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Opioid overdose rates have increased in the United States over
the past decade and reflect a major public health crisis. Modeling and
prediction of drug and opioid hotspots, where a high percentage of
events fall in a small percentage of space-time, could help better focus
limited social and health services. In this work we present a spatial-
temporal point process model for drug overdose clustering. The data
input into the model comes from two heterogeneous sources: 1) high
volume emergency medical calls for service (EMS) records contain-
ing location and time, but no information on the type of non-fatal
overdose and 2) fatal overdose toxicology reports from the coroner
containing location and high-dimensional information from the tox-
icology screen on the drugs present at the time of death. We first
use non-negative matrix factorization to cluster toxicology reports
into drug overdose categories and we then develop an EM algorithm
for integrating the two heterogeneous data sets, where the mark cor-
responding to overdose category is inferred for the EMS data and
the high volume EMS data is used to more accurately predict drug
overdose death hotspots. We apply the algorithm to drug overdose
data from Indianapolis, showing that the point process defined on the
integrated data out-performs point processes that use only coroner
data (AUC improvement .81 to .85). We also investigate the extent
to which overdoses are contagious, as a function of the type of over-
dose, while controlling for exogenous fluctuations in the background
rate that might also contribute to clustering. We find that drug and
opioid overdose deaths exhibit significant excitation, with branching
ratio ranging from .72 to .98.

1. Introduction. Over 500,000 drug overdose deaths have occurred in
the United States since 2000 and over 70,000 of these deaths occurred in
2017 [29]. Opioids are a leading cause in these deaths and these trends are
characterized by three distinct time periods [3]. In the 1990s overdose deaths
were driven by prescription opioid-related deaths [4], whereas reduced avail-
ability of prescriptions led to an increase of heroin-related deaths beginning
in the 2010s [4, 27, 31]. Illicit fentanyl, a synthetic opioid 50 to 100 times
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more potent than morphine [6], has become a major cause of opioid-related
deaths since around 2013. It is estimated that in 2016 around half of opioid-
related deaths contained fentanyl [11], and fentanyl mixed into heroin and
cocaine is likely contributing to many of these overdose deaths [12, 16].

Criminology and public health disciplines have leveraged spatio-temporal
event modeling in attempts to predict social harm for e↵ective interventions
[20, 33, 36]. Fifty percent of crime has been shown to concentrate within just
5 percent of an urban geography [35]. Geographic concentrations of drug-
related emergency medical calls for service [8], drug activity [9], and opioid
overdose deaths mirror those of crime [2]. In particular, over half of opioid
overdose deaths in Indianapolis occur in less than 5% of the city [2].

Patterns of repeat and near-repeat crime in space and time further suggest
that not only does crime concentrate in place but that such events are an
artifact of a contagion e↵ect resulting from an initiating criminal event [32].
Similar observations have also explained the di↵usion of homicide events [37].
Experiments of predictive policing models using spatio-temporal Hawkes and
self-exciting point processes demonstrates that such empirical realities can
be harnessed to direct police resources to reduce crime [24]. Thus, the inter-
dependence and chronological occurrence of event types in crime and public
health lend promise to how to best predict other social harm events, such
as opioid overdoses.

In this work we consider the modeling of two datasets of space-time drug
and opioid overdose events in Indianapolis. The first dataset consists of
emergency medical calls for service (EMS) events. These events are non-fatal
overdoses and include a date, time and location, but no information on the
cause of the overdose. The second dataset consists of overdose death events
(including location) and are accompanied by a toxicology report that screens
for substances present or absent in the overdose event. We develop a marked
point process model for the heterogeneous dataset that uses non-negative
matrix factorization to reduce the dimension of the toxicology reports to
several categories. We then use an Expectation-Maximization algorithm to
jointly estimate model parameters of a Hawkes process and simultaneously
infer the missing overdose category for the nonfatal overdose EMS data.

We show that the point process defined on the integrated, heterogeneous
data out-performs point processes that use only homogeneous coroner data.
We also investigate the extent to which overdoses are contagious, as a func-
tion of the type of overdose, while controlling for exogenous fluctuations in
the background rate that might also contribute to clustering. We find that
opioid overdose deaths exhibit significant excitation, with branching ratio
ranging from .72 to .98.
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The outline of the paper is as follows. In Section II, we provide an overview
of our modeling framework. In Section III, we run several experiments on
synthetic data to validate the model and also on Indianapolis drug overdose
data to demonstrate model accuracy on the application. We discuss several
policy implications and directions for future research in Section IV.

2. Methods.

2.1. Self-exciting point processes. In this work we consider a self-exciting
point process of the form, [22]:

(1) �(x, y, t) = µ0⌫(t)u(x, y) +
X

i:ti<t

g(x� xi, y � yi, t� ti),

where g(x, y, t) is a triggering kernel modeling the extent to which risk fol-
lowing an event increases and spreads in space and time. The background
Poisson process modeling spontaneous events is assumed separable in space
and time, where u(x, y) models spatial variation in the background rate
and ⌫(t) may reflect temporal variation arising from time of day, weather,
seasonality, etc. The point process may be viewed as a branching process
(or superposition of Poisson processes), where the background Poisson pro-
cess with intensity µ0⌫(t)u(x, y) yields the first generation and then each
event (xi, yi, ti) triggers a new generation according to the Poisson process
g(x� xi, y � yi, t� ti).

We allow for self-excitation in the model to capture spatio-temporal clus-
tering of overdoses present in the data. For example, a particular supply
of heroin may contain an unusually high amount of fentanyl, leading to a
cluster of overdoses in a neighborhood where the drug is sold and within a
short time period.

Model 1 can be estimated via an Expectation-Maximization algorithm
[34, 23], leveraging the branching process representation of the model. Let L
be a matrix where lij = 1 if event i is triggered by event j in the branching
process and lii = 1 if event i is a spontaneous event from the background
process. Then the complete data log-likelihood is given by,

X

i

lii log(µ0⌫(ti)u(xi, yi))�
Z

µ0⌫(t)u(x, y, )dxdydt(2)

+
X

ij

lij log(g(xi � xj , yi � yj , ti � tj))(3)

�
X

j

Z
g(x� xj , y � yj , t� tj)dxdydt.(4)
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Thus estimation decouples into two density estimation problems, one for the
background intensity and one for the triggering kernel. Because the complete
data is not observed, we introduce a matrix P with entries pij representing
the probability that event i is triggered by event j.

Given an initial guess P0 of matrix P , a non-parametric density estima-
tion procedure can be used to estimate u and v from {tk, xk, yk, pkk}Nk=1,
providing estimates u0, v0 in the maximization step of the algorithm.

More specifically, we estimate u and v using leave-one-out kernel density
estimation,

(5)

v(ti) =
1

Nb

X

i 6=j

pjj
2⇡b1

2 exp

(

�(ti � tj)2

2b1
2

)

u(xi, yi) =
1

Nb

X

i 6=j

pjj
2⇡b2

2 exp

(

�(xi � xj)2 + (yi � yj)2

2b2
2

)

,

where Nb =
P

i pii is the estimated number of background events and b1,
b2 are the kernel bandwidths that can be estimated via cross-validation or
based on nearest neighbor distances. Because u and v are chosen to integrate
to 1, we then have the ML estimate µ̂0 = Nb

Histogram of Interevent Times
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Fig 1: Histogram of inter-event times of real data, suggests that time trig-
gering function is exponential.

We assume the triggering kernel is given by a separable function that is
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exponential in time (Figure 1) with parameter ! and Gaussian in space with
parameter � [18],

g(x, y, t) = K0 (w · exp {�wt}) ·(6)
1

2⇡�2 · exp
n
� 1

2�2 (x2 + y2)
o
.(7)

We then obtain an estimate for the parameters using weighted sample aver-
ages from the data {ti � tj , xi � xj , yi � yj , pij}ti>tj

,

(8)

K̂0 =
X

ti>tj

pij

�X

i,j

pij ,

ŵ =
X

ti>tj

pij

� X

ti>tj

pij · (ti � tj),

�̂ =

vuut
X

ti>tj

pij · [(xi � xj)2 + (yi � yj)2]
�
2 ·

X

ti>tj

pij

In the estimation step, we estimate the probability that event i is a back-
ground event via the formula,

(9) pii =
µ0u(xi, yi)v(ti)

�(xi, yi, ti)
,

and the probability that event i is triggered by event j as,

(10) pij =
g(xi � xj , yi � yj , ti � tj)

�(xi, yi, ti)
,

[39]. We then iterate for n = 1, ..., Nem between the expectation and maxi-
mization steps until a convergence criteria is met:

1. Estimate un, vn, and gn using (5) and (8).
2. Update Pn from un, vn, and gn using (9) and (10).

2.2. Modeling with heterogeneous event data. In this work we assume
that we are given two datasets A and B, though our modeling framework
extends more generally to three or more. Event dataset A contains low
dimensional, unmarked space-time events, whereas dataset B contains space-
time events with high-dimensional marks. In our application, drug overdoses
that do not result in death comprise dataset A, whereas those overdoses that
do result in death are accompanied by a high-dimensional mark, namely
the toxicology screen conducted by the coroner. Event dataset B therefore
contains a much smaller number of events compared to A.
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Next we use non-negative matrix factorization (NMF) [14] to reduce the
dimension of the high-dimensional mark of dataet B into an indicator for K
groups. Each toxicology report consists of an indicator (presence or absence)
for each one of 133 drugs the test screens. These reports then are input
into a overdose-drug matrix analogous to a document-term matrix in text
analysis using NMF. We then use NMF to factor overdose-drug matrices
into the product of two non-negative matrices, one of them representing the
relationship between drugs and topic clusters and the other one representing
the relationship between topic clusters and specific overdose events in the
latent topic space. The second matrix yields the cluster membership of each
event (the cluster is the argmax of the column corresponding to each event).

2.3. Estimation of a marked point process with missing data. Merging
dataset A and B, we now have marked event data (xi, yi, ti, ki) where the
mark ki is one of k = 1, ...,K clusters and is unknown for event data coming
from A but is known for event data from B.

Model (1) can be extended by adding in the group labels

(11) �k(x, y, t) = µk
0u

k(x, y)vk(t) +
X

i:ti<t
ki=k

gk(x� xi, y � yi, t� ti),

where gk is modelled as follows:

(12)
gk(x, y, t) =Kk

0

⇣
wk · exp

n
�wkt

o⌘
·

1

2⇡�k2
· exp

⇢
� 1

2�k2

h
x2 + y2

i�
,

Here we assume each cluster k has its own parameters (!k, µk
0,�

k,Kk
0 ).

We then extend the branching structure matrix P to a set of K matrices,
P k, with initial guess P k

0 and entries:

pkij =

8
>><

>>:

1
K , if i = j and event i from A

1, if i = j, event i from B and belongs to group k

0, otherwise

Then P k can be updated similarly for each cluster k = 1, · · · ,K:

(13) pkii =
uk(xi, yi)vk(ti)

�k(xi, yi, ti)
,

and

(14) pkij =
gk(xi � xj , yi � yj , ti � tj)

�k(xi, yi, ti)
,
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where for each event i from dataset A, we have that
KP

k=1

 
P

ti�tj
pkij

!

= 1, and

for event i from dataset B we have that pk̃ij = 0 for all events j where ti � tj
and k̃ is not the group to which event i belongs.

The parameters are then estimated using P k:

Kk
0 =

X

ti>tj

pkij

�X

i,j

pkij ,

wk =
X

ti>tj

pkij

� X

ti>tj

pkij · (ti � tj),

�k =

vuuut
X

ti>tj

pkij · [(xi � xj)2 + (yi � yj)2]
�0

@2 ·
X

ti>tj

pkij

1

A,

µk
0 =

X
pkii.

and the EM algorithm is iterated to convergence.

3. Results.

0
0

1

1

bg(1) bg(2)

bg(3) bg(4)

Fig 2: Simulation of events’ location: for each background event, probabilities
of falling in the purple, orange, green, and yellow regions are bg(1), bg(2),
bg(3), bg(4), respectively.

3.1. Synthetic Data. To validate our methodology, we simulate point
process data where data set B has K = 4 groups with parameters given
by those in Table 1 and 2. The background rate for each group is heteroge-
neous in space, with di↵erent rates in each quadrant in the unit square and
homogeneous in time. Figure 2 and Table 1 illustrate how the background
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group bg(1) bg(2) bg(3) bg(4)
1 0.1 0.2 0.3 0.4
2 0.4 0.3 0.2 0.1
3 0.4 0.4 0.1 0.1
4 0.1 0.4 0.1 0.4

Table 1
Background rates of synthetic data.

group w K0 � µ
1 0.1 0.9 0.01 67
2 0.5 0.8 0.001 28
3 1 0.6 0.02 55
4 0.3 0.75 0.003 132

Table 2
True parameters of synthetic data.

events are simulated: di↵erent background rates are assigned to each of the
four di↵erent regions. Table 2 contains the true parameters for each group.

We then simulate the missing data process by assigning 30% of the data to
dataset A (no label) and 70% to B. We find that the EM algorithm detailed
above converges within 50 iterations.

We simulate 50 synthetic datasets and then estimate the true parameters,
where the results are displayed in Figure 3. In the figure, the histograms of w,
K0, � and µ correspond to the estimates from the EM algorithm, where the
red reference lines represent the average of the 50 results and the true value
of the parameters are in blue. We find that our model is able to accurately
recover both the true parameters and the event cluster membership up to
the standard errors of the estimators.

In Table 3, we display the estimated number of events of each group (along
with their actual values) when A has 30% of events as well as when 90% of
events are assigned to A (and thus unknown). We find in both experiments
that the model is able to recover the cluster sizes accurately.

In Figure 4, we compare baseline models estimated only on A or B in-

group
true
#

estimated
#

group 1 570 581
group 2 154 145
group 3 173 168
group 4 431 434

group
true
#

estimated
#

group 1 1197 1195
group 2 71 56
group 3 134 113
group 4 380 418

Table 3
Number of events from each group vs estimated number while dataset A is 30% (left) and

90% (right) of all data.
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Fig 3: Parameters’ true value (in red dash-dot line) and average of converged
values (in blue solid line).

dividually against the combined model. We also analyze the di↵erence in
performance versus the percentage of events assigned to dataset A. Here we
find that the model estimated on both datasets always has higher likelihood
than the models estimated only on one dataset.

3.2. Emergency Data and Toxicology Report. Next we analyze a dataset
of drug overdose data from Marion County, Indiana (Indianapolis). The data
spans the time period from January 14, 2010 to December 30, 2016. The fatal
drug overdose dataset with toxicology reports (dataset B) consists of 969
events and the non-fatal, emergency medical calls for service dataset is 24
times bigger, with 22,049 unlabelled events.

We use NMF as described above to cluster the toxicology report data.
We use coherence [30] to select the number of clusters, which we find to be
K = 4 for our data (see Figure 5). In Table 4 we show the top 24 most
frequent drugs and their frequencies present in the fatal overdose dataset
and in Table 5 we display the top 5 most frequent drugs found in each
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Fig 4: Log-likelihood of the model vs baseline model on individual datasets
with di↵erent percentage of A. Left: likelihood evaluated on dataset A. Right:
likelihood evaluated on dataset B.

NMF group. In Table 5 we find that the first group consists of illicit drugs
(6-MAM and heroin), whereas group 2 consists of mostly opioids that can
be obtained via a prescription. Group 3 overdoses involve alcohol, whereas
group 4 is fentanyl related overdoses.

Fig 5: NMF coherence scores of drug overdose clusters vs number of topic
clusters K.

Next we fit the point process model to the fatal and non-fatal overdose
data. In Figure 6 we plot a heatmap of the inferred background events in
space, disaggregated by group, along with the temporal trend of background
events in Figure 7. We find that in time, the frequency of prescription opioid
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drug frequency drug frequency
Hypnotic 0.9617 11-Nor-9-carboxy-THC 0.8113
Lidocaine 0.5588 11-Hydroxy-THC 0.4856
Phenobarbital 0.4762 Gastrointestinal 0.3841
Eszopiclone 0.3841 THC-Aggregate 0.3580
Promethazine 0.3566 Alcohol 0.2451
Ethanol 0.2451 Opioids 0.2263
Illicit 0.2189 Norfentanyl 0.1773
Amphetamine 0.1760 Acetylfentanyl 0.1605
Fentanyl 0.1571 Acetyl 0.1343
Methamphetamine 0.1162 Morphine 0.1162
Delta-9-THC 0.0907 6-MAM 0.0604
Diazapam 0.0537 THC 0.0524

Table 4
24 most frequently present drugs.

drug group 1 group 2 group 3 group 4
1 6-MAM Benzodiazepine Ethanol Fentanyl
2 Heroin Hydrocodone Alcohol Norfentanyl
3 Codeine Oxycodone Cocaine Opioids
4 Morphine Hydromorphone Illicits Amphetamine
5 Illicit Oxymorphone Benzodiazepine Methamph.

Table 5
Top 5 drugs from each group.

overdoses went down in Indianapolis, whereas illicit opioid overdoses, includ-
ing the fentanyl group, increased over the same time period. In space, the
illict drug hotspots are focused downtown, whereas the prescription opioid
hotspots are more spread out in the city.

In Table 8 we display the estimated point process parameters. We see that
for each group self-excitation plays a large role, where the branching ratio
ranges from .72 to .98. In Table 6 and 7 we compare the log-likelihood values
of the combined heterogeneous point process to baseline models estimated
only on EMS or overdose death data. Here we find that including the EMS
data improves the AIC values of the model for opioid overdose death, and
the overdose death data improves the AIC of the model for EMS events.

To assess the model with a metric that better mirrors how interventions
might work, we run the following experiment. For each day in January 15,
2010 to December 30, 2016, we estimate the point process intensity in each
of 50x50 grid cells covering Indianapolis. We then rank the cells by the inten-
sity and assign labels for whether an overdose occurs (1) or does not occur
(0) during the next day. We then compute the area under the curve (AUC)
of this ranking for the baseline and the proposed method. In practice, a
point process model could be used to rank the top hotspots where overdoses
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are likely to occur and then those areas could be the focus of targeted in-
terventions, such as distribution of naloxone that reverses the e↵ects of an
overdose.

In Table 6 and 7 we find that the AUC of the combined model evaluated
on overdose death data is .85, compared to .81 for the model utilizing only
overdose data. However adding overdose death data to the EMS data impairs
the model in terms of AUC. The heterogeneous model has an AUC of .72
compared to .8 for the EMS data model (though the overdose death data
does improve the AIC of the EMS data model).

model log-likelihood df AIC AUC
baseline model 4.9892⇥ 104 4 �9.9774⇥ 104 0.8032
proposed model 5.5752⇥ 104 16 �1.1147⇥ 105 0.7159

Table 6
Di↵erent measurement results on EMS data.

model log-likelihood df AIC AUC
baseline model �3.6110⇥ 103 16 7.2540⇥ 103 0.8088
proposed model 1.7165⇥ 103 16 �3.4009⇥ 103 0.8524

Table 7
Di↵erent measurement results on Opioid overdose death data.

4. Discussion. Heterogeneous data integration for model improvement
promotes several policy and intervention benefits. Research using emergency
medical services data has shown that persons who experience repeat non-
fatal drug overdoses have a significantly higher mortality rate as compared
to individuals without repeat events [26]. As our results suggest, toxicology
data can be leveraged to model overdose di↵usion across space and time, and
di↵usion varies across geographies. Taken together, integration of large-scale
event data and overdose di↵usion can sharpen policy interventions designed
to reduce substance abuse and substance-related deaths. One such policy
example is the deployment of nasal naloxone by police and EMS agencies
which mitigates overdose e↵ects [5].

Group # K0 w µ �
1 0.9609 0.0153 4.0517 0.0148
2 0.9864 0.0170 2.8304 0.0313
3 0.7257 0.0094 28.7279 0.0044
4 0.9214 0.0143 4.4550 0.0091

Table 8
Parameters of estimated model for each group.
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Integration of heterogeneous data sources also help to contextualize and
better understand the nuances of how social harms may a↵ect di↵erent popu-
lations of people. As our study illustrates, prescription drug overdoses occur
at higher rates in areas further from downtown Indianapolis, while illicit
drug overdoses are more concentrated around the urban core of the city.
These results underscore societal di↵erences of opioid drug use. Consistent
with community explanations of crime and social disadvantage [28], we ob-
serve that illicit drugs, which are more likely to result in mortality, may dis-
proportionately impact minority communities. Current evidence indicates
these trends are driven by heroin and synthetic opioid-related deaths as well
as growing use of fentanyl-laced cocaine among African Americans [1, 10].
Moreover, these trends persist despite evidence that African Americans are
less likely to be prescribed opioids for pain relative to Caucasians [17], which
has been identified as a primary pathway to illicit opioid use [15]. Together,
current evidence suggests the epidemiology of opioid use, especially illicit
opioid use, is not well-defined for racial-ethnic minorities. Heterogeneous
data integration is likely the most appropriate path forward to improve our
understanding of this issue.

Our work here is also related to the analysis of free text data that accom-
panies crime reports [13, 25, 19] and other types of incidents, for example
railway accidents [7]. While the majority of point process focused studies
of crime and social harm use only location, time, and incident category as
input into the model, we believe future research e↵orts on incorporating
auxilliary, high-dimensional information into these models may yield im-
provements in model accuracy and also provide insight into the underlying
causal mechanisms in space-time event contagion.

We do note that disentangling contagion patterns from other types of
spatio-temporal clustering is challenging due to seasonal and exogeneous
trends [38, 21]. Future work should also focus on investigating the extent to
which drug overdose triggering found in the present study can be detected
across cities and model specifications.
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Fig 6: Heatmaps of non-fatal overdose events (left) and fatal overdose events
(right). Top to bottom: groups 1-4.
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Fig 7: Histograms of non-fatal (grey) and fatal (red) overdose events for each
group over time: group 1 (top left), group 2 (top right), group 3 (lower left),
and group 4 (lower right)..
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