
Adversarial Crowdsourcing Through Robust
Rank-One Matrix Completion

Qianqian Ma
Boston University
maqq@bu.edu

Alex Olshevsky
Boston University
alexols@bu.edu

Abstract

We consider the problem of reconstructing a rank-one matrix from a revealed subset
of its entries when some of the revealed entries are corrupted with perturbations that
are unknown and can be arbitrarily large. It is not known which revealed entries are
corrupted. We propose a new algorithm combining alternating minimization with
extreme-value filtering and provide sufficient and necessary conditions to recover
the original rank-one matrix. In particular, we show that our proposed algorithm is
optimal when the set of revealed entries is given by an Erdős-Rényi random graph.

These results are then applied to the problem of classification from crowdsourced
data under the assumption that while the majority of the workers are governed by
the standard single-coin David-Skene model (i.e., they output the correct answer
with a certain probability), some of the workers can deviate arbitrarily from this
model. In particular, the “adversarial” workers could even make decisions designed
to make the algorithm output an incorrect answer. Extensive experimental results
show our algorithm for this problem, based on rank-one matrix completion with
perturbations, outperforms all other state-of-the-art methods in such an adversarial
scenario.1

1 Introduction

Matrix completion [10] [9] [13] refers to the problem of recovering a low-rank matrix from a subset
of its entries. A fundamental challenge in the study of matrix completion is that, in some applications,
the revealed entries will be inaccurate or corrupted. When these perturbations can be arbitrarily large,
we will refer to the problem as “robust matrix completion.” In particular, the motivating application
for this paper is estimation of worker reliability in crowdsourcing [30] [41] [21][19][45], where this
issue appears if some workers deviate from their instructions.

The simplest and one of the most widely used crowdsourcing models is Dawid & Skene’s (D&S)
single coin model [6]. In the D&S model, the workers are assumed to make mistakes independently
of other workers and with the same error probability for each task. It has previously been observed
that optimal estimation in the D&S model requires estimation of worker reliabilities [1], which in
turn can be framed as a rank-one matrix completion problem [30].

In the case when some of the workers are poorly described by the D&S model or even consciously
acting to subvert the underlying algorithm, the problem is naturally framed as a robust rank-one
matrix completion problem. The motivating scenario is either a platform such as Amazon Mechanical
Turk where workers without a long record of reliability typically have cheaper rates, or estimation
from online ratings on a platform such as Yelp, where there is strong incentive for business owners to
write fake reviews.

1The code is available on https://github.com/maqqbu/MMSR

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

01
0.

12
18

1v
1

 [c
s.L

G
]

23
 O

ct
 2

02
0

https://github.com/maqqbu/MMSR

We propose a new algorithm for robust rank-one matrix completion which, in at least one regime, is
provably optimal. We then perform a computational study which compares our method to twelve
state-of-the-art methods from the crowdsourcing literature on both synthetic and real world datasets
(in the latter case, we introduce the corrupted workers ourselves), and show that our method strongly
outperforms all of them in this adversarial setting.

Notation and conventions: [n] = {1, · · · , n}; |S| is the size of set P ; dxe is the smallest integer
greater than x; bxc is the largest integer smaller than x; ‖X‖∗ is the nuclear norm of matrix L,
i.e., the sum of the singular values of matrix X; Z+ is the set of positive integers; Z≥i is the
set of integers which are greater than i; Given S1, S2, the reduction of S1 by S2 is denoted as
S1\S2 = {i ∈ S1 : i /∈ S2}; finally, A(n) ≈ B(n) means A(n)/B(n)→ 1 as n→∞.

2 Related Work

Matrix Completion: the standard approach to low-rank matrix completion [2][3] usually proceeds
by nuclear norm minimization:

minL ‖L‖∗
s.t. [L]ij = [L0]ij , ∀(i, j) ∈ Ω, (1)

where ‖L‖∗ is the nuclear norm of matrix L, Ω is the set of locations of the observed entries, L0

is the matrix to be recovered. Candès and Recht [2] proved that L0 can be recovered with high
probability via solving (1) if L0 is incoherent and Ω is sampled uniformly at random. These are strong
assumptions and many papers, including this one, have sought to relax them. A popular approach has
been to focus on non-uniform sampling. In particular, Negahban et al. [31] relaxed the condition
of uniform sampling to weighted entrywise sampling. Király et al. [20] considered deterministic
sampling. Liu et al. proposed a new hypothesis called "isomeric condition" in [27], which is weaker
than uniform sampling, and proved that the matrix L0 can be recovered by a nonconvex approach
under this condition.

Unlike these general methods, we consider rank-one matrix completion problem with arbitrary Ω as
well as adversarial corruptions. We do not assume any kind of incoherence of the underlying matrix.
Of course, the rank-one matrix completion problem for uncorrupted cases is trivial and can be solved
by going through the revealed answers recursively. Nevertheless, of particular note to us is Gamarnik
et al. [10] which studied how well an alternating minimization methods in the uncorrupted case; we
will build on those results in this work. Very closely related to our work is the recent paper Fatahi
et al. [9], which considered solving the robust rank-one matrix completion with perturbations by
solving the optimization problem

minu∈Rm+ ,v∈Rn+ ‖PΩ(X − uv>)‖1 +Rβ(u,v),

where Ω represents the set of observed entries and Rβ represents a regularization term. The approach
in [9] can deal with asymmetric matrices as well as sparse unknown perturbations. However, their
approach has strong assumption for the structure of the graph G(Ω) and can only deal with sparse
perturbations.

Crowdsourcing: For crowdsourcing problems [46] [39] [35], the D&S model has become a standard
theoretical framework and has led to a flurry of research in recent years, e.g., [41][11][15] among
many others. In the D&S model, the workers are assumed to make errors independently with each
other and the error probabilities of the workers are task-independent. In the single-coin D&S model,
each worker is further assumed to have the same accuracy on each task.

Ghosh et al. [11] considered a binary classification problem based on single coin D&S model, and a
SVD-based algorithm was proposed. The underlying assumption was that the observation matrix
(representing which workers give answers for which tasks) is dense. To relax this constraint, Dalvi et
al. [5] proposed another SVD-based algorithm which allows the observation matrix to be sparser.
Karger et al. [18] extended the single coin D&S model to multi-class labeling issues, and they
proposed an iterative algorithm to solve it. Zhang et al. [41] developed a two-stage spectral method
for multi-class crowdsourcing labeling problems based on general D&S model. In [30], the skill
estimate of workers in single one-coin D&S model were formulated as a rank-one matrix completion
problem, which is also the approach we will adopt in this paper. We mention that in Section 6, we
will compare our proposed algorithm with these existing approaches from [11][5][18][41][30].

2

The adversarial version of the D&S model, where adversaries represent workers who deviate from
the model, has previously been investigated in a number of papers. Raykar et al. [34] assumed the
adversaries are workers who give answers randomly, and they proposed approach to eliminate such
adversaries in general D&S model. Jagabathula [17] also considered the specific types of adversaries
(e.g all the adversaries provide a label +1) and tried to detect these adversaries from normal workers
and eliminate their impact to the final predictions. Kleindessner et al. [21] proposed an approach to
deal with arbitrary and colluding adversaries in the David&Skene model. Overall, the algorithm in
[21] can deal with cases when nearly half of the workers are adversaries. However, this theoretical
guarantee requires the task assignment matrix to be full matrix or dense matrix. Our work considers
the same problem as [21] but without assuming the task assignment matrix is dense.

3 Problem Setup and Formulation

Let X = M + P ∈ Rm×n, where M = ab> is a positive rank-1 matrix with a =

[a1 a2 · · · am]
>, b = [b1 b2 · · · bn]

>. Let XΩ be a subset of the entries of X , i.e.,

XΩ = {Xij = Mij + Pij | ∀(i, j) ∈ Ω}, (2)

where Ω ⊂ [m]× [n]. Our goal is to efficiently reconstruct M given XΩ. The elements of the matrix
P can take on any value; if Pij 6= 0 we will say that the (i, j)’th entry of X is “corrupted.” An entry
that is not corrupted will be referred to as “normal.” We will be considering the situation where a
number of rows and columns of X are completely corrupted, and our goal is to correctly recover the
remaining rows and columns.

We begin with a sequence of definitions. The structure of the set of pairs Ω can be conveniently
represented by an undirected bipartite graph G(Ω) as follows:

Definition 1. G(Ω) is defined to be a bipartite graph with vertex partitions Vu := {1, 2, · · · ,m} and
Vv := {1, · · · , n} and includes the edge (i, j), with i ∈ Vu, j ∈ Vv , if and only if (i, j) ∈ Ω.

For i ∈ Vu, we let Ωi denotes the set of neighbors of node i, and similarly for j ∈ Vv , let Ω′j denote
the set of neighbors of node j (the apostrophe will be useful to be able to tell at a glance whether
a node belongs to Vu or Vv). Our next step is to formalize the fault model, i.e., what we will be
assuming about the corruption matrix P .

Definition 2. A set S ⊂ V (G) is F -local if its intersection with each Ωi and each Ω′j has at most F
nodes.

Definition 3. A node i ∈ Vu is corrupted if Pij 6= 0 for some (i, j) ∈ Ω. Likewise, a node j ∈ Vv is
corrupted if Pij 6= 0, for some (i, j) ∈ Ω. The graph G(Ω) is said to be F-local corrupted if the set
of corrupted nodes is F-local.

Next, we will introduce some concepts from [25] dealing with the redundancy of edges between
subsets of nodes; later, these will turn out to be closely related to the robustness of the graph G(Ω) to
corruptions.

Definition 4. A set S ⊂ V (G) is an r-reachable set if there exists a node in S with at least r
neighbors outside S. G(Ω) is r-robust if for every pair of nonempty, disjoint subsets of V (G), at least
one of the subsets is r-reachable.

Crowdsourcing: we now explain the connection between robust rank-one matrix completion and
crowdsourcing. We consider the single-coin D&S model where W workers are asked to provide
labels for a series of M -class classification tasks. The ground truths gt (t ∈ [T]) for these tasks are
unknown (here T is the number of tasks). The set A ⊂ [W]× [T] is a worker-task assignment set.
The observations (Yw,t)(i,t)∈A are a collection of independent random variables. The single-coin
D&S model supposes the accuracy of the worker i is pi which means that the answer it returns is:

P(Yi,t = `|gt) = pi1{`=gt} +
1− pi
M − 1

1{`6=gt}.

In words, worker i returns the correct answer with probability pi and a random incorrect answer
with probability 1− pi. Under such assumptions, it was observed [30] that the probability of each
worker can be estimated via solving a rank-one matrix completion problem as follows: letting

3

si = M
M−1pi −

1
M−1 we have that [30]

E

[
M

M − 1
C̃ − 1

M − 1
11>

]
= ss>, (3)

where C̃ is the covariance matrix between agents i and j, 11> is the all-ones matrix which has the
same size as C̃. Since the RHS of (3) is a rank-one matrix, the skill level vector s can be estimated
by computing the empirical covariance matrix and applying a rank-one matrix completion method.

In the adversarial setting, we need to further consider the case when worker i may deviate from the
D&S model. In that case, all the entries in row i and column i should be viewed as corruptions as the
derivation of Eq. (3) is no longer valid for that row; this is why we adopt a model in this paper where
entire rows/columns are corrupted. Naturally, we do not know which rows/columns are corrupted.
Extending our notation from above, we will refer to uncorrupted rows and columns as normal.

The hope is that identification of skill levels for the uncorrupted agents is still possible if the number
of corrupted agents is not too large, or the corrupted agents are not placed in central location in the
graph G(Ω); making this intuition into a precise theorem is one of the goals of this paper.

With the above background in place, we can now state the main concerns of our paper formally:
(i) Given XΩ, how can we reconstruct the normal rows and columns of the rank-one matrix M under
F -local fault-models?
(ii) How can we estimate the workers’ skill level s and consequently give accurate predictions for
tasks in the single-coin D&S model with adversaries?

4 The M-MSR method

In this section, we present the details of our approach. We will start by explaining how our algorithm
was constructed. For the uncorrupted rank-one matrix completion problem, we begin by observing
that if (a, b) is an optimal solution, then we actually have the group of optimal solutions (u,v) =
(ka, k−1b). On the other hand, given arbitrary positive vectors u,v, we can represent them as

u = [a1k1 a2k2 · · · amkm]
>
, v =

[
b1
k′1

b2
k′2
· · · bn

k′n

]>
,

where ai, bj represent the values of optimal solution (a, b). We will refer to ki as the “value” of
vertex i and likewise for k′j . Observe that to find the optimal solution, we need some algorithms to
update u and v so that all the vertices can have the same value. To accomplish this, our starting point
is the update

ui(t+ 1) =
∑

j∈Ωi
wij

Xij

vj(t)
, ∀i ∈ [m],

vj(t+ 1) =
∑

i∈Ω′j
w′ij

Xij

ui(t+ 1)
, ∀j ∈ [n], (4)

where the coefficients wij , w′ij form a convex combination. This update rule is motivated by [10], to
which it is closely related, and can be interpreted in terms of an minimization method which alternates
between finding the best u and the best v. In the unperturbed case, via elementary algebra this can be
rewritten in terms of the variables ki, k′j introduced above as

ki(t+ 1) =
∑

j∈Ωi
wijkj(t), ∀i ∈ [m],

1

k′j(t+ 1)
=
∑

i∈Ω′j
w′ij

1

ki(t+ 1)
, ∀j ∈ [n]. (5)

We will show with update rule (5), all the vertices can converge to the same value.

The main difficulty is what to do to account for corruptions: since the corrupted elements can be
arbitrary, even a single corrupted element can completely destabilize this iteration. A natural approach
is to filter the extreme values in each update of Eq. (4). To that end, let us define

Ji(t) =

{
Xij

vj(t)

∣∣∣∣j ∈ Ωi

}
.

4

We will then set Ri(t) to be the set of nodes with the F largest and smallest values in Ji(t) (if
there are fewer than F values strictly smaller/larger than ui(t), then Ri(t) contains the ones that are
strictly smaller/larger than ui(t)); the quantities J ′j(t), R

′
j(t) are defined similarly for nodes j ∈ Vv .

Our algorithm is presented next; we will call it the Matrix-Mean-Subsequence-Reduced (M-MSR)
algorithm.

Algorithm 1 M-MSR
Input: Positive matrix X , set Ω, F and v(0) > 0

Output: X̂ = u(T)v(T)>

1: for t = 1, 2, . . . , T do
2: For each i = 1, · · · ,m, let

ui(t + 1) =
∑

j∈Ωi\Ri(t)
wij

Xij

vj(t)
, (6)

where the coefficients wij form a convex combination.
3: For each j = 1, · · · , n, let

vj(t + 1) =
∑

i∈Ω′j\R
′
j(t)

w′
ij

Xij

ui(t + 1)
, (7)

where the coefficients w′
ij form a convex combination.

4: end for
5: return u(t) = [u1(t), u2(t), · · · , um(t)]>, v(t) = [v1(t), v2(t), · · · , vn(t)]>

For convenience, we will not consider the case m = n = 1. We will be assuming that G(Ω) is
connected. Finally, introducing the notation α for the smallest of wij , w′ij , we will be assuming that
α ≤ 1/2. This can easily satisfied by e.g., choosing wij = 1/degree(i) and likewise for w′ij .

5 Convergence Analysis

We begin by considering the case where the revealed entry set Ω is randomly chosen, which cor-
responds to the case of G(Ω) being an Erdős-Rényi bipartite graphs. For simplicity, we assume
m = n.

Theorem 1(a). Suppose G(Ω) is a random bipartite graph Gn,n,p where each edge is generated with
probability p. Then a sufficient condition for M-MSR algorithm (with parameter F) to successfully
recover the normal rows and columns of X under the assumption the the corruptions are F -local is

p ≥ log n+ 2F log log n+ x

n
, (8)

where x = o(log log n)→∞, when n→∞.

Thus, on a random graph, the M-MSR method can successfully recover the true matrix provided the
graph is not too sparse. We will later discuss the guarantees this theorem implies on the total fraction
of corruptions (note that F is an upper bound on the number of corruptions in each neighborhood).
For now we observe that Theorem 1(a) is tight in a sense described next.

As we will argue in the supplementary information, M-MSR has the property that it is skew nonam-
plifying in the following sense: at every step of the method, it maintains estimates u(t), v(t) such
that ui(t)vj(t) converges to the correct answer aibj when i, j are normal and which satisfy

min
normal i

{
ui(t)

ai
,
bi
vi(t)

}
≥ min

normal i

{
ui(0)

ai
,
bi

vi(0)

}
, (9)

max
normal i

{
ui(t)

ai
,
bi
vi(t)

}
≤ max

normal i

{
ui(0)

ai
,
bi

vi(0)

}
, (10)

Intuitively, the quantities ui(t)/ai and bi/vi(t) measure the “skew” between the vectors u(t), v(t) and
the optimal solution. Let us call any algorithm that satisfies Eq. (9) and Eq. (10) skew-nonamplifying.

Skew nonamplification is clearly a desirable property. In principle, any algorithm for robust rank-1
matrix factorization can converge to (αa)(α−1bT) where abT is the true rank-1 matrix and α can

5

be any real number. It is natural to bound how large the constants α and α−1 can be. The skew-
nonamplifying property does that by ensuring the final skew is not worse than the skew on the initial
conditions.

Our next result shows that M-MSR is essentially optimal on random graphs among all skew-
nonamplifying methods.

Theorem 1(b). Suppose G(Ω) is a random bipartite graph Gn,n,p where each edge is generated with
probability p. Suppose

p =
log n+ 2F log log n− x

n
,

where x = o(log log n)→∞, when n→∞. Then, with probability approaching 1 as n→∞, the
normal rows and columns of X cannot be recovered by any skew-nonamplifying algorithm in the
presence of F -local corruptions.

In other words, if Eq. (8) just barely fails due to the replacement of x by −x, then Theorem 1(b)
tells us that Gn,n,p will, with high probability, be a graph for which there exists a set of F -local
corruptions which prevent any skew-nonamplifying algorithm from recovering the true matrix X .

Theorem 1 in parts (a) and (b) provides a justification for the M-MSR algorithm: it is essentially
an optimal algorithm to use on bipartite random graphs. This theorem is actually derived from
the following somewhat more general theorem, which gives the exact conditions for the M-MSR
algorithm to work on an arbitrary graph.

Theorem 2. Suppose G(Ω) is a connected graph where the nodes are updated according to M-MSR
algorithm with parameter F . Under F -local nodes-corrupted model, the rows and columns of
X without corruptions can be correctly recovered by the M-MSR method if and only if G(Ω) is
2F + 1-robust.

Theorem 2 gives substance to the intuition that recovery is possible if the number of adversarial agents
is not too large, and if their placement in the graph is not central. It quantifies this intuition through
the concept of 2F + 1 robustness. The proofs of these theorems can be found in the supplementary
information. Our results are connected to earlier work in resilient consensus [25] which introduced
the concept of robustness, as well as the work [40] which analyzed the threshold of robustness in
general random graphs.

5.1 Applying M-MSR to crowdsourcing

We have already spelled out how skill determination in crowdsourcing with adversaries can be reduced
to rank-one matrix completion with perturbations. Here we discuss additional details that are needed
to apply the M-MSR method.

Prediction. When the skills are known, according to [26], the optimal prediction method under D&S
model is weighted majority voting, i.e.

γ∗s,A(Y) = arg max
`∈[M]

∑
i:(i,t)∈A

v∗i 1{Yi,t = `}, (11)

where v∗i = log (M−1)pi
1−pi , ∀i ∈ [W]. As discussed above, we will use perturbed rank-one matrix

completion to estimate the skills.

Implications of Theorem 1. Consider the case where a total of βn adversaries exist among n
workers, where β < 1. Of course, it is unknown who is an adversary. As explained earlier, a certain
correlation matrix between the normal workers is rank-1 in expectation. Of course, we may not know
all the entries of this correlation matrix, since only correlations among workers with tasks in common
are revealed. A natural approach is to create a random bipartite graph of revealed entries by assigning
tasks randomly.

This can be done in a number of ways. We may, for example, generate a random bipartite graph G
from Gn,n,p first. Then, assuming there is a sufficiently large incoming stream of tasks, we assign
each task to a random pair of workers i and j such (i, j) is an edge in G. After each pair of agents
has been assigned enough tasks, the empirical correlation matrix is approximately rank-1, and we
reveal the entries of this matrix corresponding to G. Note that, even though the correlation matrix is
symmetric, this method will reveal an asymmetric subset of entries. Other methods to generate the

6

graph randomly via random task assignment are also possible, for example by assigning tasks to more
than two workers. The key point, however, is that the fraction of adversaries in every neighborhood
will then concentrate around β: for each node i, each of its randomly chosen neighbors is adversarial
with probability β.

How many adversaries can we have and still correctly recover the skills of all the normal workers?
Unfortunately, using the strategy of the previous paragraph, any constant fraction β of adversaries
will result in a failure. Indeed, glancing at Eq. (8), if F scales as βpn (pn is the expected degree, and
an expected fraction β of these nodes will be adversarial), then Eq. (8) can never be satisfied.

Although this sounds discouraging, the guarantees of Theorem 1 are still useful, as we explain now.
Glancing at Eq. (8), it is easy to see that the choice of β = 1/[(2+ε) log(log(n))] (and corresponding
F = βpn) leads to that equation being satisfied with the choice of p = Ω((1 + ε−1) log n)/n. In
other words, we can tolerate a fraction of 1/[(2 + ε) log(log(n))] of adversaries.

Fortunately, 1/ log(log(n)) decays to zero quite slowly. Recall that in the crowdsourcing scenario,
n will be the number of users; using an upper bound of 10 billion people for the population of
planet Earth, we see that on any real-world data set, we have 1/[2 log(log(1010))] ≈ 16%, which is a
healthy proportion of adversaries to tolerate.

Sign Determination. In the M-MSR algorithm, we assume the rank-one matrix to recover is positive.
However the rank-one matrix which we aim to recover in crowdsourcing problem is not necessarily
positive. In fact, a worker’s skill level si ∈ [− 1

M−1 , 1] as si = M
M−1pi −

1
M−1 , pi ∈ [0, 1]. To

solve this issue, we can compute the entry-wise absolute value of the rank-one matrix, then apply
M-MSR to get |s|, finally, we apply a post-processing step to identify the sign pattern of s. Details
are available in Supplementary Sec. I.

6 Experiments

In several crowdsourcing experiments, we will compare the average prediction error
(1
T

∑
t=1,··· ,T {Ŷt 6= gt}) of M-MSR algorithm with the straightforward majority voting (referred

to as MV) and the following methods from the literature: [18](KOS), [11](Ghost-SVD), [5](EoR),
[41] (MV-D&S and OPT-D&S), [30](PGD), [28](BP-twocoin, EM-twocoin, and MFA-twocoin),
[42](Entropy(O)), [44] (Minmax) . A detailed description of all of these methods can be found in
Supplementary Sec. A. In all cases we choose the corrupted workers at random, and the reported
results are from an average of 50 runs, with the shaded region denoting the standard deviation.

Synthetic Experiments. Figure 1 shows the results of a number of experiments we have generated.
We want to study the impact of graph types (Figure 1(b), 1(d)), task assignments (Figure 1(c), 1(f))
and skill level of “normal” workers (Figure 1(e)) to the performance of the crowdsourcing methods.
Additionally, we want to study the impact of different adversarial strategies (Figure 1(g), 1(h), 1(i),
1(k), 1(j)). To do this, we applied an adversarial model, by varying the parameters of this model, we
can generate a number of different adversarial strategies (e.g., always return the wrong answer, return
a random answer, return a certain fraction of the correct answer, some of the adversaries return exactly
the same answers, some adversaries return the perfectly colluding answers, assign each adversary
with every task, assign each adversary with every task with a fixed probability). The details about the
adversarial model as well as a definition of these parameters appears in Supplementary Sec. C.

Each graph in Figure 1 shows what happens when we vary one parameter. It can be seen that the
M-MSR algorithm strongly outperforms the baseline methods on various datasets and under almost
all of the adversarial strategies. Besides, the most damaging strategy in terms of reducing prediction
error across the methods we tried seems to return a correct answer a fraction q < 1/2 of the time and
an incorrect answer 1− q of the time, and the adversaries should locate at the central places and be
highly dependent with each other.

Experiments on real data. We implemented similar experiments on 17 publicly available data sets
that are commonly used to evaluate the crowdsourcing algorithms. A detailed discussion of all the
datasets can be found in Supplementary Sec. E, and the details of the how the experiments were
conducted can be found in supplementary Sec. D. As shown in Figure 2 and Figure 6 (Supplementary
Sec. D), the M-MSR algorithm consistently outperforms all the baseline methods. In particular, when
the number of the corrupted workers increases, the prediction error of M-MSR algorithm maintains
the smallest on almost every dataset.

7

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

0.02 0.04 0.06 0.08 0.1
Mean of observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(b) Graph sparsity

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(c) Number of tasks

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(d) Graph size

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(e) Skill level

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(f) Task-assignment vari-
ance

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1
Pr

ed
ic

tio
n

er
ro

r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(g) Adversary accuracy

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1
Pr

ed
ic

tio
n

er
ro

r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(h) Adversary ob-sparsity

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1
Pr

ed
ic

tio
n

er
ro

r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(i) Number of adversaries

0.02 0.04 0.06 0.08 0.1
Mean of observation sparsity

0

0.2

0.4

0.6

0.8

1
Pr

ed
ic

tio
n

er
ro

r

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1
Pr

ed
ic

tio
n

er
ro

r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(j) Adv. dependence level

0 0.5 1
Accuracy of adversaries

0

0.2

0.4

0.6

0.8

1
Pr

ed
ic

tio
n

er
ro

r

500 1000 1500 2000 2500
of tasks

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

50 100 150 200
workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Skill interval upper bound

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.2 0.4 0.6 0.8
Adversary observation sparsity

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

10 20 30 40
workers in group B

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0 10 20 30
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

0.1 0.2 0.3 0.4
Fraction of colluding adversaries

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

5 10 15 20
adversary groups

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

(k) Adv. dependence level

Figure 1: Experiments on synthetic data (see Supplementary Section C for a full explanation).

0 20 40 60 80
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

RTE

0 10 20 30 40
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Temp

0 20 40 60 80
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Web

0 20 40
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Dog

0 100 200
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

TREC

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Bird

0 15 30 45 60
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Fashion1

0 15 30 45 60
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Fashion2

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Anger

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Fear

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

Figure 2: Experimental results on real datasets (see Supplementary Section D for a full explanation).

The M-MSR algorithm performs especially well on large datasets like RTE, Temp, TREC, Fashion1
and Fashion2. It is the only method which can handle around n

2 (n is the number of the total workers)
corrupted workers on these datasets. Out of 17 real datasets, our algorithm is the best on 16 of them.
The only exception is dataset Surprise (Figure 6 in Supplementary Sec. D) – the reason is that
the “normal” workers on this dataset do not appear to be reliable. Besides, on some of the original
real datasets, i.e., no adversaries are introduced, M-MSR algorithm is not the best one among all
the baseline methods. This shows that the superiority of the M-MSR algorithm is mainly on large
datasets in adversarial setting.

6.1 Exact Recovery

We compare the M-MSR algorithm with PCA and RPCA algorithms in [9]. We study the recovery
rate of the rank-one matrices with different level of noises. The experiment results are shown in
Figure 3 (the details of this experiment can be found in Supplementary Sec. F). It can be seen that our
algorithm strongly outperforms these methods for robust rank-one matrix completion. We also note
that the M-MSR algorithm is very efficient: when the dimension of the matrices increases from 10 to
1000, the running time of M-MSR increases from 0.01 seconds to 0.42 seconds while RPCA increases

8

10 20 30 40 50 60 70 80 90 10
0

Dimension

0.50

0.40

0.30

0.20

0.10

N
oi

se
 p

ro
ba

bi
lit

y

1.0

0.8

0.6

0.4

0.2

0

(a) PCA

10 20 30 40 50 60 70 80 90 10
0

Dimension

0.50

0.40

0.30

0.20

0.10

N
oi

se
 p

ro
ba

bi
lit

y

1.0

0.8

0.6

0.4

0.2

0

(b) RPCA

10 20 30 40 50 60 70 80 90 10
0

Dimension

0.50

0.40

0.30

0.20

0.10

N
oi

se
 p

ro
ba

bi
lit

y

1.0

0.8

0.6

0.4

0.2

0

(c) M-MSR

200 400 600 800 1000
Dimension

0

20

40

60

80

100

R
un

ni
ng

 ti
m

e

M-MSR
RPCA

(d) Running Time

Figure 3: Experimental results of exact recovery experiment. (a) Recovery rate heatmap of subgradient method
for PCA (The intensity of the color is proportional to the recovery rate). (b) Recovery rate heatmap of subgradient
method for RPCA (c) The recovery rate heatmap for M-MSR (d) Running time of the subgradient method for
RPCA and running time for M-MSR (for each dimension, the average running time and the standard deviation
confidence interval over 100 independent trials are shown). Details are provided in Supplementary Section D.

from 0.46 seconds to 80.62 seconds. This is an additional advantage of the M-MSR algorithm when
dealing with large datasets.

7 Discussion and Conclusions

We studied a crowdsourcing model with (i) The presence of users who might choose adversarial
responses (ii) General worker-task assignment sets resulting in arbitrary interaction graphs G(Ω)
among workers. Because approaches based on sparse recovery are not able to handle arbitrary A,
we proposed a new algorithm, M-MSR, for skill determination (and consequently prediction) in this
context. Our algorithm is based on a connection to the robust rank-1 matrix completion.

Our main results are: (i) A necessary and sufficient condition for our algorithm to work on any graph,
and a proof that our algorithm is optimal on random graphs (ii) An empirical evaluation which shows
that our algorithm outperforms existing methods on both synthetic and real data sets.

Future work will analyze M-MSR when the graph is partially random. While some scenarios, like
Amazon’s Mechanical Turk, allow any set A to be specified, other practical scenarios do not; consider,
for example, estimation of item quality from online ratings (e.g., Yelp), where the assignment of
users to items is not random. Adversarial interactions are particularly important in this context, as
business owners might be tempted to skew the ratings by leaving reviews from fake accounts.

Theorem 2 provides a bound to how many adversaries can be tolerated in this setting, and this bound
will be quite good as long as the underlying graph is dense. For a sparse graph, however, this is not
the case: in that case, Theorem 2 could fail to guarantee that even a small number of adversaries
can’t skew the result. One possibility is to strategically add more random edges (by giving users
suggestions of items to rate) to make the resulting graph 2F + 1-robust for a large F . Subsequent
work could consider how well such schemes perform both in theory and in practice.

Broader Impact

In this work, we provide a new robust matrix completion methods which can make recommendation
systems more accurate in the presence of spam. This can benefit users of platforms like Amazon
Mechanical Turk and Yelp.

In terms of negative impact, our work could allow the same platforms to learn more about the
preferences of their users. It is possible that this data could be leaked, resulting in privacy loss.

Acknowledgments and Disclosure of Funding

This work is supported by NSF awards 1914792 and 1933027.

References
[1] D. Berend and A. Kontorovich. Consistency of weighted majority votes. In Proceedings of

Advances in Neural Information Processing Systems, pages 3446–3454, 2014.

9

[2] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational mathematics, 9(6):717–772, 2009.

[3] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion.
IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[4] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual entailment challenge.
In Proceedings of Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.

[5] N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi. Aggregating crowdsourced binary ratings. In
Proceedings of the 22nd International Conference on World Wide Web, pages 285–294, 2013.

[6] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using
the em algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1):
20–28, 1979.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
248–255. Ieee, 2009.

[8] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Journal
of the ACM, 40(1):17–47, 1993.

[9] S. Fattahi and S. Sojoudi. Exact guarantees on the absence of spurious local minima for non-
negative robust principal component analysis. Journal of Machine Learning Research, 21:1–51,
2020.

[10] D. Gamarnik and S. Misra. A note on alternating minimization algorithm for the matrix
completion problem. IEEE Signal Processing Letters, 23(10):1340–1343, 2016.

[11] A. Ghosh, S. Kale, and P. McAfee. Who moderates the moderators? crowdsourcing abuse
detection in user-generated content. In Proceedings of the 12th ACM Conference on Electronic
Commerce, pages 167–176, 2011.

[12] N. Hartsfield and G. Ringel. Pearls in graph theory: a comprehensive introduction. Courier
Corporation, 2013.

[13] J. M. Hendrickx, A. Olshevsky, and V. Saligrama. Minimax rank-1 factorization. In Proceedings
of 23rd International Conference on Artificial Intelligence and Statistics, 2020.

[14] J. Hromkovič, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger. Dissemination of Information
in Communication Networks: Broadcasting, Gossiping, Leader Election, and Fault-tolerance.
Springer Science & Business Media, 2005.

[15] S. Ibrahim, X. Fu, N. Kargas, and K. Huang. Crowdsourcing via pairwise co-occurrences:
Identifiability and algorithms. In Proceedings of Advances in Neural Information Processing
Systems, pages 7845–7855, 2019.

[16] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon mechanical turk. In
Proceedings of the ACM SIGKDD Workshop on Human Computation, pages 64–67, 2010.

[17] S. Jagabathula, L. Subramanian, and A. Venkataraman. Identifying unreliable and adversarial
workers in crowdsourced labeling tasks. The Journal of Machine Learning Research, 18(1):
3233–3299, 2017.

[18] D. R. Karger, S. Oh, and D. Shah. Efficient crowdsourcing for multi-class labeling. In
Proceedings of the ACM SIGMETRICS/international conference on Measurement and modeling
of computer systems, pages 81–92, 2013.

[19] A. Khetan and S. Oh. Achieving budget-optimality with adaptive schemes in crowdsourcing. In
Advances in Neural Information Processing Systems 29, pages 4844–4852. 2016.

[20] F. J. Király, L. Theran, and R. Tomioka. The algebraic combinatorial approach for low-rank
matrix completion. Journal of Machine Learning Research, pages 1391–1436, 2015.

10

[21] M. Kleindessner and P. Awasthi. Crowdsourcing with arbitrary adversaries. In Proceedings of
International Conference on Machine Learning, pages 2708–2717, 2018.

[22] W. Kordecki. Poisson convergence of numbers of vertices of a given degree in random graphs.
Discussiones Mathematicae Graph Theory, 16(2):157–172, 1996.

[23] H. Landau and A. Odlyzko. Bounds for eigenvalues of certain stochastic matrices. Linear
Algebra and its Applications, 38:5–15, 1981.

[24] M. Lease and G. Kazai. Overview of the trec 2011 crowdsourcing track. In Proceedings of the
Text Retrieval Conference, 2011.

[25] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram. Resilient asymptotic consensus in
robust networks. IEEE Journal on Selected Areas in Communications, 31(4):766–781, 2013.

[26] H. Li and B. Yu. Error rate bounds and iterative weighted majority voting for crowdsourcing.
arXiv preprint arXiv:1411.4086, 2014.

[27] G. Liu, Q. Liu, and X. Yuan. A new theory for matrix completion. In Proceedings of Advances
in Neural Information Processing Systems, pages 785–794, 2017.

[28] Q. Liu, J. Peng, and A. T. Ihler. Variational inference for crowdsourcing. In Advances in Neural
Information Processing Systems 25, pages 692–700. 2012.

[29] B. Loni, M. Menendez, M. Georgescu, L. Galli, C. Massari, I. S. Altingovde, D. Martinenghi,
M. Melenhorst, R. Vliegendhart, and M. Larson. Fashion-focused creative commons social
dataset. In Proceedings of the 4th ACM Multimedia Systems Conference, pages 72–77, 2013.

[30] Y. Ma, A. Olshevsky, C. Szepesvari, and V. Saligrama. Gradient descent for sparse rank-
one matrix completion for crowd-sourced aggregation of sparsely interacting workers. In
Proceedings of International Conference on Machine Learning, pages 3335–3344, 2018.

[31] S. Negahban and M. J. Wainwright. Restricted strong convexity and weighted matrix completion:
Optimal bounds with noise. Journal of Machine Learning Research, 13(May):1665–1697, 2012.

[32] S. Pradhan, E. Loper, D. Dligach, and M. Palmer. Semeval-2007 task-17: English lexical
sample, srl and all words. In Proceedings of the fourth international workshop on semantic
evaluations (SemEval-2007), pages 87–92, 2007.

[33] J. Pustejovsky, P. Hanks, R. Sauri, A. See, R. Gaizauskas, A. Setzer, D. Radev, B. Sundheim,
D. Day, L. Ferro, et al. The TIMEBANK Corpus. In Proceedings of Corpus Linguistics, pages
647–656. Lancaster, UK., 2003.

[34] V. C. Raykar and S. Yu. Eliminating spammers and ranking annotators for crowdsourced
labeling tasks. Journal of Machine Learning Research, 13(Feb):491–518, 2012.

[35] N. B. Shah, S. Balakrishnan, and M. J. Wainwright. A permutation-based model for crowd
labeling: Optimal estimation and robustness. arXiv preprint arXiv:1606.09632, 2016.

[36] R. Snow, B. O’connor, D. Jurafsky, and A. Y. Ng. Cheap and fast–but is it good? evaluating
non-expert annotations for natural language tasks. In Proceedings of Conference on Empirical
Methods in Natural Language Processing, pages 254–263, 2008.

[37] C. Strapparava and R. Mihalcea. Semeval-2007 task 14: Affective text. In Proceedings of the
Fourth International Workshop on Semantic Evaluations, pages 70–74, 2007.

[38] P. Welinder, S. Branson, P. Perona, and S. J. Belongie. The multidimensional wisdom of crowds.
In Proceedings of Advances in Neural Information Processing Systems, pages 2424–2432, 2010.

[39] H. Xiao, J. Gao, Q. Li, F. Ma, L. Su, Y. Feng, and A. Zhang. Towards confidence interval
estimation in truth discovery. IEEE Transactions on Knowledge and Data Engineering, 31(3):
575–588, 2018.

[40] H. Zhang, E. Fata, and S. Sundaram. A notion of robustness in complex networks. IEEE
Transactions on Control of Network Systems, 2(3):310–320, 2015.

11

[41] Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan. Spectral methods meet em: A provably optimal
algorithm for crowdsourcing. In Proceedings of Advances in Neural Information Processing
Systems, pages 1260–1268, 2014.

[42] D. Zhou, S. Basu, Y. Mao, and J. C. Platt. Learning from the wisdom of crowds by minimax
entropy. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 2195–2203. 2012.

[43] D. Zhou, S. Basu, Y. Mao, and J. C. Platt. Learning from the wisdom of crowds by minimax
entropy. In Proceedings of Advances in Neural Information Processing Systems, pages 2195–
2203, 2012.

[44] D. Zhou, Q. Liu, J. Platt, and C. Meek. Aggregating ordinal labels from crowds by minimax
conditional entropy. Proceedings of Machine Learning Research, 32(2):262–270, 2014.

[45] Y. Zhou and J. He. Crowdsourcing via tensor augmentation and completion. In IJCAI, pages
2435–2441, 2016.

[46] Y. Zhou, L. Ying, and J. He. Multic2: an optimization framework for learning from task and
worker dual heterogeneity. In Proceedings of the 2017 SIAM International Conference on Data
Mining, pages 579–587. SIAM, 2017.

12

A Baselines

In this section, we describe all the methods used as baselines for comparisons.

A.1 Crowdsoucing

• Majority Voting (MV) is a simple method where the true label of the tasks are estimated
via the majority voting among the workers.

• KOS algorithm [18] is an approach for multi-class crowdsourcing problem with D&S
model. The algorithm based on the assumption that the tasks are assigned to workers
according to a random regular bipartite graph. To estimate the true labels, the k-class labeing
problem is converted to a k − 1 binary labeling problems. Then these binary problems are
iteratively solved via obtaining low-rank approximation of appropriate matrices. Though
this algorithm requires specific constraints for the task assignment matrix, it can achieve
good redundancy-accuracy trade-off.

• Ghost-SVD [11] algorithm considers the binary labeling problem based on single-coin D&S
model. The true labels and the error probabilities of the workers are estimated via conducting
the Singular Value Decomposition (SVD) to the observation matrix. This algorithm assumes
that the probability error of one specific worker is smaller than 0.5. This algorithm has been
proved to learn the true labels of the tasks with bounded error. However, this bound only
works for the cases that the observation matrices are dense matrices.

• Eigenvectors of Ratio (EoR) [5] algorithm also considers the binary labeling problem
which satisfies single-coin D&S model. Unlike Ghost-SVD and KOS approaches, this
algorithm allows the task-assignment matrices to be arbitrary. The algorithm also applies a
SVD-based method to obtain the estimation for the true labels and the workers’ reliability.
This algorithm has been proved to have an improved error-bound guarantee for single-coin
crowdsourcing model than the previous methods.

• EM algorithm (MV-D&S and OPT-D&S) [41] is a two stage algorithm for multi-class
crowdsourcing problem based on D&S model. In the first stage, the probability parameters
of the D&S model are estimated by some approaches. In the second stage, the estimation
of the parameters are refined by the standard EM algorithm (the results of stage 1 are used
as an initialization). For MV-D&S, the majority voting method is used to get the initial
parameter estimation in the first stage. For OPT-D&S, a spectral method is employed to
obtain the initial parameter estimation in the first stage.

• Projected Gradient Descent (PGD) [30]. In [30], the skill estimation of the single-coin
D&S model is formulated as a rank-one correlation-matrix completion problem. PGD
approach updates the skill level of the workers via solving the following optimization
problem with the conventional projected gradient descent algorithm with fixed stepsize.

arg min
x∈[−1,+1]W

1

2

∑
(i,j)∈Ω

Nij(C̃ij − xixj)2,

where W , Nij and C̃ij are defined as in section 3, x represents the skill level vector.
• Variational Approaches (BP-twocoin, MFA-twocoin, EM-twocoin) [28] address the

crowdsourcing problems by using the tools and concepts from variational inference methods
for graphical models. BP algorithm is a belief-propagation-based method, via choosing
specific prior distributions of the workers’ abilities, this algorithm can be reduced to KOS or
majority voting. The BP algorithm can also be extended to more complicated models. MFA
algorithm is a mean field algorithm which closely related to EM algorithm. In this work, we
just consider the two coin version of these algorithms.

• Regularized Minimax Conditional Entropy (Entropy(O)) [44] algorithm considers the
crowdourcing classification problems with noises. In this algorithm, the confusion matrices
of the workers are estimated as a minimax conditional entropy problem subject worker and
items constraints that the workers can distinguish between classes which are far away from
each other better than the ones which are adjacent.

• Minimax Entropy Learning from Crowds (Minmax) [42] algorithm also consider the
crowdourcing classification problems with noises. The difference is that the Minmax

13

algorithm estimates the confusion matrices via maximizing the entropy of the probability
distribution over workers. Besides, they give prediction for the tasks by minimizing the KL
divergence between the probability distribution and the unknown truth.

A.2 Exact Recovery

• Robust Principle Component Analysis (RPCA) [9] considers non-negative rank-one ma-
trix completion problem. The rank-one matrix can be reconstructed via solving the following
optimization problem.

min
u∈Rm+ ,v∈Rn+

‖PΩ(X − uv>)‖1 +Rβ(u,v), (12)

where X is the matrix to be recovered, Ω represents the set of the locations of the observed
entries, Rβ(u,v) = α|u>u − vv>| is a regularization term. It has been proved that [9]
does not have local minimum when some specific conditions satisfied. RPCA algorithm can
also recover the matrix X when there exists some sparse noises. In [9], the optimization
problem (12) is solved via the subgradient descent method, whereas other optimization
algorithms can also be used to solve it. In our experiment, we used subgradient descent
method with diminishing step size to get the optimal solution of (12).

• Principle Component Analysis (PCA) [9] considers the same problem as RPCA. PCA
algorithm recover the rank-one matrix X via solving the following smooth optimization
problem,

min
u∈Rm+ ,v∈Rn+

‖PΩ(X − uv>)‖2F . (13)

In our experiment, we employed gradient descent with fixed stepsize to optimize (13).

B Additional baselines and the two-coin model

The M-MSR method can be extended to solve rank-2 matrix completion problems with corruptions.
Suppose the rank-2 matrix we aim to recover is X ∈ Rn×m, Ω is the set of the revealed locations.
Let X = uvT , where u ∈ Rn×2, v ∈ Rm×2, we want to find u and v. To deal with the corrupted
entries, we define

Ji(t) =

{
Xij

‖vj(t)‖

∣∣∣∣(i, j) ∈ Ω

}
.

We will then set Ri(t) to be the set of nodes with the F largest and smallest values in Ji(t) (if there
are fewer than F values strictly smaller/larger than ui(t), then Ri(t) contains the ones that are strictly
smaller/larger than ui(t)); the quantities J ′j(t), R

′
j(t) are defined similarly for nodes j ∈ Vv. The

extended algorithm is presented next.

Now cosider the two-coin model of the crowdsourcing problem, where the ability of worker i is
specified by two parameters si, ti:

sj = Prob[Yij = +1|gj = +1], tj = Prob[Yij = −1|gj = −1]. (16)

Suppose assignment of tasks to workers is random and the proportion of tasks which have an answer
of +1 is p. Suppose p is known. Let Kab be the set of tasks assigned to both workers a and b. Then

1

Kab

∑
j∈Kab

YajYbj ≈ E[YajYbj]

= p (sasb + (1− sa)(1− sb)) + (1− p)(tatb + (1− ta)(1− tb))

= p

(
1

2
+

1

2
(2sa − 1)(2sb − 1)

)
+ (1− p)

(
1

2
+

1

2
(2ta − 1)(2tb − 1)

)
=

1

2
+
p

2
(2sa − 1)(2sb − 1) +

1− p
2

(2ta − 1)(2tb − 1).

14

Algorithm 2 M-MSR-twocoin
Input: Positive matrix X , set Ω, F and v(0) > 0

Output: X̂ = u(T)v(T)>

1: for t = 1, 2, . . . , T do
2: For each i = 1, · · · ,m, let

ui(t + 1) = arg min
u

∑
j∈Ωi\Ri(t)

(u>vj(t)−Xij)
2; (14)

where ui ∈ R2 denotes the ith row of u.
3: For each j = 1, · · · , n, let

vj(t + 1) = arg min
v

∑
i∈Ω′j\R

′
j(t)

(ui(t)
>v −Xij)

2, (15)

and vj ∈ R2 denotes the jth row of v.
4: end for
5: return u(t) = [u1(t), u2(t), · · · , um(t)]>, v(t) = [v1(t), v2(t), · · · , vn(t)]>

In particular, we have  1

Kab

∑
j∈Kab

YajYbj −
1

2


ab

≈ rank-2 matrix

In this case, we can apply the M-MSR-twocoin algorithm to estimate the skill level of the workers in
two-coin model, and further give predictions for the tasks.

C Synthetic Experiments

The purpose of this section is to discuss the details of the synthetic experiments as shown in Figure 1.
We will analyze the impact of graphs, task assignments, skill level and different adversarial strategies
to the performance of the M-MSR algorithm as well as other baseline methods. Specifically, we will
experiment with increasing level of graph sparsity, number of tasks, graph size, average skill and
decreasing level of tasks assignment variance.

For the adversarial model, we randomly choose a certain number of workers, and let these workers be
adversaries. Then these adversaries will be evenly divided into some groups, and the members of
the same group will produce exactly the same response for each task (for the tasks they are assigned
with). In this case, the adversaries in the same group are no longer independent of each other. The
answer set of each group will be generated randomly according to a given accuracy (we randomly
choose a fraction of tasks and give correct answer for them, for others we give wrong answers). Each
adversary will be assigned with every task according to a fixed probability (obs-sparsity), and then
they will produce answers for the assigned tasks from the answer set. Hence, by varying the total
number of the adversaries, the number of groups, the level of accuracy and obs-sparsity, we can
generate a number of different adversarial strategies.

For each experiment, we vary one parameter while keep the others fixed. The detailed information
of the original dataset we apply is given in Table 1. Among them, the skill distribution represents
the grid from which we choose the skill level of each normal worker uniformly at random. The
group-B-#tasks is the number of tasks in group B, the details will be introduced in the "impact of task
assignment variance". The obs-sparsity represents the probability that each task can be assigned to a
specific worker.

Table 1: Synthetic dataset: characteristics values of the original dataset

#tasks #workers #class skill group-B-
#tasks

ave.obs-
sparsity #corruptions adversary

ACC
adversary
obs-sparsity #ad-groups

1600 80 2 [−0.1, 0.7] 20 0.04 20 0.3 0.4 5

15

In the synthetic experiments, we make one minor modification to the M-MSR algorithm, i.e. after the
algorithm converging, we will project the obtained si which away from cube [− 1

M−1 + 1√
Ni
, 1− 1√

Ni
]

onto it, where Ni is the number of the tasks assigned to worker i. The reason for this modification is
to stay away from the boundary of the hypecube where the weight log-odds function is changing very
rapidly. For the convenience of the analysis, we define

Ĉij =
M

M − 1
C̃ij −

1

M − 1

=
M

M − 1

1

Nij

∑
t|(i,t),(j,t)∈A

〈Yi,t, Yj,t〉 −
1

M − 1
, (17)

then the skill vector s in the RHS of (3) can be estimated by reconstructing the matrix Ĉ.

Next, we will provide the details of each experiment and discuss the experiment results of each graph
in Figure 1 respectively.

Impact of graph sparsity: Figure 1(b) shows the experimental results of varying the sparsity of the
interaction graph. The interaction graph sparsity implies the sparsity of G(Ω) corresponding to the
rank-one matrix Ĉ in (17), which has a close connection to the connectedness and robustness of the
graph. To see the impact of the interaction graph sparsity to the performance of different methods,
we increase the observation sparsity level (the probability such that one element of Yw,t is nonzero)
which in turn increases the sparsity of the workers’ interaction graph. The relationship of the graph
sparsity and observation sparsity is shown in Figure 4(a), where we generate Yw,t randomly according
to the observation sparsity and then observe the graph sparsity corresponds to Ĉ. It can be seen when
the observation sparsity increases from 0 to 0.08, the graph sparsity increases from 0 to around 1,
and after that, the graph sparsity maintains approximately 1. Therefore, we can vary the mean of the
observation sparsity from 0 to 0.1 to see the impact of the graph sparsity to the experimental results.

It can be observed when the mean of the observation sparsity varies from 0 to 0.1, the prediction errors
of the baseline methods except the M-MSR algorithm keeps greater than 0.6. The is because the
adversaries are dominating the prediction results of these baseline methods. Why these adversaries
can dominate the prediction results? There are three reasons. First, 1/4 of the workers are adversaries
with accuracy 0.3 in this experiment, and each of them was assigned with around 40% tasks (the
default value of the adversary obs-sparsity is 0.4). In other words, among all of the collected answers,
a large fraction of them come from the adversaries and are incorrect. Next, the obs-sparsity of
the adversaries is 0.4 implies that they have common tasks with almost all of the normal workers,
hence the adversaries are located in the central places of the graph, and their behaviors can have a
great impact to the prediction results. Moreover, these adversaries are not following the single-coin
D&S model, they are highly dependent with other, therefore the baseline methods can not correctly
estimated the behaviors of the adversaries.

However, it can also be observed that the prediction error of the M-MSR algorithm maintains smaller
than 0.2 in most time. This is because that the true skill level of the normal workers can be correctly
estimated by the M-MSR algorithm. More importantly, though the adversaries are not following
the single-coin D&S model, they will be assigned with the negative skill levels when applying the
M-MSR algorithm. Consider an adversary i, it is very likely that the value of C̃ij will be quite small
if j is a normal worker. Meanwhile, as we have discussed, adversary i is located in the central place,
which means it can be connected to almost every normal workers. Thus, in the ith row and column of
C̃, the majority of elements will be very small, and according to (17), the corresponding elements in
Ĉ will be negative. Though the elements in Ĉ related to the correlation with other adversaries can be
positive or even be 1, the M-MSR algorithm can still assign adversary i with a negative skill level
si. This negative si can produce a negative weight for the wrong answers from i in the prediction.
Therefore, the M-MSR algorithm can give accurate predictions in such adversarial scenario.

Besides, the prediction error of the M-MSR algorithm tends to decrease when the graph sparsity
increases. This is because the robustness of G(Ω) increases when the graph are becoming more dense.
In this case, according to Theorem 2, it is more likely that the true skill level of the normal workers
can be correctly estimated, and the adversaries will be assigned with smaller negative weights, hence
the prediction accuracy can be improved.

16

Impact of the number of tasks: Figure 1(c) shows the experimental results of varying the the
number of the tasks. In this experiment, we vary the number of tasks from 100 to 2500. It can be
observed that the prediction accuracy of M-MSR algorithm increases when the number of the tasks
increases. The reason for this phenomenon is that the noise level of the empirical estimation of Ĉ is
decreasing. When the number of the tasks is small, even for the normal workers, the corresponding
elements in Ĉ can be regarded as corrupted. The M-MSR algorithm can not work very well when
there exists no reliable workers. Besides, the prediction error of the baseline methods keeps greater
than 0.6 in most of the time, the reason is similar as in the experiment of the graph sparsity.

Impact of the graph size: Figure 1(d) shows the experimental results of varying the level of the
graph size. Since the graph size is associated with the number of the workers, we can vary the number
of the workers to see the impact of the graph size to the performance. From Figure 1(d) , we can
see when the number of workers is small, the standard deviation of the prediction error for M-MSR
algorithm is large. This is because we have assumed the workers’ skill level distribution is [−0.1, 0.7],
and we randomly corrupt 1

4 of the normal workers each time. When the number of the workers is
small, the skill levels of these normal workers may be quite different. If different normal workers are
corrupted, the skill level of the remaining normal workers can be different, and the corresponding
prediction error can also be different. When the number of the workers is large, it is more likely that
the remaining normal workers can cover all possible skill level, hence the prediction error tends to be
steady. For the other baseline methods, due to the reason we analyzed, the performance is dominated
by adversaries, hence the difference of the number of the works does not have much impact to the
prediction error.

Impact of different skill-distribution: Figure 1(e) shows the experimental results when varying the
skill level of the normal workers. In the synthetic experiments, we assign the workers skill level
uniformly at random on a grid. To see the impact of the skill level to the prediction accuracy, we
fix the lower bound of the grid as -0.1 and vary the upper bound of the grid from 0.1 to 1. It can be
observed in Figure 1(e) that the prediction error of the M-MSR algorithm decreases when the upper
bound of the skill level increases. When the average skill level of the normal workers is low, the
corresponding elements in C̃ can be relatively large as both the adversaries and normal workers are
providing the wrong answers. As a consequence, the estimated skill level for the adversaries may be
larger, or even positive. Hence the prediction error can be large. Meanwhile, the performance of the
other algorithms keeps greater than 0.6. The reason is that these algorithms are still dominated by
the adversaries, hence the performance does not change when the skill level of the normal workers
changes.

Impact of the tasks assignment variance: Figure 4(b) shows the experimental results when varying
the level of the tasks assignment variance. For a real-world crowdsourcing dataset, it is highly
possible that the number of the tasks assigned to different workers can be different. Hence, we want
to see the impact of the tasks assignment variance to the prediction accuracy. However, it is not easy
to directly vary the variance while keep the total number of the answers fixed. To solve this issue,
we vary another parameter which is closely related to the task assignment variance. We divide the
workers into two groups, i.e., group A and group B. The workers in group A and group B provide
approximately the same number of answers in total (we fix the observation sparsity sum in the two
groups), and each worker in the same group will be assigned with approximately the same number
of tasks (the observation sparsity for each worker is the average of the fixed observation sparsity
sum). As a consequence, when we increase the number of workers in group B, the tasks assignment
variance will decrease. This can be observed in Figure 4(b) which shows the results where we vary
the number of the workers in group B and observe the task assignment standard deviation.

From Figure 1(f) , we can see the task assignment variance does not have much impact to the
prediction accuracy for all the algorithms. When varying the level of the task assignment variance,
the prediction error of the M-MSR algorithm maintains around 0.2 while the prediction error of other
baseline methods maintains greater than 0.6.

Impact of adversary accuracy: Figure 1(g) shows the experimental results of varying the level of
the adversary accuracy. It can be observed that the prediction error of the baseline methods except
the M-MSR decreases as the accuracy of the adversaries increases. The prediction error of these
algorithms are approximately equal to the error of the adversaries. This phenomenon largely results
from the fact that the adversaries are dominating the prediction results.

17

0.02 0.04 0.06 0.08 0.1
The observation sparsity

0

0.2

0.4

0.6

0.8

1

G
ra

ph
 s

pa
rs

ity
(a) The relationship of graph sparsity
and observation sparsity. The details can
be found in "Impact of Graph Sparsity".

10 20 30 40
The num of workers in group B

0

20

40

60

80

100

Ta
sk

 a
ss

ig
nm

en
t s

ta
nd

ar
d

de
vi

at
io

n

(b) The relationship of task assignment
variance and number of workers in group B.
The details can be found in "Impact of tasks
assignment variance".

Figure 4: The parameter design analysis

However, the situation is quite different for the M-MSR algorithm. When the accuracy of the
adversaries increases from 0 to 0.5, the prediction error of the M-MSR algorithm increases from 0 to
around 0.35, and then the predction error of the M-MSR algorithm decreases again to 0 when the
accuracy increases from 0.5 to 1. A major factor which contributes to such phenomenon is that the
adversaries were assigned with a negative skill level si when the adversary accuracy is smaller than
0.5, and they were assigned with positive skill level si when the accuracy is greater than 0.5. When
the adversary accuracy is smaller than 0.5, the adversaries can produce more wrong answers than
correct answers. As a consequence, in the correlation matrix C̃, the elements which corresponds
to the correlation between the adversaries and the normal workers have relatively small values. As
we analyzed in the experiment of the graph sparsity, the adversaries can be assigned with negative
skill level by M-MSR algorithm. In this case, the smaller the adversary accuracy is, the smaller the
skill level will be. When the accuracy of the adversaries is greater than 0.5, both the adversaries and
the normal workers will produce more correct answers. Thus, it is very likely that the elements in
C̃ corresponds to the correlation between the adversaries and the normal workers have the values
greater than 0.5, which can further lead to the estimated skill level of the adversaries be positive. In
such scenario, the more accurate the adversaries are, the more accurate the prediction results given by
M-MSR will be.

Impact of adversary observation sparsity: Figure 1(h) shows the experimental results when varying
the observation sparsity of the adversaries. It can be observed that the prediction error of the baseline
methods except the M-MSR increases when the adversary obs-sparsity increases. This largely results
from the fact the number of answers from the adversaries (the majority of them are incorrect) are
increasing when the obs-sparsity increases. Another factor contributes to this phenomenon is that
the adversaries can be connected to more normal workers as the obs-sparsity increases, which can
make the adversaries have greater impact to the prediction results. Particularly, when the obs-sparsity
of the adversaries is approximately equal to the normal workers, i.e., it is 0.05, the prediction error
of almost all of the crowdsourcing methods are less than 0.5. In other words, when the adversaries
are assigned with very small number of tasks, and they are not located in the central positions, then
these adversaries can not greatly damage the performance of these methods. However, once the
obs-sparsity of the adversaries increases to 0.1, the adversaries again can dominate the prediction
results of these methods.

Next consider the M-MSR algorithm. The prediction error of the M-MSR algorithm maintains
smaller than 0.2 as we analyzed in the graph sparsity experiments. Meanwhile, it can be seen that the
prediction error of the M-MSR algorithm tends to decrease when the adversary obs-sparsity increases.
One possible cause is that the adversaries can be connected to more normal neighbors which allow
the M-MSR algorithm to give smaller negative skill estimation for the adversaries. Another reason
maybe the weight of the wrong answer tends to be smaller when more adversaries are involved in the
sum of (11) as the adversaries are assigned with negative weights.

Impact of the number of the adversaries Figure 1(i) shows the experimental results when varying
the number of the corruptions. In this experiment, we vary the number of the workers from 0 to 40
(the total number of the workers is 80). It can be observed the prediction errors of all the algorithms

18

increase when the number of the corruptions increases. The M-MSR algorithm is the only method
which can handle the corruptions up to 28. The reasons are similar to our previous analyses.

Impact of adversary dependence level To study the impact of the adversary dependence level,
we implemented two different experiments. Figure 1(j) shows the experimental results of the first
experiment, where we vary the number of adversary groups. In our adversarial model, the members in
the same group produce exactly the same response to every task. Thus, the dependence level between
the adversaries decreases as the number of the adversary groups increases. When the number of the
groups is 20, each of the adversary is independent of each other (the default number of the corrupted
workers is 20). It can be observed that the prediction errors of the MultiSPA, MultiSPA-EM, and
MultiSPA-KL decreases as the number of the adversary groups increases. When the number of
the groups is 20, the prediction error of the MultiSPA-EM decrease to be smaller than 0.2. Such
phenomenon is understandable, if every adversary is independent of each other, then the adversaries
satisfies the requirement of the single-coin model, and they will just be normal workers with low skill
level. It is possible that some methods can handle such kind of adversaries. Meanwhile, it can be
observed that the prediction error of the M-MSR algorithm maintains to be smaller than 0.2 in almost
all of the time.

Figure 1(k) shows the experimental results of the second experiment, where the 20 adversaries
are divided into two groups. The members in the first group work as before, they produce the
same response for every task, the accuracy of the answer set is also 0.7, and the obs-sparsity of
the adversaries is 0.4. However, the answer set of the second adversary group is set to be perfectly
colluding with the answer set of the first group, i.e., the accuracy of the second group is 0.7. Then
similarly, the adversaries in the second group are also assigned with tasks with probability 0.4, and
each of them will give answers for these tasks from the answer set. In this experiment, we vary the
number of the adversaries in second group from 0 to 10, which is equivalent to vary the fraction of
the second group over the total number of the adversaries from 0 to 0.5. It can be observed when
this fraction increases, the prediction error of the baseline methods except the M-MSR algorithm
decrease. This phenomenon largely results from the fact that the adversaries in the second group
can produce more accurate answers than the ones in the first group. Besides, it can be seen that the
prediction error of the M-MSR algorithm keeps to be 0.3 when the fraction of the second group
changes. This is because the M-MSR algorithm give the adversaries in the first group the negative
skill level estimations and give the ones in the second group the positive skill level estimations. In
fact, all of these skill estimations will lead to the prediction results be dominated by the answers of
the second group, where the error is 0.3.

From the two experiments, we can see returning the same answers can reduce the prediction error
across the crowdsourcing methods more than returning colluding answers. Besides, the higher the
dependence level of the adversaries is, the more damaging the adversarial strategy will be.

A B C D E F
1

1

A

B

C

D

E

F

0.08 0.08 0.08 0.08

0.08 0.08 0.08 0.08

0.640.080.08

0.64 0.64 0.640.080.08

0.64 0.640.080.08

0.64 0.640.080.08

Figure 5: An illustration example of the covariance matrix C̃ when there exists adversaries as in
our adversarial model. The elements colored with red are corrupted, and the green ones are normal
elements, the white ones are missing elements. A and B represent adversaries which produce the
same response for every task, and the accuracy of their answer set is 0.1. C, D, E, and F represent
normal workers with skill level 0.8. The number of tasks are large enough. For such a covariance
matrix C̃, the M-MSR algorithm can correctly estimate the true skill level of the normal workers
and give negative skill estimation for the adversaries, and further provide accurate prediction results.
However, for algorithms like PGD, the prediction is not accurate due to the impact of the corruptions.

19

D Real dataset Experiments

In this section, we provide the implementation details and results analyses about the real dataset
crowdsourcing experiments as shown in Figure 2 and Figure 6.

In the real dataset experiments, all of the datasets come with ground truth label for each task
(we remove the tasks with missing ground truth labels). In order to improve the efficiency of the
experiments and reduce the sparseness, we remove the workers who provided less than 10 answers for
each dataset. Since the labels of the datasets Emotion (Joy, Surprise, Anger, Disgust, Sadness, Fear)
and Valence are numerical values, we transform these numerical labels to binary labels according
to different partitions to the label range. The characteristic values and detailed introduction of
these datasets are provided in Supplementary Sec E. Moreover, since Ghost-SVD algorithm and
EoR algorithm work only for binary tasks, they will not be evaluated on the multiple-class datasets
Adult2, Dog, Web and WSD. Besides, we will also apply the same projection strategy as in synthetic
experiments for the M-MSR algorithm, i.e. after the algorithm converging, we will project the
obtained si which away from cube [− 1

M−1 + 1√
Ni
, 1− 1√

Ni
] onto it.

In the real data experiments, the adversaries are also randomly corrupted, and they follow the same
adversarial model as in synthetic experiments. Here, we set the number of the adversary groups is 1,
the accuracy of the adversaries is 0.1, and the observation sparsity is 0.5. According to the results
of the synthetic experiments, the most damaging strategy is to return a correct answer a fraction
q < 1/2 of the time and an incorrect answer 1− q of the time, and the adversaries should locate at the
central places and be highly dependent with each other. Follow this idea, we set the parameters of the
adversarial model as listed above. Moreover, for each dataset, we vary the number of the adversaries
from 0 to around half of the number of the workers and then observe the corresponding prediction
error of the crowdsourcing methods. The results of the real dataset experiments are given in Figure 2
and Figure 6.

It can be seen that the prediction error of almost all the algorithms on each dataset converge to
0.9 when the number of the corruptions increases. The reason is that the prediction error of the
adversaries is 0.9 and they will gradually dominate the prediction results when their number grows.
Besides, on large datasets Fashion1, Fashion2, TREC, Temp and RTE, the prediction error of the
baseline methods except the M-MSR increases to 0.9 rapidly when the number of the adversaries
increases. This largely results from the fact that the number of the tasks of these datasets is large.
When the number of the adversaries increases, the fraction of the answers from the adversaries will
increase rapidly. In other words, the fraction of the wrong answers among all of the answers increases
rapidly, which can lead to such phenomenon. However, on these datasets, the prediction error of
the M-MSR algorithm maintains to be 0.1 in most of the time. This is because the noise level of
the covariance matrix C̃ is low on these datasets. In this case, as we analyzed in “Impact of graph
sparsity”, it is more likely that the true skill level of the normal workers can be correctly estimated
and the adversaries can be assigned with negative skill estimations. According to prediction rule (11),
such skill estimation can lead to the prediction results be opposite to the answer set of the adversaries.
Therefore, the prediction error of the M-MSR algorithm can be 0.1 in most of the time. When the
number of the adversaries increases to around a half of the total numbers, the M-MSR algorithm can
not give negative skill estimation for the adversaries and hence its prediction error will also converge
to 0.9.

Moreover, out of 17 real datasets, our algorithm is the best on 16 of them. The only exception is
dataset Surprise (Figure 6) – the reason is that the “normal” workers on this dataset do not appear
to be reliable. We can see from Table 2 that the average error probability of the normal workers
is greater than 0.5 for this dataset, which means the average skill level of the normal workers is
negative. From Figure 1(e) and the analysis in synthetic experiments, we can see such phenomenon is
normal. Though our algorithm can eliminate the impact of the adversaries, we can not give accurate
predictions if the remaining normal workers are not reliable, either. Besides, the Surprise dataset is a
relatively small dataset, which implies that the noise level of the C̃ can be large. This can further
reduce the prediction accuracy of the M-MSR algorithm.

20

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Synthetic two-coin

0 50 100
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Adult2

0 5 10 15
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

WSD

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Joy

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Sadness

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Surprise

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Valence

0 5 10 15 20
corrupted workers

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
r

Disgust

MV KOS GhostSVD EoR MV-D&S PGD OPT-D&S BP-twocoin EM-twocoin MFA-twocoin Entropy(O) Minmax M-MSR-twocoin M-MSR

Figure 6: Experimental results of real data as well as a two-coin synthetic dataset. The synthetic
dataset is created following two-coin model rule, where a worker j is parametrized sj and tj , which
are defined as in (16). In this experiment, we let prior probability p = 0.5, and choose sj and tj
uniformly in [0.5, 1].

E Datasets

In this section, we introduce the real datasets we applied in the crowdsourcing experiments. We
employ 17 public real datasets to evaluate the effectiveness of the M-MSR algorithm and the baseline
methods in crowdsourcing experiments. The followings are the brief introduction of these datasets.

• Fashion (Fashion1, Fashion2) 2 [29] is a fashion-focused Creative Commons images
dataset associated with two different labels. Fashion1 dataset corresponds to the first label,
which indicates if an image is fashion-related or not. Fashion2 dataset corresponds to
the second label, which indicates whether the fashion category of the image can correctly
characterize the content in the image. The ground truth and the labels of the dataset was
collected on Amazon Mechanical Turk (MTurk) platform. Fashion1 contains 13727 labels
for 4711 images which are provided by 202 workers. Fashion2 contains 13474 labels for
4710 images which are provided by 208 workers.

• TREC3 [24] is a binary-class dataset where the task is to judge the relevance of the docu-
ments. The dataset is provided in TREC 2011 crowddourcing track. There are 88385 labels
collected from 762 workers for 19033 documents in total.

• Waterbird Dataset (Bird)3 [38] is a binary-class dataset where the task is to identify
whether an image contains a duck or not. There are 108 images in toal, and 4212 labels are
collected from 39 workers. The labels are collected on MTurk platform.

• Dog3 [7] is a multiclass-dataset where the task is to recognize a breed (out of Norfolk Terrier,
Norwich Terrier, Irish Wolfhound, and Scottish Deerhound) for a given dog. There are 7354
labels collected from 52 workers for 807 documents in total.

• Temporal Ordering (Temp)4 [36] is a binary-class dataset about the temporal ordering of
event pairs. The workers are presented with event pairs and are asked to decide if the event
described by the first verb occurs before the second one. The verb event pairs are extracted
from [33] by Snow et. al.[36]. There are 4620 labels provided by 76 workers for 462 event
pairs in total. The labels are collected on MTurk platform.

• Recognizing Textual Entailment (RTE)4 [36] is a dataset where the workers are presented
with two sentences in each example and are asked to decide whether the scond sentence can
be inferred from the first one or not. These sentence pairs come from PASCAL Recognizing

2Available at http://skulddata.cs.umass.edu/traces/mmsys/2013/fashion/
3Available at https://github.com/zhangyuc/SpectralMethodsMeetEM/tree/master/

src

21

http://skulddata.cs.umass.edu/traces/mmsys/2013/fashion/
https://github.com/zhangyuc/SpectralMethodsMeetEM/tree/master/src
https://github.com/zhangyuc/SpectralMethodsMeetEM/tree/master/src

Textual Entailment task [4]. There are 800 sentence pairs in total which are labeled by 80
workers on MTurk platform, and 8000 labels are collected.

• Web Search Relevance Judging (Web)3 [43] is a multi-class datset where the task is to
judge the relevance of query-URL pairs with a 5-level rating scale (from 1 to 5). There are
2665 query-URL pairs labeled by 177 workers, and the total number of the collected labels
is 15567. The labels are collected on MTurk platform.

• Word Sense Disambiguation (WSD)4 [36] is a dataset to identify the most appropriate
sense (out of three given senses) of the word "president" in a given paragraph. These
paragraph examples are sampled from SemEval Word Sense Disambiguation Lexical Sample
task [32] by Snow et al. [36]. There 1770 labels collected for 177 examples from 10 workers
on MTurk platform.

• Emotions (Fear, Surprise, Sadness, Disgust, Joy, Anger, Valence)4 [36] is a group of
datasets about ratings of different emotions for a given headline. There are six emotions
datasets (fear, surprise, sadness, disgust, joy, anger) where the workers are asked to give
numerical judgements in the interval [0, 100] rating the headline for each emotion. Besides,
there is a valence dataset where the workers give numerical rating in the interval [−100, 100]
which represents the overall positive or negative velence of the emotional content of the
headline. The headlines are sampled from the SemEval-2007 Task 14 [37] by Snow et
al. [36]. The labels are collected on the MTurk platform. There are 1000 labels for 100
headlines which are provided by 10 workers for each dataset. Since the labels of these
datasets are numerical values, we convert them to binary-class datasets according to different
partitions of the interval range. For emotions datsets, we let the rating value 0 represnt
negative class and the rating interval (0, 100] represent the negative class (0 means the
corresponding emotion is not observed). For valence dataset, we segment the interval
[−100, 100] to [−100, 0) (negative) and [0, 100] (positive) respectively.

• Adult2 5 [16] is a multi-class dataset about the adult level of websites (G, PG, R and X).
The labels are provided by workers on AMT platform. This dataset contains 3317 labels for
333 websites which are offered by 269 workers.

In our real dataset crowdsoucing experiments, we remove the workers who provide less than 10 labels
for each dataset to reduce the sparsity of G(Ω) as well as improve the efficiency. Table 2 shows the
characteristic values of the real datasets after this change.

Table 2: Real data: characteristic values after removing workers who provide less than 10 labels

Dataset #workers #tasks #class graph
density

#crowdsourced
labels(overall)

ave.(min/max)
#labels/worker

ave.(min/max)
#workers/tasks

average(min/max)
prob. error

Adult2 269 333 4 0.14 3317 12.3 (1/184) 10.0 (1/21) 0.35 (0.00/1.00)
Anger 38 100 2 0.30 1000 26.3 (20/100) 10 (10/10) 0.35 (0.10/0.60)
Bird 39 108 2 1.00 4212 108 (108/108) 39 (39/39) 0.36 (0.11/0.68)

Disgust 38 100 2 0.30 1000 26.3 (20/100) 10 (10/10) 0.26 (0.05/0.50)
Dog 109 807 4 0.58 8070 74.0 (1/345) 10 (10/10) 0.30 (0.00/1.00)

Fashion1 196 3742 2 0.07 10983 56.0 (1/962) 2.9 (1/3) 0.18 (0.00/1.00)
Fashion2 198 3601 2 0.07 10420 52.6 (1/925) 2.9 (1/3) 0.11 (0.00/1.00)

Fear 38 100 2 0.30 1000 26.3 (20/100) 10 (10/10) 0.35 (0.10/0.80)
Joy 38 100 2 0.30 1000 26.3(20/100) 10 (10/10) 0.43 (0.10/0.65)
RTE 164 800 2 0.09 8000 48.8 (20/800) 10 (10/10) 0.16 (0.00/0.60)

Sadness 38 100 2 0.30 1000 26.3 (20/100) 10 (10/10) 0.36 (0.15/0.65)
Surprise 38 100 2 0.30 1000 26.3 (20/100) 10 (10/10) 0.51 (0.00/0.85)
TEMP 76 462 2 0.25 4620 60.8 (10/462) 10 (10/10) 0.16 (0.00/0.60)
TREC 677 2275 2 0.04 12863 19 (1/ 967) 5.7 (1/10) 0.32 (0.00/1.00)

Valence 38 100 2 0.30 1000 26.3 (20/100) 10 (10/10) 0.34 (0.10/0.65)
Web 176 2653 5 0.15 15539 88.3 (1/1225) 5.9 (2/12) 0.63 (0.00/1.00)
WSD 34 177 3 0.44 1770 52.1 (17/177) 10 (10/10) 0.02 (0.00/0.17)

4Available at https://sites.google.com/site/nlpannotations/
5Available at https://github.com/ipeirotis/Get-Another-Label/tree/master/

data

22

https://sites.google.com/site/nlpannotations/
https://github.com/ipeirotis/Get-Another-Label/tree/master/data
https://github.com/ipeirotis/Get-Another-Label/tree/master/data

F Further Experiments: Exact Recovery

The purpose of this section is to discuss the details of the exact recovery experiments as shown in
Figure 3. For this experiment, we compare the proposed M-MSR algorithm to AN-RPCA, PCA
algorithms in [9]. We consider thousands of randomly generated positive rank-1 matrix with different
sizes and and different noise levels. The size of the matrices ranges from 10 × 10 to 100 × 100.
The elements of u∗ and v∗ are uniformly chosen from the interval [0, 2]. Each element of the noise
matrix S is generated to be 200 with probability p and 0 with probability 1 − p. We assume that
a matrix can be exactly recovered if ‖uv> − u∗v∗>‖F /‖u∗v∗>‖F ≤ 10−4. For each dimension
and noise probability, we generate 100 random matrices under such conditions and demonstrate its
exact recovery rate. To improve the efficiency of the M-MSR algorithm, we did not adopt the random
initialization in the exact recovery experiment. Instead, we choose arbitrary row of X , and complete
the unobserved entries of this row with random positive constants, then let this row be v(0). In this
case, part of the nodes in G(Ω) have the same value corresponding to k′j = 1

ai
in the beginning (as

vj(0) = aibj =
bj

k′j(0)), hence the consensus process can be facilitated.

Figure 3(a), 3(b), 2 shows the heatmap of the exact recovery rate of PCA, AN-RPCA, and M-MSR
algorithm, respectively. It can be seen that the M-MSR algorithm can exactly recover the matrices
when around 30% of the entries are severely corrupted. However, AN-RPCA algorithm can only
recover matrices with around 20% corrupted entries and PCA can not recover the matrices with such
severe corruptions for almost all dimensions and noise probabilities. Besides, we also compare the
convergence time of the RPCA and M-MSR for exact recovery experiments. It can be observed
that the running time of the M-MSR algorithm increases from 0.01s to 0.42s when the dimension of
the matrices increases from 10× 10 to 1000× 1000, and the running time of the RPCA algorithm
increases from 0.46s to 80.62s. The M-MSR algorithm is much more efficient than the RPCA
algorithm, especially when applied on large datasets. This is an additional advantage of the M-MSR
algorithm when dealing with rank-one matrix completion problems with corruptions on large datasets.

G Convergence Analysis for Arbitrary Graph

In this section, we provide the proof of Theorem 2.

G.1 Proof of Theorem 2

Proof. (sufficiency) Suppose

ui(t) = aiki(t), i ∈ [m],

vj(t) =
bj
k′j(t)

, j ∈ [n], (18)

where ki(t) (i ∈ [m]) represents the value of the node in partition Vu at iteration t, k′j(t) (j ∈ [n])
represents the value of the node in partition Vv at iteration t, and the uncorrupted rank-one matrix
is ab>. Let M(t) and m(t) be the maximum and minimum value of normal nodes at iteration t
respectively, i.e.,

m(t) ≤ ki(t) ≤M(t), i ∈ [m] ∩N ,
m(t) ≤ k′j(t) ≤M(t), j ∈ [n] ∩N ,

where N is the set of normal nodes. Our first step is to show that M(t) and m(t) are monotone
bounded functions.

Let us consider a normal node i ∈ [m]. The value it receives from a neighbor j at iteration t+ 1 is
Xij
vj(t)

. If j is also a normal node,

Xij

vj(t)
=

aibj
bj/k′j(t)

= aik
′
j(t) ∈ [aim(t), aiM(t)]. (19)

On the other hand, if j is corrupted, it is possible that Xij
vj(t)

is not in the interval [aim(t), aiM(t)].

However, G(Ω) is a F -local nodes-corrupted graph; and the largest and smallest F values of Xij
vj(t)

23

are removed when updating ui(t+ 1). In other words, after filtering, the values the node i receives
from its neighbors are in the interval [aim(t), aiM(t)]. Because ui(t+ 1) is a convex combination
of such filtered values, we have

u
(t+1)
i ∈ [aim(t), aiM(t)].

which implies

m(t) ≤ ki(t+ 1) ≤M(t).

We next make a similar argument for a normal node j ∈ [n]. The value j receives from a neighbor i
at iteration t+ 1 is Xij

ui(t+1) . If i is also normal node, then

Xij

ui(t+ 1)
=

aibj
aiki(t+ 1)

=
bj

ki(t+ 1)
∈
[

bj
M(t)

,
bj
m(t)

]
. (20)

On the other hand, if i is corrupted, it is possible that Xij
ui(t+1) is not in the interval [

bj
M(t) ,

bj
m(t)].

However, when we update vj(t+ 1), the largest and smallest F values of Xij
ui(t+1) are also removed.

As a result, v(t+1)
j ∈ [

bj
M(t) ,

bj
m(t)], which implies

m(t) ≤ k′j(t+ 1) ≤M(t).

We have thus derived that M(t + 1) ≤ M(t), m(t + 1) ≥ m(t), i.e., M(t) and m(t) are both
monotone bounded functions. Recall the property of skew-nonamplifying in (9) and (10), this also
implies that M-MSR algorithm is skew-nonamplifying.

Next, that M(t) and m(t) are monotone bounded functions means each of them has some limits.
Suppose the limit of m(t) is km, the limit of M(t) is kM . If we have kM = km = k, where k is a
positive constant, then all the normal nodes will asymptotically converge to k at sometime T and we
can get

u(T)v(T)> =

 a1k1(T)
a2k2(T)
· · ·

amkm(T)

 · [b1
k′1(T)

b2
k′2(T) · · · bn

k′n(T)

]
= u∗v∗>. (21)

We will next prove (21) is actually always true.

Indeed, suppose kM 6= km; then there exists some ε0 > 0, such that kM − ε0 > km + ε0. Let
SM (t, ε) denote the set of normal nodes which have values greater than kM − ε at time-setp t, and let
Sm(t, ε) denote the set of normal nodes which have values smaller than km + ε at time-setp t. If we
can find ε∗ > 0, ε̄∗ > 0, t∗ <∞ so that SM (t∗, ε∗) or Sm(t∗, ε̄∗) is empty, then all the normal nodes
have values strictly smaller than kM − ε∗ or strictly greater than km + ε̄∗. This would contradict the
assertion that kM is the limit of M(t), or contradicts the assumption that km is the limit of m(t),
respectively. Thus our goal is to prove that such ε∗, ε̄∗, t∗ do exist.

Let

0 < ε <
(α/2)m+n−F

1−α
2−α (1− (α/2)m+n−F) + (1− α+

√
2)/α

ε0. (22)

Since we assumed G(Ω) is 2F + 1-robust, at the very least we have that any node in V (G) has at
least 2F + 1 neighbors, so that

2F + 1 ≤ min{m,n}.
Therefore, we have m+ n− F ≥ 2, and since α ≤ 1/2, we have

0 < ε < ε0.

Since we assumed that there exists ε0 > 0 such that kM − ε0 > km + ε0. If we choose smaller value
of ε0, the inequality kM − ε0 > km + ε0 still holds. In this case, we can always choose ε0 be small
enough such that

km ≥
α(1− α)(ε+ ε0)2 + εε0

αε0 − (1− α)ε
. (23)

24

Choose t0 so that M(t0) < kM + ε, m(t0) > km − ε (the existence of t0 is guaranteed by the
convergence of M(t) and m(t)). Then consider the two disjoint subsets SM (t0, ε0) and Sm(t0, ε0).
If SM (t0, ε0) or Sm(t0, ε0) is empty, we can directly let ε∗ = ε0, ε̄∗ = ε0, t∗ = t0 and we are done.
Therefore we just need consider the case that both SM (t0, ε0) and Sm(t0, ε0) are nonempty. As G(Ω)
is 2F + 1-robust, there exists a node s in SM (t0, ε0) or Sm(t0, ε0) such that it has at least 2F + 1
neighbors outside.

Because both SM (t0, ε0) and Sm(t0, ε0) consist of nodes from Vu and Vv, which have different
update rules, we need discuss the following four cases respectively.

Case A: If s ∈ SM (t0, ε0) is a node in Vu, it has at least 2F + 1 neighbors outside SM (t0, ε0), out of
which at least F + 1 must be normal. Therefore, after removing F largest and F smallest neighbors,
s still can receive values from at least one normal node outside of SM (t0, ε0).

By the same argument made in Eq. (19), the values s receives from any normal neighbor lies in the
interval [asm(t0), asM(t0)]. Since G(Ω) is a F -local corrupted graph and the largest and smallest
F values s receives are removed, all the values s receives from its neighbors lie in the interval
[asm(t0), asM(t0)], which implies ∀j ∈ Ωs\Rs(t0),

Xsj

vj(t0)
≤ asM(t0).

Then according to the update rule of Eq. (6) we have

us(t0 + 1) =
∑

j∈Ωs\Rs(t0)
wsj

Xsj

vj(t0)

≤ (1− α)asM(t0) + αas(kM − ε0)

≤ (1− α)as(kM + ε) + αas(kM − ε0)

≤ as[kM − (αε0 − (1− α)ε)],

which implies

ks(t0 + 1) ≤ kM − (αε0 − (1− α)ε)

= kM − εa, (24)

where
εa = αε0 − (1− α)ε.

Since 0 < α ≤ 1
2 , and m+ n− F ≥ 2, then

ε <
(α/2)m+n−F

1−α
2−α (1− (α/2)m+n−F) + (1− α+

√
2)/α

ε0 <
α

1− α
ε0,

which implies

0 < εa < ε0. (25)

Case B: If s ∈ SM (t0, ε0) is a node in Vv , then by the same argument, s will receive a value from at
least one normal node with value bounded above kM − ε0.

Similarly to Eq. (20), the values s receive from its normal neighbors lie in the interval [
bj

M(t0) ,
bj

m(t0)].
Reprising the argument in Case 1, G(Ω) is a F -local corrupted graph and the largest and smallest F
values s receives are removed in each iteration. Thus according to the update rule (7) we have

vs(t0 + 1) =
∑

i∈Ω′s\R′s(t0)
w′is

Xis

ui(t0 + 1)

≥ (1− α)
bs

M(t0)
+ α

bs
kM − ε0

≥ (1− α)
bs

kM + ε
+ α

bs
kM − ε0

.

Thus

25

k′s(t0 + 1) =
bs

vs(t0 + 1)
≤ 1

(1− α)/(kM + ε) + α/(kM − ε0)

=
k2
M + kM ε− kM ε0 − εε0
kM − (1− α)ε0 + αε

=
kM (kM − (1− α)ε0 + αε)− αkM ε0 + (1− α)kM ε− εε0

kM − (1− α)ε0 + αε

=kM −
εε0 + αkM ε0 − (1− α)kM ε

kM − (1− α)ε0 + αε
.

Let

εb =
εε0 + αkM ε0 − (1− α)kM ε

kM − (1− α)ε0 + αε
.

Then,

εb − εa =
α(1− α)(ε+ ε0)2

kM − (1− α)ε0 + αε
> 0,

which based on the fact that 0 < α < 1
2 , and

kM > km ≥
α(1− α)(ε+ ε0)2 + εε0

αε0 − (1− α)ε
> (1− α)ε0 − αε,

where the last inequality is true as

α(1− α)(ε+ ε0)2 + εε0
αε0 − (1− α)ε

− [(1− α)ε0 − αε] =
2εε0

αε0 − (1− α)ε
> 0,

where the denominator is positive as we have shown in (25). As a result, we have εb > εa and

k′s(t0 + 1) ≤ kM − εb < kM − εa. (26)

Case C: If s ∈ Sm(t0, ε0) is a node in Vu, via a similar process, we can get

ks(t0 + 1) ≥ km + αε0 − (1− α)ε = km + εc. (27)

Case D: If s ∈ Sm(t0, ε0) is a node in Vv , we can obtain

k′(t0+1)
s ≥ km +

αkmε0 + αkmε− εkm − εε0
km + (1− α)ε0 − αε

.

Let εd = αkmε0+αkmε−εkm−εε0
km+(1−α)ε0−αε , then

εd − εc =
−α(1− α)(ε+ ε0)2

km + (1− α)ε0 − αε
< 0,

which implies εd < εc. However, according to (23), we can derive

α(1− α)(ε+ ε0)2

km + (1− α)ε0 − αε
≤ α(1− α)(ε+ ε0)2

α(1−α)(ε+ε0)2+εε0
αε0−(1−α)ε + (1− α)ε0 − αε

=
α(1− α)(ε+ ε0)2(αε0 − (1− α)ε)

2α(1− α)(ε+ ε0)2

=
1

2
(αε0 − (1− α)ε) =

1

2
εc,

which means εd ≥ 1
2εc, and

k′s(t0 + 1) ≥ km + εd ≥ km +
1

2
εc. (28)

26

Summary: Let

ε1 = εa = αε0 − (1− α)ε,

ε̄1 =
1

2
εc =

1

2
(αε0 − (1− α)ε),

we see that in each case, at least one normal node s in SM (t0, ε0) decreases to kM − ε1 (or below),
or one normal node in Sm(t0, ε0) increases to km + ε̄1 (or above), or both. Therefore, if we define
the sets SM (t0 + 1, ε1) and Sm(t0 + 1, ε̄1), then we either have

|SM (t0 + 1, ε1)| < |SM (t0, ε0)|,
or

|Sm(t0 + 1, ε̄1)| < |Sm(t0, ε0)|,
or both. Since ε̄1 < ε1 < ε0, we have

kM − ε1 > kM − ε0 > km + ε0 > km + ε̄1,

which means SM (t0 + 1, ε1) ⊆ SM (t0 + 1, ε0) and Sm(t0 + 1, ε̄1) ⊆ Sm(t0 + 1, ε0). As set
SM (t0 + 1, ε0) and set Sm(t0 + 1, ε0) are disjoint, set SM (t0 + 1, ε1) and set Sm(t0 + 1, ε1) are
disjoint too.

For j ≥ 2, let

εj = αεj−1 − (1− α)ε,

ε̄j =
1

2
(αε̄j−1 − (1− α)ε),

then εj < εj−1, ε̄j < ε̄j−1. If both sets SM (t0 + j, εj) and Sm(t0 + j, ε̄j) are nonempty, we can
repeat the analysis above for time-step t0 + j. If we can still show

Case A: ks(t0 + j) ≤ kM − εj , (29)

Case B: k′s(t0 + j) ≤ kM − εj , (30)
Case C: ks(t0 + j) ≥ km + ε̄j , (31)

Case D: k′s(t0 + j) ≥ km + ε̄j , (32)

we can derive that either

|SM (t0 + j, εj)| < |SM (t0 + j − 1, εj−1)|,
or

|Sm(t0 + j, ε̄j)| < |Sm(t0 + j − 1, ε̄j−1)|,
or both. Since

|SM (t0, ε0)|+ |Sm(t0, ε0)| ≤ |N | = m+ n− F,
then there exists T ≤ m+ n− F such that at the end of the iteration t0 + T , the set SM (t0 + T, εT)
or set Sm(t0 + T, ε̄T) will be empty or both. Moreover, if we can further show

εT > 0, ε̄T > 0, (33)

then we can conclude that εT , ε̄T , and t0 + T are exactly the ε∗, ε̄∗, and t∗ we are looking for. Next
we will show that the inequalities (29)–(33) are actually always true.

For j = 2, . . . ,m+ n− F ,

εj = αεj−1 − (1− α)ε

= α(αεj−2 − (1− α)ε)− (1− α)ε

= αjε0 − (1− αj)ε,

ε̄j =
1

2
(αε̄j−1 − (1− α)ε)

= (
α

2
)jε0 −

1− α
2− α

(1− (
α

2
)j)ε,

27

then εj < εj−1, ε̄j < ε̄j−1, and ε̄j < εj (ε̄1 = 1
2ε1). In other words, we have

εj > ε̄j ≥ ε̄m+n−F = (
α

2
)m+n−F ε0 −

1− α
2− α

(1− (
α

2
)m+n−F)ε >

1− α+
√

2

α
ε > 0, (34)

where the second inequality is obtained from assumption (22). As T ≤ m+ n− F , we can derive
that inequalities (33) are always true.

Then we will prove the inequalities (29)–(32) when j ≥ 2. For case A and case C, we can show that
the inequalities (29), (31) are true by simply replace ε0 with εj−1 in the analysis above. For Case B,
we need further show

km ≥
α(1− α)(ε+ εj−1)2 + εεj−1

αεj−1 − (1− α)ε
, (35)

to prove inequality (30), and for Case D, we need further show

km ≥
α(1− α)(ε+ ε̄j−1)2 + εε̄j−1

αε̄j−1 − (1− α)ε
, (36)

to prove the inequality (32). To do this, consider function

f(x) =
α(1− α)(ε+ x)2 + εx

αx− (1− α)ε
,

its derivative is

f ′(x) =
(1− α)(α2x2 − 2α(1− α)εx+ ε2(α2 − 2α− 1))

(αx− (1− α)ε)2
.

When x > 1−α+
√

2
α ε, we have f ′(x) > 0, which means f(x) is monotonically increasing in this

interval. From equation (34), we have

1− α+
√

2

α
ε < ε̄j−1 < εj−1 < ε0,

where j = 2, . . . ,m+ n− F. Therefore, for j = 2, . . . ,m+ n− F, we have

km ≥
α(1− α)(ε+ ε0)2 + εε0

(αε0 − (1− α)ε)2
= f(ε0) > f(εj−1) > f(ε̄j−1),

where the first inequality is the assumption (23). In this case, we complete the proof of inequality
(35) and inequality (36).

Then in Case B, we can replace ε0 with εj−1, and we have

kM > km ≥
α(1− α)(ε+ εj−1)2 + εεj−1

αεj−1 − (1− α)ε
> (1− α)εj−1 − αε.

Next by conducting the similar analysis as above, we can prove the inequality (30). In Case D, we
can replace ε0 with ε̄j−1, and we can derive

α(1− α)(ε+ ε̄j−1)2

km + (1− α)ε̄j−1 − αε
≤ 1

2
(αε̄j−1 − (1− α)ε),

based on inequality (36). We can also follow the similar analysis above to prove (32). Thus, we
complete the proof of sufficiency.

(Necessity) To prove the necessity, we want to show if G(Ω) is not 2F + 1-robust, then there exists
cases which can not achieve consensus by applying M-MSR algorithm. Since G(Ω) is not 2F + 1-
robust, there exists a pair of nonempty and disjoint sets S1, S2 ∈ V (G) such that each node in S1

or S2 has at most 2F neighbors outside. Suppose S1 consists of normal nodes which have values a
(meaning ki = a or k′i = a) while S2 consists of normal nodes which have values b (meaning ki = b
or k′i = b) with a > b > 0, let all the other normal nodes have the values inside the interval (b, a)
(a < ki < b or a < k′i < b). Since G(Ω) is F -local corrupted graph, we can let each normal node
in S1 have F corrupted neighbors which always send the normal node with value corresponding to
ki = a or k′i = a. This is possible, since in our cases, the corrupted elements Xij can be any value.
Also, let normal node in S2 have F corrupted neighbors which always send the normal node with
value corresponding to ki = b or k′i = b. Thus, for the normal nodes in S1 and S2, the values which
are different from their own values will always be filtered and they can only use the values equal to
their own values to update. In this case, the consensus can never be achieved.

28

H Convergence Analysis for Random Graphs

In this section, we present the proof of Theorem 1. To do that, we provide the sharp threshold of being
r-connected, r-robust for Gn,n,p as well as some other related lemmas. Besides, we also present two
lemmas about how to represent a F -local model as a F -total model.

We start our analysis from introducing some definitions for Gn,n,p which will be used in our proof.

Definition 5. A(n) ≈ B(n) means A(n)/B(n)→ 1 as n→∞.
Definition 6. A graph property P is a class of graphs on vertex sets L and W , which is closed
under isomorphism. In particular, |P| ≤ 2n

2

.
Definition 7. A graph property P is monotone increasing if G ∈P implies G+e ∈P , i.e., adding
an edge e to a graph G does not destroy the property.

Definition 8. Consider a function p∗(n) = g(n)
n , where g(n)→∞ as n→∞. Let x be any function

such that x = o(g(n)) and x → ∞ as n → ∞. Then p∗(n) is a sharp threshold for a monotone
increasing graph property P in the random graph Gn,n,p if

lim
n→∞

P(Gn,n,p ∈P) =

{
1 p = (g(n) + x)/n

0 p = (g(n)− x)/n
. (37)

We start our analysis from a general lemma about the necessary condition such that any approach
achieves consensus when there exists malicious nodes in a network.

Definition 9. For an undirected arbitrary graph G, let cp(G) denote the least number k such by
removing k appropriately chosen vertices from G and the eges incident on then results in a graph that
is not connected.

Definition 10. [25] Consider an undirected arbitrary graph G, suppose each normal node begins with
some private value xi(0) ∈ R (The initial values can be arbitrary). The nodes interact synchronously
by conveying their values to their neighbors in the graph. Each normal node updates its own value
over time according to a prescribed rule, which is modeled as

xi(t+ 1) = fi(x
i
j(·)), j ∈ Ωi, i ∈ N ,

where xij(·) is the value sent from node j to node i before time-step t+ 1. The update rule f(·) can
be arbitrary deterministic function, and may be different for different nodes. Then the normal nodes
of G are said to achieve resilient asymptotic consensus in the presence of malicious nodes if

• ∃k ∈ R such that limt→∞ xi(t) = k for all i ∈ N ,
• the normal values remains in the interval [m(0),M(0)] for all t,

where m(0), M(0) are the initial values.

Lemma 1. (Theorem 5.2 of [8], Proposition 6.2.2 of [14]) Suppose there exists F malicious nodes in
an undirected arbitrary graph G, the positions of the malicious nodes are unknown, then the necessary
condition that G can achieve consensus on a fixed value regardless of the mechanism used is

cp(G) ≥ 2F + 1.

H.1 r-connected for random bipartite graph

In this subsection, we provide the sharp threshold function of being r-connected for random bipartite
graphs Gn,n,p. The general outline of this proof is to show the sharp threshold function for graph
property that minimum degree δ(Gn,n,p) = r firstly, then show that the graph property for Gn,n,p
being r-connected is equal to the graph property that δ(Gn,n,p) = r.

Definition 11. For Gn,n,p and constant r ∈ Z≥1, let the properties of being r-connected, having
minimum degree δ(Gn,n,p) = r be denoted by Kr, Dr, respectively.

Suppose Xr is the random variable counting the number of the vertices with degree r in Gn,n,p, λr(n)
is the expectation of Xr, i.e., λr(n) = E(Xr). Let Po(λ) be the Poisson distribution with parameter
λ, i.e., P(X = k) = λke−λ

k! . Let N(0, 1) be standard normal distribution.

29

(b) A 3-connected graph(a) A 2-connected graph

𝑎 𝑐

𝑑

𝑏

𝑎 𝑐

𝑑

𝑏

𝑒

Figure 7: Illustration example for Lemma 1. Red nodes represent malicious nodes, green nodes
represent normal nodes. In a 2-connected graph, malicious node b can prevent node a from getting
correct information from node c. In a 3-connected graph, there exists three disjoint paths from node c
to node a, hence it is possible to apply some strategy to eliminate the influence of malicious node b.

Firstly, we present the sharp threshold function for property Dr, to do that, we introduce the following
lemma from [22].

Lemma 2. [22] If np→∞ but np/nα = o(1) for every α > 0, then the distribution of Xr → Po(λ)

if λr(n)→ λ <∞ and if λr(n)→∞, then the distribution of (Xr − λr(n))/
√
λr(n)→ N(0, 1).

In the following lemma, we provide the threshold function for property Dr.

Lemma 3. Consider a random bipartite graph Gn,n,p. For any constant r ∈ Z≥1,

p∗(n) =
log n+ (r − 1) log log n

n

is a sharp threshold function for the property Dr.

Proof. Let

p =
log n+ (r − 1) log log n+ x

n
, (38)

where x = o(log log n)→∞ when n→∞. We will show that with this probability, we can obtain

(i) λt(n) = E(Xt) = o(1) when t ≤ r − 2, n→∞.

(ii) λr−1(n) = E(Xr−1) = 2e−x

(r−1)! when n→∞.

(iii) λr(n) = E(Xr)→∞ when n→∞.

To do this, we will consider the vertices with degree t (t ≤ r− 1) in L and W respectively, where the
notation L denotes the set of left-nodes of the bipartition of this graph Gn,n,p, and W denote the set
of right nodes. Let

Iv =

{
1 v is a vertex with degree t in Gn,n,p
0 otherwise

,

then we can obtain

E(number of nodes with degree t in L)

= E(
∑
v∈L

Iv)

=
∑
v∈L

E(Iv)

= n

(
n

t

)
pt(1− p)n−t, (39)

30

As (
n

t

)
=
n(n− 1) · · · (n− t)

t!
≈ nt

t!
, (40)

pt =

(
log n+ (r − 1) log log n+ x

n

)t
≈
(

log n

n

)t
, (41)

(1− p)n−t =e(n−t) log(1−p) = e−(n−t)
∑∞
k=1

pk

k

=e−(n−t)p · e−(n−t)
∑∞
k=2

pk

k = e−(n−t)p · e−o(1) ≈ e−x

n(log n)r−1
, (42)

where x = o(log log n)→∞ when n→∞, and in (42), we applied

(n− t)
∞∑
k=2

pk

k
< (n− t)

∞∑
k=2

pk =
(n− t)p2

1− p
= o(1).

Plug (40), (41), (42) into (39), we can get

E(number of nodes with degree t in L) ≈ nn
t

t!

(
log n

n

)t
e−x

n(log n)r−1
=
e−x

t!

(log n)t

(log n)r−1
.

Via similar process, we can obtain

E(number of nodes with degree t in W) ≈ e−x

t!

(log n)t

(log n)r−1
.

Then we have

E(Xt) = E(number of nodes with degree t in L) + E(number of nodes with degree t in W)

≈ 2e−x

t!

(log n)t

(log n)r−1
. (43)

Thus (i), (ii) and (iii) follows immediately.

For t ≤ r − 2, observing that Xt is a nonnegative random variable, and E(Xt) → o(1), we can
derive that

P(Xt 6= 0)→ o(1). (44)

For Xr, as

np = log n+ (r − 1) log log n+ x→∞,
np

nα
=

log n+ (r − 1) log log n+ x

nα
= o(1), ∀α > 0,

when n→∞. According to Lemma 2, we have

Xr − λr(n)√
λr(n)

→ N(0, 1),

then we obtain

P(Xr 6= 0) =1− P(Xr = 0) ≈ 1, (45)

In summary, when p has the value in (38), it is not likely that the nodes with degree up to r − 2 exist
in Gn,n,p. Meanwhile, the probability that the nodes with degree r exist in Gn,n,p tends to be 1. Thus,
the probability that minimum degree δ(Gn,n,p) = r is decided by the existence of the nodes with
degree r − 1. Consider (ii), since x = o(log log n)→∞ as n→∞, we have

λr−1(n) =
2e−x

(r − 1)!
= o(1),

then we can also obtain P(Xr−1 6= 0) ≈ 0. Thus we have

P(δ(Gn,n,p) = r) ≈ P(Xr−1 = 0) ≈ 1.

31

If

p =
log n+ (r − 1) log log n− x

n
, (46)

we can just replace x with −x in (43) and produce

E(Xt) ≈
2e−x

t!

(log n)t

(log n)r−1
.

In this case, (i) and (iii) remain the same while (ii) is updated as: (ii) λr−1(n) = E(Xr−1) =
2ex

(r−1)! →∞. Therefore, (44) and (45) still hold while

Xr−1 − λr−1(n)√
λr−1(n)

→ N(0, 1),

then we can derive that

P(δ(Gn,n,p) = r) ≈ P(Xr−1 = 0) ≈ 0.

�

Now, we are ready to present the sharp threshold function of being r-connected for Gn,n,p.

Lemma 4. Consider a random bipartite graph Gn,n,p. For any constant r ∈ Z≥1,

p∗(n) =
log n+ (r − 1) log log n

n
(47)

is a sharp threshold function for the property Kr.

Proof. Gn,n,p is r-connected means by removing r suitably chosen vertices (but not by removing
less than r vertices) Gn,n,p can be disconnected. Let this event be denoted by A(S, T), where the
removed vertices form set S, and T is the smallest connected component of Gn,n,p\S. In this case, T
has no neighbor after removing S. Besides, every node in S is incident with at least one edge leading
to T , otherwise Gn,n,p can be disconnected be removing less than r vertices. We want to show if

p = (1 + o(1))
log n

n
, (48)

then

P
(
∃S, T, 2 ≤ |T | ≤ 1

2
(2n− r) : A(S, T)

)
= o(1). (49)

Here T is upper bounded by 1
2 (2n − r) as T is assumed to be the smallest remaining component

after removing S. We choose p with the value in (48) as it includes all the values of p′(t) and p′′(t),
t ∈ [r], where

p′(t) =
log n+ (t− 1) log log n+ x

n

p′′(t) =
log n+ (t− 1) log log n− x

n
.

where x = o(log log n) → ∞ when n → ∞. According to the definition of the sharp threshold,
p′(t) and the p′′(t) are the probabilities we need discuss to show that logn+(t−1) log log n

n is the sharp
threshold function of being t-connected. If (49) is true, the only case we need consider for event
A(S, T) is |T | = 1. In other words, if A(S, T) happens, the remaining subgraph Gn,n,p\S after
removing S from Gn,n,p consists of some isolated vertices and a huge component, where the isolated
vertices have degree r. Therefore,

P(G ∈ Kr) ≈ P(G ∈ Dr).

This is because δ(Gn,n,p) = r means the connectivity of Gn,n,p is less than or equal to r. However, if
the connectivity is less than r, according to (49), there exists some vertices have degree less than r,
which contradicts δ(Gn,n,p) = r. On the other hand, (49) also implies that if Gn,n,p is r-connected,

32

then δ(Gn,n,p) = r. In this case, we can show that the sharp threshold of Kr is equal to the sharp
threshold of Dr, i.e., (47).

Next, we will prove (49) holds with p = (1 + o(1)) logn
n . Fix the set S and T , where S consists of

exactly s1 nodes from partition L and exactly s2 nodes from partition W , T consists of exactly t1
nodes T from L, and exactly t2 nodes from W . Under such assumptions, let Ps1,s2,t1,t2 denote the
probability that event A(S, T) happens. Let A1 denote the event that T is connected, A2 denote the
event that T is not connected to any vertex in Gn,n,p\(S ∪ T), and A3 denote the event that each
vertex in S is incident with at least one edge leading to T . Event A(S, T) happens when event A1,
A2, and A3 happen at the same time, thus we have

Ps1,s2,t1,t2 = P(A1 and A2 and A3)

= P(A1)P(A2)P(A3), (50)
where in the second equality, we applied the fact that A1, A2, and A3 are independent of each other
(the appearance of the edges in Gn,n,p are identical independent random variables, A1, A2, and A3

refers to different edges).

Next we consider the probability of event A1, A2, and A3 respectively. T is a connected subgraph
implies that it contains a spanning tree with t1 + t2 − 1 edges. According to [12], the number of
different spanning trees in Kt1,t2 is tt2−1

1 tt1−1
2 . By applying the union bound, we have

P(A1) ≤ tt2−1
1 tt1−1

2 pt1+t2−1.

The probability that T is disconnected with Gn,n,p\(S ∪ T) is

P(A2) = (1− p)t1(n−s2−t2)+t2(n−s1−t1).

As Gn,n,p is a bipartite graph, the vertices in L can only be connected with vertices in W . Let S1 be
the subset of S which contains all the nodes from L, and S2 be the subset of S which contains all
the nodes from W . Similarly, suppose T1 be the subset of T which consists of all the nodes from L,
and T2 consists of all the nodes from W . Therefore, each vertex in S is incident with at least one
edge leading to T implies that there exists at least s1 edges between S1 and T2, and at least s2 edges
between S2 and T1, hence we have

P(A3) ≤
(
s1t2
s1

)
ps1
(
s2t1
s2

)
ps2

Then we can bound Ps1,s2,t1,t2 as following
Ps1,s2,t1,t2 = P(A1)P(A2)P(A3)

≤ tt2−1
1 tt1−1

2 pt1+t2−1(1− p)t1(n−s2−t2)+t2(n−s1−t1)

(
s1t2
s1

)
ps1
(
s2t1
s2

)
ps2

≤ tt2−1
1 tt1−1

2 pt1+t2−1e−p[t1(n−s2−t2)+t2(n−s1−t1)] (t2ep)
s1 (t1ep)

s2 ,

where in the second inequality, we used the facts(
n

k

)
≤
(ne
k

)k
, (1− p) ≤ e−p, ∀0 ≤ p ≤ 1.

Now, by applying the union bound, we can bound the probability P(∃S, T) in (49) as

P(∃S, T) ≤
∑

s1+s2=r

2n−r
2∑

t1+t2=2

(
n

s1

)(
n

s2

)(
n− s1

t1

)(
n− s2

t2

)
Ps1,s2,t1,t2

≤
∑

s1+s2=r

2n−r
2∑

t1+t2=2

(
ne

s1

)s1 (ne
s2

)s2 ((n− s1)e

t1

)t1 ((n− s2)e

t2

)t2
tt2−1
1 tt1−1

2 pt1+t2−1

e−p[t1(n−s2−t2)+t2(n−s1−t1)] (t2ep)
s1 (t1ep)

s2

≤
∑

s1+s2=r

2n−r
2∑

t1+t2=2

(
net2epe

pt2
)s1 (

net1epe
pt1
)s2

(enp)t1+t2e−p[t1(n−t2)+t2(n−t1)]p−1

≤
∑

s1+s2=r

2n−r
2∑

t1+t2=2

p−1As1Bs2C, (51)

33

where in the second inequality, we also applied
(
n
k

)
≤
(
ne
k

)k
, in the third inequality, we applied(

t1
t2

)t2−t1
≤ 1, (t1t2)−1 ≤ 1

and in the last step,

A = e2npt2e
pt2 = e2(1 + o(1))t2n

t2+o(t2)
n log n,

B = e2npt1e
pt1 = e2(1 + o(1))t1n

t1+o(t1)
n log n,

C = (enp)t1+t2e−p[t1(n−t2)+t2(n−t1)].

Let t1 + t2 = t, we have

C = (enp)t1+t2e−p[t1(n−t2)+t2(n−t1)]

= (enp)te−npte2pt1t2

≤ (enp)te−npt+
t2p
2

=
(
enpe−np+

pt
2

)t
= Dt,

where in the inequality, we used

2pt1t2 = 2pt1(t− t1) ≤ t2

2
p,

as f(x) = 2px(t− x) attains its maximum at x = t
2 , and in the last step

D = enpe−np+
pt
2 = e(1 + o(1))n−1−o(1)+

t
2
+o(t

2
)

n log n.

Thus, we can further bound the probability P(∃S, T) as

P(∃S, T) ≤ p−1
∑

s1+s2=r

2n−r
2∑
t=2

As1Bs2Dt. (52)

Since if 1 ≤ t1 ≤ log n, 1 ≤ t2 ≤ log n, then

A = O((log n)2), B = O((log n)2), D = n−1+o(1),

if t1 > log n, t2 > log n, then

A = O(n3), B = O(n3), D ≤ n− 1
3 ,

as t < n, and if 1 ≤ t1 ≤ log n, t2 > log n, then

A = O(n3), B = O((log n)2), D ≤ n− 1
3 ,

if 1 ≤ t2 ≤ log n, t1 > log n, then

A = O((log n)2), B = O(n3), D ≤ n− 1
3 .

No matter which case, we have

p−1As1Bs2Dt = o(1),

Thus the sum in (52) is o(1).

�

We have found the threshold function of r-connected for Gn,n,p, however, the sufficient and necessary
conditions for M-MSR algorithm to succeed are defined with the property robustness. Therefore, we
also need confirm the threshold function of r-robustness. The following lemma is an important step
to derive this threshold function.

34

H.2 r-robustness for random bipartite graph

Definition 12. For Gn,n,p and constant r ∈ Z≥1, let Er be the property that every subset of V (G)
with size up to n is r-reachable.

Here, Gn,n,p is a bipartite graph where the total number of the nodes is 2n.

Lemma 5. Consider random bipartite graph Gn,n,p. Then

lim
n→∞

P(Gn,n,p ∈ Er) = 1, (53)

if

p(n) =
log n+ (r − 1) log log n+ x

n
, (54)

where x = o(log log n) satisfying x→∞ when n→∞ .

Proof. Let Ae denote the event that there exists a subset of V (G) with size less than n is not
r-reachable, then we have

P(Gn,n,p ∈ Er) = 1− P(Ae).

To prove (53) holds, we can show that P(Ae) = o(1) with probability p in (54).

Recall that L and W are the vertex partitions of the bipartite graph Gn,n,p. Consider a subgraph of
Gn,n,p where there exists k1 vertices from L and k2 vertices from W . Denote this subgraph as S, and
let the probability that S is not r-reachable be Pk1,k2 . From the proof of Lemma 4, we know when p
has the value as in (54), the probability that a vertex has degree less than r is o(1). In other words,
the probability that a subset consists of one node is not r-reachable is o(1). Then by applying the
union bound, we have

P(Ae) ≤
n∑

k1+k2=2

Pk1,k2 .

Consider a vertex j ∈ S, j is not r-reachable means it has less than r neighbors from outside. If j is
a vertex in L, the probability that it is not r-reachable is

r−1∑
i=0

(
n− k2

i

)
pi(1− p)n−k2−i.

If j is a vertex in W , the probability that it is not r-reachable is

r−1∑
i=0

(
n− k1

i

)
pi(1− p)n−k1−i.

As S is not r-reachable implies that every vertex in S is not r-reachable, also there exists k1 vertices
of S in L and k2 vertices of S in W . By applying the union bound, we have

Pk1,k2

≤
(
n

k1

)(
n

k2

)(r−1∑
i=0

(
n− k2

i

)
pi(1− p)n−k2−i

)k1 (r−1∑
i=0

(
n− k1

i

)
pi(1− p)n−k1−i

)k2

≤

(
ne

k1

r−1∑
i=0

nipi(1− p)n−k2−i
)k1 (

ne

k2

r−1∑
i=0

nipi

(
1− p)n−k1−i

)k2

≤

(
ne

k1
(1− p)n−k2r

(
np

1− p

)r−1
)k1 (

ne

k2
(1− p)n−k1r

(
np

1− p

)r−1
)k2

≤
(

er

(1− p)r−1

n

k1
e−p(n−k2)(np)r−1

)k1 (er

(1− p)r−1

n

k2
e−p(n−k1)(np)r−1

)k2
, (55)

35

where in the second inequality we applied the inequalities(
n

k

)
≤
(en
k

)k
,

(
n− k
i

)
≤ (n− k)i ≤ ni,

and in the third inequality, we used

r−1∑
i=0

(
np

1− p

)i
≤ r

(
np

1− p

)r−1

,

which based on the fact that np
1−p > 1, in the last inequality of (55), we applied 1 − p ≤ e−p for

0 ≤ p ≤ 1.

Let c1 be a constant satisfying er
(1−p)r−1 ≤ c1. For sufficiently large n, we have 0 < c1 < 2er. Let

k1 + k2 = k, then (55) can be rewritten as

Pk1,k2 ≤ ck1
nk

kk11 kk22

e2k1k2pe−pnk(np)(r−1)k

≈ ck1
nk

kk11 kk22

e2k1k2p
e−kx

nk(log n)k(r−1)
(log n)k(r−1)

= ck1
e2k1k2p

kk11 kk22

e−kx, (56)

where in the approximate equality, we applied

e−pnk =e−k logn−k(r−1) log log n−kx =
e−kx

nk(log n)k(r−1)
,

np = log n+ (r − 1) log log n+ x ≈ log n.

Now consider the term e2k1k2p and kk11 kk22 in (56), which can be written as

e2k1k2p = e2k1(k−k1)p,

kk11 kk22 = ek1 log k1+k2 log k2 = ek1 log k1+(k−k1) log(k−k1).

Let

f(x) = 2x(k − x)p,

g(x) = x log x+ (k − x) log(k − x).

For x ∈ [0, k], f(x) attains its minimum at x = k
2 , g(x) attains its maximum at x = k

2 , i.e.,

f(x) ≤ f
(
k

2

)
=
k2p

2
, g(x) ≥ g

(
k

2

)
= k log

(
k

2

)
, ∀x ∈ [0, k].

As a consequence, we have

e2k1k2p ≤e
k2p
2 ,

kk11 kk22 ≥e
k log(k2) =

(
k

2

)k
,

and (56) can be bounded by

Pk1,k2 ≤ ck1
e

1
2k

2p

2−kkk
e−kx =

(
2c1e

1
2kp−log ke−x

)k
.

Now we can bound the probability P(Ae) as

P(Ae) ≤
n∑

k1+k2=2

Pk1,k2 =
n∑
k=2

(
2c1e

1
2kp−log ke−x

)k
. (57)

36

Consider the term e
1
2kp−log k in (57), let

f(k) =
1

2
kp− log k.

Then

f ′(k) =
1

2
p− 1

k
=

1

2

log n

n
(1 + o(1))− 1

k
.

As k ranges in the interval [2, n], f ′(k) = 0 has only one solution in [2, n], and f ′(2) < 0 while
f ′(n) > 0, which implies

f(k) ≤ max{f(2), f(n)},

where

f(2) = 2p− log 2 < 0,

f(n) =
n

2

log n

n
(1 + o(1))− log(n) < 0.

Therefore,

P(Ae) =
n∑
k=2

(
2c1e

1
2kp−log ke−x

)k
<

n∑
k=2

(2c1e
−x)k ≤ 4c1e

−2x

1− 2c1e−x
= o(1),

where in the second inequality, we applied

2c1e
−2x ≤ 4er

e2x
< 1.

�

Lemma 6. For any r ∈ Z≥1, if a graph G is r-robust, then G is at least r-connected.

Proof. We will prove this lemma by contradiction. Suppose there exists a graph G which is r-robust
and its connectivity is less than or equal to r − 1. According to the definition of r-connected, there
exists a subset of V (G) with size r − 1 such that G will be disconnected with the removal of this
subset. In other words, if this specific subset is removed, there will be at least two components
remains. Choose one of the remained components arbitrarily, let it be S1, let the union of all the other
remained components be S2. Then S1 and S2 are nonempty and disjoint, however, none of the node
in S1 or S2 has more than r − 1 neighbors outside, which means both S1 and S2 are not r-reachable.
This contradicts our assumption that G is r-robust (for every pair of disjoint and nonempty subsets of
V (G), at least one of them is r-reachable), thus we can prove that if G is r-robust, then G is at least
r-connected.

Definition 13. For Gn,n,p and constant Z≥1, let Rr be the property of r-robust.

Now we are ready to present the sharp threshold for the property of Rr. The following theorem is
connected to the work [40] which analyzed the threshold of 2F + 1 robustness in general random
graphs.

Theorem 3. Consider random bipartite graph Gn,n,p. For any constant r ∈ Z≥1,

p∗(n) =
log n+ (r − 1) log log n

n

is the sharp threshold function for property Rr.

Proof. Let

p =
log n+ (r − 1) log log n+ x

n
, (58)

where x = o(log log n) → ∞ when n → ∞. Recall the definition of r-robust, i.e., a graph G
is r-robust if for every pair of nonempty, disjoint subsets of V (G), at least one of the two sets is
r-reachable. To show Gn,n,p is r-robust, consider any two disjoint and nonempty subsets of V (G),

37

define the two sets as S1 and S2. Then at least one of the two sets has size up to n, without loss of
generality, let this set be S1. According to Lemma 5, with probability (58), we have

lim
n→∞

P(S1 is r-reachable) = 1,

which implies

lim
n→∞

P(Gn,n,p ∈ Rr) = 1.

Next consider Gn,n,p with

p(n) =
log n+ (r − 1) log log n− x

n
, (59)

where x = o(log log n)→∞ when n→∞. We want to show

lim
n→∞

P(Gn,n,p ∈ Rr) = 0. (60)

From Lemma 6, we know that if Gn,n,p is r-robust, then Gn,n,p is at least r-connected, which means
if the connectivity of Gn,n,p is less than r, then Gn,n,p is not r-robust. Besides, according to Lemma
4, with probability (59) we have

lim
n→∞

P(Gn,n,p ∈ Kt) = 0, ∀t ≥ r.

Thus, we can obtain (60). �

H.3 Proof of Theorem 1

Now, we are ready to present the proof of Theorem 1.

Proof.

We first argue that any skew-nonamplifying matrix completion method in the F -local model can be
used to achieve resilient consensus in the F -local model over the bipartite graph corresponding to the
revealed entries (recall that the resilient consensus problem was defined earlier in Definition 11).

Indeed, to achieve consensus starting from the initial conditions xi(0), we simply reveal entries
corresponding to the all-ones matrix, and initialize ui(0) = xi(0) on the left-side of the bipartition
and vi(0) = 1/xi(0) on the right-hand side of the bipartition. We then apply the skew-nonamplifying
matrix completion method.

We can then define the values ki(t), k′i(t) of a node just as in Eq. (18). Then according to the
skew-nonamplifying property, it follows that for normal nodes

ki(t), k
′
j(t) ∈ [min

i
xi(0),max

i
xi(0)]

Since

ui(t)vj(t) = ki(t) ·
1

k′j(t)
=
ki(t)

k′j(t)
→ 1,

for all the normal nodes, we obtain that the quantities ki(t), kj(t) among the normal nodes achieve
consensus, and, as already remarked above, the quantities always stay in [mini xi(0),maxi xi(0)]. It
follows that we have an algorithm for resilient consensus.

Next, according to Lemma 1, a necessary condition for resilient consensus in the F -local corrupted
model is cp(G) ≥ 2F + 1. It follows that a necessary condition for skew-nonamplifying matrix
completion in the F local model is cp(G) ≥ 2F + 1.

But from the result of Lemma 4, we know that a sharp threshold for being r-connected is

p =
log n+ (r − 1) log log n

n
, (61)

where x = o(log log n)→∞, when n→∞. Therefore, if

p =
log n+ 2F log log n− x

n
, (62)

38

then the graph G will be such that no skew-nonamplifying algorithm can guarantee convergence
under the F -local model. This proves Theorem 1(b).

Next consider the sufficient condition to correctly recover X by applying the M-MSR algorithm.
According to Theorem 2, the sufficient condition that the normal rows and columns of X can be
correctly recovered by M-MSR is G(Ω) is 2F + 1-robust. On the other hand, Theorem 3 shows if p
has the value as in (61), G(Ω) is r-robust. Thus, the sufficient condition that the normal rows and
columns of X can be correctly recovered is (62), proving Theorem 1(a). �

From Theorem 1 and Corollary 3, we can see when G(Ω) is a random bipartite graph Gn,n,p, the
proposed M-MSR algorithm is the optimal algorithm in rank-one matrix completion problem with
corruptions.

H.4 Further Results

In practical applications, It is not easy to confirm if G(Ω) is F -local nodes-corrupted model. However,
in random graph, we can represent a F -local model with a F -total model, which is more convenient
to be verified. The following lemma provides a bridge from F -total model to F -local model.
Particularly, we provide the fraction of the corrupted nodes in L and W , respectively, so that G(Ω)
can be f -fraction local model.

Lemma 7. Consider a random bipartite graph Gn,n,p, let p ≥ 12(1+η) log n
n for some η > 0, then

corrupt αn left nodes and βn right nodes uniformly at random, where 0 ≤ α, β < 1. In this case, for
each normal node, fraction of edges from every normal node leading to corrupted nodes is less than
f with high probability when n→∞ if

α ≤ f − ε1, (63)
β ≤ f − ε2, (64)

where 0 < ε1, ε2 ≤ f are any constants.

Proof. First, we will show that the vertex degree of Gn,n,p is bounded with high probability when
n → ∞. Since the degree of each node in Gn,n,p is the sum of n independent Bernoulli random
variables with parameter p. Then for a node i ∈ V (G), by applying Chernoff bound, we can obtain

P(di − µ ≤ −δµ) ≤ e−µδ
2/3,

where di represents the degree of node i, δ is a constant satisfying 0 ≤ δ ≤ 1, µ is the expected
degree of node i, i.e., µ = np. By applying the union bound, we have

P(δ(Gn,n,p) ≤ (1− δ)np) ≤ 2ne−npδ
2/3 = 2elogn−npδ2/3, (65)

where δ(G(n, n, p)) is the minimum degree of graph G(n, n, p). Let δ = 1
2 , and apply the inequality

p ≥ 12(1+η) log n
n , we can rewrite (65) as

P
(
δ(Gn,n,p) ≤

1

2
np

)
≤ 2elogn−npδ2/3 ≤ 2

nη
= o(1),

which implies that

P
(
δ(G(n, n, p)) >

1

2
np

)
= P (δ(G(n, n, p)) > 6(1 + η) log n) ≈ 1.

As δ(G(n, n, p)) is the minimum degree of the graph G(n, n, p), for every node i in G(n, n, p), we
also have

P (di > 6(1 + η) log n) ≈ 1. (66)

Next, consider the number of corrupted neighbors for each normal node. Suppose i ∈ L, then the
probability of one outgoing edge of i leading to corrupted nodes is β. Hence, the expected number of
corrupted neighbors for node i is βdi. Let Yj be a random variable which represents the expected
number of corrupted neighbors of node i given that the first j edges leaving i have been revealed.
Then the sequence of random variables Y0, · · · , Ydi is a martingale such that

|Yj+1 − Yj | ≤ 1, ∀j ∈ [di].

39

Note that among the sequence of random variables, Y0 is the expected number of the infected
neighbors of node i, i.e., Y0 = βdi, Ydi is the expected number of corrupted neighbors of node
i when all of the outgoing edges have been revealed, which is exactly the number of corrupted
neighbors of node i. Thus, according to Azuma’s Inequality, we have

P (Ydi − Y0 ≥ λdi) ≤ e
− λ2d2i

2
∑di
j=1

12 = e−
1
2λ

2di . (67)

Let λ = f − β, according to (63), we have λ ≥ ε1. By combining (66) and (67), we can derive that
the following inequality holds with high probability

P(Ydi − Y0 ≥ λdi) = P(Ydi ≥ fdi) ≤ e−
1
2λ

2di < e−
1
2 ε

2
16(1+η) log n =

e3(1+η)ε21

n
= o(1),

which implies with high probability

P(Ydi < fdi) ≈ 1.

Thus we complete the proof for the nodes in L, the proof for nodes in W is similar. �

I Sign Determination

In this section, we present the details about the sign pattern determination for rank-one matrices.

In the crowdsourcing problem, we allow the existence of the adversaries, which can lead to some
of the entries of Ĉ are corrupted. Besides, Ĉ is an empirical estimate for ss>. In other words, it is
possible that we can not find a sign pattern for s which perfectly matches with the sign pattern of Ĉ.
Therefore, our goal is to find a sign pattern for s to minimize the number of mismatching elements of
sign(ss>) and sign(Ĉ).

To start with, consider a two-coloring problem: given a graph, color every node with one of two
colors(e.g., red or blue) minimizing the number of "violations", where we say a violation occurs for
each edge connecting nodes of the same color. Next, we will transfer our sign pattern determination
problem to a two-coloring problem. Suppose the nodes value of node i is |si|, sign + represent color
blue, sign − represent color red. If an edge has two same color incident nodes, we call this edge is a
"same color" edge, otherwise is an "opposite" color edge. In our problem, we are given the pattern
of the edges, and we aim to color the nodes. To be consistent with the two coloring problem, we
introduce some new nodes and edges as following: if an edge is an "opposite color" edge, we will put
a new node in the middle of this edge, then the original "opposite color" edge becomes two "same
color" edges. The obtained new graph is denoted as G̃. Thus, if we can find a way to color G̃ so that
it satisfies the two-coloring rule, we also can get the sign pattern we are looking for. In Figure 8, an
example is provided to illustrate this process.

1 1

2 2

3 1

1 1

2 2

3 1

1 -1

-2 2

3 1

-1

2

-4

-2

3

-1 2

-4 -2

3

Figure 8: Illustration for the sign pattern determination with a two-coloring method

The next step is to solve the two-coloring problem. To do that, we define a stochastic matrix A
for graph G̃ as following: let Aij = 1

di
, Aji = 1

dj
whenever nodes i and j are connected, and

Aij = Aji = 0 otherwise. Then compute the eigenvector v of A corresponding to the smallest
eigenvalue. Finally assign + to node i if vi > 0 and − to node i if vi < 0.

There are two reasons why this approach works for two-coloring problem. First, suppose there
exists a perfect assignment solution for this issue. The the graph G̃ is a bipartite graph. In this case,
according to [23], the smallest eigenvalue of A will be −1 and the corresponding eigenvector will be

40

composed of +1s and −1s which corresponds to different components of the bipartite graph. Second,
in the event that there is no perfect assignment, according to [23],

λr(n) = min
∑
E(G̃)

2xixj , (68)

s.t.
n∑
i=1

dix
2
i = 1,

where λr(n) is the smallest eigenvalue of A, xi, xj are the elements of the eigenvector corresponding
to λr(n) which are connected by edge (i, j). It can be seen the eigenvector x is the solution of the
optimization problem (68) which minimizes the number of the same color edges of G̃.

41

	1 Introduction
	2 Related Work
	3 Problem Setup and Formulation
	4 The M-MSR method
	5 Convergence Analysis
	5.1 Applying M-MSR to crowdsourcing

	6 Experiments
	6.1 Exact Recovery

	7 Discussion and Conclusions
	A Baselines
	A.1 Crowdsoucing
	A.2 Exact Recovery

	B Additional baselines and the two-coin model
	C Synthetic Experiments
	D Real dataset Experiments
	E Datasets
	F Further Experiments: Exact Recovery
	G Convergence Analysis for Arbitrary Graph
	G.1 Proof of Theorem 2

	H Convergence Analysis for Random Graphs
	H.1 r-connected for random bipartite graph
	H.2 r-robustness for random bipartite graph
	H.3 Proof of Theorem 1
	H.4 Further Results

	I Sign Determination

