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We compute the discharging rate of a uniform electric field due to Schwinger pair production in
(1 + 1)-dimensional scalar electrodynamics with a compact dimension of radius R. Our calculation
is performed in real time, using the in-in formalism. For large compactification radii, R → ∞, we
recover the standard non compact space result. However, other ranges of values of R and of the
mass m of the charged scalar give rise to a richer set of behaviors. For R >∼ O(1/m) with m large
enough, the electric field oscillates in time, whereas for R→ 0 it decreases in steps. We discuss the
origin of these results.

I. INTRODUCTION

The possibility of creating matter in the presence of a strong external field is a remarkable feature of relativistic
quantum fields. The earliest and possibly most studied example of such phenomenon is the Schwinger effect [1, 2].
In this process, an external electric field accelerates charged virtual particles, extracting them from the vacuum and
turning them into real pairs. The pair of produced particles generates an electric field that opposes the field responsible
for their creation, reducing its intensity. The energy in the electric field lost this way is thus converted into the energy
in the particles.

The rate of pair production can be computed using different techniques, such as the early tunneling calculation
of Sauter [1], Schwinger’s proper time method [2], instantons [3] and real time techniques [4–9]. Schwinger effect in
compact spaces has received significant attention only in more recent years. In reference [14] the system was studied
using the instanton formalism, and it was argued that for small compactification radii the expression of the rate of pair
production changes significantly from the one found in the non compact case. The work [15] discussed the effect from
the point of view of the effective lower-dimensional theory. The paper [16] studied numerically the unwinding of the
electric flux as the produced pair circles multiple times the compact space. References [17, 18] discuss Schwinger pair
production on compact spaces with two compact dimensions. Schwinger effect at finite temperature has received more
attention [14, 15, 19–23], and is related to the spatially compact case as finite temperature effects can be captured by
compactifying euclidean time.

In the present paper we study the Schwinger effect in compact space by directly computing, for the first time, the
number of produced pairs as a function of time. More specifically, we compute the change, to leading order, in the
intensity of the electric field induced by the current of produced pairs. We perform our calculation using the in-in
formalism [24, 25], that at leading order corresponds to the calculation of Bogolyubov coefficients. As a consequence,
our calculation parallels the one performed, for the non compact case, in [4–9]. The system considered throughout
the paper is scalar electrodynamics in 1 + 1 spacetime dimensions, where the scalars have mass m and charge e, and
we denote by E the magnitude of the background field.

Compactification of the spatial dimension implies that we can write the correction to the electric field as a series
of contributions from the Kaluza-Klein modes of the charged field. The series is divergent, a consequence of the
assumption that the background field is constant, so it had an infinite time to produce pairs. We isolate the divergent
part, leaving the physical effect in the form of a convergent series, that can be in general evaluated numerically.
Besides the renormalization associated to the infinite duration of the process, evaluation of the rate of pair production
requires a different, more subtle kind of subtraction. Already in the non compact case, a direct computation of the
rate of pair production in the in-in formalism gives a nonvanishing result even in the decoupling limit where the
mass m of the produced particles diverges. This unphysical behavior is taken care of by using the formalism of the
Bogolyubov coefficients, where two-point functions are computed in terms of the normal-ordered ladder operators
defined in the far future. Such an operation is equivalent to subtracting, from the two-point functions computed in
terms of the exact mode functions, the same two-point functions written in terms of the mode functions evaluated in
the adiabatic approximation [12, 13].
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While in the non compact case the electric field discharges at a uniform rate, the evolution of the electric field has
a less trivial behavior in the small radius regime R → 0. As one can see in Figure 2, the field is discharged by the
effect of pair production in a stepwise fashion. While this is inconsistent with the assumption of a time-translation
invariant background that would call for a uniform rate, we will argue in Section V A that this behavior is not unusual
for a process of particle creation.

Another interesting behavior is that found in the regime eER2 = O(1), mR >∼ O(1). For this choice of parameters,
the electric field performs oscillations that, even if their amplitude is exponentially small, are parametrically larger
than its decrease due to pair production – see Figure 3. As we discuss in Section V B, this behavior confirms the
analysis of [15]. In particular, the oscillations are a direct consequence of the shape of the effective potential of the
electric field obtained in the dimensionally reduced theory, after integrating out the modes of the charged field. In
other words, in this regime the effect on the evolution of the electric field is dominated by the effects of virtual pairs
of scalar quanta, and not by the creation of actual pairs of particles. Our results thus confirm the interpretation [15]
of the statement of [14] that, for small radii, the electric field evolves at a rate whose expression is different from
the one found in the non compact theory. More specifically, while the expression of the net rate of pair production
is unchanged, the amplitude of the oscillations of the electric field is larger, and matches the amplitude of the effect
discussed in [14].

The plan of the paper is as follows. In Section II we set up our formalism and re-obtain, using the in-in formalism,
well known results on the rate of Schwinger pair production in non compact space. In Section III we present new
formulae for the rate of pair production in real time in compact space. Details of the calculation are presented in
two Appendices. In Section IV we analyze, in some representative regimes, the behavior of the formulae found in the
previous Section. We discuss our results in Section V.

II. NON COMPACT CASE

Before investigating case of a compact spatial dimension, here we review the real-time analysis of the Schwinger
effect in 1 + 1 non compact dimensions. Our Lagrangian for scalar electrodynamics reads

L = −1

4
FµνF

µν −
(
∂µ − ieAµ

)
φ
(
∂µ + ieAµ

)
φ∗ −m2 |φ|2

=
1

2
Ȧ2 + |φ̇|2 − |φ′|2 −m2 |φ|2 + ieA (φφ′∗ − φ′ φ∗)− e2A2 |φ|2 , (1)

where we have chosen the gauge Aµ = (0, A) [16] and where a overdot and a prime denote, respectively, a time and a
space derivative. We then decompose the gauge field A into a background yielding a constant electric field E and a
perturbation

A(x, t) = −Et+ δA(x, t) , (2)

so that the Lagrangian (1) takes the form

L ≡ LF + LI =
1

2
δȦ2 + |φ̇|2 − |φ′|2 −m2 |φ|2 − ieEt (φφ′∗ − φ′ φ∗)− e2E2t2 |φ|2

+ie δA (φφ′∗ − φ′ φ∗)− e2 δA2 |φ|2 + 2e2 δAEt |φ|2 , (3)

where LF is the free part of the Lagrangian, given in the first line of eq. (3), whereas LI denotes the interaction terms,
given in the second line.

A. The correction to the electric field in the in-in formalism

We now quantize the fields φ and δA and compute the correction to the electric field to leading order in the in-in
formalism. As we will show in Section II D below, the resulting correction to the electric field accounts for the creation
of pairs of charged scalars through the Schwinger mechanism.

The free equation for δA is just δÄ = 0, that has the general solution δA(x, t) = ĉ(x) + d̂(x) t, where ĉ(x) and d̂(x)
are operators. Canonical quantization requires

[ĉ(x) + d̂(x) t, d̂(y)] = iδ(x− y) , [ĉ(x) + d̂(x) t, ĉ(y) + d̂(y) t] = [d̂(x), d̂(y)] = 0 , (4)
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that is satisfied by imposing the commutation relations

[ĉ(x), d̂(y)] = iδ(x− y) , [ĉ(x), ĉ(y)] = [d̂(x), d̂(y)] = 0 . (5)

Next, we decompose the field φ as

φ(x, t) ≡
∫

dk√
2π

eikx φ̂(k, t) =

∫
dk√
2π

eikx
(
φ(k, t) âk + φ(−k, t)∗ b̂†−k

)
, (6)

where the mode function φ(k, t) solves the equation of motion, derived from the free Lagrangian LF ,

φ̈(k, t) +
[
(k + eEt)2 +m2

]
φ(k, t) = 0 . (7)

The general solution of this equation can be written in terms of parabolic cylinder functions

φ(k, t) = C1Di m
2

2 eE−
1
2

(
(k + eEt)

√
2

eE
e−iπ/4

)
+ C2Di m

2

2 eE−
1
2

(
−(k + eEt)

√
2

eE
e−iπ/4

)
, (8)

where the integration constants C1, 2 can be fixed, after imposing the commutation relations [âk, â
†
k′ ] = [b̂k, b̂

†
k′ ] =

δ(k − k′), by requiring positive frequency modes at early times, when the WKB approximation can be applied

φ(k, t→ −∞)→ φad(k, t) , where

φad(k, t) ≡ 1√
2ω

e−i
∫
ωdt ≈ 1√

2|eEt|
ei

1
2eE (k+eEt)2 |k + eEt|i m

2

2 eE (9)

is the solution of the mode equations in the WKB approximation. This gives

φ(k, t) =
e−

πm2

8eE

(2 eE)1/4
D
i m

2

2eE−
1
2

(
−(k + eEt)

√
2

eE
e−iπ/4

)
. (10)

We compute the correction to electric field using the in-in formalism [24, 25], in which the expectation value of an
operator O(t) is given by

〈O(t)〉 =
∑
N

(−i)N
∫ t

dt1...

∫ tN−1

dtN 〈[[...[Ofree(t), Hint(t1)], ...], Hint(tN )]〉 , (11)

where Hint(t) denotes the interaction Hamiltonian, and Ofree represents the operator O computed in terms of the free
mode functions.

In our case, the operator we are interested in is the correction to the electric field, δE(x, t) ≡ −δȦ(x, t). To lowest
order in the in-in expansion, we only need to consider the cubic part of the interaction Hamiltonian,

H
(3)
int = −e

∫
dy

∫
dp dq

(2π)
ei(p−q)y

[
(p+ q) + 2 eEt

]
δA(y) φ̂(p) φ̂†(q) . (12)

Hence the first order correction to the electric field reads

〈δE(x, t)〉(1) = −ie
∫ t

dt1

∫
dy

∫
dp dq

(2π)
ei(p−q)y〈

[
δȦ(x, t), δA(y, t1) φ̂(p, t1) φ̂†(q, t1)

]
〉
(
(p+ q) + 2 eEt1

)
= −e

∫ t

dt1

∫
dp dq

(2π)
ei(p−q)x〈φ̂(p, t1) φ̂†(q, t1)〉

[
(p+ q) + 2 eEt1

]
, (13)

that could have also been obtained by integrating Gauss’ law.

B. The two-point function of the scalar. Vacuum subtraction

We must now compute the two point function 〈φ̂(p, t) φ̂†(q, t)〉. Since this quantity does not vanish even when
the system is in its vacuum, we need to subtract its vacuum component. We perform this subtraction by using the
standard method of the Bogolyubov coefficients (see [5] for a nice discussion in this context).
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The idea beyond the use of the Bogolyubov coefficients is that the concept of particles is well defined only when
ω is evolving adiabatically. An especially heuristic argument for this invokes Heisenberg’s uncertainty principle. The
number of nonrelativistic particles in a box can be determined by measuring their total mass (with an uncertainly
smaller than the mass m of one particle) and dividing by the mass of one particle. The uncertainty principle tells us
that the time ∆T needed to perform this measurement must be larger than h̄/(mc2). Now, if the effective mass of
the particles is time-dependent, then ∆T must be smaller than the timescale over which m evolves, ∆T <∼ m/ṁ. We
thus obtain the condition ṁ/m2 <∼ c2/h̄, or, generalizing to the relativistic regime and going back to natural units,
ω̇ <∼ ω2. In the adiabatic regime the general solution of the equations of motion for the mode functions is given by
the linear combination α(k)φad(k, t) + β(−k)φad(−k, t)∗, where φad(k, t) is defined in eq. (9) and where α(k) and
β(k), known as Bogolyubov coefficients, are arbitrary constants. This motivates the following decomposition

φ(k, t) = α(k, t)φad(k, t) + β(−k, t)φad(−k, t)∗ , (14)

where |α(k, t)|2−|β(k, t)|2 = 1 to maintain the correct normalization of the creation/annihilation operators [âk, â
†
q] =

δ(k − q) etc. Note that in (14) the quantities α(k, t) and β(k, t) are assumed to depend also on time, so that this
expression of φ(k, t) can be valid also when |ω̇| >∼ ω2. It is worth stressing here that we are assuming that φad(k, t)
is evaluated to leading order in the adiabatic approximation, but that in general higher order expressions might be
more appropriate [27–31].

As long as the evolution of the mode functions is adiabatic, the choice of the parameters α(k) and β(k) is arbitrary
and irrelevant – provided, of course, also the Hilbert space of the system is defined accordingly (in particular, it is
important that the system is evolving adiabatically at early times, t→ −∞, so that we can define an initial vacuum
state). The usual choice is α(k) = 1 and β(k) = 0 as t→ −∞, so that the vacuum is annihilated by âk. Now, if the
system goes through a stage of nonadiabatic evolution, ω̇ >∼ ω2, followed by a second and final period of adiabatic
evolution, then in this second period t → +∞ the mode functions will have the form (14) with α(k, t) and β(k, t)
constant. Since we have already fixed α(k, t → −∞) → 1 and β(k, t → −∞) → 0, however, we do not have the
freedom to redefine α(k, t→ +∞) and β(k, t→ +∞).

Let us now consider a set of observers born after the period of nonadiabaticity, during the t → +∞ epoch. These

observers will see the mode functions of the form φad(k, t) and will decompose the field as φ̂(k, t) = φad(k, t) âk +

φad(−k, t)∗ b̂
†
−k, where âk and b̂k are the annihilation operators for those observers, who will not even know that at

early times, before they were born, the annihilation operators were âk and b̂k. To make the definition of âk and b̂k
valid even at intermediate times, we define more in general

φ̂(k, t) = φad(k, t) âk(t) + φad(−k, t)∗ b̂−k(t)† . (15)

This is equivalent to redefining

âk(t) = α(k, t) âk + β(k, t)∗ b̂†−k

b̂k(t) = β(k, t)∗ â†−k + α(k, t) b̂k . (16)

In particular, observers born at t → +∞ will normal order the operators âk and b̂k, and not âk and b̂k. These

considerations motivate us to compute the quantity 〈φ̂(p, t1) φ̂†(q, t1)〉 as the expectation value on the initial state

vacuum (vacuum that is constant throughout the evolution of the system and is annihilated by âk and b̂k) after

normal ordering the âk(t) and b̂k(t) operators. This prescription generalizes the one for the occupation number

Nk = 〈b̂
†
k b̂k〉 = |β(k, t)|2 to a generic bilinear in the field.

Using this prescription we obtain

〈φ̂(p, t) φ̂†(q, t)〉 = δ(p− q)
[
|φ(q, t)|2 − |φad(q, t)|2

]
. (17)

This method therefore leads to results that are equivalent to those obtained through adiabatic regularization [12, 13],
and provides a physical motivation for such a procedure. Using the expression (9) of φad(k, t) obtained to leading
order in the adiabatic approximation, the renormalized result is

〈φ̂(p, t1)φ̂†(q, t1)〉 = δ(p− q)

[
|φ(p, t1)|2 − 1

2
√

(p+ eEt1)2 +m2

]
, (18)

that, substituted into (13), gives the final expression

〈δE(x, t)〉(1) = −2e

∫ t

dt1

∫
dp

2π

∣∣φ(p, t1)
∣∣2(p+ eEt1

)
+ e

∫ t

dt1

∫
dp

2π

p+ eEt1√
(p+ eEt1)2 +m2

. (19)
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C. Result

The integral in eq. (19) can be computed exactly, but we do not need to perform this calculation. It is easier to
extract the physically relevant result by observing that p and t appear in the integrands in eq. (19) always in the
combination (p + eEt), so that derivatives with respect to t can be easily traded for derivatives with respect to p:
∂/∂t = eE ∂/∂p. The second derivative of eq. (19) then reads

〈δË(x, t)〉(1) = lim
Λ±→+∞

[
− e
π

∫ Λ+

−Λ−

dp
d

dt

{∣∣φ(p+ eEt)
∣∣2(p+ eEt

)}
+

e

2π

∫ Λ+

−Λ−

dp
d

dt

{
p+ eEt√

(p+ eEt)2 +m2

}]

= −e
2E

π

e−
πm2

4eE

(2 eE)1/2
lim

Λ±→+∞

[∣∣D
iπm

2

2eE −
1
2

((p+ eEt)

√
2

eE
e3iπ/4)

∣∣2(p+ eEt
)]p=Λ+

p=−Λ−
+
e2E

π
, (20)

where we have regularized the dp integrals by setting the integration range on (−Λ−,Λ+), and where we have used
the fundamental theorem of integral calculus in the second line.

Using the asymptotic behavior of the parabolic cylinder function, see e.g. eq. 9.246 of [26], we thus obtain

〈δË(x, t)〉(1) = −e
2E

π

[(
e−

πm2

eE +
1

2

)
−
(
−1

2

)]
+
e2E

π
= −e

2E

π
e−π

m2

eE . (21)

Two comments are in order. First, if we did not subtract the adiabatic part of 〈φ̂(p, t1)φ̂†(q, t1)〉 (which results in
the last term in the second line of eq. (20)), the resulting rate (21) would not vanish in the decoupling limit m→∞.
This shows the need for the subtraction of the adiabatic part of the two point function of φ.

Second, the equation above gives the second time derivative of 〈δE(x, t)〉(1). This means that 〈δE(x, t)〉(1) contains
two integration constants, that are however unrelated to rate of pair production and thus are uninteresting for us.
The first of these constants is related to the initial value of the background electric field, the second one is related to
the initial value of the number of charged particles, that are subsequently accelerated and decrease the background
field at a rate that is linear in time. Neither of these integration constants is related to the rate of pair production,
that is fully captured by eq. (21), as we now discuss.

D. Connecting Ë to to the rate of pair production

We will now connect the rate (21) of change of the electric field to the rate of production of pairs of φ particles.
If a particle of mass m and charge e is subject to a uniform field E, then its velocity is given by v(t) =
eE(t−t0)√

m2+(eE(t−t0))2
, where t0 is the time at which the particle is at rest.

Let now dn±(t0) be the number density of particles with charge ±e created at rest between the times t0 and t0 +dt0.
Then the element of current associated to those particles and evaluated at time t reads

dJ(t, t0) = e dn+(t0)
eE(t− t0)√

m2 + (eE(t− t0))2
− e dn−(t0)

(−e)E(t− t0)√
m2 + (eE(t− t0))2

. (22)

Using the fact that the production rates are the same for both particles and antiparticles and that they are constant
in time, so that dn±(t0) = ṅ dt0 with ṅ =constant, we get

dJ(t, t0) = 2ṅ
e2E(t− t0)√

m2 + (eE(t− t0))2
dt0 , (23)

and finally the current at time t is

J(t) =

∫ t

tin

dJ(t, t0)

dt0
dt0 = 2

ṅ

E

(√
m2 + e2E2(t− tin)2 −m

)
→ 2 ṅ e (t− tin) , (24)

where we assumed that the process started long ago, eE(t− tin)� m.

Then, from the Maxwell equations ∂µF
µν = Jν we obtain Ė = −J =⇒ Ë = −J̇ = −2 ṅ e. This finally gives

ṅ = − Ë
2e

= −δË
2e

=
eE

2π
e−π

m2

eE , (25)

in agreement with the standard result.
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III. COMPACT CASE

Let us now consider a system where space is compactified, with the identification x ≈ x+ 2πR. The procedure for
the compact case is similar to that presented above in the non compact regime. As we will see, however, additional
complications come from the fact we will not be able to use the fundamental theorem of integral calculus that allowed
to simplify eq. (20).

A. Kaluza-Klein decomposition

We decompose the gauge field as in the non compact case: δA(x, t) = ĉ(x) + d̂(x) t, with ĉ(x) and d̂(x) periodic
functions satisfying the commutation relations of eq. (5). For what concern the field φ, we decompose it into Kaluza-
Klein modes

φ(t, x) ≡
∞∑

n=−∞

1√
2πR

einx/R φ̂n(t) =
∞∑

n=−∞

1√
2πR

einx/R
[
φn(t) ân + φ∗−n(t) b̂†−n

]
, (26)

where, analogously to eq. (10), φn(t) is given by

φn(t) =
e−

πm2

8eE

(2 eE)1/4
D
i m

2

2eE−
1
2

(
− ( nR + eEt)

√
2
eE e
−iπ/4

)
. (27)

Then, substituting into eq. (13), one obtains

〈δE(x, t)〉(1) = − e

πR

∫ t

dt′
∑
n

∣∣φn(t′)
∣∣2( n

R
+ eEt′

)
+

e

2πR

∫ t

dt′
∑
n

n
R + eEt′√

( nR + eEt′)2 +m2
. (28)

B. Result

Since the transition to the compact case converts the integral in dp in eq. (19) into a series, we cannot use the trick

– based on the fundamental theorem of calculus – used in eq. (20) to compute 〈δË〉. Instead, we have to compute
the series directly. An additional complication is that the series in eq. (28) are divergent. So we will use a different

strategy. First, we take the time derivative 〈δĖ(x, t)〉(1), that eliminates the time integral from eq. (28). Then we cut
off the summation at some large N± > 0, −N− < n < N+. We use a Mellin-Barnes representation (see eq. 9.242.3
of [26]) of the parabolic cylinder function. This allows to express the n-dependence of the first term on the right
hand side of eq. (28) in the simple form of Hurwitz ζ-like series, and the divergent part as N± →∞ can be isolated.
The remaining part of series can be resummed to a finite result and reverse-engineered using again the Mellin-Barnes
representation of the parabolic cylinder functions. The details are presented in Appendix A.

As for the vacuum part, given by the second summation on the right hand side of eq. (28), the analysis is simpler.
Here we just state that, also in this case, we have to cut the sum off at −N− < n < N+. Then we can rewrite
(Appendix B gives the details)

N+∑
n=−N−

n
R + eEt√

( nR + eEt)2 +m2
= 2 eERt+ 4mR

∞∑
n=1

sin(2πneERt)K1(2πnmR) + constant , (29)

where K1 is the modified Bessel function of second kind, and where the constant part is generally divergent as
N± → +∞, but does not depend on t.

Our final expression for the time derivative of the electric field, at first order in the perturbative expansion, reads

〈δĖ(t)〉(1) = − e

2πR

{
(1 + 2 e−πm

2

)
∞∑
n=0

√2(n+Rt− [Rt])

R
e−πm

2/4

∣∣∣∣∣D−1/2+im2/2

(√
2(n+Rt− [Rt])

R
e−iπ/4

)∣∣∣∣∣
2

− 1


−
∞∑
n=0

√2(n+ 1−Rt+ [Rt])

R
e−πm

2/4

∣∣∣∣∣D−1/2+im2/2

(√
2(n+ 1−Rt+ [Rt])

R
e−iπ/4

)∣∣∣∣∣
2

− 1


+ 2 ([Rt]−Rt)− 4mR

∞∑
n=1

sin(2πnRt)K1(2πnmR)

}
− e

πR
e−πm

2

[Rt] + constant , (30)
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where, in order to keep the a lighter notation, we have set eE = 1 (and we will do this in the remainder of this Section
and in Section IV), where [x] denotes the integer part of x, and where the constant term depends on the regulators
N±, and is generally divergent as N± →∞.

Eq. (30) is our main result. It gives the rate of change of electric field due to Schwinger pair production in compact
spaces for arbitrary values of the parameters, at first order in the in-in expansion. In the next Section we will study
the behavior of this function. Here, let us note a couple of general properties. First, all the parts that are divergent as
N± → +∞ are independent on t. As discussed above, these divergences correspond to a possible nonvanishing initial
charge distribution in the system and are uninteresting for us. All the parts that are not explicitly dependent on N±
are finite (in particular, this means that the summations appearing in eq. (30) are convergent). Second, the nontrivial
part of eq. (30) depends on Rt − [Rt], so that, as a function of t, is periodic with a period 1/R. The non periodic

component of 〈δĖ(t)〉(1) is given by the term outside the curly brackets in eq. (30), − e
π e
−πm2 [Rt]

R . This means that

the net rate of particle production, averaged on timescales that are long with respect to the timescale R−1, coincides
with the non compact result.

IV. RESULTS FOR COMPACT CASE

We are now in position to analyze the behavior of our main observable, 〈δĖ(x, t)〉(1), in various regimes.

A. The decompactified limit, R→∞ with fixed m

Let us first make sure that our result (30) converges to the non compact one, eq. (21), in the limit R→∞. In this
limit we note that the sums in the first two lines of eq. (30) can be approximated by integrals, where we introduce an
integration variable p = n/R, so that

〈δĖ(t)〉(1) = − e

2π

{
(1 + 2 e−πm

2

)

∫ ∞
0

dp

[√
2(p+ τ/R) e−πm

2/4
∣∣∣D−1/2+im2/2

(√
2(p+ τ/R) e−iπ/4

)∣∣∣2 − 1

]
−
∫ ∞

0

dp

[√
2(p+ (1− τ)/R) e−πm

2/4
∣∣∣D−1/2+im2/2

(√
2(p+ (1− τ)/R) e−iπ/4

)∣∣∣2 − 1

]
− 2

τ

R
− 4m

∞∑
n=1

sin(2πnRt)K1(2πnmR)

}
− e

πR
e−πm

2

[Rt] + constant , (31)

where we have defined the quantity

τ ≡ Rt− [Rt] , 0 ≤ τ < 1 . (32)

Next we note that τ/R → 0 in this limit, which implies that the first two lines in eq. (31) converge to a time-
independent and irrelevant constant. Moreover, for what concerns the term involving the Bessel function K1, one can
use the asymptotic behavior K1(x) ≈

√
π
2xe
−x to show that that term vanish exponentially fast as mR → ∞. As a

consequence, using [Rt]
R → t as R → ∞, and reinstating, just for this result, the factors of eE, we re-obtain the non

compact result

〈δĖ(t)〉(1) −−−−→
R→∞

−e
2E

π
e−π

m2

eE t+ constant . (33)

B. The Kaluza-Klein decoupling limit, R→ 0 with fixed m

For R → 0, the Kaluza-Klein modes become infinitely heavy, so that we expect each Kaluza-Klein mode of the
charged fields to be separately excited. To study this regime analytically we assume τ

R � 1 and 1−τ
R � 1, so that we

are far enough from the instances of particle production that occur when Rt crosses a integer value. We can then use
the asymptotic expansion of the parabolic cylinder function for large arguments, which gives

x e−πm
2/4
∣∣∣D−1/2+im2/2

(
x e−iπ/4

)∣∣∣2 − 1 = −m
2

x2
+O(x−4) . (34)
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0.028
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<dE(t)/dt>(1)

FIG. 1: The quantity 〈Ė(t)〉(1), in units of e and for eE = 1, as a function of Rt evaluated numerically for m = 1, R = 10. The
result agrees with the analytical approximation (33).

1 2
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-0.4
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0.4

<dE(t)/dt>(1)

1 2
Rt

-0.1

0.1

0.2

0.3

<dE(t)/dt>(1)

FIG. 2: The quantity 〈Ė(t)〉(1), in units of e and for eE = 1, as a function of Rt evaluated numerically for m = 1, R = .05 (left)
and m = 1, R = .1 (right). For Rt far from integer values the result agrees with the analytical approximation (36), shown in
the red, dashed lines.

So we get, for R→ 0,

〈δĖ(t)〉(1) '
m2eR

4π

(
1 + 2 e−πm

2
)
ψ′(Rt− [Rt])− m2eR

4π
ψ′(1−Rt+ [Rt])− e

πR
e−πm

2

[Rt] + constant , (35)

where ψ′ denotes the derivative of the digamma function, ψ(x) = Γ′(x)/Γ(x), ψ′(x) =
∑∞
n=0(n+ x)−2, and where we

have used eq. (B7). As R→ 0, the terms proportional to the ψ′ functions vanish, and we are left with the result

〈δĖ(t)〉(1) ' −
e

π
e−πm

2 [Rt]

R
, with

Rt− [Rt]

R
� 1 ,

1−Rt+ [Rt]

R
� 1 , R→ 0 . (36)

As stated above, this result requires Rt to be far from an integer value. To cover also the case where Rt is close
to integer we have to compute 〈δĖ(t)〉(1) numerically. We show the results (in units of e) obtained for two choices
of parameters in Figure 2. As one can see, eq. (36) provides an excellent approximation of the exact result for

|Rt−[Rt]
R | � 1, while when Rt is close to an integer the amplitude of the correction to the electric field shows a

non-trivial behavior.

C. R = O(1) with mR >∼ O(1)

We conclude this Section analyzing the case in which mR >∼ O(1), which include the case mR� 1. We also assume
m >∼ 1, which implies that the net rate of pair production, as given by the non periodic component of eq. (30) is
negligible. For this choice of parameters the distance in time ∼ 1/R between the events of production of different
Kaluza-Klein modes of the matter field is comparable to or much smaller than the duration ∼ m of the individual
events of particle production themselves (remember that we are setting eE = 1 in this Section). To see that particle
production lasts a time ∼ m, let us remember that this process occurs when the frequency of the mode functions
is evolving non adiabatically. In our case, considering without loss of generality the zero mode of the field φ, the
frequency reads ω =

√
t2 +m2. Nonadiabaticity is maximal when the quantity |ω̇|/ω2 is maximized, which turns out

to be the case when t = m/
√

2.
Since for R >∼ O(1/m) there is always at least one Kaluza-Klein mode of the scalar field whose proper frequency is

not evolving adiabatically, we find that the system is never in a fully adiabatic regime. Numerical analysis, indeed,
shows a rather unusual behavior: the electric field performs sinusoidal oscillations. The amplitude of such oscillations,
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FIG. 3: Left panel: the quantity 〈Ė(t)〉(1), in units of e and for eE = 1, as a function of Rt evaluated numerically for mR = 1.
The curves, from larger to smaller amplitude, correspond to m = 2, 3, 4. Right panel: the amplitude of the oscillations of the
quantity 〈Ė(t)〉(1), multiplied by e2πmR, as a function of m and for R = 1.

in the regime of large mR� 1, that can be seen to go as e−2πmR. This behavior is apparent in the plots in Figure 3.
For smaller values of m and fixed mR = O(1) (not shown) the behavior is similar, but the oscillations are superimposed
to a decay due to the term proportional to [Rt] at the end of eq. (30).

In Section V B below we discuss the origin of this behavior.

V. DISCUSSION AND CONCLUSIONS

In the previous Section we have analyzed the function 〈δĖ(t)〉(1) in various regimes. We have seen that in the
decompactification limit R → ∞ we recover the standard result (31). In the opposite R → 0 limit we have obtained
a stepwise behavior, which seems inconsistent with the stationary nature of the background that would require a
uniform rate of particle creation. Finally, in the case R = O(1), mR � 1, the function 〈δĖ(t)〉(1) also features an
unexpected time dependence, showing oscillations whose amplitude is parametrically larger than the decrease of the
electric field due to particle production.

Let us discuss the latter two results separately.

A. On the steplike behavior for R→ 0

The steplike behavior observed in Figure 2 is surprising if one considers that the background system displays invari-
ance under continuous time translations. Why is this continuous symmetry broken down to the discrete invariance
under t 7→ t+ 1/(eER), and what does determine the exact time when particle production occurs?

The fact that vacuum decay might break some of the background spacetime symmetries has been already discussed,
for instance in [7, 32, 33]. Analogously to what was shown in [7], which focused on the Lorentz invariance of the
Schwinger phenomenon in non compact space, the vacuum of our system is invariant under time translation, as a time
translation t 7→ t + δt is canceled by a gauge transformation A 7→ A − E δt. Conversely, the addition of a constant
to the gauge potential would determine a shift in the times of particle production. In compact space, a physical
observable can have gauge dependence, as in the Aharonov-Bohm effect, which implies that gauge transformations
can also be observable unless they meet certain conditions. In our case, gauge invariance is preserved if the particle
picks up a phase equal to a multiple of 2π, which corresponds to a time translation δt is equal to a multiple of 1

eER ,
and which in its turn corresponds to a shift of the Kaluza-Klein modes by an integer. Choosing a gauge, as we did, is
equivalent to choosing an initial time for a particular observer who measures the particle productions, analogously to
the choice of an observer’s frame for bubble nucleation, as discussed in [7]. Finally, it is worth noting that an exactly
time-translational invariant electric field is an idealization – if this state is decaying then it cannot have been around
forever, otherwise it would have already completely decayed. An electric field must be turned on at some initial time,
which will break the time translation symmetry manifestly.

B. On the oscillations for eER2 = O(1), m2 � eE

The sinusoidal time dependence observed in the regime eER2 = O(1), m2 � eE can be explained by invoking the
(0 + 1)-dimensional effective description of the model, as done in [15]. In fact, in this regime particle production is
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negligible and one can just study the theory that results by integrating out the heavy Kaluza-Klein modes of the bulk
charged matter. Such an operation leads to a (0 + 1)-dimensional Lagrangian that in the limit mR� 1 reads

L0+1, eff ' πRȦ0(t)2 +
m1/2

πR1/2
e−2πmR cos(2πReA0(t)) , (37)

where A0(t) ≡
∫ 2πR

0
dx

2πRA(t, x). For a derivation of eq. (37) see e.g. [15], that works with a (4 + 1)-dimensional
theory. To obtain the effective potential derived from our (1 + 1)-dimensional theory one should multiply the effective
potential in that paper by (2πL/m)3/2 with L = 2πR to match our notation. Then, by solving the classical equations

of motion derived from the Lagrangian (37) to first order in the small quantity e−2πmR and identifying E(t) = −Ȧ0

we obtain

E(t) = E + e
m1/2

2π2R3/2eE
e−2πRm cos(2πReEt) +O(e−4πRm) (38)

which displays oscillations that, remarkably, have the same periodicity and whose amplitude has the same overall
proportionality to e−2πmR as the result found in Section IV C. Actually, the oscillations in eq. (38) match exactly,

including O(1) factors, the result from the adiabatic component of 〈δĖ(t)〉(1), presented in eq. (B8). This is not
too surprising, as the effective potential in eq. (37) has been obtained using the semiclassical approximation. Going
beyond the overall proportionality to e−2πmR, however, the behavior found in the analysis of Section IV C above shows
a different dependence on m and R than that of eq. (B8). This can be seen, for instance, from the fact the amplitude
shown in the right panel of Figure 3 is a decreasing function of m, whereas the result (B8) increases as m1/2, once
the overall proportionality to e−2πmR is factored out. This means that both the adiabatic contribution evaluated in
Appendix B and the full one, obtained in Appendix A, have the same overall sinusoidal behavior ∝ cos(2πeERt), but
a different amplitude. Inspection of those two terms in the R = O(1), m � 1 regime shows that the they partially
cancel, with the full component larger than the adiabatic one. It is possible that this difference is an artifact of the
finiteness of the mass m in our numerical calculations, and that the result will match exactly eq. (38) in the limit
m→∞.

Our analysis thus confirms, via a real time calculation performed in the full (1 + 1)-dimensional theory, the result
presented in [15], which in its turn explains, in terms of the compactified theory, the observation of [14] that, for small
compactification radii, a new instanton with magnitude ∼ e−2πmR would dominate the Schwinger effect. In particular,

our analysis shows that the net rate of pair production is proportional to e−π
m2

eE also for small compactification1 radii,
but for short timescales the effect associated to particle creation is subdominant with respect to the oscillations, with
amplitude proportional to e−2πmR and frequency R/eE, induced by the virtual charged matter.

To conclude, we have found real time formulae that allow to compute the change in the electric field due to
Schwinger effect in a compact space. The net rate of production of charged pairs, when evaluated on long times,

is always proportional to e−π
m2

eE , as in the non compact case. However, while in the limit of large compactification
radii we recover the expected non compact result, in the regime of intermediate and small values of the dimensionless
quantity mR the quantity 〈δE(t)〉(1) shows a richer behavior. In particular, the steplike time dependence found in the
regime of mR → 0 breaks continuous time translations in a fashion that is analogous to the way bubble nucleation
breaks Lorentz symmetry, and the oscillations found for m2 � eE, R2 = O((eE)−1) can be explained as an effect of
the virtual pairs of charged particles on the effective potential for the gauge field.
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1 It is worth stressing that our analysis has been performed to leading order in the in-in expansion, leading to a result 〈δE(t)〉(1) =
e f(1)(eE, m, R, t). According to [14], the new instanton should be associated to a final state with a lower electric field, but no matter

particles. In our in-in language, this would correspond to a higher order term 〈δE(t)〉(3) = e3 f(3)(eE, m, R, t) in the expansion (11)

that accounts for φ annihilation. It is thus not excluded that a net contribution to the rate of pair production proportional to e−2πmR

might appear at that order in perturbation theory. See [23] for the discussion of an analogous phenomenon in the thermal case, and [8, 9]
for a higher order real-time calculation for the zero-temperature, non compact case.
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Appendix A: Calculation for compact case

In this Appendix we work out the steps that allow to go from the first term on the right hand side of eq. (28) to
the right hand side of eq. (30) (except for the part proportional to the Bessel function K1, that will be discussed in
Appendix B below).

We set eE = 1, and focus on the sum

S =
1

R

∞∑
n=−∞

e−πm
2/4

√
2

∣∣∣Dim
2

2 −
1
2

(
− (n/R+ t)

√
2e−iπ/4

)∣∣∣2(n/R+ t) , (A1)

so that

〈δĖ(t)〉(1) = − e
π
S +

e

2πR

∞∑
n=−∞

n/R+ eEt√
(n/R+ eEt)2 +m2

. (A2)

We want to use the Mellin-Barnes representation, eq. 9.242.3 of [26], of the parabolic cylinder function

Dν(z) =
e−

1
4 z

2

zν

2πiΓ (−ν)

∫ i∞

−i∞
Γ (t) Γ (−ν − 2t) 2tz2tdt, (A3)

that is valid for |Arg(z)| < 3π/4. Given this restriction on Arg(z), we have to treat the cases (n/R + t) > 0 and
(n/R+ t) < 0 separately, so that we write S ≡ S− + S+ where n in S− goes from −N− to [−Rt]− 1 (we define here
the integer part in such a way that [−x] = −[x]), and in S+ goes from [−Rt] to N+. Here, N± > 0 are regulators
that we will eventually send to infinity.

Let us first consider S−, where −(n/R+t)
√

2 ≡ |z| > 0. In this case we can use eq. (A3) right away. It is convenient
to write the integral (A3) as an asymptotic series on the poles at t = −j, j = 0, 1, 2, ...

Dia−1/2(|z|e−iπ/4) =
e
i
4 |z|

2 |z|ia− 1
2 eπa/4+iπ/8

Γ
(

1
2 − ia

) ∞∑
j=0

(−1)j

j!
Γ
(

1
2 − ia+ 2j

)
2−j |z|−2jeiπj/2 , (A4)

that allows us to write, after relabelling n→ −n,

S− = −cosh(πm2/2)

2πR

N−∑
n′=[Rt]+1

∞∑
j,k=0

(−1)j

j!

(−1)k

k!
Γ
(

1
2 − i

m2

2 + 2j
)

Γ
(

1
2 + im

2

2 + 2k
)(R

2

)2j+2k
eiπ(j−k)/2

(n′ −Rt)2j+2k
.

(A5)

Then, we separate the sum into the components with j = k = 0, j = 0 and k ≥ 1, j ≥ 1 and k = 0, and j, k ≥ 1:

S− = −

 1

2R

N−∑
n′=[Rt]+1

1

− 2<

 1

2R

N−∑
n′=[Rt]+1

∞∑
k=1

(−1)k

k!

Γ
(

1
2 + im

2

2 + 2k
)

Γ
(

1
2 + im

2

2

) (
R

2

)2k
1

(n′ −Rt)2k
eiπ(−k)/2


− 1

2R

N−∑
n′=[Rt]+1

∞∑
j,k=1

(−1)j

j!

(−1)k

k!

Γ
(

1
2 + im

2

2 + 2k
)

Γ
(

1
2 + im

2

2

) Γ
(

1
2 − i

m2

2 + 2j
)

Γ
(

1
2 + im

2

2

) (
R

2

)2j+2k
eiπ(j−k)/2

(n′ −Rt)2j+2k
. (A6)

This allows us to isolate the divergence in the limit N− → ∞, that appears only in the first term of the equation
above. We can now send N− →∞ in the remaining terms, shift the summation variable n by [Rt] + 1, and write

S− = −N− − [Rt]− 1

2R
− 1

2R

∞∑
n=0

[
|G + 1|2 − 1

]
, (A7)

where

G =
∞∑
j=1

(−1)j

j!

Γ
(

1
2 − i

m2

2 + 2j
)

Γ
(

1
2 − i

m2

2

) (
1

2

)j
1

[
√

2(n+ [Rt] + 1−Rt)/R]2j
eiπj/2 , (A8)
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that, using again eq. (A4), gives

|G + 1|2 =
√

2
n+ [Rt] + 1−Rt

R
e−πm

2/4

∣∣∣∣Dim2/2−1/2

(√
2
n+ [Rt] + 1−Rt

R
e−iπ/4

)∣∣∣∣2 . (A9)

Next, we have to take care of S+, where the phase of the argument of the parabolic cylinder function is precisely
3π/4, so that the expression (A3) is not directly applicable. In order to use eq. (A3) we have to first apply the third
of eqs. 9.248.1 of [26]:

Dp(z) = eiπpDp(−z) +

√
2π

Γ(−p)
ei(p+1)π/2D−p−1(−iz) , (A10)

so that S+ reads

S+ =
1

2R

N+∑
n=[−Rt]

[
e−5πm2/4

∣∣∣Dim
2

2 −
1
2

(|n/R+ t|
√

2e−iπ/4)
∣∣∣2√2(n/R+ t)

+ e−3πm2/4
∣∣∣ √

2π

Γ(−im2

2 + 1
2 )
D−im2

2 −
1
2

(|n/R+ t|
√

2eiπ/4)
∣∣∣2√2(n/R+ t)

+ 2
√

2 e−πm
2

<

{
−iD

im
2

2 −
1
2

(|n/R+ t|
√

2 e−iπ/4)

√
2π e−iπ/4

Γ(im
2

2 + 1
2 )
D
im

2

2 −
1
2

(|n/R+ t|
√

2e−iπ/4)(n/R+ t)

}]
. (A11)

The summand in the third line of this expression is quickly oscillating, and we neglect it. The terms in the first two
lines can be treated in a way that is analogous to the one that led to eqs. (A7) and (A9).

We thus obtain the desired result

S =
1

2R

{
(1 + 2 e−πm

2

)

∞∑
n=0

√2(n+Rt− [Rt])

R
e−πm

2/4

∣∣∣∣∣D−1/2+im2/2

(√
2(n+Rt− [Rt])

R
e−iπ/4

)∣∣∣∣∣
2

− 1


−
∞∑
n=0

√2(n+ 1−Rt+ [Rt])

R
e−πm

2/4

∣∣∣∣∣D−1/2+im2/2

(√
2(n+ 1−Rt+ [Rt])

R
e−iπ/4

)∣∣∣∣∣
2

− 1


+ (2 + 2 e−πm

2

) [Rt] + (1 + 2 e−πm
2

) (1 +N+)−N−
}
, (A12)

where the sums over n are finite, and the divergences in the terms containing N± have been isolated.

Appendix B: The vacuum contribution

The contribution to 〈δĖ(x, t)〉(1) from the vacuum can be read from eq. (28) and takes the form

e

2πR

N+∑
n=−N−

n
R + eEt√

( nR + eEt)2 +m2
. (B1)

This sum is divergent as N± → +∞, but its derivative with respect to Rt is convergent, so that we can take the limit
N± → +∞ after differentiation and obtain (after setting eE = 1)

e

2πR

∂

∂(Rt)


N+∑

n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

 =
e

2πR

∞∑
n=−∞

(mR)2

[(n+Rt)2 + (mR)2]3/2

=
e

2πR

(mR)2

Γ(3/2)

∫ ∞
0

dww1/2
∞∑

n=−∞
e−w[(n+Rt)2+(mR)2] =

e

πR
(mR)2

∫ ∞
0

dw e−w (mR)2θ3(πRt, e−π
2/w) , (B2)
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where θ3 denotes the third Jacobi θ function. Using the representation θ3(u, q) = 1 + 2
∑∞
n=1 q

n2

cos(2nu), we can
write

e

2πR

∂

∂(Rt)


N+∑

n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

 =
e

2πR

[
2 + 4(mR)2

∞∑
n=1

cos(2πnRt)
2πn

mR
K1(2πnmR)

]
, (B3)

that is a more transparent sum. Integrating back in d(Rt), we obtain

e

2πR

N+∑
n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

=
e

πR

[
Rt+ 2mR

∞∑
n=1

sin(2πntR)K1(2πnmR) + constant

]
, (B4)

where the constant is generally divergent, as it depends on the cutoffs N±.
In the limit mR→ 0 we can use the small argument approximation of the Bessel function, K1(x) ' 1/x, to write

e

2πR

N+∑
n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

∣∣∣∣∣
mR�1

' e

πR

[
Rt+

∞∑
n=1

sin(2πntR)

nπ
+ constant

]

=
e

πR

[
Rt+

1− 2tR

2
+ constant

]
= constant , (B5)

where the approximation is valid for tR� mR. Of course, for tR = 0 and tR = 1, sin(2πntR) = 0, so

e

2πR

N+∑
n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

∣∣∣∣∣
tR=1

− e

2πR

N+∑
n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

∣∣∣∣∣
tR=0

=
e

πR
, (B6)

which implies

e

2πR

N+∑
n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

∣∣∣∣∣
mR�1

' e

πR
[tR] + constant . (B7)

On the other hand, in the large 2πmR limit, we use the asymptotics K1(x) '
√

π
2xe
−x to keep only the first term

in the series, obtaining

e

2πR

N+∑
n=−N−

n+Rt√
(n+Rt)2 + (Rm)2

∣∣∣∣∣
mR�1

=
e

πR

[
Rt+

√
mR sin(2πtR) e−2πmR + constant

]
. (B8)
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