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ABSTRACT

The feedback ofmountain waves and low-level blocking on an idealized baroclinically unstable wave passing

over an isolated ridge is examined through numerical simulation. Theoretical analysis implies that the volume-

integrated perturbation momentum budget is dominated bymean-flow deceleration, the divergence of vertical

fluxes of horizontal momentum, and the Coriolis force acting on the perturbation ageostrophic wind. These do

indeed appear as the dominant balances in numerically computed budgets averaged over layers containing 1)

wave breaking in the lower stratosphere, 2) flow blocking with wave breaking near the surface, and 3) a region

of pronounced horizontally averaged mean-flow deceleration in the upper troposphere where there is no wave

breaking. The local impact of wave breaking on the jet in the lower stratosphere is dramatic, with winds in the

jet core reduced by almost 50% relative to the no-mountain case. Although it is the layer with the strongest

average deceleration, the local patches of decelerated flow are weakest in the upper troposphere. The cross-

mountain pressure drag over a 2-km-high ridge greatly exceeds the vertical momentum flux at mountain-top

level because of low-level wave breaking, blocking, and lateral flow diversion. These pressure drags and the

low-level momentum fluxes are significantly different from corresponding values computed for simulations

with steady forcing matching the instantaneous conditions over the mountain in the evolving large-scale flow.

1. Introduction

When a stratified airstream crosses a mountain,

pressure perturbations may develop along the surface

that tend to accelerate the mountain in the direction of

airflow. An equal and opposite ‘‘pressure drag’’ is ex-

erted back on the atmosphere by the topography, and

gravity waves (mountain waves) are generated that

transport momentum downward. In the simplest case,

this downward transport occurs between some level

subject to ‘‘gravity wave drag’’ where vertically propa-

gating mountain waves dissipate and the surface where

the momentum flux balances the pressure drag. That

simplest case may be analyzed by linearizing the gov-

erning equations, with Coriolis forces neglected, about a

steady horizontally uniform flow in which all perturba-

tions are assumed to vanish sufficiently far upstream

and downstream of the topography (Eliassen and Palm

1960). The important influence of such gravity wave

drag on the larger-scale flow has long been recognized

(Sawyer 1959; Lilly 1972; Smith 1979b), and this effect

is parameterized in all coarse-resolution weather and

climate models [see Kim et al. (2003) for a review]. A

large number of major field programs have attempted to

observe mountain waves and their associated momen-

tum fluxes in an ongoing effort to better understand

mountain-induced gravity wave drag and improve its

parameterization in weather prediction and climate

models (Lilly et al. 1982; Davies and Phillips 1985;

Bougeault et al. 1997; Smith et al. 2007; Doyle et al.

2011; Fritts et al. 2016). Numerical simulations of cases

observed during these field programs have provided

increasingly detailed representations of the mountain

waves and momentum fluxes for specific real-world

conditions (e.g., Kruse et al. 2016), but such case stud-

ies are not easily generalizable to describe generic pro-

totypical behaviors.

The pioneering theoretical work by Eliassen and Palm

(1960) on momentum transport by vertically propagat-

ing mountain waves has been extended in several ways

to create a large body of work, much of which is focused

on terrain-generated perturbations in steady environ-

mental flows without the inclusion of the Coriolis force

f. Among those studies that include the Coriolis force,

but retain the assumption of a steady large-scale envi-

ronment, Jones (1967) and Bretherton (1969) examinedCorresponding author: Dale R. Durran, drdee@uw.edu
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vertical momentum flux profiles in linear waves when

f is nonzero, and Ólafsson and Bougeault (1997) and

Wells et al. (2005) conducted numerical simulations

of flows over isolated three-dimensional ridges. Studies

that include temporal variations in the large-scale flow

impinging on themountain include Lott and Teitelbaum

(1993a,b), who considered linear mountain waves in a

two-dimensional flow with constant basic-state Brunt–

Väisälä frequency N and a time-varying, vertically uni-

form wind U(t), and Chen et al. (2005), who examined

the momentum fluxes transported by finite-amplitude

mountain waves triggered by the passage of a large-scale

barotropic jet over an isolated 3D ridge.

Relatively few idealized theoretical studies have fo-

cused on the large-scale response generated by breaking

mountain waves. Nonlinear 2D numerical simulations

by Durran (1995) demonstrated that, at least in the ab-

sence of Coriolis forces, the flow deceleration that de-

velops in response to wave breaking can take the form of

very small perturbations spread over a very large hori-

zontal domain. When Coriolis forces are present, one

might expect geostrophic adjustment to impose an ad-

ditional constraint on the scales affected by the decel-

erative forcing. Chen et al. (2007), expanding on Chen

et al. (2005), found that wave breaking produced po-

tential vorticity (PV) anomalies that gradually orga-

nized into large-scale structures downstream from the

mountain. These PV anomalies were associated with

quasigeostrophically balanced perturbation velocities at

the wave breaking level, which reduced a 20m s21 jet

maximum by 5m s21.

Because Chen et al. (2007) considered a barotropic

jet, in which N and U were constant with height at any

given x, y, and t, wave breaking occurred at the low al-

titude of 3 km, whereas in typical real-world flows, an

important wave-breaking region develops in the lower

stratosphere in response to increases inN and decreases

inUwith height (e.g., Lilly andKennedy 1973). The goal

of this paper is to examine the upscale influence of

terrain-induced perturbations in a prototypical mid-

latitude system. We address this problem using numer-

ical simulations of the same large-scale environment

interacting with the same topography considered in

Menchaca and Durran (2017, hereafter MD17), which

consists of an idealized midlatitude cyclone growing in a

baroclinically unstable flow that encounters an isolated

3D ridge. In the following we report on the momentum

fluxes and mean-flow perturbations that develop in as-

sociation with the waves and low-level blocking trig-

gered by that ridge.

Those details of the numerical simulations that differ

from MD17 are summarized in section 2. The relation-

ship between the cross-mountain pressure drag and the

lower-tropospheric momentum fluxes is presented

in section 3. Section 4 examines the momentum fluxes

and the horizontally averaged flow response for the

2-km-mountain case, while the local large-scale flow

response for this case is covered in section 5. Section 6

contains the conclusions.

2. Simulation details and overview

The large-scale flow and the initiation of the cyclone

are described in MD17, along with the shape of the

isolated ridge, whose approximate x and y extents are

80 and 640 km, respectively. The same two mountain

heights are again considered: 500 m and 2 km. The

500-m-mountain simulations are exactly those described

in MD17, but the 2-km-mountain simulations, while

very similar, were repeated using slightly higher reso-

lution and a much larger nested grid to better capture

the small-scale PV anomalies near the mountain and

their interaction with large scales well downstream (the

nesting is one way). The difference between the nu-

merical parameters for the two different mountain

heights is therefore, that the 500-m-mountain simulation

uses Dx5Dy5 15 km on the outer grid and Dx5
Dy5 5 km on the nest, which extends over the region

2380# x# 1165 km, 21125# y# 750 km, whereas the

2-km-mountain simulation uses Dx5Dy5 12 km on the

outer grid and Dx5Dy5 4 km on the nest, which covers

the region 2372# x# 2868 km, 21128# y# 2244 km.

In these new 2-km simulations, the surface roughness

was also increased to 0.1m and the boundary layer

height was set at model level 6, roughly at a height of

282m. As in the coarser-resolution 2-km-mountain

simulations in MD17, the damping layer begins at

14.5 km and is 6 km deep,1 and there are 80 vertical

levels spaced at 30m near the surface, withDz increasing
to 400m near the model top. For each simulation with

a mountain, a second no-mountain simulation was con-

ducted using identical model parameters (grid spacing,

nest size, etc.), except that the surface was flat.

An overview of the evolution of the large-scale flow is

provided in Fig. 1, which shows surface isobars and the

height of the 500-hPa surface at 1-day intervals begin-

ning 4.5 days after an isolated PV anomaly was in-

troduced to a baroclinically unstable zonal jet at the start

of the simulation. At 4.5 days, the surface cold front has

1 There is little sensitivity to the height of the damping layer in

the 2-km-mountain simulation because the mountain is high

enough to produce vigorous wave breaking below the damping

layer. There is much more sensitivity in the 500-m case, and in that

case, the base of the damping layer was set at 20.5 km. See MD17

for further discussion.
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almost reached the mountain (indicated by the black

vertical bar). The cyclone continues to deepen, and

the upper-level wave continues to amplify throughout

the remainder of the simulation, although the cross-

mountain flow gradually becomes more zonal as the

low center translates downstream of the ridge. The

mountain-wave response generated by this flow across

the 2-km ridge is shown in an east–west vertical cross

section along the centerline of the ridge in Fig. 2 for the

same four times shown in Fig. 1. Significant wave activity

starts to develop just before the cold front strikes the

mountain at 4.5 days, although wave breaking has not

FIG. 1. Surface isobars (black lines at 8-hPa intervals) and 500-hPa height (color fill at 100-m intervals) for the

developing cyclone at (a) 4.5, (b) 5.5, (c) 6.5, and (d) 7.5 days. The mountain is depicted by the black vertical bar at

x5 0 km in all panels. The nested grid for the 2-km-mountain simulation is shown in by the red dashed square in (a).

Lows and highs are labeled by an L and H, respectively.

FIG. 2. East–west vertical cross sections of w (colors; 40-cm intervals) and u (contours; 5-K intervals) across the

centerline of the mountain at (a) 4.5, (b) 5.5, (c) 6.5 and (d) 7.5 days.
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yet begun in the stratosphere (Fig. 2a). The mountain

waves remain well developed through the remainder of

the simulation, with stratospheric wave breaking present

at 5.5, 6.5, and 7.5 days, as evident from the regions of

low static stability with almost vertically oriented isen-

tropes. At all times there is some degree of low-level

blocking upstream of the ridge. The complex evolution

of the waves and the blocked flow is discussed in detail

in MD17.

3. Pressure drag and lower-tropospheric
momentum fluxes

In this section we examine the evolution of the pres-

sure drag and its relation to the vertical momentum flux

at levels slightly above the mountain. We will also

compare the behavior for the full evolving flow with

waves generated by steady forcing in 3D simulations

representative of the large-scale environment at days

4.5–7.5.

The ridge-perpendicular (x) component of the total

pressure drag exerted on the atmosphere by the topog-

raphy within the subdomain [x1, x2]3 [y1, y2] may be

written as

P(t)52

ðx2
x1

ðy2
y1

p[x, y,h(x, y), t]
›h

›x
dy dx . (1)

Even if no waves are present, P will include contribu-

tions from horizontal variations in the synoptic-scale

pressure field. Letting primed variables denote the dif-

ference between a field in the simulation with terrain

and the corresponding field in the simulation without

terrain, the mountain-induced component of the pres-

sure drag is

P0(t)52

ðx2
x1

ðy2
y1

p0[x, y,h(x, y), t]
›h

›x
dy dx . (2)

Like p0, the terrain-induced velocities in our simula-

tion will be defined as the difference between the fields

in corresponding pairs of simulations with and without

mountains. In our analysis, the vertical flux of the

terrain-induced x-component momentum within the

subdomain [x1, x2]3 [y1, y2] is computed as

M0(z, t)5
ðx2
x1

ðy2
y1

ru0w0dy dx . (3)

For all analyses in this section, (x1, x2)5 (2372, 1145) km,

(y1, y2)5 (21128, 172) km, which gives the maximum

sized box having the terrain centered in the north–south

direction that fits within the fine-nest subdomain used in

the 500-m-high-mountain simulation.

a. 500-m-high mountain

The full pressure drag P, the mountain-induced

component P0, and the momentum flux M0 across a

horizontal plane 50m above mountain top are com-

pared in Fig. 3 for the 500-m ridge. The full pressure

drag P from the evolving simulation (solid black line)

is positive early in the simulation when the low pres-

sure center is northwest of the ridge. As the cyclone

propagates zonally, the pressure drag quickly be-

comes negative and increases in magnitude as the cold

front impinges on the terrain, reaching an extremum

of almost 273 1010 N at 6.4 days before rapidly de-

creasing in magnitude during the remainder of the

simulation. The mountain-induced pressure drag P0

(dashed blue line) shows a similar evolution, but is

weaker in magnitude than P, achieving values of

about 85% of the full pressure drag at 6.4 days. Al-

though the synoptic-scale contribution P2P0 is not

completely negligible, the mountain-induced com-

ponent is clearly dominant. Neglecting the Coriolis

force, linear theory for the steady inviscid mountain-

wave problem implies the pressure drag at the surface

equals the vertical momentum flux. The 500-m-high

mountain does not generate a highly nonlinear response,

FIG. 3. Pressure drags and momentum fluxes plotted as func-

tion of time for the 500-m-mountain simulations: full pres-

sure drag P (solid black), mountain-induced pressure drag P0

(dashed blue), linear steady-state estimate of the drag Plin

(green solid), and simulated momentum flux M0 a z5 550m

(red). Also shown are the pressure drags and momentum fluxes

(black and red dots, respectively) from steady 3D simulations

forced by conditions representative of those over the mountain

at 4.5, 5.5, 6.5, and 7.5 days. (Red and black dots almost coincide

at 7.5 days.)
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and as evident in Fig. 3, the mountain-induced drag is

approximately equal to the momentum flux.2

Simple estimates of the cross-mountain pressure drag

are potentially useful for parameterizing the subgrid-

scale influences of mountain waves and topographic

forcing. Bessemoulin et al. (1993) found that the linear

pressure drag for steady 2D flow of uniform speedU and

Brunt–Väisälä frequency N over a Witch of Agnesi

mountain of height h0 in the hydrostatic nonrotating

limit,

P
lin
52

p

4
rUNh2

0 , (4)

gave a good estimate of the observed pressure drag per

unit distance along the Pyrenees ridge during the

Momentum Budget over the Pyrenees (PYREX) Ex-

periment. The cross-mountain width of the Pyrenees is

similar to the roughly 80-kmwidth of our ridge, and they

are a larger amplitude obstacle, with many peaks higher

than 3km. Thus, on the basis of Bessemoulin et al.

(1993), one might expect that Plin would give a good

estimate of the simulated mountain-induced drag over

our 500-m-high ridge. We computed Plin (green line in

Fig. 3) using values of U and N obtained from vertical

averages between the surface and the tropopause3 at a

point 100km upstream of the center of the ridge. In

contrast to the results in Bessemoulin et al. (1993), this

simple estimate of the pressure drag gives a poor ap-

proximation of the mountain-induced drag over most of

the 4-day period shown in Fig. 3. In particular, Plin gives

substantially more drag than P0 at 3.5 days, does a fairly
good job between 4 and 5.5 days, and then completely

fails to track the subsequent variations in the mountain-

induced drag by remaining roughly constant for the last

2 days, during which time P0 rapidly drops to, and rises

from, a negative extremum at 6.4 days. The errors in Plin

may be due to the transient nature of the flow, the

crudeness with which (4) approximates the true linear

solution in the presence of spatially nonuniform cross-

mountain winds and static stabilities, or to nonlinearity.

Errors arising from the steady-state assumption can

be isolated by analyzing steady-state 3D simulations

for a flow over an identical ridge forced by steady up-

stream conditions matching the large-scale u and u in

a y–z vertical plane 200km upwind of the ridge. These

steady 3D simulations were conducted in a domain

identical to the fine-mesh subdomain in the evolving-

flow simulation for conditions corresponding to days 4.5,

5.5, 6.5, and 7.5.4 The steady-state pressure drag Pss is

the time-mean value from the final 5 h of each 24-h

simulation, by which period the pressure drag has be-

come almost steady. Plotted as a black dot in Fig. 3

for each of the four simulation times, Pss agrees well

with both P0 and Plin at 4.5 and 5.5 days. At 6.5 days,

Pss roughly agrees with Plin, but not P
0, suggesting that

flow transience plays a significant role in generating the

large extremum in the terrain-induced pressure drag in

the full simulation. At 7.5 days, Pss agrees with P0, but
not Plin, suggesting that the error in Plin arises from an

overly crude representation of the actual structure of

the background flow, or perhaps nonlinearity.

To estimate the potential impact of nonlinearity, we

again use values of N and U averaged through the

depth of the troposphere to evaluate the nonlinearity

parameter Nh0/U. At 4.5 days, Nh0/U5 0:29, and at

7.5 days it is 0.24. In a true constant-N and constant-U

atmosphere, the surface pressure drag for such values

of Nh0/U would be only about 10% higher than that

predicted by linear theory (Epifanio and Durran

2001, their Fig. 3). But when there are abrupt varia-

tions in the static stability, such as a factor-of-2 change

at the tropopause, the deviations from the drag pre-

dicted by linear theory can easily exceed 50% when

Nh0/U5 0:25 (Durran 1992, his Fig. 7). Nonlinear ef-

fects are, therefore, a possible cause of the differences

between P0 and Plin.

The momentum flux 50m above mountain-top level

Mss was also computed for the four steady-state simu-

lations. Those values are plotted as red dots in Fig. 3.

The agreement between Mss and Pss is reasonably good

and similar to that between P0 and M0 for the evolving

flow.

b. 2-km-high mountain

Figure 4 shows the results of a similar analysis for the

2-km-high mountain. The increase in mountain height

makes the mountain-induced drag much larger than the

synoptic-scale component, so thatP0 agrees withPmuch

better than in the 500-m case. If the upstream U and N

are unchanged, (4) implies the factor of 4 increase in

the mountain height will increase the magnitude of the

linear drag by a factor of 16 without substantially

modifying its temporal variation. The shapes of the P0
lin

2 The termsM0 and P0 would also be equal in the steady inviscid

finite-amplitude case if 1) the flow at the surface is parallel to the

topography, and 2) the horizontal momentum fluxes far from the

mountain through vertical sidewalls, extending from the surface

to a height of 50m above mountain top, are unperturbed (i.e., the

disturbance at low levels vanishes far away from the mountain).
3 The value of r for Plin is the vertical average between the sur-

face and twice the mountain height.

4 The initialization procedure for the steady-flow simulations is

described in detail in section 4b from MD17.

SEPTEMBER 2018 MENCHACA AND DURRAN 3289

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/75/9/3285/3929936/jas-d-17-0396_1.pdf by guest on 17 N
ovem

ber 2020



curves in Figs. 3 and 4 are indeed similar, although small

changes in U and N resulting from upstream influences

from the higher topography reduce the increase inP0
lin to

about a factor of 14. As in the 500-m case, the agreement

between P0 and P0
lin is very poor.

In contrast to the 500-m case, the momentum flux

(now calculated at z5 2050m) is much smaller than

P0. For example, the negative extremum in M0 at

6.8 days is about half the magnitude of the extremum

in P0. A similar factor-of-2 difference between the

simulated pressure drag and the low-level momen-

tum flux averaged over the entire Pyrenees moun-

tains was obtained in a case study from the PYREX

(Bougeault et al. 1993, their Fig. 22). Why is the

momentum flux so much smaller than the mountain-

induced drag in our simulations? Linear theory suggests

that the wave drag and momentum fluxes associated

with a relatively wide sinusoidal mountain are re-

duced as f /Uk approaches one from below; here k is

the wavenumber and f is the Coriolis parameter.5

The pressure drag in the f 6¼ 0 hydrostatic case for

uniform flow across sinusoidal ridges with ampli-

tude h0/2 is

P
lf
52

p

4
rUNh2

0

�
12

f 2

U2k2

�1/2

. (5)

When Coriolis effects are not negligible, the momentum

flux does not equal Plf ; instead

P
lf
5

ð2p/k
0

r(u0 2 fh0)w0 dx , (6)

where h0 is the displacement parallel to the y coordinate

produced by the perturbation y-component velocities

(Jones 1967; Bretherton 1969). In the more linear

500-m-mountain case, Coriolis effects are sufficiently

small that P0 provides a good estimate of M0, implying

that the Rossby number associated with the environ-

mental cross-mountain flow is large enough to make the

fh0w0 term in (6) insignificant. Nonlinear processes are

therefore the likely source of the difference between

P0 and M0 in the 2-km-mountain case. Figure 2 suggests

that wave breaking below 2km contributes to the

reduction of M0 relative to P0. In addition, low-level

blocking associated with flow splitting and lateral di-

version around the ends of the ridge may contribute to

the pressure drag without efficiently generating verti-

cally propagating waves, thereby further reducing M0

relative to P0. Since lateral diversion and low-level

breaking can both create wakes that decay slowly

downstream, the agreement between the pressure drag

and momentum flux might be better if we focus only on

the short-wavelength contributions to P0.
The short-wavelength contributions to the mountain-

induced surface pressure drag were therefore estimated

in the following manner. First, a horizontally uniform

hydrostatically balanced reference profile was sub-

tracted from the total pressure at the surface to obtain

the field ~p(x, y, t) in the 2-km-mountain simulation.

This procedure removes the signal in the surface pres-

sure field associated with changes in topographic height.

After calculating the analogous ~p(x, y, t) at the corre-

sponding heights in the no-mountain simulation,

the two fields were differenced to obtain ~p0(x, y, t).
The short-wavelength contributions to surface pressure

perturbation p0
sw(x, y, t) were evaluated by applying an

eighth-order Butterworth filter to ~p0(x, y, t) with a cutoff
wavelength parallel to the x axis of lx 5 200 km. Finally,

the short-wavelength mountain-induced pressure drag

was computed as

P0
sw(t)52

ðx2
x1

ðy2
y1

p0
sw(x, y, t)

›h

›x
dy dx. (7)

Before examining the short-wavelength pressure

drag, it is helpful to consider the distribution of total,

short-wavelength, and long-wavelength surface pres-

sures relative to the mountain. Figure 5 shows p0
sw, along

with the total mountain-induced pressure at the height

of the topography p0[x, y, h(x, y)], and their difference

at 6.5 days into the 500-m-high-mountain simulation.

The p0 field shows a clear signature of high pressure on

FIG. 4. As in Fig. 3, but for the 2-km mountain. The momentum

fluxes are now computed at z5 2050m. Also plotted are the short-

wavelength pressure drag P0
sw (dot–dashed blue) and the un-

blocked pressure drag P0
ub (long dashed blue).

5 Smith (1979a) and Gill (1982, his Fig. 8.10) give the behavior

as a function of mountain width for a Witch of Agnesi mountain.
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the upstream slopes, with low pressure on the lee

(Fig. 5a), and as apparent in Fig. 5c, along the slopes of

the topography, the dominant contribution to p0 is

provided by p0
sw. The long-wavelength components of

themountain-induced pressure field p0[x, y, h(x, y)]2 p0
sw

are maximized over flat terrain, upstream and down-

stream of the ridge, where they make no contribution

to the pressure drag (Fig. 5b). Like the extrema in p0

itself, those in p0[x, y, h(x, y)]2 p0
sw are shifted north

and rotated clockwise with respect to the center of

the ridge.

The p0[x, y, h(x, y)] field for the 2-km-mountain case

is plotted along with p0
sw, and their difference at

t5 6:5 days in Fig. 6. In the 2-km case, the mountain

again produces a large region of negative pressure

anomalies along the lee slope, and the distribution of

the p0
sw field is similar to, though 2.5 times larger in

amplitude than, that in the 500-m case (Fig. 6c). But in

contrast to the 500-m case, there is a pronounced

large-scale signal in the perturbation pressure field

with positive values in the north and negative values

in the south (Figs. 6a,b). Much stronger large-scale

pressure perturbations are now also present over the

ridge itself, accounting for the significant difference

between P0 and P0
sw in the 2-km-mountain case evident

in Fig. 4.

The pattern of p0[x, y, h(x, y)], with positive values in

the north and negative values in the south, is grossly

FIG. 5. Surface pressure perturbations induced by the 500-m-high mountain at t5 6:5 days: (a) total p0[x, y, h(x, y)], (b) large-scale
contribution p0[x, y, h(x, y)]2p0

sw, and (c) short-wavelength contributions p0
sw. Contour interval is 1-hPa, terrain is contoured at 50 and

450m. The axes are stretched along the x coordinate for visibility.

FIG. 6. As in Fig. 5, but for the 2-km mountain. The terrain is contoured at 200m and 1.8 km.
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similar to that obtained byWells et al. (2005) for a more

nonlinear case with constant N and U. Both our Fig. 6a

and Fig. 8b of Wells et al. (2005) also show a positive

extremum on the windward slopes near the north end

of the mountain and a negative extremum well down-

stream of the south end of the ridge. The intense trough

of wave-induced low pressure along the lee slopes is

not, however, apparent in Fig. 8b of Wells et al. (2005).

Returning to the relationship between pressure drag

and the momentum flux, in the 500-m-mountain case,

Psw agrees very well with the both P0 and M0 (not

shown). In the 2-km-mountain case, Psw (dot–dashed

blue line in Fig. 4) is a much better approximation to

M0 than is the full P0. Prior to 4.5 days, P0
sw exceeds M0

by as much as a factor of 2. After 4.5 days, as the

mountain waves strengthen, M0 modestly exceeds or

roughly approximates P0
sw. What physical processes

contribute to the difference between P0 and P0
sw?

As previously noted for simulations of flow over

high ridges by Ólafsson and Bougeault (1997) and

Wells et al. (2005), the pressure drag on the 2-km-high

mountain is created by two different processes: by the

blocking and diversion of the low-level flow around

the ends of the ridge (MD17, see their Fig. 19c) and

by a strong mountain wave in the overlying cross-

mountain flow (Fig. 2c). To estimate the relative

contributions of each of these processes to the total

pressure drag, the drag caused by the unblocked flow

was evaluated using the concept of the ‘‘dividing

streamline’’ (Snyder et al. 1985), which separates the

low-level flow that passes around an obstacle from

the flow that passes over the obstacle. We attribute the

pressure drag caused by blocking to the flow below the

dividing streamline and suppose the mountain-wave-

induced pressure drag is contributed by the flow above

the dividing streamline.

On the upstream side of the ridge, we estimated the

top of the diverted flow (i.e., the height of the di-

viding streamline) hb(y) at each point along the ridge

as the elevation at which the cross-mountain veloc-

ity component upstream of the crest drops below

1m s21. The threshold for flow diversion is set slightly

larger than zero because, as noted by Ólafsson and

Bougeault (1997), the zones of flow stagnation and

reversal that are easily identified in free-slip flow

disappear in the presence of surface friction. We es-

timated the leeside limit of the contribution to the

pressure drag from the mountain wave in flow above

the dividing streamline as occurring at the height hl(y)

on the lee slope below the wave trough, where ›p0/›x
changes sign. This choice is motivated by an alternate

expression for surface pressure obtained using in-

tegration by parts:

2

ðx2
x1

p0›h
›x

dx52p0(x
2
)h(x

2
)1 p0(x

1
)h(x

1
)

1

ðx2
x1

h
›p0

›x
dx . (8)

Note that the first two terms on the right-hand side are

zero if the terrain drops to zero at x1 upstream and at

x2 downstream of the ridge, and that since ›p0/›x is

zero at the x location where h(x, y)5 hl(y), the sensi-

tivity of the unblocked pressure drag to this choice of

the downstream limit is at a local minimum with re-

spect to x.

The field of unblocked surface pressure was therefore

evaluated as

p0
ub(x, y)5

8<
:

p0(x, y,h), h(x, y). h
b
(y) and x# x

crest

p0(x, y,h), h(x, y). h
l
(y) and x. x

crest

0 , otherwise

(9)

and the unblocked pressure drag P0
ub was calculated

using the integral in (7) with p0
sw replaced by p0

ub. The

unblocked pressure drag, which is shown as the long

dashed line in Fig. 4, is generally larger than the

blocked contribution (P0 2P0
ub) to the total drag.

Around 6.5 days, when the drag is strongest, the un-

blocked contribution is roughly 75% of the total

drag. Nevertheless, there are periods around 5.5 and

7.5 days when the unblocked contribution is slightly

less than half of the total pressure drag. Figure 19b in

MD17 suggests that the relative contribution of the

mountain wave to the total drag may be less around

5.5 days because strong waves are restricted to the

northern half of the ridge. At 7.5 days, the waves in the

cross-mountain flow extend along the full north–south

extent of the ridge, but are weaker than at 6.5 days

(Figs. 2c,d), while strong southerly flow as developed

in the blocked layer upstream of the ridge (MD17,

see their Fig. 19c).

The unblocked pressure drag gives a worse approxi-

mation than P0
sw to the momentum flux. In particular

P0
ub is larger than both P0

sw and M0 except for a brief

period around 5 days. This could be explained by

low-level wave breaking, which would lead to enhanced

mountain-wave-induced drag, but leaves a long-

wavelength wake downstream that would not project

onto the short-wavelength pressure drag. In summary,

the full mountain-induced pressure drag P0 exceeds the
momentum flux M0 for two reasons: 1) flow blocking

and 2) wave breaking near and below mountain top

level. Conceptually, the extent to which jM0j is reduced
from jP0j by blocking can be roughly approximated as
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max(0, jP0 2P0
ubj), and the extent to which this differ-

ence is further reduced by low-level wave breaking can

be crudely approximated as max(0, jP0
ub 2P0

swj).
The steady-forcing runs, again initialized with syn-

optic conditions representative of the large-scale cross-

mountain flow, produce much smaller pressure drags

and momentum fluxes (black and red dots in Fig. 4) than

the evolving-flow simulation. The differences between

the evolving-flow and the steady-forcing runs are much

greater when the mountain height is increased from

500m to 2km, suggesting that nonlinear processes en-

hance the influence of nonsteady forcing on the pressure

drag and momentum fluxes. The differences between

the pressure drag and the momentum flux in each of the

four steady-forcing runs is also much greater for the

2-km-mountain than for the 500-m case, suggesting that

nonlinear processes like flow blocking and low-level

wave breaking again are playing important roles in the

higher-mountain simulations.

4. Momentum flux and horizontally averaged flow
response: 2-km-mountain case

a. Vertical distribution of momentum fluxes and
flow deceleration

Because the influence of the 2-km-high mountain on

the large-scale flow is much greater than that of the

500-m mountain, we will focus on the impact of the

larger mountain throughout the remainder of this paper.

The vertical divergence of the momentum flux exerts a

force on the large-scale cross-mountain flow. Values

of M0 are plotted as a function of z and t for the

2-km-high-mountain simulation in Fig. 7.6 Here and

throughout the remainder of the paper, horizontal av-

erages are computed over the entire 4-km fine mesh, in

which case (x1, x2)5 (2372, 2868) km and (y1, y2)5
(21128, 2244) km in (3). Large low-level vertical gra-

dients inM0 develop as a consequence of low-level wave

breaking around 4 days, well before frontal passage

(MD17, their Fig. 13). The fluxes and low-level vertical

gradients strengthen up to day 6.8 and then gradually

decrease throughout the remainder of the simulation.

Care should nevertheless be exercised when interpret-

ing momentum flux gradients below mountain-top level

because those values include the pressure drag on the

portion of the topography extending above that level,

and as emphasized in connection with Fig. 4, the terrain-

induced pressure drag is much larger than the vertical

momentum flux.

Wave breaking aloft, in the layer 12# z# 14 km,

begins around 5 days and continues through 7 days,

creating a second region of vertical momentum flux

divergence near the top of the domain. The horizon-

tally averaged values of u0 that develop in response

to the vertical divergence of M0 are plotted as a func-

tion of z and t in Fig. 8. For a given vertical momentum

flux divergence, stronger deceleration occurs aloft

because of the decrease in density with height. Before

frontal passage at 4.5–5 days, the velocity perturba-

tions are relatively small and exhibit little vertical

variation. By 7.5 days the horizontally averaged flow

is decelerated at all levels, with the most intense

deceleration in three layers: 1) in the lower strato-

sphere, 11# z# 14 km, 2) the upper troposphere

7# z# 10 km, and 3) near the surface. The layers of

decelerated flow near the surface and in the lower

stratosphere roughly coincide with regions of mo-

mentum flux divergence shown in Fig. 7. The de-

celerated layer in the upper troposphere, however,

develops at heights where the vertical gradients in

M0 are very weak. In the next section, we will examine

the momentum budget in each of these layers to gain

deeper insight into the factors responsible for the

deceleration.

FIG. 7. The momentum flux M0 (N) in the 2-km-high-mountain

simulation as a function of z and t, horizontally averaged over the

entire nested mesh. At heights zl below the top of the moun-

tain, the mountain-induced pressure drag caused by the portion of

the ridge extending above zl is added to the flux in the free air

(see text).

6 In Fig. 7, momentum flux values at an elevation below the

maximum ridge height (say zl) were computed by integrating

r0u
0w0 at level zl over a horizontal domain excluding the region

pierced by the mountain and adding the terrain-induced pressure

drag caused by the portion of the ridge with height greater than zl .
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b. The momentum budget for finite-amplitude
rotating flow

To analyze the momentum budget, we begin with the

momentum equation along the x coordinate,

›ru

›t
1= � (ruv1 pi)2 rfy5D

u
, (10)

where v is the 3D velocity vector, i is the unit vector

parallel to the x coordinate, andDu represents turbulent

mixing. Let the ageostrophic wind yag be defined such

that

rfy
ag
5 rfy2

›p

›x
; (11)

note that when this relationship is applied on small

scales around the topography, the ageostrophic wind

may not be a small correction to the geostrophic wind.

Let angle brackets denote the integral over a volume

V defined by the cuboid (x1, x2)3 (y1, y2)3 (z1, z2).

Substituting (11) into (10) and integrating over V

yields

›hrui
›t

52[ruu]jx2x1 2 [ruy]jy2y1 2 [ruw]z2z1
1 hfry

ag
i1 hD

u
i ,

(12)

where the first three terms on the right-hand side are

differences of the integrals of the advective fluxes of

ru across the cuboid faces perpendicular to the x, y, and

z axes, respectively: for example

[ruu]jx2x1 5
ðy2
y1

ðz2
z1

ruu(x
2
, y, z) dy dz

2

ðy2
y1

ðz2
z1

ruu(x
1
, y, z) dy dz . (13)

If a budget volume, denoted Vs, extends to the sur-

face, the cross-mountain pressure drag contributes to

the momentum budget, but it may be absorbed into

hfryagis, where h is denotes the integral over Vs. To ap-

preciate the role of the cross-mountain-pressure drag,

note that if n is the outward directed unit normal vector,

then by the divergence theorem

ððð
Vs

= � (ruv1 pi) dV
s
5

ðð
As

(ruv1 pi) � n dA
s
. (14)

Integrating (10) over Vs, the surface integral contri-

butions from the lateral sides and the top of Vs are ex-

actly as in (12). At the lower boundary, if G is a vector

field,

ðx2
x1

ðy2
y1

G � n dA5

ðx2
x1

ðy2
y1

�
G

(x)

›h

›x
1G

(y)

›h

›y
2G

(z)

�
dy dx ,

(15)

where the differential element of surface area dA

satisfies

dA5

"�
›h

›x

�2

1

�
›h

›y

�2

1 1

#1/2

dy dx . (16)

Since there are no advective fluxes across terrain at the

lower boundary, (14) and (15) may be used to express

the integral of (10) over Vs as

›hrui
s

›t
52[ruu]jx2x1 2 [ruy]jy2y1 2 [ruw]j

z2

1 hfryi
s
2 [p]jx2x1 2

ðx2
x1

ðy2
y1

p(x, y,h)

3
›h

›x
dy dx1 hD

u
i
s
. (17)

Substituting

hfry
ag
i
s
5 h fry2= � pii

s
5 hfryi

s
2 [p]jx2x1

2

ðx2
x1

ðy2
y1

p(x, y, h)
›h

›x
dy dx (18)

into (17) yields

FIG. 8. The zonal velocity perturbation u0 (m s21) in the 2-km

simulation as a function of height and time, horizontally averaged

over the entire nested mesh.
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›hrui
s

›t
52[ruu]jx2x1 2 [ruy]jy2y1 2 [ruw]j

z2

1 hfry
ag
i
s
1 hD

u
i
s
, (19)

which is identical to (12) except that there is no contri-

bution from the vertical momentum flux ruw at the

lower boundary.

c. Layer-integrated perturbation momentum budgets

The mountain-induced changes in the momentum bal-

ance in each layer are computed by taking the difference

between the budgets for the mountain and no-mountain

simulations. Neglecting the trivial mountain-induced dif-

ferences in the density, this immediately converts the terms

in (12), (17), and (19) that are linear in the unknowns to

corresponding expressions for the perturbations. Letting

the subscriptsm andn denote fields from themountain and

no-mountain simulations, and recalling that u0 5 um 2un,

the horizontal and vertical momentum flux terms, may be

decomposed as follows:

(ruu)0 5 ru0u0 1 2ru
n
u0 , (20)

(ruy)0 5 ru0y0 1 ru
n
y0 1 ru0y

n
, (21)

(ruw)0 5 ru0w0 1 ru
n
w0 1 ru0w

n
. (22)

In the above, the first terms on the right-hand sides,

which are products of perturbations, represent fluxes

carried by mountain waves and other mesoscale terrain-

induced circulations. When integrated over the face of

a budget volume, the remaining terms on the right-hand

sides, which are first order in the perturbations, are

primarily generated by small terrain-induced changes to

the large-scale flow. Because the mountain-wave scales

are much shorter than those of the large-scale no-

mountain fields, their contributions to expressions like

ðx2
x1

ðz2
z1

ru
n
(x, y

2
, z)y0(x, y

2
, z) dx dz , (23)

integrate approximately to zero in comparison with

the integral of the longer wavelength components of y0

arising from the difference between the mountain and

no-mountain synoptic-scale fields. (An example of the

perturbations that give rise to a large 2runu
0 flux will

be described in connection with Fig. 16.) In the fol-

lowing analysis, the contributions from all the first-

order terms in (20)–(22) are lumped together; they

turn out to be dominated by the horizontal fluxes. In

addition to having little impact compared to the hor-

izontal first-order fluxes, the horizontal averages of

runw
0 1 ru0wn are also much smaller than the hori-

zontal average of ru0w0.

The average deceleration in a layer above the surface

is governed by difference between the mountain- and

no-mountain momentum budgets in (12), which may be

written as

›hru0i
›t

52[ru0u0]jx2x1 2 [ru0y0]jy2y1 2 [ru0w0]jz2z1
1 hfry0agi1F1R , (24)

where F denotes the divergence of the fluxes that are

first order in the perturbations,

F52[2ru
n
u0]jx2

x1
2 [r(u0y

n
1 u

n
y0)]jy2

y1

2 [r(u0w
n
1 u

n
w0)]jz2

z1
, (25)

and R is the residual, which includes any contributions

from mixing across the sides of the budget volume and

the integrated effects of numerical smoothing. If all

terrain-induced perturbations vanish at the lateral

boundaries of the budget volume and there are no tur-

bulent fluxes across the top and bottom faces, and if the

vertical momentum flux is dominated by the mountain

waves, (12) reduces to

[ru0w0]jz2z1 52
›hru0i
›t

1 hfry0agi , (26)

FIG. 9. Evolution of the terms in the perturbation momentum

budget from (24) for the layer between 12 and 14 km: perturba-

tion ageostrophic Coriolis forcing (blue), vertical momentum

flux divergence 2[ru0w0]jz2z1 (dashed red), 2[ru0u0]jx2x1 (solid black),

2[ru0y0]jy2y1 (long-dashed black), perturbation zonal momentum

tendency (green), the sum of the flux divergences that are first

order in the perturbations F (tan dashed line), and residualR (gray

short dashed).
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implying the vertical momentum flux divergence is

balanced by the sum of the domain integrated cross-

mountain deceleration and Coriolis forces associ-

ated with the perturbation meridional ageostrophic

motion.

The individual terms in (24), evaluated for the

12# z# 14-km layer, are plotted as a function of time

in Fig. 9. To make the dimensional budget values

easier to interpret, all the values shown in Figs. 9–11

are divided by the volume of the layer in question and

multiplied by 4 h; as such they represent average

tendencies and forcings over a 4-h period. The

dominant balance in the 12# z# 14-km layer is

clearly between the vertical momentum flux diver-

gence associated with the mountain waves [ru0w0]jz2z1
and hfry0agi. The mean-flow deceleration in this layer

is roughly equal to the sum of these two terms, as

envisioned in (26), but this is somewhat serendipi-

tous because the contributions from the other non-

negligible terms, the residual R and the divergence

of the first-order fluxes F, largely balance. The im-

pact of the zonal and meridional momentum fluxes

(ru0u0 and ru0y0) carried by the mountain waves is

very small.

We now consider the perturbation momentum budget

in the layer between the surface and z5 2 km. Taking

the difference between the mountain- and no-mountain

simulations, (17) becomes

›hru0i
s

›t
52[ru0u0]jx2x1 2 [ru0y0]jy2y1 2 [ru0w0]j

z2

1 hfry0i
s
2 [p0]jx2x1 2

ðx2
x1

ðy2
y1

p0(x, y,h)
›h

›x
dy dx

1F
s
1R1S , (27)

where R is once again the residual, S is the perturbation

surface stress (which has been broken out of the turbu-

lent mixing terms that are otherwise contained in R),

and

F
s
52[2ru

n
u0]jx2

x1
2 [r(u0y

n
1 u

n
y0)]jy2

y1

2 [r(u0w
n
1 u

n
w0)]j

z2
. (28)

The evolution of the terms in (27) are shown in

Fig. 10a. The pressure drag is decelerative, and is

roughly twice the magnitude of the next two largest

terms, which are the vertical mountain-wave mo-

mentum flux through the 2-km level and the sum of

perturbations to the Coriolis force acting on the pertur-

bation meridional wind and the upstream–downstream

pressure difference.

The budget ismuch simplerwhenwritten in terms of the

Coriolis force acting on the perturbation ageostrophic

meridional wind following (19), which when expressed as

the difference between mountain and no-mountain sim-

ulations becomes

FIG. 10. Evolution of the terms in the perturbationmomentum budget for the layer between the surface and 2 km:

(left) from (27) and (right) from (29). Both panels include the vertical momentum flux at 2 km2[ru0w0]jz2 (dashed
red), 2[ru0u0]jx2x1 (solid black), 2[ru0y0]jy2y1 (long-dashed black), perturbation zonal momentum tendency (green),

surface stress (dashed green), the sum of the flux divergences that are first order in the perturbations F (tan dashed

line), and the residual R (gray dashed). Plotted only in the left panel are the pressure drag (solid red) and the

perturbation Coriolis forcing plus the pressure difference across the domain (blue), which are replaced in the right

panel by their sum, the perturbation ageostrophic Coriolis forcing (blue).
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›hru0i
s

›t
52[ru0u0]jx2x1 2 [ru0y0]jy2y1 2 [ru0w0]j

z2

1 hfry0agis 1F
s
1R1 S . (29)

If all terrain-induced perturbations vanish at the lateral

boundaries of the budget volume and there are no tur-

bulent fluxes across the top of the volume and surface

stress is neglected, and if the vertical momentum flux is

dominated by the mountain waves, (29) reduces to

[ru0w0]j
z2
52

›hru0i
s

›t
1 hfry0agis , (30)

implying the vertical mountain-wave momentum flux

through z5 z2 is equal to the sum of the domain-

integrated cross-mountain deceleration and the Cori-

olis force associated with y0ag. If the flow is also steady,

(30) implies that downward momentum fluxes through a

horizontal plane are balanced by the underlying pertur-

bation equatorward ageostrophic motion.

The evolution of the perturbation momentum budget

as characterized by (29) is plotted for the volume be-

tween the surface and 2km in Fig. 10b. Analogous to

the situation in the lower stratosphere, the dominant

balance is between the momentum fluxed vertically

into the layer and hfry0agis. Turning to the remaining

smaller, but nonnegligible terms, the residual reaches

its maximum value around day 6.7 as a result of low-

level wave breaking creating mixing across the 2-km

level (Fig. 2c). The first-order fluxes Fs reach a negative

extrema around 5.5 days as u0 perturbations develop at

the upstream boundary; these subsequently decay, and

a positive Fs maximum occurs at 7.5 days when u0 per-
turbations grow large at the downstream boundary.

Over most of the simulation, the volume-integrated

momentum tendency is negative, although it becomes

positive after 6.5 days, when, except for the pressure

drag (and therefore hfry0agis), all the nonnegligible

contributions to the budget are accelerative.

The dominant balance in the momentum budget for

the strongly decelerated layer (7# z# 10 km) is quite

different from that in lower stratosphere. As shown in

Fig. 11, the vertical momentum flux divergence across

this layer is rather small (which is consistent with

Fig. 7). Until 7 days, the flow deceleration is primarily

balanced by the Coriolis force acting on perturbation

ageostrophic winds blowing toward the south (the blue

and green curves follow each other). After 7 days,

hfry0agi is still a decelerative forcing, but F starts to

become large and positive because of the contribution

to 2runu
0 at the downstream boundary. The feature

responsible for the large signal in 2runu
0 will be dis-

cussed in the next section. In summary, although Fig. 8

shows the 7# z# 10-km layer is the portion of the

domain that undergoes the greatest horizontally aver-

aged flow deceleration, that deceleration is not pri-

marily produced by vertical momentum flux divergence

across the layer.

5. Local flow response

We now examine the local flow response in each of

the three layers considered in the previous section.

Figure 12 shows isobars for the 2-km-mountain case,

along with perturbation velocity vectors (u0, y0) and the

perturbation Ertel potential vorticity (PV0) at z5 13 km.

Wave breaking at this level begins around 5 days, and by

5.5 days produces a complex pattern of positive and

negative PV0 in the immediate lee of the ridge. Despite

the north–south uniformity of the underlying ridge, the

chaotic distribution of these PV anomalies is reminis-

cent of that obtained in high-resolution case-study sim-

ulations of flow over the Southern Alps (Kruse et al.

2016). In particular, there is little tendency to produce

a pair of intense opposite-signed PV banners at each

end of the wave breaking region as envisioned in Schär
and Durran (1997), who argued that wave breaking

aloft would produce PV banners similar to those gen-

erated at low levels by flow separation on the flanks

of high topography (Schär et al. 2003). Nevertheless,

larger-scale structures become apparent as the initial

PV anomalies are carried downstream, with negative

anomalies dominating on the left side of the large-scale

jet, and positives on the right side (Figs. 12c,d) in a

pattern similar to the simpler barotropic jet case

FIG. 11. As in Fig. 9, but for the layer between 7 and 10 km.
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considered in Chen et al. (2007). By 7.5 days, significant

velocity perturbations have developed along the jet axis

that appear to be at least qualitatively in balance with

the downstream PV0 field. These perturbation velocities

exceed 15m s21 at 7.5 days and oppose the winds along

the core of the jet (Fig. 13a). The total horizontal ve-

locity vectors and wind speeds from the 2-km-mountain

simulation are plotted in Fig. 13b, which shows the winds

along the center of the jet downstream of the mountain

drop to less than 20ms21. Comparing Fig. 13b with

Fig. 14, which shows the corresponding wind speeds in

the no-mountain case; it is apparent that gravity wave

breaking has produced a dramatic weakening of the jet

maximum in the lower stratosphere.

Perturbation horizontal velocity vectors and wind

speeds are plotted with isobars at z5 1 km and 7.5 days

in Fig. 15a. The perturbation velocities form a distinct

cyclonic vortex in the lee of the ridge, with reversed

winds in large patches on the northern side of the vortex

exceeding 15ms21. The vortex in Fig. 15a does not ap-

pear to be in balance with the PV0 field behind the

mountain (not shown), perhaps because, in contrast to

the situation in the lower stratosphere, those PV

anomalies have not had time to organize as larger-scale

structures as they drift downstream from the region in

which they are generated. Although the perturbation

velocities form a distinct vortex, the total velocities

form a patch of almost stagnant flow downstream of the

ridge (Fig. 15b).

Finally, let us consider the local response in the upper

troposphere. Figure 16a shows the perturbation hori-

zontal velocity vectors and wind speeds, together with

isobars, at z 5 9 km and 7.5 days. The maximum wind

speed perturbations at this level are substantially

weaker than those near the surface or in the lower

stratosphere. Two patches of deceleration appear in the

lee of the ridge, and the similarity of the perturbation

velocity vectors around each of these patches suggests

FIG. 12. Perturbation Ertel potential vorticity at z5 13 km [color fill; PVU (1 PVU 5 1026 K kg21 m2 s21)],

perturbation horizontal velocity vectors and pressure contours (red lines; hPa) at (a) 4.5, (b) 5.5, (c) 6.5, and

(d) 7.5 days.
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a wavelike response, perhaps an inertial gravity wave.

As shown in Fig. 16b, the terrain-induced deceleration

has much less effect on the total velocity along the jet

axis than that which is produced in the lower strato-

sphere (Fig. 13b). Thus, the local terrain-induced re-

sponse is weakest in the same layer that exhibits the

strongest domain-averaged deceleration! The strong

domain-averaged signal is produced by widespread

small-amplitude decelerations; a similar result was ob-

tained by Durran (1995) in 2D simulations without the

Coriolis force.

As noted during the discussion of momentum budgets

averaged over the 7 # z # 10-km layer, the terms F,

which are first order in the mountain–no-mountain

perturbations, make a large positive contribution to the

momentum balance at 7.5 days, and this contribution is

dominated by the divergence of the flux 2runu
0. The

motions responsible for this flux are easily seen in

Fig. 16a over the interval 0# y# 700 km along the

eastern boundary. Here u0 is negative; un, which can be

inferred from the isobars, is strongly positive, and, be-

cause there is little signal in u0 at the western boundary,

2[2runu
0]jx2x1 is also positive. The u0 field is roughly in

quasigeostrophic balance with an elongated north–

south-oriented anticyclonic PV perturbation (not

shown) centered near (x, y)5 (2640, 1300) km. That PV

perturbation resulted from a slight shift in the position

of the jet and tropopause boundary between the

mountain and no-mountain simulations. Such a shift

produces strong PV perturbations because the 9-km

level is in the troposphere on the warm side of the jet,

and in the high-static-stability stratosphere on the

cold side. This example also illustrates the way that the

first-order flux terms in (20)–(22) are primarily produced

by shifts in the synoptic-scale flow, and not directly by the

mountain waves. If the fine-mesh budget domain ex-

tended farther downstream, this contribution to F would

likely disappear, which would tend to make the de-

celeration in the 7 # z # 10-km layer even stronger.

Smith et al. (2008) analyzed the background envi-

ronmental winds sampled using a race-track flight pat-

tern during six mountain-wave events over the Sierra

Nevada. These flights were below the level of likely

wave breaking and showed the environmental winds to

FIG. 14. Total horizontal wind speed (m s21) for the no-mountain

case at 7.5 days and z5 13 km. Although there is no mountain, its

position in the corresponding 2-km-mountain case is shown for

reference.

FIG. 13. Horizontal winds at 7.5 days and z5 13 km: (a) perturbation wind vectors (u0, y0), speeds (color fill; m s21),

and pressure contours (blue lines; hPa); (b) total wind vectors and speeds (color fill; m s21) for the

2-km-mountain case.
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be systematically subgeostrophic, which they attributed

to gradient wind effects in the large-scale flow. Given

our results in both Figs. 11 and 16, another explanation

might be that the Coriolis force acting on ageostrophic

circulations forced by wave breaking aloft helped pro-

duce those observed subgeostrophic winds.

6. Conclusions

We have numerically simulated an idealized cyclone

growing in a baroclinically unstable jet as it crosses

an isolated 3D ridge. One set of experiments using a

500-m-high ridge produced weakly nonlinear waves,

while another set, using a 2-km-high ridge, produced

strongly nonlinear waves and flow blocking. The wave

response, itself, was previously discussed in MD17.

Here the focus is on the vertical momentum fluxes, their

relation to the cross-mountain pressure drag, and their

influence on the large-scale flow.

The vertical momentum flux just above mountain top

is closely related to pressure drag for the 500-m moun-

tain, but is much weaker than the pressure drag in the

2-km-mountain case. The difference in the case with

the higher mountain is largely due to low-level wave

breaking and flow blocking. The drag and momentum

fluxes from steady-forcing simulations representative

of the large-scale flow crossing the mountain at days

4.5, 5.5, 6.5, and 7.5 greatly underestimate the strength

of the response at the corresponding times in the

evolving-flow 2-km-mountain case. The dependence of

the vertical momentum flux on the flow evolution

poses a potential complication in the formulation of

accurate gravity wave drag parameterizations, which are

typically based entirely on the instantaneous properties

FIG. 16. As in Fig. 13, but at z5 9 km.

FIG. 15. As in Fig. 13, but at z5 1 km.
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of the cross-mountain flow. Over the 500-m mountain,

the steady-forcing solution also greatly underestimates

the fluxes and drag at 6.5 days, as the cross-mountain

winds begin to decrease, but for this lowermountain, the

steady and evolving large-scale flows generate similar

results at the other times.

The interactions between the terrain and the large-

scale flow are much stronger in the 2-km-high-mountain

simulation, which we used for further studies of the

wave–mean flow interaction. The horizontally averaged

budget for the perturbation momentum, evaluated from

the difference between corresponding fields inmountain

and no-mountain simulations, shows vertical momen-

tum flux divergence occurring in layers near the surface

and in response to wave breaking in the lower strato-

sphere. By the end of the simulation, horizontally av-

eraged flow deceleration occurs in both of those layers,

but is even stronger in the upper troposphere where the

vertical gradients in the momentum flux are minimal.

Theoretical analysis of the layer-averaged perturbation

momentum budget shows that—provided the terrain-

induced perturbations are negligible at the bound-

aries—the mean-flow deceleration would be balanced

by the sum of the vertical momentum flux divergence

and the Coriolis force acting on the layer-averaged

ageostrophic wind [see (26)]. If the budget volume ex-

tends to the surface, the cross-mountain pressure drag

may be absorbed into contribution from the Coriolis

force acting on the layer-averaged ageostrophic wind

[see (30)]. These are indeed the most important terms

in the budgets for the terrain-induced perturbations

computed from the numerical simulations in a layer in

the lower stratosphere and in the volume between 2km

and the surface.

In the upper troposphere, the contribution from the

vertical momentum flux divergence is small, and the

simulated flow decelerates in response to Coriolis forces

acting on the ageostrophic wind. In the context of qua-

sigeostrophic theory, ageostrophic circulations arise to

restore thermal wind balance. The precise nature of the

ageostrophic circulations responsible for the flow de-

celeration in the upper troposphere are the subject of

continuing research. Near the end of the simulation,

an x-component momentum flux that is first order in

the mountain–no-mountain perturbations, 2unu
0 also

makes an important accelerative contribution to the

perturbation momentum budget in this layer. In con-

trast to those fluxes that are second-order in the per-

turbations, which are the momentum fluxes carried by

the mountain waves themselves, the first-order fluxes

arise from differences between the large-scale circula-

tions in the mountain and no-mountain simulations, and

are a manifestation of the large-scale response to the

topography. The flux 2unu
0 becomes significant at the

downstream boundary because of a shift in the axis of

the upper-level jet, and would be greatly reduced if the

budget domain extended farther downstream.

The local response of the large-scale flow to the

terrain-induced perturbations varies with altitude.

In the lower stratosphere, wave breaking generates a

very strong reduction in the winds at the core of the

jet. Near the surface, flow blocking and wave breaking

produce a large region of stagnant flow behind the

mountain that looks like a cyclonic vortex in the

perturbation velocity field. The local deceleration in

the upper troposphere moderately reduces the wind

speed in two regions along the jet in a wavelike pat-

tern. Although, among these three regions, the upper

troposphere experiences the greatest layer-averaged

deceleration, the maximum local deceleration in this

layer is weaker than those in the lower stratosphere

and the surface. The strong layer-averaged deceleration

in the upper troposphere is produced by widespread,

small-amplitude decelerations.
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