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Abstract
We demonstrated an optically-active antireflection, light absorbing, optical coating as a
hydrogen gas sensor. The optical coating consists of an ultrathin 20 nm thick palladium film on
a 60 nm thick germanium layer. The ultrathin thickness of the Pd film (20 nm) mitigates
mechanical deformation and leads to robust operation. The measurable quantities of the sensors
are the shift in the reflection minimum and the change in the full width at half maximum of the
reflection spectrum as a function of hydrogen gas concentration. At a hydrogen gas
concentration of 4%, the reflection minimum shifted by ~46 nm and the FWHM increased by
~228 nm. The sensor showed excellent sensitivity, demonstrating a 6.5 nm wavelength shift for
0.7% hydrogen concentration, which is a significant improvement over other nanophotonic
hydrogen sensing methods. Although the sensor’s response showed hysteresis after cycling
hydrogen exposure, the sensor is robust and showed no deterioration in its optical response after
hydrogen deintercalation.
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1. Introduction

Optical coatings are present in almost every optical
instrument, with widespread applications ranging in displays
and lighting [1, 2], to anticounterfeiting [3], and photovolta-
ics [4]. Recently, absorptive, anti-reflective optical coatings
were developed where either transmission is not of import-
ance, e.g. for structural coloring [5], and for the realiza-
tion of generalized Brewster angle effect [6], or where high
absorption is desired, e.g. for heat-assisted magnetic record-
ing [7], solar-thermal power generation [8], and radiative
cooling [9].

Light absorption is realized in optical coatings when light
is critically coupled to the resonator, i.e. the absorption rate
is equal to the reflection and transmission rates. This occurs
when the interfering waves are out of phase (phase condi-
tion), and the out-of-phase waves are of equal amplitude (amp-
litude condition) [10, 11]. For ultrathin film optical coatings
light absorbers, critical light coupling is typically achieved by
two strategies; (1) using a lossy dielectric on a highly reflect-
ive substrate [12], e.g. Ag, Au, or Al, or (2) using a lossless
dielectric on a low-reflectance substrate [13], e.g. Ni, Ti, or
Pd. In addition, it has been shown that dielectrics with high
refractive index lead to angle-independent light absorption
[11]. Angle-independent light absorption leads to robust oper-
ation of optical coatings even on rough surfaces such as unpol-
ished glass or paper [14].

On the other hand, hydrogen sensing is of crucial import-
ance to industries where hydrogen gas (H2) is present, e.g.
in nuclear power stations, coal mines, lighting industry, and
semiconductor manufacturing, etc [11]. Hydrogen is flam-
mable with low ignition energy at concentrations from 4% to
75% [15]. Hydrogen sensors must be able to provide strong
response to concentrations significantly lower than the explos-
ive level of 4% to provide adequate warning before an explo-
sion hazard takes place [16]. Although there exist many well-
established hydrogen sensing technologies by measuring, e.g.
the change in resistance of Pd wires [17], photonic-based
hydrogen sensing is especially attractive as it allows for remote
optical interrogation where the raw signal is optical instead of
electrical. Photonic hydrogen sensors avoid the risk of being a
possible source of ignition if a hydrogen leaks occurs [18].

Several systems have been reported as a platform for
optical hydrogen sensing [15, 19]. In general, photonic-based
hydrogen sensors measure changes in the refractive index
of materials that form hydrides, i.e. they are hydride-based
refractometers [20], most commonly using Pd. When Pd is
exposed to H2, it forms palladium hydride, PdHx, which has
a different complex refractive index than Pd that depends
on the hydrogen stoichiometry [21]. At low H2 concentra-
tions, the intercalated hydrogen atoms are randomly situ-
ated inside the Pd lattice, forming a solid solution (α phase)
[22]. At higher H2 concentrations, the hydrogen atoms are
ordered in the lattice forming a hydride β phase [23], which
leads to an increase in the lattice parameter by ~3.5% and
an expansion of the Pd film. The resulting tensile stress
causes mechanical deformation and the formation of cracks
can significantly degrade sensor performance over time [16].

Figure 1. (a) A schematic of the optical coating sensor. The
microfluidic channel is attached to the top of the Pd film to expose
Pd to hydrogen. (b) The microfluidic channel is connected to two
mass flow controllers (MFCs). One MFC controls the flow of
nitrogen mixed with hydrogen (4% in concentration) and another
MFC controls the flow of pure nitrogen. The sensor is placed on a
variable-angle ellipsometer to measure the angular reflectivity.
Calculated reflectance of (c) Pd-Ge optical coating and (d) a Pd film,
for hydrogen atomic ratio x = 0 (black line), x = 20% (red line).

The formation of hydrides leads to a decrease in the abso-
lute value of both the real and imaginary components of the
complex refractive index of Pd [15]. Changes in Pd dielec-
tric constant can be measured by directly measuring small
changes in reflection [6], or scattering of Pd nanoparticles
[24]. In addition, formation of hydrides can be measured
indirectly by coating Pd on an optical fiber and measuring
the changes in the output signal [25] or measuring the scat-
tering of a plasmonic nanoparticle that acts as a refracto-
meter [26]. In the context of thin Pd films, optical hydro-
gen sensing was demonstrated based on directly measuring
changes in reflection [20] or transmission [27] due to hydride
formation.

In this work, we demonstrate a nanophotonic hydrogen
sensor based on an antireflective (absorptive) optical coat-
ing that suppresses light reflection in the telecommunication
wavelength range. The dielectric-metal antireflective absorpt-
ive coating consists of a Ge and Pd ultrathin film. The ultrathin
thickness of Pd mitigates mechanical deformation in Pd-based
hydrogen sensors by reducing the clamping effect [28]. The
Pd film forms a Pd hydride upon exposure to hydrogen which
alters the wavelength of minimum reflection, λmin, and the full
width at half maximum (FWHM) of the light absorber. The
measured shift in λmin is ~46 nm at the critical H2 concen-
tration of 4%, which is significantly higher than other nan-
ophotonic gas sensors [15, 19]. Due to the high refractive
index of Ge, λmin is angle independent over a wide range of
angles (25◦− 45◦), and the shift in λmin is approximately the
same for all the measured incident angles. We show that the
change in FWHM is an important sensing parameter reach-
ing up to 228± 4 nm at 45◦. The demonstrated sensor is inex-
pensive and can be deposited over a large area which enables
scalable hydrogen monitoring [20].
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2. Experimental

2.1. Sensor fabrication

The sensor consisted of a 20 nm thick Pd film on top of a
60 nm thick Ge layer, each deposited by electron beam evap-
oration at a rate of 0.5 Å s−1on a 1 mm thick glass slide
(see figure 1(a)). The Pd thickness was chosen to be ~20 nm
to mitigate mechanical deformation by the clamping effect
where the tensile stiffness of a film is inversely proportional
to its thickness [15]. We chose Ge to serve as a dielectric
as it has a high refractive index in the near infrared NIR
region with negligible optical losses [29]. As we showed pre-
viously, a high index dielectric results in angle-independent
light absorption in thin-film absorbers [14]. The Ge thickness
was chosen to obtain a reflection minimum within the tele-
com wavelength windows (~1300 nm-1600 nm). To expose
the sensor to hydrogen, we fabricated a microfluidic chan-
nel on the sensor (see figure 1(a)). The channel consists of
a poly (methyl methacrylate) (PMMA) body (encompassing
laser micromachined inlets and outlets) and a double-sided
100-µm adhesive film defining the outlines and thickness of
the microchannel. The microfluidic channel was attached to
the Pd side and the reflection was interrogated from the glass
side.

2.2. Experimental setup

The sensor was placed on a variable angle ellipsometer
(J A Woollam) to measure the angular reflectance R
(figure 1(b)). To control the hydrogen concentration, a 4%
hydrogen (H2) in nitrogen (N2) mixture was diluted by pure
N2. The ratio of the two was varied by two digital mass flow
controllers (MFCs) to obtain a final concentration between
0.7 and 4%. The reflection before introducing the hydrogen
was measured and recorded. It is important to note that using
an ellipsometer is ideal to perform angular reflectance meas-
urement over a wide wavelength range, however, it limits our
ability to determine the exact response time of the sensor. In
all cases, the response time of a hydrogen sensor depends on
the hydrogen diffusion coefficient in the active material, here
Pd, and the film thickness [30]. For the purpose of our exper-
iments, we recorded the reflection ~12 min after introducing
the H2/N2 mixture to ensure that we observe the steady state
reflection.

3. Theoretical background

To understand the sensing mechanism, we investigated how
the optical properties of our absorber depend on wavelength.
The system of interest can be defined as a glass substrate with
a refractive index n0 (glass), a lossless dielectric layer with
thickness h and refractive index nD (Ge), and a lossy substrate
with refractive index nS + ikS (Pd). Light is incident on the
system with wavelength, λ, and incident angle, θ. Following
the theory described in [14], we can express the conditions for
perfect absorption as

tan∅D =
(nS− γ0)γD

kSγ0
=

kSγD
γ2
D− nSγ0

, (1)

where γ0 = n0/cosθ, γD = n2D/
√
n2D− n20sin

2θ, and ∅D =

2πhn2D/(λγD). The latter is the phase gain in one pass through
the dielectric layer. Note that to derive the above expressions,
we assumed |n0 sinθ/(nS+ ikS)|2 ≪ 1, which is valid for the
system under consideration. Both equalities in the equation
above must be simultaneously satisfied for perfect absorption
to occur. In the simplest scenario, we can ignore the depend-
ence of n0 and nD on λ, so that we can rewrite the conditions
for perfect light absorption directly in terms of λmin:

λmin =
2πhn2D

γD

[
mπ+ tan−1

(
(nS−γ0)γD

kSγ0

)] , (2)

where m is an integer. Equation (2) shows that
as nS and kS vary, the value of λmin where perfect absorption
takes place will also shift. Even if this is not the case, equation
(2), still serves as an approximation for how λmin changes.
Clearly, changes in nS and kS of the metallic substrate can
lead to a strong shift in λmin. In addition, for a thin-film light
absorber, the absorption linewidth depends on the reflect-
ance from each interface where broader absorption modes
are obtained for metallic films with lower reflectance [31].
To confirm our expectations, we performed a transfer matrix
method calculation to calculate the reflection of the proposed
Pd-Ge optical coating for hydrogen atomic ratio x = 0 and
20% (figure 1(c)). The calculated shift in reflection min-
imum λmin is 90 nm and the full width at half maximum
increased by ~200 nm. Conversely, the traditional direct meas-
urement of the change in reflection of a Pd film, monitored
from the glass slide, would lead to ~8% change in reflec-
tion as shown in figure 1(d). The incident light is p-polarized
for all the calculations and measurements presented in this
manuscript. We note here that the thin film interference-based
hydrogen sensing differs from hydrogen sensing by coating
Pd or other chemochromic oxides coated onto the tip or along
the length of an optical fiber that is later detected by means of
interferometry [31]. In the latter case, Pd coats a small portion
of the fiber and upon hydrogen exposure and lattice expansion,
the fiber’s effective optical path length changes [15].

4. Results and discussion

Figure 2(a) shows the measured reflection spectrum of the
optical coating over the wavelength range 1000–2000 nm
at 250 (top panel), 350 (middle panel), and 450 (bottom
panel). We first note that λmin occurs at similar wavelengths
regardless of the incident angle. After introducing H2 at
4% concentration, we see a clear shift in λmin. The total
shifts in λmin are 46± 2 nm,47± 2 nm, and 45± 2 nm,
at 250,350, and 450, respectively. The angle-independent sens-
itivity is an interesting property of the demonstrated sensor.

Figures 2(b) and (c) show contour maps of the angu-
lar reflectance for our sensors exposed to N2 only and to
H2 (4% in N2), respectively. In addition to the wavelength
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Figure 2. (a) Reflection measurements for the optical absorber
before and after introducing hydrogen with C = 4% for three
different incident angles 25◦, 35◦, and 45◦. A contour plot of the
angular reflection shows the angular reflection of the absorber for
(b) C = 0% and (c) C = 4%. The FWHM increases significantly
after introducing hydrogen for all incident angles.

shifts, the FWHMs of the absorption modes signific-
antly increase in the presence of H2. The changes in
the FWHM are 195± 4 nm, 186± 4 nm, and 228± 4 nm,
at 250,350, and 450 respectively. The change in the
FWHM can be measured by monitoring changes in the
reflection intensity of a broadband NIR light source, e.g.
using Tungsten halogen and Krypton lamps. Sensors that
rely on changes in the intensity may offer a cheaper
alternative as they do not require using a spectrometer.
For a broadband detector, the reflected power can be
calculated as

P= ∫
hc
λ R(λ)dλ, (3)

where h and c are the Planck’s constant and speed of light
and R(λ) is the spectral reflection of the sample. We can then
calculate the percent power difference before and after intro-
ducing the hydrogen as follows:

∆P=
PN2 −PH2

PH2
× 100, (4)

where PN2 and PH2 are the reflected power from the sensor
before and after introducing hydrogen, respectively. The
increase in the FWHM due to introducing hydrogen is tan-
tamount to a decrease in the total reflected power. The calcu-
lated∆P is ~25%, 28%, and 33% for a hydrogen concentration
of 4% and an incident angle of 25◦, 35◦, and 45◦, respectively.

We note that the change in the FWHMof the optical coating
hydrogen sensor is an additional advantage over Fabry–Perot
cavity hydrogen sensor which shows small overall change in
the FWHM [15]. Furthermore, Fabry–Perot hydrogen sensors
rely on cavity resonances which requires a dielectric with an
optical thickness of at least λ/2 which requires excessively
thick dielectric films when operating at longer wavelengths.

Figure 3(a) shows the shift in reflection at an incidence
angle of 45◦ as a function of hydrogen concentration. We

Figure 3. (a) Reflection of the absorber as a function of hydrogen
concentration. (b) Sensor response to hydrogen concentrations
(0.7%–4%) showing hysteresis behavior in reflectivity
minimum, λmin.

obtained shifts of 6.5 nm, 18.6 nm, and 44 nm at concentra-
tions of 0.7%, 2%, and 4%, respectively. We note that the low-
est hydrogen concentration used was determined based on the
MFC control range and do not represent the lowest concen-
tration that can be detected. For comparison, previous works
showed ultrasensitive optical hydrogen sensing with ~2.5 nm
shift in wavelength for 0.6% hydrogen concentration [32]. In
our work, we demonstrate 6.5 nm shift for 0.7%.

We also studied the hysteresis behavior of the sensor. In
general, when Pd forms a hydride, a mechanical energy bar-
rier is created due to the coherency strain produced by the lat-
tice expansion of the hydride phase [6]. This barrier prevents
the release of hydrogen atoms situated inside the hydride lat-
tice to recover the original Pd structure. Figure 3(b) shows
a hysteresis plot for the shift in λmin at different H2 concen-
trations (0%, 0.7%, 2% and 4%) and 45◦ incidence angles.
Each measurement presented is extracted from the steady state
reflection spectrumwhich was obtained after ~12 min for each
concentration. The λmin is found to be higher when the H2

concentration is decreased than when the H2 concentration
is increased. We suggest that the hydrogen content or stoi-
chiometries in terms of x in the PdHx are different during the
forward and reverse cycles of exposing to different H2 con-
centrations, with the stoichiometry being higher in the reverse
cycle because of the aforementioned mechanical energy bar-
rier to deintercalation from coherency strain.We note here that
heating the sensor to higher temperatures could limit or elim-
inate the observed hysteresis, however, on the expense of min-
imizing the sensitivity [33, 34]. Moreover, using Pd alloys was
shown to minimize the hysteresis significantly, e.g. using Pd
Au alloys [35, 36]. The existence of coherency strain, how-
ever, did not affect the overall performance of our sensor as
the absorption mode relaxed to the initial λmin when the H2

concentration was decreased to zero (pure N2).

5. Conclusion

In summary, we developed an ultrathin film optical coating
for hydrogen sensing. The sensor consists of an antireflective,
absorptive Pd film. The change in the antireflection proper-
ties in terms of reflection minimum and FWHM enabled the
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detection of low hydrogen concentrations. The sensor shows
similar overall shift in reflection minimum over a broad range
of incidence angles. Hysteresis in the reflection minimum was
found arising from a mechanical energy barrier to deintercala-
tion but did not lead to degradation in the sensor performance.
The hysteresis issue can be potentially mitigated by employ-
ing different types of Pd alloys as substrates. Moreover, using
Pd alloys with higher hydrogen diffusion coefficients or using
a substrate consisting of Pd nanowire mesh [37] can provide a
sensor with a short response time.
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