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Abstract. Processes of particle production during inflation can increase the amplitude of the
scalar metric perturbations. We show that such a mechanism can naturally arise in super-
gravity models where an axion-like field, whose potential is generated by monodromy, drives
large field inflation. In this class of models one generally expects instanton-like corrections to
the superpotential. We show, by deriving the equations of motion in models of supergravity
with a stabilizer, that such corrections generate an interaction between the inflaton and its
superpartner. This inflaton-inflatino interaction term is rapidly oscillating, and can lead to
copious production of fermions during inflation, filling the Fermi sphere up to momenta much
larger than the Hubble parameter. In their turn, those fermions source inflaton fluctuations,
increasing their amplitude, and effectively lowering the tensor-to-scalar ratio for the model, as
discussed in |1, 2|. This allows, in particular, to bring the model where the inflaton potential is
quadratic (plus negligibly small instanton corrections) to agree with all existing observations.
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1 Introduction

Cosmological observations restrict the space of viable inflationary models in various directions.
The measurement of the spectral index gives ns — 1 ~ —1/30 with a ~ 10% uncertainty, with
no appreciable running. This, together with constraints on nongaussianities (the parameter
fnr is about four orders of magnitude smaller than its value in a fully nongaussian distribu-
tion), and with the fact that isocurvature modes are below the 5% level [3], severely constrains
non-vanilla models of inflation. However, the class of models of inflation that arguably taste
the most like vanilla, those described by a monomial potential V' o« ¢™, are either ruled out
or under significant pressure from the constraints on the tensor-to-scalar ratio r < .06 [4]. In
particular, the simplest choice for a monomial, the chaotic inflation with quadratic potential,
is ruled out at the ~ 4o level.

Scenarios where particle production occurs during inflation can allow to decouple infla-
tionary observables from the shape of the potential. In these scenarios, the rolling inflaton
provides the energy necessary for the generation of quanta of a secondary field whose pres-
ence can affect the spectra of scalar and tensor perturbations. While a single event of particle
production [5] can lead to features in the power spectra, a continuous process can generate an
additional quasi-scale invariant component for the spectrum of scalar perturbations, or even
provide a channel for the dissipation of the inflaton’s energy that can lead to inflation even if
the potential does not satisfy the slow-roll conditions |1, 6-8|.

In this paper we will argue that particle production can bring the model of chaotic
inflation V' (¢) = ";gpQ (plus, as we will see, corrections that we will require to be negligible) to
agree with all constraints from observations. This possibility was already considered in [9, 10],
that discussed a system where an auxiliary scalar y gets an oscillating mass-squared through a
coupling to the inflaton, leading to periodic production of quanta of x (in [11] was also shown
that inflation with a quadratic potential can be brought to agree with the current bounds on
r if the perturbations are initially in an excited state). Remarkably, in our work we will see
that one can resurrect chaotic inflation by simply embedding it in a supersymmetric setting,
and including a small, instanton like correction to the superpotential. These ingredients
- monomial inflation with small instanton corrections in supersymmetry - are expected in



supersymmetric models where the inflaton is an axion-like degree of freedom whose potential
is generated by monodromy [12, 13|, see [14] for a review. In particular, the quadratic form
of the inflaton potential is generated in the axion—four-form system of [15-18]. Note also
that [19, 20| have shown that this axion-four form system can be brought to agree with
observations by the inclusion of higher dimensional operators that flatten the potential at large
field values, similarly to the effect [12, 13, 21-23] observed in string theory constructions. In
this work we will assume, however, that such flattening does not occur for the observationally
relevant range of field values.

Going into the specifics of our scenario, we will consider a supersymmetric model where
® is a superfield whose imaginary component ¢ gives the axion-like inflaton, whose potential
is generated by monodromy. We will show that the addition of an instanton-like ~ e~ ®/F
component to the superpotential, where F' < Mp is the axion constant, leads to a coupling
of the inflaton to its fermionic partner, the inflatino, that can be written in the form ~
%1/; (7“758M<p) 1. The rolling inflaton thus provides a time-dependent contribution to the
fermionic Lagrangian, leading to the generation of quanta of v [24, 25] with momenta up
to ~ qﬁ/ F', that can be much larger than the Hubble parameter, leading to a large density
> H? of fermions during inflation. The quanta of 1/, in their turn, source fluctuations of
the inflaton. The phenomenology associated to this fermion-inflaton system has been studied
in [1, 2]. In the first of those papers it was shown that there is a regime where the inflaton
fluctuations sourced by the produced fermions dominate over the standard ones originating
from the amplification of the inflaton’s vacuum fluctuations. Remarkably, and in contrast
with the case in which gauge fields are amplified by the rolling axion-like inflaton [26], the
statistics of the inflaton perturbations is quasi-gaussian, and in agreement with observations.
Also, as we will see, the spectral index in this model turns out to be the same as in standard
chaotic inflation, and therefore agrees with observations.

The existence of an additional component of scalar perturbations increases, for fixed
values of the parameters, the amplitude of the power spectrum FP;. If such a component is
sizable, therefore, we must lower the energy scale of inflation in order to fit the observed value
of P;. This has the consequence of lowering the amplitude of the tensor perturbations (in [2]
it was shown that the fermions do not source significantly the tensor modes), and of bringing
the model to agree with the current constraints on the tensor-to-scalar ratio r. This is one of
the main results of our paper.

As a warm-up, in Section 3 we will consider a globally supersymmetric model, with a
superpotential W oc ®2, that can lead to chaotic inflation, with a small contribution ~ e~®/%",
While we work directly in the regime of supersymmetry with a single chiral superfield, it
is worth noticing that this same construction can be realized [27] by supersymmetrizing
the axion—four-form system of [15-17]. Mapping the resulting fermionic Lagrangian to that
studied in [1], and imposing theoretical as well as observational constraints, we find that this
scenario can agree with observations, leading in particular to a tensor-to-scalar ratio that can
be as small as r ~ .007, about a factor 8 below the current bound.

Given that the inflaton has Planckian excursions, however, the assumption of global
supersymmetry is not appropriate, and one has to go to the full supergravity description.
We perform such an analysis in Section 4. We consider models that are free from the n-
problem [28] by choosing a Kéhler potential that depends only on the combination [29, 30]
® + ®. In order to design a potential that is dominated by the quadratic term and whose
flatness at large values of the inflaton is not spoiled by the supergravity correction, we consider
models of inflation with a stabilizer [30-32] superfield S. Since this system features two



superfields ® and S, we must diagonalize the dynamics of two fermions, the inflatino and the
stabilizerino, that is given in general terms in [33]. We do so by generalizing the analysis
of [34, 35] (see also [36], that provides general formulae for several superfields) to the case
where the system contains a pseudoscalar component, but with the simplifying assumption
that, thanks to the presence of the stabilizer, the superpotential vanishes on shell. To our
knowledge, such a calculation is new in the literature, and is our other main result.

After diagonalizing the fermions, and in the regime where the inflaton potential has small
oscillations superimposed to a large monomial component, we find that the dynamics of this
system is identical — up to simple redefinitions of parameters — to the globally supersymmetric
one. Thus the parameter space contains a viable region where the scalar potential is essentially
quadratic, but r can be as small as a factor ~ 8 below the current constraints, also in the
case in which the model is embedded in supergravity.

2 Fermion production during inflation, and the amplitude of tensor-to-
scalar ratio

Let us start by reviewing the results of |1, 2]. Those papers contain the study of a system
consisting of a pseudoscalar inflaton ¢ with arbitrary potential V() generated by the breaking
of the shift symmetry ¢ — @+constant, along with a fermion Y of mass m,. We generalize
this model to a system of Ny fermions Y7, ...Yy,, a generalization that will prove useful in
Section 4.2. Including the shift symmetric coupling of lowest dimensionality of the inflaton
to Y, the fermionic component of the Lagrangian takes the form

Ny
_ . 1
Ly =YY [wﬂau —my — fv“fﬁauso Y;, (2.1)
=1

where f is a constant with the dimensions of a mass. It is convenient to define new fermion
fields ;, related to Y; by

W = ey, (2.2)

in terms of which the fermionic Lagrangian reads

Ny
Ly = Zld_h {M“@M — My, [cos <2}0> — iy sin (2}0” } Vi - (2.3)

The expression (2.3) shows that, in the limit m, — 0, the fermionic degree of freedom
decouples from the inflaton. On the other hand, the form (2.1) of the fermionic Lagrangian
emphasizes the shift-symmetric nature of the fermion-inflaton coupling.

As shown in [1], the interaction described above, in a quasi-de Sitter background with
Hubble parameter H, leads to the generation of chiral quanta of v; with an occupation number
that is constant, and given approximately by .1 (m,/H )2, for momenta up to ~ |¢|/f. The

NE:]
fermions can thus have a very large number density ~ 1072 (%)2 (I—(Jf‘) > H3, and can

affect the dynamics of the inflaton background and of its perturbations. In this paper we will
be interested in the regime in which the fermions do not affect significantly the background
dynamics, but provide the main source of inflaton perturbations.



An especially interesting result of [1] is that, even in the regime in which the component
sourced by the fermions dominates the inflaton perturbations, the statistics of those pertur-
bations is very close to gaussian, and in agreement with the constraints from Planck [37].
This is due to the fact that, even if the process ;¥ — dp is a 2 — 1 process that would
naturally lead to non gaussian statistics, fermions from a broad set of momenta participate
to the process, and gaussianity is re-obtained as an effect of the central limit theorem. The
bottom line is that the model of [1, 2] can lead to a regime where the perturbations are
sourced by the fermions, and still their properties are in agreement with observations.

Since the amplitude of the sourced perturbations has a functional dependence on the
parameters of the system that is different from the standard case, this set up has the po-
tential of reviving models of inflation whose potential would be otherwise ruled out by CMB
constraints.

We will focus here on the model of inflation where the potential has the simplest func-
tional form: a quadratic potential. In the standard case in which the perturbations are from
the vacuum, this model’s prediction for the spectral index is in agreement with data, but
is ruled out by the amplitude of the tensor modes, since it predicts r = 8/N, where N is
the number of efoldings, that for N < 60 requires r > .13, whereas Planck/Keck constrains
r < .06.

The presence of fermions in the dynamics in the system naturally calls for a supersym-
metric construction. In the next section we will construct a globally supersymmetric model
where we obtain the desired features, before moving on to a construction in supergravity that
is more complicated, but more appropriate, since we are discussing large field inflation.

3 A model in global supersymmetry

As a warm up, let us consider a globally supersymmetric theory with a single chiral superfield
® and superpotential

W= g<1>2+A3 e V2O/F (3.1)

where g, A and F' are parameters with dimensions of mass. The corresponding Lagrangian
reads

A3 2
L=-0u60"¢" ~ ]m — V2 VT

_ A3 A3
+ 9 [i’y“@u —pu—R {2F26—\/5¢/F} +1iS {2ﬁe—ﬁ¢/F} 75] ¥, (3.2)

where ¢ is a complex scalar and 1 is a four-component Majorana fermion.
To proceed, we assume' that the real part of the field ¢ is stabilized to R{¢} = 0 and
we thus redefine ¢ = i¢/v/2, obtaining our final Lagrangian

1 e A3 A
L=—50up0% = V(p) + 1 (W“@u — 1= 245 cos(p/F) — 2@@75 Sm(w/F)> v,

2 3 6
1

A .
Vip) = "¢ — 2 sin(ip/ F) + 275 -

5 (3.3)

!This is by no means a consistent assumption, and we will make it in this section that has only illustrative
purposes. In Section 4 below, on the other hand, we will consistently minimize the full potential of the model.



The fermionic part of this Lagrangian is analogous, with the identifications F' = f/2 and
My, = 2 A3/F?, to the Lagrangian (2.3), with the addition of a mass term p for the fermions
(that, as we will see below, can be neglected), while, neglecting the cosmological constant
~ A®/F? that we assume to be renormalized to its observed value by some mechanism, the
scalar potential is that of chaotic inflation with oscillating corrections.

We thus see that the simple superpotential eq. (3.1) can already lead to the kind of system
outlined in Section 2 above: a model of quadratic inflation (with small corrections) with a
sizable coupling of fermions to the inflaton, where the power spectrum of scalar perturbations
may be dominated, in some region of parameter space, by the fermion production and might
thus be in agreement with Planck constraints. To make sure that this is the case, however,
we must explore the constraints on the parameter space available to the system.

We will assume that the potential is dominated by its quadratic part, and that fermions
give a negligible contribution to the background dynamics, so that all the results from chaotic
inflation will carry over. In particular, we will have the approximate slow-roll relations

2 2
<pz—\/gMMPa ¢ ~2MpVN, H~pmfsN, (3-4)

where N ~ 60 is the number of efoldings until the end of inflation.
The strength of fermion production is measured by the dimensionless parameter &, that
takes the value

| 1 Mp

¢ 4FH 4N F '

(3.5)

We will assume, as is expected to be the case in UV-complete theories of gravity [38, 39], that
the parameter F' is sub-Planckian, and small enough that £ > 1.

Due to the presence of the term proportional to g in the fermionic sector of the La-
grangian, the present system is different, as discussed above, from that of [1, 2]. As shown
in [1|, however, fermion production happens for momenta up to keytor >~ 2HE. As a conse-
quence, since slow roll requires p < H while keutof = H, the effect of the parameter p does
not affect the dynamics of fermions to any significant level, and we can safely neglect it. This
conclusion is supported also by the fact that, if we square the Dirac operator appearing in
eq. (3.3), we obtain

A3 A3 . A3 A3
(i’y“@“ — - Qﬁ cos(p/F) — 2ﬁiﬁy Siﬂ(go/F)) (—iv“(?p, — - 2ﬁ cos(p/F) + 2ﬁ7j'y sin(gp/F))
2 AP A AP 5 0
=04+ p*+ 4,uﬁ cos(¢/F) + 4ﬁ - 2Zﬁ¢ [sin(¢/F) + iy’ cos(¢/F)]| v (3.6)

where the oscillating term o [sin(¢/F) + iy° cos(¢/F)], that is the one responsible for the
creation of fermions, is enhanced by a factor (;5 For our choice of parameters this term is larger
by a factor of the order of 10 or 10? than p?, that can thus be neglected. We expect that
term in p will affect only modes with k < pa, and for those modes we expect an enhancement
of the production of quanta of fermions, due to the breaking of conformality induced by the
mass term.

Let us now list the constraints on our parameter space. (The following formulae will
assume a general value Ny of fermions families, even if the analysis of the model in this
Section requires Ny = 1.)



Monotonicity of potential. In order for the oscillating term in the potential not to spoil
the monotonicity of the quadratic part during inflation we require

3

A
QF—QM <1. (3.7)

Backreaction. One can neglect the backreaction of the fermions on the inflating back-
ground provided the condition mfbﬁNf < 3m F? is satisfied [1]. In our model, this
corresponds to the condition

1 ASMp
3V N F7

Ny <1, (3.8)

Validity of effective field theory. The term proportional to sin(¢/F') in the scalar poten-
tial generates oscillations of frequency w = ¢/ F in the Hubble parameter. By requiring
that physics occurs at scales below the cutoff 47 F of the axionic effective field theory,
we obtain the constraint w < 47 F, that translates into

uMp < 2V6TF2 . (3.9)

Small my, approzimation. The results of [1, 2| have been obtained assuming m, < H,
that in terms of our parameters reads

A3 | N

that is identically satisfied when the condition of monotonicity of the potential, eq. (3.7)
is satisfied. Also, eq. (3.10), along with the requirement £ > 1, implies that a second
condition of perturbativity required in [1, 2|, namely that m, < H+/¢, is identically
satisfied.

Tensor modes. The Planck-Keck constraint [4] » < .06 rules out standard quadratic
inflation. As discussed in [2], the amplitude of tensor modes in our model has essentially
the same expression as in the standard case, which gives a constraint

4 p?

——=—=N < .06 P, 3.11
3712 M]% <.0 ¢ ( )

where P is the scalar power spectrum.

No oscillations in scalar perturbations. Oscillations in the potential will induce os-
cillations in the power spectrum of scalar perturbations. This phenomenon has been
studied in detail in the case in which the scalar spectrum is generated by the stan-
dard mechanism of amplification of vacuum fluctuations of the inflaton. The con-
straint on the amplitude of those oscillations, dns, can be approximately written as
ons S 1073/Mp/F [3, 40, where in our model don, ~ 6v/2r N4\ /F/Mp [41],
which would provide a strong additional constraint on our model. However, these con-
straints do not hold in the regime we will be interested in, where the scalar perturbations
are sourced by the fermion field. As a consequence, we will not consider them in our
analysis.
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Figure 1: The parameter space for the model (3.3). The shaded region marked by an “r” is
excluded by the observational bound r < .06 on the amplitude of the tensor modes. The region
labelled “EFT” is excluded by the constraint (3.9), and the region labeled “Monotonicity” is
excluded by the constraint (3.7).

e Nongaussianities. There are two potential sources of nongaussianities. First, those in-
duced by the presence of the fermion bath in interaction with the inflaton, that have
been shown in [1| to be negligible. Second, there is a possibility of resonant nongaus-
sianities [41] induced by the small oscillations in the inflaton potential. As in the point
above, however, the existing estimates of the amplitude of this effect do not hold in the
regime of sourced perturbations we are interested in, and we will ignore them here.

Once we fix the number of efoldings to N = 60, our theory has three parameters, namely
A, i and F. We can eliminate one of them by imposing that the power spectrum takes its
observed value P; = 2.2 x 1077, using the expression, obtained in [1],

o ( 8 m2 ) 42 N? [ 2 AS M2

) 2 P
P 14+ 2N, eNge | = M 1 2 A My
¢ 4m2p? * ! F2§ 08¢ 672 MI% 3n2 F8 f

32

log (4\/NMiP) H .

(3.12)

In particular, it is convenient to use the normalization of the power spectrum to eliminate
A. Once we do this, we can plot the constraints enumerated above on a two-dimensional
plot, see Figure 1. As one can see, there is a portion of parameter space that satisfies all the
constraints above, and that extends from F ~ 3 x 10~* Mp to F ~ 1073 Mp and where L can
be as small as 1.3 x 107% Mp. This implies, using eq. (3.11), that the tensor-to-scalar ratio
in this model of quadratic inflation with corrections can be as small as ~ .007, i.e. about an
order of magnitude below the present bounds.

Another well-constrained quantity we have not talked about is the spectral index, .961 <
ns S .969 [42]. Its expression for this specific model is essentially the same as the standard
chaotic inflation scenario, ny — 1 = —dlog P:/dN ~ —2/N so that by assuming the standard
value N = 60 the spectral index is automatically in agreement with observations.

To summarize this section, the globally supersymmetric model with superpotential (3.1),
with the assumption that the real component of the inflaton is stabilized, leads to a model of



quadratic inflation that, thanks to inflaton-inflatino interactions, is compatible with all the
existing phenomenological constraints.

Of course, this model with global supersymmetry is not quite suitable for chaotic in-
flation, where the fields can get Planckian values. In the next section we will thus turn our
attention to the more appropriate construction of a model of supergravity where fermions can
source the spectrum of scalar perturbations.

4 The full construction in supergravity

Even before worrying about the role of fermions, the construction of models of inflation in
supergravity is famously [28] a nontrivial task. In this paper we will consider models with
a stabilizer [30-32], that allow to design essentially any potential. The down side of these
models is that they need at least two superfields — the inflaton and the stabilizer, which makes
the analysis of the fermionic sector quite cumbersome.

In Section 4.1 below, we will study in general terms the equations of motion for the
fermionic degrees of freedom in models with an inflaton and a stabilizer superfields. Then,
in Section 4.2, we will specialize our equations to the case of a superpotential leading to
quadratic inflation with small oscillations, and we will show that the analysis of parameter
space performed in the globally supersymmetric model of Section 3 above can be directly
applied to the full supergravity construction.

4.1 Equations for fermions in models of supergravity with a stabilizer

We start from a theory of two chiral multiplets coupling to the supergravity multiplet. Of
the two spin-1/2 matter fields, one is the goldstino and can be gauged away. We are thus left
with two helicity-1/2 fermions, the transverse component of the gravitino, 6 = ~%t; [43-45|,
and the fermion Y [33], a linear combination of the fermions in the matter multiplets. The
longitudinal, helicity-3/2 component of the gravitino will play no significant role (it gets a
mass proportional to the superpotential [43-45], which vanishes in the models with stabilizer
we are interested in), and we will ignore it here. The derivation of the equations of motions
for fermions in general supergravity models can be found in [33], whose convention we adopt.
In particular, eq. (9.20) in that paper provides the equations of motion for the fermions:

A « . . 4
(%+B+W%Wme—@ﬁT:

(ao—wk’yoA—i—BT+aF+2a—|— —my NY + aaA20—0 (4.1)

Mp 4

where, for a Kéhler potential K and a superpotential W, and considering the two superfields
®;, i = 1,2, and their scalar components ¢; and ¢' = (¢;)*, one has the quantities

m = QMQW’ m = R{m} —iS{m},’,

%y2wy) m'l = (9" + Wﬂ) ~Tmt,
%_%—7%7, AP = QM“waK PLIK),
= (6v) . Ve sl 6P = gl did



a_3M§,(H2+’m|42), al——3M§>(H2+H+|m|42>, g = 2m'
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A= (a1 — 1 as), B:—gaﬁ—km\i@myo(l—k&@,

&=mi—°gld; A—2\/VOJ$|,

Pr==(1-7°), PL:%(l‘i"YE))a

My = ~(migdr — myglo),

F= —()A;l(k}tg@kpli (9_1)§cmlinij§; + kaL(g_l)fmliHijij> ; (4.2)

where a prime denotes a derivative with respect to the conformal time while an overdot is
a derivative with respect to cosmic time, and where 8" = 9/9¢;, and 9; = 0/0¢". Also,
g;'- = 9'0,K is the Kihler metric and I, = (g's)710%¢/; is the Kihler connection. The
scalars satisfy the equations of motion gf (gzﬁj +3H éj + Fg‘?ld.)kq'ﬁz) + 0;V = 0. Further, we have
the relation of + Oé;Oég +a?A% =1.

We will denote the two chiral superfields by ® = &, and S = ®5 (with scalar components
¢ and s, respectively), and we choose a minimal Kéhler potential for S, but keep a general
potential for ®,

K(®, ®;9,5)=K(®, ®)+5S. (4.3)
For the superpotential, we use a stabilizer model,
W =S (@), (4.4)

where f(®) is an arbitrary function and S is stabilized at 0. A consequence of this is that
m|s—=o = 0, and therefore the mass of the longitudinal helicity-3/2 component of the gravitino,
ms /e = |m|/M} vanishes.

The scalar potential is

K | 0K K W2
vze%{@4y<@wa+z wﬂ(wwq-w>_3 ]
j M2 M2 M2

0K 2 K
3219

K

:eM}% [ ’3‘2

M}

/ |s
f(o)+ f(o)+ - 3]\7%

7@+ gllsl?

F@P]. @s)

Differentiating gives 95V |s=o = 0, 02V |s—0 > 0, and 9505V |s—o > 0 showing that s = 0
is a stable critical point of the potential. Therefore, from here on we set s = 0, and the scalar
K
potential is simply V = e | f(¢)|?.
With these choices, we have

K K 6¢IC

m'=eBEf(g),  m? =M |f(9)+ THI@)],  ml=mT=m® =0, (46)
P
e=cF), =g, 1 =~ ()00 (A7)



A Dbit of calculation shows that
V-
2V g2

V + 9|2

F= .
2Vof?

(0°Vd+0,vé") + (0°Vd -0,V )" (4.8)
Let us now proceed to diagonalize the equations of motion for the fermions. The system
(4.1) can be derived from the Lagrangian [35]

L= ZZ;)G_[(’VO&) + iy kA + 703)9 - i]{:’yoT] +
4a

 aA?

_ . . . . 1
T [(7030 — iy ki A+ OB+ ay°F + 2470 + #’yomvo) T+ ZaozA%/OQ] . (4.9)
P

where, following [33], we use the convention § = 6T~ for barred spinors. We canonically
normalize the fermions defining

ik~ A 1/2 .
g=21"%g T:—(g> T. (4.10)
aa’ 2 \a
The Lagrangian with normalized fields (and taking s = 0) is
L= 5[( —~%9 + i’yiki% — %AOB'yO'y‘K’)HN + Ay - k’yo'i“] +
«
T [( — 080 + iy 4 (%AOB - aﬁ5)7075>’f Ay - moé} : (4.11)
o
where
f VAL oy, :
= =0 00V - 0,V ). 412
S ¢ — 0V (4.12)
Note in particular that Fy is pure imaginary, and that it vanishes for real ¢.
Let us write the Lagrangian (4.11) in the compact form
E:X[—fyoao—i—ify-kN—i—M}X, (4.13)

with X = (4, T)T and N = N; + Nyv°, where

Nl_( 0 oq/oz)’ NQ_(A 0)’ M_< 0 %A(Jffaﬁg, v (41

We now redefine the fields in such a way as to remove the factor of N in front of iy'k;.
Using the relation a? — a? = a?A2, we can see that NTN = N2 + N2 = 1, so N is unitary.
Therefore, we can define N = 2V = cos20 + 7¥sin 20 where ¥ is a 2 x 2 hermitian
matrix [46]. We choose

0 m—sin A
20 — (ﬂ Canta o > . (4.15)

It is straightforward to check that cos2¥ = N;j (remember that a; < 0), and sin2¥ = Ns.
After redefining X = e’z , the Lagrangian takes the form

£:Z[—7080+i7~k+M}Z, (4.16)

~10 -



where the new matrix M reads

M = e‘I"YO(M —0pV) e 1"

_1([-iAf +a(l-ai/a) F5]70W5 — oA + a F5A~° (4.17)
2 — A +a B0y [iAF — a1+ ar/a) F5]7°° ) '

Furthermore, we can remove the v94° term by redefining the fields as

B eiayf’ 0 1/}1
Z = < 0 eiag’y5> <,¢2> ’ (4'18)

where, in order for the 4°y° terms to vanish, o1 and o must satisfy

a

1 .
ol =—-AF —i- (1—a1/a) Fs,
2 2
1 .
oh = SAF + zg (1+ a1 /a) . (4.19)
Once we choose o1 and oy that satisfy these equations, we are at last left with a coupled
; 5
set of fermions with a mass matrix of the form 0 5 Myt by , where M; and
My + iMsyy 0

M> are defined below. Such a system can be completely diagonalized in terms of the rotated
fields

1
X1 = ﬁ(wl +12),
1
X2 = ﬁ(% —2), (420)
giving the final Lagrangian
- , My + iMay® 0
— _A0 . 1 27 X1
L= (x1,X2) |—7 0o +iv k—i—a( 0 Y —ng'ﬁ)} <X2> , (4.21)
where
M; = YA cos(o1 + 02) + Eﬁ’ng sin(oy + 02) ,
20[1 2
My = ~ YA sin(oq + 02) — 213'5A cos(oy + 02) , (4.22)
2041 2
that depend only on the combination
c=o0140y, 6=iLFy, (4.23)
@

and where a, o, and A are given in (4.2), and Fj is given in eq. (4.12). Thus, we see that
we have a system of two decoupled fermions with the same mass. This is a general result,
assuming only a stabilizer model superpotential where the Kéhler potential is minimal in S.
The scalar potential and fermion dynamics are determined by the choice of function f(®) and
Kihler potential, X(®, ®). This allows a great deal of freedom in constructing a model with
fermions coupled to an inflaton with choice of inflationary potential. For example, taking ¢
to be real will make My = 0 and M; = —ﬁA.

In the next section, we show how this can be used to recover, in a full supergravity
setting, the Lagrangian of Section 3.
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4.2 Quadratic inflaton potential, plus small oscillations — analysis of the param-
eter space

We now show how we can recover the Lagrangian (3.3) from the full supergravity theory in
(4.21) with the choice

F®) =+ A2 F K@, ) = (® + B)2. (4.24)

We have three parameters, p, F', and A with the dimensions of mass. Here, we write A to
distinguish the parameter of this section from the A of Section 3. We take ¢ = %(p +ip) so
that the scalars are canonically normalized. During inflation, ¢ will act as the inflaton while
p will oscillate near its minimum and will not play a significant role in the scalar potential.
The choice (4.24) gives the scalar potential

222 R L
V =eMP %(p2 +©?) +V2u A2 F <p cos% — psin %) + A4e7?p} : (4.25)

We will take there to be a hierarchy of scales, p < F < Mp < . As we will see below,
therefore, p will be nonzero, but can be made sufficiently small within a certain parameter
range. As mentioned in Section 3, F < Mp is motivated by embedding this model in a
UV-complete theory of gravity. The scalar potential is then well approximated by

2
V ~ %cpz —V2uh%p sin% + A%, (4.26)

This potential has the same for as the one given in eq. (3.3), namely chaotic inflation
plus small oscillations. Matching gives the relation

A2 =V2N3F (4.27)

so that monotonicity of the potential requires

2

ﬁﬁF <1. (4.28)

Once this condition is satisfied, we can use the slow-roll approximation (3.4) to describe the
evolution of ¢ at zeroth order.
We can now solve for p(t) from the equations of motion obtained after keeping only the
leading terms in the potential (4.25) under the hierarchy p < F < Mp < ¢,
V2uh? @

psin = =0, (4.29)

5 3H
p+op—+ ja

where we will treat ¢ as approximately constant except in the rapidly oscillating sin(¢/F')

term where we use the leading order in slow-roll ¢(t) ~ ¢(0) — \/g,uMpt. Neglecting the
decaying term from the homogeneous solution of eq. (4.29), and requiring

F M 1
— <« L x—=, (4.30)
Mp © VN
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that is equivalent to the large-£ approximation, we obtain

0 L3 A2 F o
o~ — ——(sin —
p ot dp b P R

(4.31)

where pg is an integration constant. We have verified, by solving numerically the exact
system of coupled equations for p and ¢, the accuracy of the approximation (4.31) and that
the constant pg is much smaller than F'.

The requirement p < F' gives, therefore, the additional constraint

A M 1
<« 2P~ = (4.32)
pMp ©» VN

Now we move on to ¢(t), for which we want to go beyond the slow-roll approximation.

The function ¢(t) satisfies the approximate equation

AQ
G4+ 3Hp+ p2p (1 — \@M—F cos f,) =0, (4.33)

that we can solve perturbatively in A2, defining ¢ = po+A%p;+0(A?) [41, 47]. By linearizing
the equation for ¢ in A2, and keeping the leading terms in the approximation ¢ > Mp > F
and in the slow roll approximation, the equation for ¢; reads

3
1o, \flﬂ/?o o0, (4.34)

p1+ 5 Mp F

where, again, we treat ¢ as constant except inside the rapidly oscillating cos(pg/F') term.
The solution, ignoring the decaying mode, is

A2
o) polt) — et ) cos (40 (4.89

We see from (4.32) and from F' < Mp that A2<p1 < g, therefore, we are comfortably within
the perturbative region.

Ml Mol i1

ZzA/\/\/\/\ﬁ 3-2\/\“/\/\ﬁ
)/ ] J =\ YT

Figure 2: Results of exact numerical integration (solid, blue) and analytical approximations,
eq. (4.40), (dashed, orange) for the quantities M (¢) and Ma(t). The parameters used for these
plots are u =5 x 107 Mp, F =5 x 10~* Mp. At these times ¢ ~ 13.9 Mp.
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Figure 3: The parameter space for the model (4.24), that has two fermion families. The
shaded region marked by an “r” is excluded by the observational bound r < .06 on the
amplitude of the tensor modes. The region labelled “EFT” is excluded by the constraint (3.9),
and the region labeled “Monotonicity” is excluded by the constraint (3.7). The only difference
with respect to the plot in Figure 1, that was obtained for a model with only one fermion
family, is that the line delimiting the “Monotonicity” constraint has moved down, leaving a

larger parameter space.

Now we turn our attention to the remaining quantities in the fermion mass in eq. (4.21),
starting with F5. Using (4.31),(4.35), along with the approximations (4.32), this gives
- —V/3iA? %)
s~ —Zsin(p/F). 4.36
s L sin(p/ F) (430)
Note that we are using ¢ and not ¢ in the above expression. At the order we are
considering, they are equivalent. Continuing with o, to leading order in slow-roll, o /av ~ —1,
so that & ~ —iF5. When integrating ¢ in eq. (4.23), we will treat ¢ as constant outside of the
sin(p/F). We will not be interested in the constant of integration as it is simply a constant
phase in the fermion fields, so that we obtain
3A2

o~ —mgp cos(p/F). (4.37)

Performing the same approximations for A, we obtain

22Mp oMZ 3 A2 o
A~y )2 1-=—£4 - - F 4.38
\/; ( 352 T 3 pbip Mp SR/ )> ’ (4.38)

¥
and
A~ é% - 2\/5E cos(p/F). (4.39)
3 2 F
Finally, inserting (4.36), (4.37), (4.38), and (4.39) into (4.22), we get the fermion mass,
2M? A2
My + iMyy® ~ u( 3¢§ - \@M—F(cos(cp/F) + isin(@/F)'y5)) . (4.40)
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The accuracy of this approximation is shown in Figure 2, for a choice of parameters that
corresponds approximately to the center of the white region in Figure 1.

By translating to the parameters of Section 3 using the identification (4.27), we recover
the fermionic part of the Lagrangian of equation (3.3). In the supergravity case, the constant
part of the fermionic mass (i.e., corresponding to the term proportional to u in the first line
of eq. (3.3)) is slow-roll suppressed, and we can neglect it here as we did in Section 3.

The conclusion of this discussion is that, with the redefinition (4.27), the analysis of
Section 3 applies also to the supergravity model. The only difference is that in this case we
have Ny = 2 fermions in the model. The plot in Figure 3 is analogous to that of Figure 1
of Section 3, but with Ny = 2. As one can see, the available parameter space for Ny = 2 is
somehow larger than that obtained for Ny = 1, and the tensor-to-scalar ratio in this model
can be as low as .004. This shows that the supergravity model defined by egs. (4.3), (4.4)
and (4.24) contains a region of parameter space where the data can be in agreement with all
observational constraints while the inflaton potential is, up to corrections that we require to
be negligible, simply quadratic.

5 Discussion and conclusions

Standard chaotic inflation is ruled out by experiment. It predicts too large a value for the
tensor-to-scalar ratio. The tensor spectrum is determined by the energy scale of inflation,
which in the simple model of quadratic inflation is fixed by the normalization of the scalar
spectrum. We have shown in this paper that a source-dominated scalar spectrum can al-
low to lower the energy scale of inflation, thereby bringing chaotic inflation back into the
observationally allowed regime.

In the papers [1, 2| it was shown that fermions coupled to an axion inflaton can lead
to a source-dominated scalar spectrum and a vacuum-dominated tensor spectrum. More
specifically, since the vacuum perturbations and sourced perturbations of the scalar modes
are statistically independent, the power spectrum is the sum, P, = P + Pgour“d, and
similarly for the tensor spectrum. Therefore, the fermion-sourced model with 2.2 x 1079 ~
Pfourced > P oc Voo Py, allows one to lower the energy scale of inflation. With P
dominated by the vacuum perturbations one can then lower the value of the tensor-to-scalar
ratio.

This work contains two main results. First, we have shown that the model of |1, 2] can be
effectively constructed from a globally supersymmetric model with superpotential (3.1). This
superpotential generates a quadratic scalar potential, plus small oscillations. The fermion
sector produces the inflaton-fermion coupling studied in [1, 2| with a negligible additional
fermion mass term. In particular, this applies naturally to the model of [15-17], that naturally
leads to a quadratic inflaton potential using monodromy. Thus, the analysis from [1, 2] applies,
allowing for the lowering of r while maintaining ns unaffected and without generating large
non-Gaussianities. While the model is subject to a number of constraints, there is a region,
in white in Figures 1 and 3, where those constraints are all satisfied.

Second, we have examined supergravity with two chiral multiplets with one of the scalars
acting as a stabilizer. In Section 4.1 we have written down the general equations of motions
for the fermions in this class of models. Remarkably, the two helicity-1/2 states in the
theory behave identically, as fermions with mass M; + iMsv°, where the generally time
dependent terms M; and My are given in eq. (4.22). Specializing to the case where the
superpotential consists of a slowly varying component and quickly oscillating term, we have
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shown in Section 4.2 that the equations for the fermions in the full supergravity theory
reduce to those obtained in the case of the globally supersymmetric model, in agreement with
the intuition from the equivalence theorem [48-50]. It would be interesting to see whether
these results extend to more general classes, beyond those with a stabilizer, of models of
axion inflation in supergravity. It is also worth stressing that, while we have focused on
quadratic potential, our construction can be extended to general models of monomial inflation.
The bottom line is that, in a class of relatively simple models of inflation in supergravity,
the potential can be essentially quadratic while the theory is compatible with all existing
observations.
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