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monthly law enforcement drug seizure events and

accidental drug overdose deaths using cross-sectional

data in a single-state, whereby increased seizures

correlated with more deaths. In this study we

conduct statistical analysis of street-level data on

law enforcement drug seizures, along with street-

level data on fatal and non-fatal overdose events,

to determine possible micro-level causal associations

between opioid-related drug seizures and overdoses.

For this purpose we introduce a novel, modified

two-process Knox test that controls for self-excitation

to measure clustering of overdoses nearby in space

and time following law enforcement seizures. We

observe a small, but statistically significant (p < .001),

effect of 17.7 excess non-fatal overdoses per 1000

law enforcement seizures within 3 weeks and 250

meters of a seizure. We discuss the potential causal

mechanism for this association along with policy

implications.
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1. Introduction

Law enforcement efforts to disrupt drug markets can cause those who have developed a

dependency to the seized substances to shift to alternative dealers or different substances to

maintain use and avoid withdrawal [8]. Overdose can occur when users are unaware of their

tolerance, or unaware of the actual content of the new substances [14,23,50], which increases

the likelihood of an overdose [4,22,26,34,35,38,51]. And while there are several studies that

suggest drug seizures have no measurable public health benefit [2,15,55,56], only one recent study

has attempted to empirically examine the relationship between law enforcement seizures and

overdose [59]. This study by Zibbell and colleagues’ found that fentanyl seizures in Ohio were

associated with opioid-involved overdose deaths; however, causal inference was limited due to

the data being aggregated and cross-sectional.

In the current study we analyze the space-time co-occurrence of seizure events of illicit opioids

by law enforcement and opioid-related overdose events, all measured at the address level. We

approach the problem from a point process perspective, where we consider the seizures and

overdoses to be two separate processes and our goal is to assess their dependence. For this

purpose a two process Knox test for clustering [27] can be used when the parent process intensity

is separable. However, both law enforcement event data [37] and overdose event data [31] can

exhibit self-excitation. In this situation, permutation of event times changes the second-order

statistics of the process and the standard two process Knox test is no longer valid, as we will

show in subsequent sections. To overcome this issue, we introduce a modified two process Knox

test that uses a self-exciting point process, rather than a Poisson process, as the null distribution

for the parent process. We then apply the test to assess the space-time relationship between law

enforcement drug seizure events and opioid overdoses in a dataset from Indianapolis, Indiana

covering 2014-2018.

The outline of the paper is as follows. In Section 2, we provide an overview of the standard

Knox test, self-exciting point processes, and our modified Knox test. In Section 3, we describe

the data used in our study. We analyze both non-fatal opioid-related overdose events, measured

through emergency medical services (EMS) naloxone administrations, and coroner’s data on

accidental drug overdose deaths, both of which were collected in the same jurisdiction as law

enforcement drug seizure events, over a five-year period in Indianapolis, Indiana. In Section 4,

we present results from both a synthetic experiment illustrating the need for a modified two

process Knox test and from an experiment applying the new two process test to coupled seizure-

overdose data in Indianapolis. We observe a small, but statistically significant (p < 10−3), effect of

17.7 excess non-fatal overdoses per 1000 law enforcement seizures within 3 weeks and 250 meters

of a seizure. In Section 5, we discuss the policy implications of our findings.

2. Methodology

We consider a two-process Knox test [27,57] to detect excess clustering of overdoses following

law enforcement drug seizures. In particular, given a time cutoff τ and spatial distance cutoff δ,

the Knox statistic [28] κ(τ, δ) is given by,

κ(τ, δ) =
∑

i,j

1{‖xo

i − x
s
j‖ ≤ δ, |toi − tsj |< τ}. (2.1)

Here the parent process, Ds = (xs
j , t

s
j), consists of the space-time drug seizure events and the

dependent process, Do = (xo
j , t

o
j ), consists of the space-time overdose events. The Knox statistic

counts the number of overdose events within a radius δ and within τ days of a drug seizure.

To determine excess clustering, the Knox statistic can be compared to a null hypothesis where

the two processes are independent. If the parent process, Ds, is Poisson or separable in time,

then the process is invariant under a random permutation of the event times. Thus the null Knox
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statistic and its uncertainty can be computed through multiple realizations of,

κ̃(τ, δ) =
∑

i,j

1{‖xo

i − x
s
j‖ ≤ δ, |toi − t̃sj |< τ}, (2.2)

where t̃si are a random permutation of the event times of the drug seizure events.

In cases where the parent process, Ds, is non-Poisson and exhibits self-excitation, then the

permutation test is no longer valid [16]. We propose in this situation to use the following modified

two-sample Knox test: 1) fit a self-exciting Hawkes process, Hs, to the parent process, Ds, that

accounts for potential space-time clustering in the parent process itself and 2) calculate a bootstrap

distribution for the null Knox statistic,

κ̃H(τ, δ) =
∑

i,j

1{‖xo

i − z
s
j‖ ≤ δ, |toi − usj |< τ}, (2.3)

through repeated simulation of the Hawkes process. Here (zs, us) are synthetic drug seizure event

datasets with the same first and second order statistics as the original parent process.

To better disentangle the time-ordering between drug seizures and overdose events, we also

analyze pre-post Knox statistics of the form:

κ̃∆(τ, δ) = κ̃1(τ, δ)− κ̃1(−τ, δ), (2.4)

where

κ̃1(−τ, δ) =
∑

i,j

1{‖xo

i − x
s
j‖ ≤ δ,−τ < toi − t̃sj <−1}. (2.5)

Because the time of occurrence of events in the data is uncertain (and hence the order of

occurrence within the same day is uncertain), we include a 1-day buffer around drug seizures

in Equation 2.5. A statistically significant positive value of κ̃∆ indicates that more overdose

events cluster after a law enforcement drug seizure, whereas a statistically significant negative

value would indicate a deterrence effect of the law enforcement intervention. We also compute

an analogous pre-post Knox difference statistic, κ̃H , with the Hawkes process null replacing the

random time permutation null model.

(a) Details of the Hawkes process null model

We fit a self-exciting Hawkes process [31] to drug seizure events with intensity,

λ(z, u) = µf(z)hd(u)hm(u)hy(u) + (2.6)
∑

u>ui

θgt(u− ui;ω)gx(z− zi;σ).

Here the background Poisson rate of events is assumed separable in space and time, where

f(z) models the spatial component of the background rate, fit using a Gaussian mixture model

(GMM), and hd, hm, and hy model day of the week, monthly, and yearly trends in the background

rate. The second term in Equation 2.6 models self-excitation, where θ is the expected number of

offspring events triggered by an event (under the branching process representation of the Hawkes

process [52]), the temporal component gt is assumed exponential, and the spatial component gx
is assumed Gaussian. The model is fit to the data using an expectation-maximization algorithm

as detailed in [31,52]. We use residual analysis in Section 4 below to show goodness of fit of the

model.

To construct confidence intervals for the Hawkes process null Knox statistics, κ̃H and κ̃H∆ ,

we simulate multiple realizations of the Hawkes process fit to drug seizure data. The branching

process representation of the Hawkes process is used for simulation, where first background

Poisson events are generated from the Poisson process intensity µf(z)hd(u)hm(u)hy(u).

Offspring events are then iteratively added to the dataset, where each event generates L∼ Pois(θ)

offspring events with spatial coordinates determined by adding random numbers drawn from gx
to the parent event location and a random number drawn from gt to the time of the parent event.
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(b) Estimation of the Hawkes process from drug seizure data
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Figure 3. Hawkes process fit to drug seizure data. (a) Scatter plot of drug seizure data coordinates along

with GMM background intensity estimate contour plot for a fitted Hawkes process (θ̂= 0.239, ω̂= 2.306, and

σ̂= 0.006). (b) Scatter plot of event coordinates of one realization of a simulated Hawkes process fit to drug

seizure data. (c) K-function (black) of fitted Hawkes process thinned residuals of the drug seizure data (thinned

with probability λinf/λ(ti)). K-function for 100 realizations of a constant rate Poisson process (red). Radius r

measured in degrees. (d-f) Distribution of number of events per day (d), per month (e) and per year (f) for law

enforcement drug seizure data (black) and 100 fitted Hawkes process simulations (red).

Next we fit the Hawkes process model in Equation 2.6 to law enforcement drug seizure data

in Indianapolis. For the background rate we use a 20-component Gaussian mixture to model the

spatial distribution of events, f(z). In Figure 3 we display an example simulation from the fitted

Hawkes process, along with the estimated model parameters and the background rate GMM

components. To assess the goodness of fit, we apply residual analysis and thin the original drug

seizure data by retaining events with probability λinf/λ(x
s
i , t

s
i ) (where λinf is the infimum of

the intensity on the domain of Indianapolis). When the model is correctly specified, the thinned

residual points are a realization of a constant-rate Poisson process. In Figure 3 we display the K-

function [44] (area normalized number of points within a given radius) for the thinned residuals

along with the K-function of 100 simulated Poisson processes.

(c) Association between drug seizures and overdose in Indianapolis

Next we apply the standard permutation based Knox test and the modified Hawkes process Knox

test to Indianapolis drug seizure and opioid overdose data. In Figure 4, we display the bootstrap

null distribution corresponding to the standard (red) and Hawkes process (blue) pre-post tests.

As an example, in Figure 4 we show the distances in time and space of subsequent overdoses

relative to drug seizures within 250 meters and within 21 days, a spatial and temporal scale that

yields κ= 510. In Figure 4, we also plot inter-event distances and the Knox statistic for example

realizations of the permutation and Hawkes process null models, along with the distribution of

the Knox statistics for τ = 21 days and δ= 250 meters.
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a p pl yi n g t h e p r e- p o st K n o x diff e r e n c e t e st, i n di c ati n g t h at f at al o v e r d o s e s f all t e m p o r all y o n eit h e r

si d e of s ei z u r e s wit h si mil a r r at e s i n t h e p r e s e nt d at a s et. T h e s e r e s ult s w e r e r e pli c at e d u si n g o nl y

o pi oi d- r el at e d o v e r d o s e d e at h s, b ut a g ai n di d n ot d et e ct t h e p r e- p o st s ei z u r e eff e ct.
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Fi g ur e 5. K n o x p er m ut ati o n t e st st ati sti c s r e p ort e d f or v ar yi n g s p ati al a n d t e m p or al c ut off s δ a n d τ . ( a) K n o x t e st

r e s ult s f or a s s o ci ati o n b et w e e n dr u g s ei z ur e s a n d o v er d o s e s w h er e n al o x o n e w a s a d mi ni st er e d b y E M S. K n o x t e st

st ati sti c κ r e p ort e d f or t h e d at a al o n g wit h 9 5 % c o n fi d e n c e i nt er v al s f or t h e K n o x st ati sti c c orr e s p o n di n g t o t h e m o st

c o n s er v ati v e n ull m o d el ( H a w k e s or P er m ut ati o n). ( b) M o di fi e d pr e- p o st k n o x st ati sti c κ ∆ r e p ort e d f or t h e n o n-f at al

o v er d o s e d at a al o n g wit h 9 5 % c o n fi d e n c e i nt er v al. ( c) K n o x t e st r e s ult s f or a s s o ci ati o n b et w e e n dr u g s ei z ur e s

a n d f at al o v er d o s e s. K n o x t e st st ati sti c κ r e p ort e d f or t h e d at a al o n g wit h 9 5 % c o n fi d e n c e i nt er v al. ( d) M o di fi e d

pr e- p o st k n o x st ati sti c κ ∆ r e p ort e d f or t h e f at al o v er d o s e d at a al o n g wit h 9 5 % c o n fi d e n c e i nt er v al. Si g ni fi c a n c e

l e v el d e n ot e d b y * ( p =. 0 5), ** ( p =. 0 1), a n d *** ( p =. 0 0 1) a n d c ol or c o d e d b y t h e Z- v al u e of t h e K n o x t e st st ati sti c (r e d

i n di c ati n g cl u st eri n g a n d bl u e i n di c ati n g i n hi biti o n).

5. Di s c u s si o n

U si n g l a w e nf o r c e m e nt d r u g s ei z u r e d at a, al o n g si d e b ot h f at al a n d n o n-f at al o v e r d o s e d at a f o r a

5- y e a r p e ri o d i n t h e s a m e j u ri s di cti o n, o u r a n al y si s f o u n d st ati sti c all y si g ni fi c a nt e x c e s s cl u st e ri n g

of n o n-f at al o v e r d o s e s, wit hi n a gi v e n ti m e f r a m e a n d s p ati al di st a n c e, f oll o wi n g a n o pi oi d-

r el at e d d r u g s ei z u r e e v e nt. T h e s e n o n-f at al o v e r d o s e s a r e w h e r e E M S a d mi ni st e r e d n al o x o n e -

t h e m e di c ati o n d e si g n e d t o r a pi dl y r e v e r s e o pi oi d o v e r d o s e - a n d c o n fi r m e d t h r o u g h m ulti pl e

a n al y si s t h at all s u g g e st i n c r e a s e s wit hi n t h e r a di u s of a n o pi oi d- r el at e d l a w e nf o r c e m e nt d r u g

s ei z u r e.

A n u m b e r of st u di e s h a v e d o c u m e nt e d h o w l a w e nf o r c e m e nt di s r u pti o n s t o t h e l o c al d r u g

m a r k et c a n r e s ult i n p e r s o n s wit h a c h e mi c al d e p e n d e n c y t o t h e s ei z e d s u b st a n c e s s hifti n g t o

alt e r n ati v e d e al e r s o r u si n g diff e r e nt s u b st a n c e s [ 2 ,3 ,5 ,7 ,8 ,1 9 ,2 5 ,5 4 ,5 9 ]. D r u g u s e r s c a n h a v e a

l o n g- st a n di n g a n d t r u sti n g r el ati o n s hi p wit h a s u p pli e r w hi c h oft e n c o m e s wit h c o n si st e n c y of

a p r o d u ct q u alit y [ 8 ]. I n t h e c a s e of o pi oi d s t hi s c o ul d i n cl u d e eit h e r p r e s c ri pti o n m e di c ati o n s

( e. g., o x y c o d o n e, h y d ro c o d o n e, o x y m o r p h o n e, h y d r o m o r p h o n e) o r illi citl y p r o d u c e d h e r oi n a n d

f e nt a n yl w h e r e t h e s hift t o a n e w d e al e r o r s u b st a n c e c a n b e c h a oti c a s t h e p e r s o n will li k el y

b e att e m pti n g t o a v oi d p ai nf ul wit h d r a w al s y m pt o m s [ 1 0 ,3 0 ,4 6 ]. M o r e o v e r, w h e n u si n g n e w o r

u n k n o w n p r o d u ct s it i s n ot p o s si bl e t o d et e r mi n e t ol e r a n c e s o it c o ul d b e a m o r e p ot e nt o pi oi d,

r e s ulti n g i n a n o v e r d o s e, o r l e s s p ot e nt, r e s ult i n c o- u s e wit h ot h e r s u b st a n c e s a n d o v e r d o s e.
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( 7 2, 1 1 0)
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( 9 1 6, 1 0 8 8)
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( 1 9, 4 1)
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( 1 1 2, 1 5 8)

5 8 0***

( 3 8 6, 4 8 2)

1 6 2 4**

( 1 3 5 1, 1 5 8 8)
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1 0 0 0
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− 5
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Fi g ur e 6. M o di fi e d K n o x H a w k e s t e st st ati sti c s r e p ort e d f or v ar yi n g s p ati al a n d t e m p or al c ut off s δ a n d τ . ( a)

M o di fi e d K n o x t e st r e s ult s f or a s s o ci ati o n b et w e e n dr u g s ei z ur e s a n d o v er d o s e s w h er e n al o x o n e w a s a d mi ni st er e d

b y E M S. K n o x t e st st ati sti c κ r e p ort e d f or t h e d at a al o n g wit h 9 5 % c o n fi d e n c e i nt er v al s f or t h e K n o x st ati sti c

c orr e s p o n di n g t o t h e m o st c o n s er v ati v e n ull m o d el ( H a w k e s or P er m ut ati o n). ( b) M o di fi e d pr e- p o st k n o x st ati sti c

κ ∆ r e p ort e d f or t h e n o n-f at al o v er d o s e d at a al o n g wit h 9 5 % c o n fi d e n c e i nt er v al. ( c) M o di fi e d K n o x t e st r e s ult s

f or a s s o ci ati o n b et w e e n dr u g s ei z ur e s a n d f at al o v er d o s e s. K n o x t e st st ati sti c κ r e p ort e d f or t h e d at a al o n g wit h

9 5 % c o n fi d e n c e i nt er v al. ( d) M o di fi e d pr e- p o st k n o x st ati sti c κ ∆ r e p ort e d f or t h e f at al o v er d o s e d at a al o n g wit h 9 5

% c o n fi d e n c e i nt er v al. Si g ni fi c a n c e l e v el d e n ot e d b y * ( p =. 0 5), ** ( p =. 0 1), a n d *** ( p =. 0 0 1) a n d c ol or c o d e d b y t h e

Z- v al u e of t h e K n o x t e st st ati sti c (r e d i n di c ati n g cl u st eri n g a n d bl u e i n di c ati n g i n hi biti o n).

O n t h e ot h e r h a n d, w e n ot e t h at t h e r e a r e ot h e r p o s si bl e e x pl a n ati o n s f o r e x c e s s cl u st e ri n g of

o v e r d o s e s f oll o wi n g d r u g s ei z u r e s.

W hil e o u r st u d y i s li mit e d t o a d mi ni st r ati v e d at a s o u r c e s f r o m a si n gl e j u ri s di cti o n a n d ti m e

p e ri o d, it r e p r e s e nt s a c riti c al st e p i n u n d e r st a n di n g h o w l a w e nf o r c e m e nt p r a cti c e s s u p p o rt e d b y

c u r r e nt U S d r u g p oli c y m a y i n a d v e rt e ntl y ai d t h e o n g oi n g o v e r d o s e e pi d e mi c. F ut u r e r e s e a r c h

s h o ul d ai m t o r e pli c at e t h e s e r e s ult s i n ot h e r j u ri s di cti o n s wit h si mil a r d at a s o u r c e s, b ut al s o

l o o k f o r alt e r n ati v e d at a s o u r c e s, s u c h a s Zi b b ell a n d c oll e a g u e s’ u s e of c ri m e l a b o r at o r y d at a

( 2 0 1 9), t o l o o k at t h e r el ati o n s hi p b et w e e n d r u g s ei z u r e s a n d o v e r d o s e e v e nt s n ati o n wi d e.

O u r r e s ult s s u g g e st a n i n c r e a s e i n n o n-f at al o v e r d o s e f oll o wi n g d r u g s ei z u r e s b ut n ot f at al

o v e r d o s e s, w hi c h m a y b e d ri v e n b y d e m o g r a p hi c c h a r a ct e ri sti c s, d r u g u s e b e h a vi o r s, o r 9 1 1

c all r e s p o n s e [ 1 8 ,3 9 ], w hi c h w e r e n ot a c c o u nt e d f o r i n t hi s st u d y. D e s pit e t h e s e li mit ati o n s, t h e

r e s ult s hi g hli g ht t h e i m p o rt a n c e of p u bli c h e alt h a n d p oli c e p a rt n e r s hi p s i n a d d r e s si n g t h e o pi oi d

e pi d e mi c. P oli c e c a n pl a y a n i nt e g r al p a rt i n p r o m oti n g p u bli c h e alt h, a n d t hi s h a s o c c u r r e d m o st

r e c e ntl y i n t h e o v e r d o s e e pi d e mi c t h r o u g h t r ai ni n g a n d c o- r e s p o n s e eff o rt s f o r i n di vi d u al s wit h

b e h a vi o r al h e alt h c o n c e r n s [ 6 ], vi ol e n c e p r e v e nti o n i niti ati v e s [2 9 ,3 3 ,4 8 ], a n d n u m e r o u s m ulti-

s e ct o r c o aliti o n s. Yet t h e s e r e s ult s s u g g e st t h e n e e d f o r a r a pi d c o m m u nit y r e s p o n s e f oll o wi n g a

d r u g s ei z u r e s; t hi s r e s p o n s e w o ul d n e e d t o t a r g et h a r m r e d u cti o n a n d t r e at m e nt o p p o rt u niti e s t o a

s p e ci fi c g e o g r a p hi c al r e gi o n. T hi s i d e a ali g n s m o r e wit h r e c e nt p oli ci n g eff o rt s t h at f o c u s o n h a r m

r e d u cti o n [ 3 6 ], a r r e st di v e r si o n p r o g r a m s [1 3 ], a n d p oli c e-l e d t r e at m e nt i niti ati v e s f o r o pi oi d u s e

di s o r d e r [ 5 8 ], c o m p a r e d t o t r a diti o n al pl a c e- b a s e d d et e r r e n c e p oli ci n g m et h o d s. A p oli c e- p u bli c

h e alt h c oll a b o r ati o n f oll o wi n g p oli c e d r u g s ei z u r e s i s al s o a n o p p o rt u nit y t o li n k i n di vi d u al s t o

t r e at m e nt a n d l o w e r t h e r at e of o v e r d o s e s.

T h e r e a r e al s o b r o a d e r p oli c y i m pli c ati o n s f r o m t h e r e s ult s i n t hi s st u d y. T h e “ w a r o n d r u g s"

h a s l o n g b e e n d e e m e d a U S p oli c y f ail u r e, y et t h e v a st m aj o rit y of l a w e nf o r c e m e nt a g e n ci e s
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continue to enact practices aimed at laws criminalizing illicit substances. The decriminalization

reform efforts in Portugal started in 2001 have been wildly successful at reducing the burden of

drug-related harms, with demonstrated decreases in overdose, HIV/STI, and incarceration [24].

Nearly 20 years later the question of whether decriminalization is politically feasible in the

US has been answered with Oregon as the first US state to decriminalizes the possession for

small amounts of cocaine, heroin, and methamphetamine beginning in 2021 [1,12,17]. This is

also following a number of states that regulated of cannabis, suggesting a growing policy trend

away from law enforcement responses. With the overdose epidemic being exasperated as part of

a syndemic with COVID-19 [20,45,49,53], if the results from this study are replicable, then both

local practices, along with state and federal policies, will need to transform to reduce preventable

deaths and the continued loss of potential life in the US.

Finally, we believe that the modified Knox test introduced in this study will be useful in

assessing co-clustering effects in other applications where two spatial-temporal point processes

may interact. Future research may focus on handling other types of processes, for example self-

correcting or self-avoiding point processes, where random permutation can change the statistics

of the process and a modified null model is needed. These models can then be assessed using the

residual analysis employed here or by alternative point process goodness-of-fit techniques, such

as super-thinning [11]. We note that there is some tradeoff between the standard permutation test,

that preserves spatial structure in the data (though may change the second order statistics), and

our approach that introduces some spatial smoothing. While we resampled the event coordinates

to address this concern, future research could also focus on designing modified Knox tests that

better capture the spatial statistics of street networks [47].
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