑
l∈N(i)

β2
l∑

k:k∼l α
2
k
, which are

bounded below by b8

∆ . Also, P is a stochastic matrix and
hence Ri :=

∑
i6=j pi,j is smaller than 1. Gershgorin’s theorem

asserts that each eigenvalue of P is in at least one of the disks
{λ : |λ− pii| ≤ 1} for i = 1, · · · , n, and consequently,

λn(P ) > −1 +
b8

∆
. (16)

Combining (15), (16), and Corollary 2.1, we obtain
γasym(P ) ≤ max{λ2(P ),−λn(P )} < 1− b12

n(n−1)∆ < 1− b12

n3 .

Remark: We now discuss the implications of this theorem
for convergence rate. Given any initial condition u0, we have
that, after a finite period, the convergence rate will be upper
bounded by 1− b12/(n(n− 1)∆). It follows that for all large

enough t, we can bound ||ut−u∗||2 ≤
(

1− b12

n(n−1)∆

)t
||u0−

u∗||2, which translates into a time of O(n(n− 1)∆ log(1/ε))
until the distance to u∗ shrinks by ε. Unfortunately, because
t needs to be “large enough,” this argument only works if we
assume ε is small enough. It is an open question to establish
a polynomial convergence time which would hold for all ε.

IV. SIMULATIONS

We give simulation results in this section to show that how
1/(1−γasym) varies with n and b and how tight our bounds are
in practice. We perform simulations for five different kinds of
graphs G, namely, line, star, 2d-grid and 3d-grid and complete
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graph. We do 1000 experiments for each n, b and graph and
in each experiment we generate 2n random numbers whose
values are between b and 1/b to initialize xi,0, yj,0 for i, j ∈
[n]. Then we get experimental upper bounds η for 1/(1 −
γasym).

We first set b = 0.3 and let n change as we estimate the
asymptotic convergence rate from examples in five different
kinds of graphs. Figures 1 and 2 show how the convergence
times scale as we increase n for line graph and four different
kinds of graphs. All examples Figure 2 show sublinear growth,
which is consistent with the upper bounds of Theorem 3.2,
which are always at least quadratic. In these cases, the upper
bounds we have derived is conservative. However, our results
in Figure 1 appear to grow quadratically in n, which suggests
that on the line graph the upper bound of our main result is
tight up to constant factors.

In Figure 3 and Figure 4, we instead fix n = 32 and let b
changes from 0.01 to 1. The results show that indeed it takes
more time to converge when b becomes smaller. Our main
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result also has such a scaling with b.
In summary, our numerical results suggest that on the

line graphs our results are tight, whereas on grids and star
graphs, our estimate of the convergence time is conservative.
Additionally, simulations suggest the blowup in convergence
time as b → 0 is not merely a feature of our main theorem
but also happens in practice.

V. CONCLUSIONS

Our main result has been a derivation of a polynomial bound
on the asymptotic convergence rate of alternating minimization
for rank-one matrix completion. The main open question left
by our work is whether a polynomial convergence time can
be proven. This will require a non-asymptotic analysis of
the dynamics described here. This appears challenging, as
equation (7) is essentially a switched linear system, and there
is no obvious Lyapunov function which would lead to a
polynomial rate.

Furthermore, the approach provides a way to begin ana-
lyzing the general case of higher rank matrix completion, i.e.,
we can write alternating minimization as a consensus problem,
even for higher-rank matrices. However, the problem is that
the coefficients of this linear combination are time-varying,
depending on the current iterate, and might be negative.
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