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Abstract—We develop the first distributed-memory parallel
implementation of Symmetric Nonnegative Matrix Factorization
(SymNMF), a key data analytics kernel for clustering and
dimensionality reduction. Our implementation includes two
different algorithms for SymNMF, which give comparable
results in terms of time and accuracy. The first algorithm is
a parallelization of an existing sequential approach that uses
solvers for nonsymmetric NMF. The second algorithm is a
novel approach based on the Gauss-Newton method. It exploits
second-order information without incurring large computational
and memory costs. We evaluate the scalability of our algorithms
on the Summit system at Oak Ridge National Laboratory, scaling
up to 128 nodes (4,096 cores) with 70% efficiency. Additionally,
we demonstrate our software on an image segmentation task.

Index Terms—High performance computing, Newton method,
Parallel algorithms, Symmetric Matrices

I. INTRODUCTION

This paper concerns the symmetric nonnegative matrix
factorization (SymNMF) problem, which arises in
unsupervised learning and data mining applications [1]–
[5]. In this problem, the input data is naturally represented
by a symmetric, nonnegative data matrix A 2 Rn⇥n

+ where
A=A

T and A>0. For instance, in graph clustering A might
be an unweighted adjacency matrix; in image segmentation
A represents pixel-to-pixel positive similarity scores [6];
and in topic modeling A stores normalized co-occurrence
counts [7]. Data analysis tasks such as dimension reduction,
clustering, embedding, or imputation of missing values, may
be formulated as low-rank matrix factorization problems. That
is, given A and an integer parameter, k⌧n, SymNMF seeks
a nonnegative rank-k matrix H2Rn⇥k

+ such that A⇡HH
T
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and H>0. Preserving nonnegativity in H helps the end-user
analyst interpret the results more readily.

Sequential algorithms to compute SymNMF are
summarized by Kuang et al. [1]. Following methods for
the nonsymmetric NMF case [8], [9], it formulates SymNMF
as the optimization problem,

min
H�0

kA�HH
Tk2F . (1)

Equation (1) is nonlinear and nonconvex, which makes it
hard to solve to optimality.

Solution algorithms may be broadly classified into two
groups: block coordinate descent and direct optimization.
Block coordinate descent algorithms, including Alternating
Nonnegative Least Squares (ANLS) [1] and Cyclic Coordinate
Descent (CCD) [2], partition the solution variables into blocks
and alternate among solving subproblems with all but one
block of a variables fixed, each of which can be solved exactly.
ANLS duplicates the solution matrix H, solves the problem as
a nonsymmetric problem, and uses regularization to converge
to a unified symmetric solution (discussion in Section III).
Direct optimization techniques such as Projected Gradient
Descent (PGD) and Newton-like algorithms [1] iteratively
update all the variables at once. First-order direct optimization
uses only gradient information (PGD) and can suffer slow
convergence, while second-order methods incorporate Hessian
information to improve convergence at the price of higher per-
iteration costs. Previously developed second-order methods
suffer from a particularly high computational complexity
of O(n3

k
3) per iteration, making them infeasible for even

moderate data sizes. Regarding solution quality, neither
method is clearly superior to the other and both are expensive
to compute sequentially even at moderate input sizes [1].
As such, we are motivated to consider both classes of
methods and to improve both scalability via parallelism and
work-efficiency via algorithmic techniques.

A critical advantage of parallelizing the ANLS variant
of SymNMF is that one can reuse existing algorithms
and software developed for the nonsymmetric NMF case.
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Our approach is to adopt the communication-optimal ANLS
method due to Kannan et al. [10]. We present our algorithm in
section III. It enjoys the same advantages as the nonsymmetric
method, and is the first distributed-memory parallel algorithm
for SymNMF.

Our second algorithm is a novel Newton-like algorithm for
SymNMF based on the Gauss-Newton method (section IV).
It efficiently uses second-order information implicitly without
incurring prohibitive memory or computational costs. The
proposed Gauss-Newton method for SymNMF finds low-rank
approximations that are competitive with existing algorithms
in quality (see § V-D). Surprisingly, our parallel Gauss-
Newton method using Conjugate Gradient (GNCG) can even
be twice as fast as the ANLS variant in practice.

We evaluate these methods on the Summit supercomputer1

using a variety of datasets (section V). We are able to
scale GNCG up to 128 nodes (4,096 cores) with 70%
efficiency. In general, GNCG runs 2⇥ faster than ANLS
for most problems where gradient computation is the major
bottleneck (see § V-E). In cases with extremely large k ANLS
becomes competitive again (§ V-F).

Overall, the end results constitute the first distributed-
memory parallel methods for the SymNMF problem. The
significance is to enable practical use of SymNMF on
real-world problems. As an example, we present a case study
in which we apply SymNMF to the segmentation of large
satellite images [11]. The pixel embeddings produced by
SymNMF are used to detect boundaries and partition images
into regions [1], [6].

II. PRELIMINARIES

A. Notation
Scalars will be denoted as lowercase characters (e.g. x),

vectors as lowercase boldface characters (e.g. x), and matrices
as uppercase boldface characters (e.g. X). A specific element
of a matrix X is denoted xij . To denote submatrices, we
use subscripts with an uppercase boldface character: Xij

denotes the (i,j)th submatrix of X. The comparison X � 0
is interpreted element-wise. A vector x and a matrix X that
change during the course of an iterative algorithm will be
distinguished using bracketed superscripts. For example at
iteration t these variables are x

(t) and X
(t).

The matrix A will refer to a square, nonnegative n⇥n data
matrix, and we reserve H to represent the factor matrix of the
symmetric approximation. We use [X]+ to denote projection
to the nonnegative orthant.

B. Parallel Nonsymmetric NMF
We build our implementations on top of an existing open-

source library designed for nonsymmetric NMF called MPI-
FAUN [10]. MPI-FAUN is written in C++, uses MPI for the
interprocessor communication, and uses Armadillo for local
matrix operations (interfacing to a BLAS implementation for
dense matrix operations). It is designed to solve the problem

min
{W,H}�0

kA�WH
Tk2F (2)

1The system hosted at Oak Ridge National Laboratory.

for dense or sparse, rectangular, nonnegative matrices A

using algorithms that alternate between updating W for fixed
H and updating H for fixed W. The available updating
algorithms (which can be specified by the user) include block
principal pivoting, which is what we use exclusively. Block
principal pivoting is an active-set-like method for nonnegative
least squares problems that solves them exactly [12].

MPI-FAUN uses a 2D distribution of A over a grid of
processors whose dimensions are specified by the user. Since
the matrices considered in this work are symmetric (square),
we use a square grid of processors in our algorithms. The
data distribution of the factor matrices is 1D, so that each
processor owns a subset of the rows of each tall-skinny factor,
and the 1D distribution is forced to be conformal to the
distribution of the data matrix. We discuss these distributions
in more detail in Section III, where we describe how the factor
matrix distributions must be tailored for the symmetric case.

C. Gauss-Newton Method using Conjugate Gradient
The Gauss-Newton (GN) method is a technique for

minimizing a sum of squares of residual functions. That
is, it can be used to solve optimization problems involving
multivariate functions of the form f(x) =

P
l rl(x)

2. Here
the functions rl(x) are called the residual functions and
are generally nonlinear. GN proceeds to minimize f(x) by
starting with an initial guess x

(0) and following the iteration:

x
(t+1)=x

(t)+argmin
p

���J(t)
p+r

(t)
���
2

2
. (3)

Here J
(t) is the Jacobian matrix defined as J

(t)
lq = @rl

@xq
(x(t))

and r
(t) is a vector of the residual function values rl(x(t)).

This iteration is performed until some stopping criteria is
met. We solve the linear least squares problem via the
normal equations. The GN method is a Quasi-Newton or
second-order optimization method where the matrix J

T
J acts

as an approximate Hessian matrix for f [13].
Thus, the main task at each iteration is to find a solution

to the linear system:
⇣
J
(t)T

J
(t)
⌘
p=�J

(t)T
r
(t)
. (4)

For this one can use an iterative method for symmetric positive
semi-definite matrices such as the Conjugate Gradient method
(CG) [14]. The right-hand-side vector J

(t)T
r
(t) = g

(t) is the
gradient evaluated at x

(t). The CG algorithm maintains for
each iteration an approximate solution vector, a search/update
direction vector, and a residual vector, and it requires the
multiplication of the coefficient matrix with an approximate
solution vector as well as several vector operations. While the
size of the Gramian of the Jacobian is large, CG iterations can
be performed efficiently if the matrix-vector multiplication
can exploit structure in the Jacobian and avoid the explicit
formation of the Gramian.

For constrained optimization problems, the Gauss-Newton
step is not guaranteed to maintain the constraint satisfaction.
The updated solution can be projected back onto the feasible
set. We apply the projected version of this method and show
how to implement it efficiently for Symmetric NMF in § IV-A.



D. Related Work

SymNMF has been extensively studied and a number
of effective sequential algorithms have been proposed for
solving Equation (1). Vandaele et al. [2] propose an algorithm
using a cyclic coordinate descent (CCD) in which elements
of the matrix H are iteratively updated in a cyclic fashion.
This algorithm is not readily parallelizable because of its
dependencies among elements. Kuang et al., [1], [15], present
three algorithms for computing SymNMF: 1) a method based
on projected gradient descent (PGD), 2) a Newton-type
method which utilizes second-order information, and 3)
a regularized block coordinate descent method based on
alternating nonnegative least squares (ANLS). The authors of
[1] focus on the Newton-type and ANLS algorithms as they
both tend to outperform the PGD algorithm. They conclude
that the ANLS algorithm performs most effectively in terms
of quality of solution and run time. We parallelize the ANLS
algorithm in this work, as described in Section III. Though
we do not develop distributed memory parallel algorithms
for the PGD algorithm from [1] or the CCD algorithm from
[2], we provide convergence experiments from sequential
implementations in § V-D to compare these algorithms.

The Gauss-Newton method has been used before in the
context of low-rank approximation. For example, Gauss-
Newton methods are effective for the computation of the
Canonical Polyadic (CP) tensor decomposition. Vervliet and
de Lathauwer [16] detail how GN with CG can be used to
efficiently compute the CP decomposition. In the context of
high performance computing, Singh et al. [17] compare the
scalability of the Alternating Least Squares (ALS) and GN
algorithms for computing a CP decomposition. The authors
demonstrate efficient weak scaling results for both algorithms
but less compelling strong scaling results, particularly for
the GN algorithm. The authors attribute this to the fact
that the ALS algorithm contains more easily parallelizable
computations and is more dominated by computation.

III. NONSYMMETRIC ALTERNATING-UPDATING
NMF WITH SYMMETRIC REGULARIZATION

A. SymNMF via Alternating Nonnegative Least Squares

One approach we consider for solving Equation (1) is to
compute a nonsymmetric NMF with a regularization term that
drives the two nonsymmetric factors towards each other to
encourage convergence to a symmetric solution. As proposed
by Kuang et al. [1], we can use the following surrogate
optimization problem:

min
{W,H}�0

kA�WH
Tk2F +�kW�Hk2F . (5)

The symmetry constraint is dropped and in its place we
add the regularizer �kW � Hk, where � � 0. Note that
if � = 0 Equation (2) is recovered. This encourages the
algorithm to find a solution such that W⇡H.

In this approach, we can use existing solvers for
nonsymmetric NMF, including those available in MPI-FAUN.
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Fig. 1. Nonsymmetric data distribution for a 3⇥3 processor grid [10].

For alternating-updating algorithms, the subproblem for
updating H is a nonnegative least squares problem of the form

min
H>0

����


Wp
� Ik

�
H

T�


Ap
�W

T

�����
2

F

,

and the subproblem for updating W is similar. Following
Kuang et al. [1], we will refer to this approach as Alternating
Nonnegative Least Squares (ANLS).

The bulk of the computation for any alternating-updating
algorithm is the computation of the matrices involved in the
gradients: WT

W+�Ik and AW+�W (for updating H) and
H

T
H+�Ik and AH+�H (for updating W), assuming A is

symmetric, which are the matrices appearing in the gradients
of the subproblems. More detailed analysis is given in § III-D.

B. Parallel Nonsymmetric ANLS Algorithm
We parallelize the ANLS method using the MPI-FAUN

software framework [10]. For completeness, we describe the
parallel matrix multiplication algorithms used for the nonsym-
metric case in this section and then describe how we modify
them for the symmetric case in § III-C. Figure 1 illustrates the
data distribution of the data and factor matrices for a square
matrix and a 3⇥3 processor grid. The matrices are oriented to
emphasize the conformal distributions of W to processor rows
and H to processor columns, which is designed to support a
particular parallel algorithm for matrix multiplication.

In the nonsymmetric case, the matrix products involving
the data matrix are W

T
A and AH. The parallel matrix

multiplication algorithm used in MPI-FAUN does not
communicate any data matrix elements, so it must
communicate factor matrix elements. Consider processor 01:
to compute its contribution to W

T
A (i.e., any multiplications

involving A01) it must access submatrices W00, W01, and
W02, only one of which it owns. Note that processors 00 and
02 (other processors in the processor row) also need those
same submatrices, so they perform an all-gather collective
communication operation to receive all the data they need.
All processor rows independently perform similar all-gathers.
After computing the local contribution, processor 01 must sum



its results with processors 11 and 21 (other processors in the
processor column). Each column of the result WT

A will be
used to update the corresponding row of H, so the processor
column performs a reduce-scatter collective communication
operation to simultaneously sum the local results and distribute
them to match the distribution of H (note in Figure 1 that the
middle 3 blocks of H are owned by the processors in the mid-
dle processor column). All processor columns independently
perform similar reduce-scatters. Computing AH works the
other way: all-gathers are performed over processor columns
and reduce-scatters are performed over processor rows.

With this factor matrix distribution, the Gramian matrices
W

T
W and H

T
H are computed by local computation

followed by an all-reduce collective communication operation
over all processors. At the end of the collective, all processors
own a copy of the Gramian matrix.

C. Parallel ANLS
We now describe how to adapt the nonsymmetric parallel

ANLS algorithm to the symmetric case. We use the same 2D
distribution of the data matrix, always with a square p

p⇥p
p

processor grid, storing both upper and lower triangles of the
matrix explicitly. We also use the same 1D distribution of
the factor matrices, so the parallel algorithm for computing
Gramian matrices does not change.

The difference arises in the computation of AW + �W

and AH+�H. In particular, we note that the distributions of
W and H are not identical. As shown in Figure 1, the second
block of W is owned by processor 01, while the second block
of H is owned by processor 10. The nonsymmetric matrix
multiplication algorithm is designed so that AW has the same
distribution of H. In the symmetric case, to incorporate the
regularization, we must add AW to �W, but these matrices
are not identically distributed and so their addition requires
communication. Because the result will be used to update H,
and the distribution of AW matches H, we communicate the
necessary block of W to complete the addition. This com-
munication can be performed via pairwise exchanges between
symmetric partners (processors ij and ji for i 6=j), as depicted
in Figure 2. A similar technique is used to communicate H

for the matrix addition with AH when updating W.
The rest of the nonsymmetric NMF algorithm can be applied

directly: multiple algorithms can be used to solve the local
nonnegative least squares problem. After convergence, either
factor or their average may be used as the symmetric result;
to average W and H requires using a temporary local copy
of the matrix that was communicated for the final update step.
We present the ANLS algorithm with symmetric regularization
in Algorithm 1, which is adapted from [10, Alg. 3].

D. Analysis
The computation and communication costs of ANLS for

symmetric NMF are nearly identical to the nonsymmetric
case [10]. The dominant computation costs are due to
multiplications between the data matrix and each factor matrix,
computing Gramian matrices of the factor matrices, and
evaluating the local Update function. Computing the products
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Fig. 2. Data distribution of symmetric ANLS and communication pattern of
W to compute AW+�W for a 3⇥3 processor grid

involving the matrix A costs 4n2
k/p when A is dense and

4knnz(A)/p when A is sparse, the Gramian matrix compu-
tations cost O(nk2/p) arithmetic operations, and the matrix
additions are O(nk/p). We use the block principal pivoting
method for the local update, which can take k! iterations each
costing O(k3+nk

2
/p) but in practice takes much fewer [12].

We analyze the communication costs assuming the use of
efficiently implemented collective communication operations
[18], [19]. The size of the data involved in the all-gather and
reduce-scatters is O(nk/

p
p), so the costs are O(nk/

p
p)

words and O(logp) messages. The extra cost of the pairwise
exchange does not affect the leading order communication
costs of the overall algorithm, because the size of the
messages is O(nk/p). The communication cost of the Gram
all-reduces is O(logp) messages of size O(k2) . Additionally,
the algorithm never communicates the data matrix so these
communication costs are the same for both the dense and
sparse cases. We compare the costs of GNCG with ANLS
(for the dense case) in Table I.

IV. GAUSS NEWTON BASED DISTRIBUTED
SYMMETRIC NONNEGATIVE MATRIX FACTORIZATION

A. Gauss-Newton for Symmetric NMF

Here we derive the Gauss-Newton method for solving the
Symmetric NMF objective function in Equation (1) and show
how to employ CG efficiently for each GN step. Since we
are using the Frobenius norm, our Symmetric NMF objective
function is a sum of squares. The GN method is described
for general objective functions in § II-C. In this case, the
residual functions are of the form

rij(H)=aij�
kX

`=1

hi`hj`.

Note that we use two indices for the residual functions because
they correspond to matrix entries, though they must be vector-
ized before corresponding to rows of the Jacobian. Similarly,
we will use two indices to index into the solution vector x,
which is the matrix H in this case, though the indices must be
vectorized before corresponding to columns of the Jacobian.
If the input matrix A is n⇥n and the desired low-rank factor



Algorithm 1 [W,H]=SymANLS(A,k,�)

Require: A 2 Rn⇥n
+ is distributed across a p

p ⇥ p
p grid of

processors, k>0 is rank of approximation, p divides n
Require: Local matrices: Aij is n/

p
p⇥n/

p
p, Wi and Hj are

n/
p
p⇥k, Wij and Hij are n/p⇥k

1: Proc pij initializes Hij

2: while stopping criteria not satisfied do
/* Compute W given H */

3: pij computes Uij =H
T
ijHij

4: compute H
T
H=

P
i,jUij using all-reduce across all procs

5: pij collects Hj using all-gather across proc columns
6: pij computes Vij =AijHj

7: compute (AH)i=
P

jVij using reduce-scatter across proc
row to achieve row-wise distribution of (AH)i

8: pij sends Hij to pji and receives Hji from pji
9: pij computes W

T
ij =Update(HT

H+�I,(AH)ij+�Hji)
/* Compute H given W */

10: pij computes Xij =Wij
T
Wij

11: compute W
T
W=

P
i,jXij using all-reduce across all procs

12: pij collects Wi using all-gather across proc rows
13: pij computes Yij =W

T
i Aij

14: compute (AW)j =
P

iYij using reduce-scatter across proc
columns to achieve row-wise distribution of (AW)j

15: pij sends Wij to pji and receives Wji from pji
16: pij computes HT

ij =Update(WT
W+�I,(AW)ij+�Wji)

17: end while
Ensure: W,H⇡argmin

W̃,H̃>0

kA�W̃H̃
Tk2F +�kW̃�H̃k2F

Ensure: W,H are n⇥k row-wise distributed across processors

is n⇥k, then the Jacobian matrix, J, will be of size n
2⇥nk.

We note that residuals rij ⌘rji due to the symmetry of A.
In order to uncover the structure of the Jacobian matrix,

we first consider the individual residuals rij(H). The partial
derivatives needed to define the elements of the Jacobian are
@rij
@hi0`

. Observing that this partial derivative is only nonzero
for elements hi0l that lie in the ith and jth rows of H, we
end up with 4 cases:

@rij

@hi0`
=

8
>>><

>>>:

�2hi` if i0= i=j

�hj` if i0= i 6=j

�hi` if i0=j 6= i

0 else

. (6)

With this observation we see that there are at most 2k nonzero
values per row of the Jacobian.

We use the convention of row-wise vectorizations of the ma-
trices A and H to correspond to rows and columns of the Ja-
cobian. Using these conventions the Jacobian can be written as

J=�(H⌦In)�Pn,n(H⌦In), (7)

where Pn,n is the perfect shuffle or “vec” permutation matrix,
defined so that vec(Y) =Pn,nvec(YT) for an n⇥n matrix
Y [20]. To verify this matrix expression for the Jacobian, we
use the notation (ij) to denote the row-wise linearization of
indices i and j, so that (ij) = in+j when i,j range from 0

to n�1. Then by eq. (7),

J(ij),(i0`)=�(H⌦In)(ij),(i0`)�[Pn,n(H⌦In)](ij),(i0`)
=�(H⌦In)(ij),(i0`)�(H⌦In)(ji),(i0`)
=�hjl�ii0 �hil�ji0 ,

where �ij is the Kronecker delta function, matching eq. (6).
1) Gradient computation: In order to take a GN step, we

must solve a linear system with coefficient matrix J
T
J and

right-hand-side J
T
r. The vectorized residual of our problem

is r = vec(A�HH
T). The right-hand-side vector (gradient,

see § II-C) g=J
T
r can be efficiently formed via

g=�((H⌦In)+Pn,n(H⌦In))
Tvec(A�HH

T)

=�(HT⌦In)vec(A�HH
T)�
(HT⌦In)P

T
n,nvec(A�HH

T)

=�2⇤vec(AH�H(HT
H)),

because applying P
T
n,n to the vectorization of a symmetric

matrix does not change the vector. The last equality is due to
the identity (BT⌦A)vec(X)=vec(AXB).

2) Applying Gramian of Jacobian: In order to solve the
linear system for the GN step using CG, we need to apply
the coefficient matrix J

T
J to a vector. Because the perfect

shuffle permutation for the square case is both orthogonal and
symmetric, the Gramian of the Jacobian, see Equation (3),
takes the form

J
T
J=2

�
H

T
H⌦In+(H⌦In)

T
Pn,n(H⌦In)

�
. (8)

Thus, to apply the Gramian to a vector x, which we will
consider to be a vectorization of an n⇥k matrix X, we use

J
T
Jx=2((HT

H⌦In)x+(H⌦In)
T
Pn,n(H⌦In)x)

=2(vec(XH
T
H)+(H⌦In)

T
Pn,nvec(XH

T))

=2(vec(XH
T
H)+(H⌦In)

Tvec(HX
T))

=2(vec(X(HT
H))+vec(H(XT

H))),

which can be computed using 4 dense matrix multiplications.

B. Parallel GNCG
We present the parallel algorithm for Gauss-Newton

using Conjugate Gradient in Algorithm 2. Nearly all of the
pseudocode is devoted to the “vector” operations of CG,
which in our case corresponds to matrix additions and matrix
inner products because we maintain all of the CG vectors as
matrices with the same distribution as the factor matrix H.
The comments in the pseudocode show the standard vector
notation of CG. We encapsulate the expensive operations
that are unique to GN for SymNMF in function calls to
Compute-Gradient (Algorithm 3, described in § IV-B1) and
Apply-Gramian (Algorithm 4, described in § IV-B2).

Because of the nesting of iterative algorithms, there is
overloaded terminology and a clash of standard notation. We
use the matrix H to represent the factor matrix, which is the
solution vector of the Gauss-Newton iteration. We use the
matrix X to represent the step direction for the Gauss-Newton
iteration, which is also the solution vector of the linear system



Algorithm 2 [W,H]=SymGNCG(A,k,smax)

Require: A 2 Rn⇥n
+ is distributed across a p

p ⇥ p
p grid of

processors, k>0 is rank of approximation, p divides n
Require: Local matrices: Hij ,Xij ,Pij ,Rij ,Yij are n/p⇥k

1: Proc pij initializes Hij

2: while stopping criteria not satisfied do
3: X=0 % Initialize x0=0

4: R=Compute-Gradient(A,H) % r=b�J
T
Jx0

5: pij sets Pij =Rij % p=r

6: pij computes ✏old
ij =hRij ,Riji

7: compute ✏old=
P

i,j✏
old
ij using all-reduce across all procs

8: for s=1 to smax do
9: Y=Apply-Gramian(H,P) % y=J

T
Jp

10: pij computes ↵ij =✏old/hPij ,Yiji
11: compute ↵=

P
i,j↵ij using all-reduce across all procs

12: pij computes Xij =Xij+↵Pij % x=x+↵p
13: pij computes Rij =Rij�↵Yij % r=r�↵y
14: pij computes ✏ij =hRij ,Riji
15: compute ✏=

P
i,j✏ij using all-reduce across all procs

16: pij computes Pij =Rij+(✏/✏old)Pij % p=r+�p
17: ✏old =✏
18: end for
19: pij computes Hij =[Hij�Xij ]+ % projected GN step
20: end while
Ensure: H⇡argmin

H̃>0

kA�H̃H̃
Tk2F

Ensure: H is n⇥k row-wise distributed across processors

solved approximately by CG. The matrices P and R follow the
standard notation of CG and correspond to the step direction
and residual of the linear system. Matrix Y is a temporary
variable needed within CG, the output of the single matrix-
vector product (computed by Apply-Gramian in our case).

The right-hand-side of the linear system, b in standard
notation, is the gradient of the GN step, which is computed
and stored in the residual matrix R in Line 4. The GN step
is taken in Line 19, initially in the direction of �X and then
projected onto the set of nonnegative matrices. The negative
sign appears since we work with J

T
r as b instead of �J

T
r.

1) Gradient computation: For each GN step, we compute
the gradient, which is the right-hand-side vector of the linear
system solved approximately by CG. Algorithm 3 shows
the parallel algorithm for evaluating the gradient expression
derived in § IV-A1. The algorithm consists of three matrix
multiplications: AH, HT

H, and H(HT
H). The first two mul-

tiplications appear in the ANLS algorithm (Algorithm 1). To
compute H

T
H, with H row-distributed, each processor per-

forms a local (symmetric) multiplication and then performs an
all-reduce collective. Afterwards, the third multiplication be-
tween H and H

T
H can be performed locally. Because the 1D

distribution of H conforms to the 2D distribution of A, the first
multiplication involves an all-gather collective, local multipli-
cation, and a reduce-scatter collective. We note that the output
matrix AH is 1D distributed, but in a different order than H,
as shown in Figure 3. In order to perform the matrix subtrac-
tion we must redistribute AH to match H, which can be done
via pairwise exchanges between symmetric partners (Line 4).

2) Applying Gramian of Jacobian: Algorithm 4 shows the
parallel algorithm for applying the Gramian of the Jacobian

Algorithm 3 G=Compute-Gradient(A,H)

Require: A2Rn⇥n is distributed across a p
p⇥p

p grid of
processors, H2Rn⇥k is row-wise distributed
/* Compute AH */

1: pij collects Hj using all-gather across proc columns
2: pij computes Vij=AijHj

3: compute (AH)i=
P

j Vij using reduce-scatter across
proc row to achieve row-wise distribution of (AH)i

4: pij sends (AH)ij to pji and receives (AH)ji from pji

/* Compute H
T
H */

5: pij computes Uij=H
T
ijHij

6: compute U=
P

i,jUij using all-reduce across all procs
/* Compute �2(AH�H(HT

H)) */
7: pij computes Gij=�2((AH)ji�HijU)

Ensure: G=�2(AH�HH
T
H) distributed row-wise
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Fig. 3. Data distribution of GNCG and communication pattern of AH to
compute AH�H(HT

H) for a 3⇥3 processor grid.

to a vector (reshaped into a matrix for our case), which is
required of every CG iteration. Using identical row-wise
distributions of H, the linear-system solution vector X,
and the output vector Y, we can perform the four matrix
multiplications derived in § IV-A2 efficiently in parallel, using
only two collective communication operations. Computing
the k⇥k matrices H

T
H and X

T
H requires reducing results

across all processors. By using all-reduce, we can obtain
those matrices on all processors in order to multiply the local
blocks of X and H with those k ⇥ k matrices and perform
the addition with no further communication.

Because the Gramian of H does not change over CG
iterations (and it’s also used in the computation of the
gradient), it does not need to be recomputed for each CG
iteration. We employ this optimization in our implementation
but leave it out of the pseudocode for simpilicity. This avoids a
computation step (Line 1) and a communication step (Line 2).

C. Analysis
We now analyze the cost of single GN iteration, which

involves smax CG iterations. Aside from the CG iterations,
the most expensive operation is the call to Compute-Gradient
(Line 4), shown in Algorithm 3. As analyzed in the case
of ANLS (§ III-D), the cost of computing AH is 2n2

k/p

flops (if the matrix is dense), O(nk/
p
p) words, and O(logp)



Algorithm 4 Y=Apply-Gramian(H,X)

Require: H,X2Rn⇥k are distributed row-wise (identically)
across processors

1: pij computes Uij=H
T
ijHij

2: compute U=
P

i,jUij using all-reduce across all procs
3: pij computes Vij=X

T
ijHij

4: compute V=
P

i,jVij using all-reduce across all procs
5: pij computes Y=XijU

6: pij computes Y=2Y+2HijV

Ensure: Y=2(XH
T
H+HX

T
H) distributed row-wise

TABLE I
PER-ITERATION PER-PROCESSOR COSTS FOR DENSE CASE

Algorithm flops words messages
ANLS 4n2k

p +O(nk2

p ) O( nkp
p+k

2) O(logp)

GNCG 2n2k
p +O( smaxnk2

p ) O( nkp
p+smaxk

2) O(smaxlogp)

messages. If the matrix is sparse, the flop cost is 2nnz(A)k/p,
assuming perfect load balance of the nonzeros. The cost of the
extra step of redistribution of AH is dominated by the costs
of the multiplication. As before, computing H

T
H requires

O(nk2/p) flops, O(k2) words, and O(logp) messages, and
the final multiplication requires another O(nk2) flops but no
more communication.

The cost of each CG iteration is dominated by the call
to Apply-Gram (Line 9), shown in Algorithm 4. All 4 local
matrix multiplications involve O(nk2/p) flops, and the two
collectives cost O(k2) words and O(logp) messages.

Thus, the cost of each GN iteration, assuming a fixed
number smax of CG iterations and a dense matrix, is
2n2

k/p + O(smaxnk
2
/p) flops, O(nk/

p
p + smaxk

2) words,
and O(smaxlogp) messages. We compare the costs of GNCG
with ANLS (for the dense case) in Table I.

V. EXPERIMENTS

A. Experimental Setup

All our experiments were conducted on Summit, a
supercomputer at the Oak Ridge Leadership Computing
Facility [21]. It is an IBM system comprising 4,600 compute
nodes. Each Summit node contains 2 IBM POWER9
processors on separate sockets. Sockets are connected via
dual NVLINK capable of transferring at 25 GB/s between
each other. Nodes are connected to an InfiniBand network
providing a node injection bandwidth of 23 GB/s. Each node
contains 512 GB of DDR4 memory. Additionally Summit
nodes have 6 NVIDIA Volta V100 accelerators but they are
not used by our implementation 2.

MPI-FAUN uses the Armadillo library [22] for matrix
operations. Armadillo stores dense matrices in column major
order and sparse matrices in the Compressed Sparse Column
(CSC) format. We link Armadillo (version 9.900) with
OpenBLAS (version 0.3.9) and IBM Spectrum MPI (version

2https://github.com/ramkikannan/planc

10.3.1.2-20200121) for dense BLAS and LAPACK operations
and compile using the GNU C++ compiler version 6.4.0.

All the scaling experiments are conducted with flat
MPI scaling. By flat we mean that each core is assigned
to a different MPI process. This is in contrast to assigning
individual MPI processes to an entire node/socket and enabling
multithreading within a node/socket. We found the flat setting
to run faster and use it as the basis for our scaling experiments.

Beyond reported speedups, we also examined the absolute
performance of our implementation by assessing the
performance of Armadillo on a single Summit node. In
particular, we ran matrix multiply kernels in a manner similar
to the flat MPI setting by launching multiple matrix multiply
kernels, each bound to a core, on one node. For dense GEMM
on large square matrices, Armadillo achieved 63% of the peak
FLOPS. However, if one the matrices has a small dimension,
as in our experiments, Armadillo instead achieved 43% of
peak. This is a reasonable fraction of the peak performance
and is close to the 75% achieved in most systems [23].

In the sparse setting, we compared Armadillo with
Eigen [24] for a dense-matrix-times-sparse-matrix kernel. Both
libraries performed similarly and we use Armadillo in our
experiments. This kernel is expected to be bound by memory
bandwidth, especially if the dense matrix is of low-rank as
in SymNMF. We computed a conservative lower bound on
the bandwidth achieved by this kernel and compared that to
the sustainable bandwidth reported by the Stream triad [25]
benchmark. By “conservative” we mean that we consider only
compulsory load traffic, which is the sum of the bytes need to
store the input and output matrices, and divide this value by
the kernel runtime [26], [27]. This value was found to be 24%
of the peak Stream triad bandwidth which is comparable to 10-
35% of peak performance cited in earlier studies [28], [29] 3.

Our implementation is constrained to run on square
processor grids. Summit nodes have sockets with 21 cores
on each socket and the scheduler requires tasks to be divided
uniformly across sockets. This forces us to limit the number of
processor grid configurations to either use 16 or 18 processors
per socket as we scale across nodes. Our experiments scale
up to 128 nodes (256 sockets) with MPI processor grid sizes
of 1⇥ 1,2⇥ 2,3⇥ 3,4⇥ 4,6⇥ 6,8⇥ 8,12⇥ 12,24⇥ 24,32⇥
32,48 ⇥ 48 and 64 ⇥ 64. Here, 16 processors is the largest
configuration that can fit in a single socket and 36 processors
is the largest that can fit in a node.

B. Datasets

1) Pixel Similarity Data [30]: The Pixel Similarity matrix
is generated using the Berkeley Segmentation Engine [6].
Each image is flattened to a vector of pixels and a similarity
matrix is generated between pixels. The similarity value can
be computed based on various factors including brightness,
color and textural cues. We compute similarities only between
spatially near-by pixels. This neighborhood is defined by a
disk of radius 20 pixels around every pixel [1]. We used
3 satellite images from the Functional Map of the World

3Hong et al. [28] studied this kernel in the context of GPUs.

https://github.com/ramkikannan/planc


TABLE II
PIXEL SIMILARITY DATA

Image Image Size Matrix Size (n) nonzeros
lighthouse 61 9 1525⇥1419 2,163,975 32,406,651
amusement park 186 6 2865⇥2535 7,262,775 108,844,443
shipyard 11 1 5584⇥4304 24,033,536 360,325,074

(fMoW) dataset [11] to generate these matrices. We randomly
permute the matrices for load balancing. Some salient features
of the images are described in Table II.

2) Synthetic: Our synthetic datasets are constructed in two
ways depending on whether the input is dense or sparse.
For the dense case we generate A = HH

T where H is a
random low-rank and nonnegative matrix. This is an exact
SymNMF model, and we can confirm that the residual error
of our algorithm with a random start converges to zero. For
benchmarking we run a fixed number of iterations of the
SymNMF algorithms rather than till convergence. For sparse
inputs, we specify a fixed density of 0.005.

C. Performance Breakdown

We breakdown the running time of our algorithms into the
following categories.

a) Matrix Multiply: This is the application of the data
matrix to the factor matrices for computing AH (or W

T
A).

These products are needed for the RHS in the nonnegative
least squares subproblems in the ANLS version and the
gradient in the GNCG. This is further broken into the
computation and communication phases. The communication
phases is the all-gather, reduce-scatter and the sendrecv of the
factor matrices. Only the local matrix multiplication call is
considered for the computation phase and the reduce-scatter
computation is counted towards the communication phase.
There is only a single Matrix Multiply phase per outer iteration
in GNCG versus two per outer iteration for the ANLS version.

b) Solve: This is the rest of the work needed to complete
an inner iteration. Primarily, this is constructing the Gramian
matrices W

T
W and H

T
H and performing the nonnegative

least squares solves in the ANLS variant. For GNCG we
include the calculations involved in the CG section of the
algorithm which include the matrix multiplies involved in
Apply-Gram. There are all-reduce communications involved
in this phase but only involve smaller k⇥k matrices.

c) Other: This includes smaller computations like norm
checks and applying regularizations which are not explicitly
timed in the above phases.

D. Convergence

We first test the sequential performance of our proposed
Gauss-Newton algorithm against other SymNMF variants
in Figure 4. We run SymNMF ANLS (ANLS) [1], Projected
Gradient Descent (PGD) [1] and Cyclic Coordinate Descent
(CCD) [2] on 3 different inputs: random symmetric matrices,
low-rank symmetric positive semi-definite (SPSD) matrices,
and the Soybean dataset [31]. The SPSD case is exactly low-
rank input and all algorithms converge quickly. For the other

inputs, which need not have exact low-rank, all algorithms per-
form similarly. Figure 4 shows that the Gauss-Newton method
is competitive with the other algorithms. The Soybean data set
is taken from the UC Irvine Machine Learning Repository4.
We apply various standard pre-processing steps, e.g. removing
small clusters, resulting in a 200⇥200 similarity matrix.

Figure 5 and Figure 6 shows the convergence of the parallel
SymNMF algorithms on large dense synthetic low-rank matri-
ces and the Pixel Similarity data. Since the synthetic matrices
are exactly low-rank we expect to see good convergence and
small relative errors kA � HH

Tk2F /kAk2F . We test GNCG
with different number of inner CG iterations allowed per
outer iteration. We specify 3 different settings where we
allow 5, k, or 1000 inner CG iterations per outer iteration.

Figure 5 shows good convergence across all the algorithm
settings on synthetic matrices with n=442,368 and k=100.
The relative error is calculated as the average of 5 different
initializations. The different algorithms solve the same
problem from the same starting point. The number of CG
iterations does not significantly affect the final relative
error. The difference between 100 and 1000 CG iterations
is imperceptible in the figure. However, it does affect the
execution time: the 5 CG iteration is the fastest of the different
settings, though the difference is slight when running time
is dominated by Matrix Multiply (performed once per GN
iteration). Since this does not greatly affect the relative error
we set smax=5 for the rest of the experiments.

Figure 6 shows the convergence for 30 iterations on the
Pixel Similarity matrices with k=16. This is the rank used to
generate embeddings from images in prior work [1], [6]. The
relative error is large but decreasing over time. In this case,
we seek only to discover embeddings in this task rather than
to factor the matrix exactly. Once again we can see similar
performance with both the ANLS and GNCG variants.

E. Scaling Studies

1) Strong Scaling: We present the strong scaling
performance for both dense and sparse inputs in Figures 8
and 9. Our matrix sizes are chosen to fill up a single socket’s
memory on Summit. We use n=156,401 for the dense case
and n=884,736 for the sparse case with density 0.005. We use
a low-rank of 48 which is a reasonable size for embeddings.

Figure 8a and Figure 9a shows the average time per outer
iteration of the algorithms as the number of processors is
scaled up. In general the performance scales gracefully up to
4096 cores, but we can see a noticeable bump when we first
span a socket (i.e. 36 processes). Figure 8b and Figure 9b
clearly show that the Matrix Multiply time is the dominant
cost for both cases. GNCG takes advantage of this fact and
is approximately 2⇥ faster than the ANLS variant.

Figure 7 shows the scaling efficiency of both cases. The
dense case is able to scale gracefully up to 4096 processes
with 55% efficiency for ANLS and 70% efficiency for GNCG.
The sparse case behaves more erratically and is able to scale
at ⇡ 70% efficiency till 576 processes. It displays slight

4https://archive.ics.uci.edu/ml/index.php
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Fig. 4. Convergence comparison of the sequential SymNMF algorithms. The GNCG relative error is comparable to other SymNMF variants.
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superlinear tendency at the larger grid dimensions which
we attribute to caching effects as the problem size decays.
The problem size of the input matrix is 27,648⇥27,648 for
1024 processors and is only expected to occupy ⇡ 58 MB
in memory per process. The SymNMF problem is bandwidth
bound for these input dimensions. This is seen clearly in the
sparse case as efficiency drops within a socket but stabilizes
as more sockets are added. This is because bandwidth doesn’t
increase when we scale within a socket as more cores are used.
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Fig. 7. Strong scaling efficiency upto 128 nodes of Summit. Initial efficiency
drop is noticed once we scale out a socket (16 processes) and cache effects
are observed for the sparse case after 576 processes.

2) Weak Scaling: Figure 10 demonstrates the weak scaling
performance of our algorithms up to 4096 processes. the
memory per node is kept constant and scales from an initial
size of n0 = 156,401 for dense inputs and n0 = 625,603 for
sparse inputs. Matrix dimensions are increased proportionally
to the square root of the number of nodes as we scale up. This
keeps the local A matrix dimensions constant per processor.
Since we expect the computation to be bottlenecked by the
matrix multiplication call we expect to observe flat runtimes.
Figure 10 confirms this prediction and we see roughly the
same performance on all processor grids. We can see two
distinct sets of bars in the graphs with one set running
slightly faster than the other. In the dense case the faster
runs corresponds to MPI grids of size 16, 64, 1024, and
4096. All these configurations have 16 MPI processes per
socket whereas the others have 18 per socket. Interestingly,
the opposite effect is seen in the sparse case with the 18 core
per socket configurations running slightly faster.

3) Scaling on Pixel Similarity Matrices: Next we consider
scaling performance on the Pixel Similarity matrices
in Figure 11. All the experiments were run with k = 16.
Figure 11a shows that all the matrices scale similarly. The
algorithms steadily lose efficiency till they scale out of a socket
and then stabilize at 50% efficiency. This is because bandwidth
does not scale with cores within a socket and our algorithm is
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Fig. 8. Dense strong scaling with n=156,401 and k=48
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Fig. 9. Sparse strong scaling with n=884,736, density = 0.005 and k=48
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Fig. 10. Weak scaling with k=48. Efficient configurations for the dense and sparse are different.
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Fig. 11. Strong scaling on the Pixel Similarity matrices with k=16

bandwidth bound. Bandwidth is only increased when scaling
out to multiple sockets. Since the algorithm seems to perform
similarly on all 3 inputs we only show the breakdown for the
shipyard image. Unlike the previous scaling runs we can see
other components of the algorithm apart from just the matrix
multiply. One can see that the matrix multiply is scaling in
O(p) but it is not as clear for the solver times. GNCG is still
the faster algorithm due to performing fewer matrix multiplies.

F. Low-rank Sweep

The k-sweep experiment describes the variation in running
time when larger low-rank parameters are chosen. For larger
matrix dimensions we are completely dominated by the matrix
multiply time and these variations do not affect the overall run
time. Therefore, we choose a relatively small matrix to conduct
this experiment. Figure 12a shows how SymNMF runtimes
vary for a dense synthetic matrix of size 14000⇥14000. We
see a linear increase in runtime as k increases. Figure 12b
shows the breakdown of this linear increase. The proportion
of solver time increases more rapidly for GNCG than ANLS.
This indicates that for cases with extremely large k it might
be better to use ANLS than GNCG. The runtimes for a sparse
input with the same memory footprint is similar.

G. Image Segmentation

We recreate the image segmentation experiments described
in earlier works [1], [6] albeit on much larger images. The task
is to cluster the pixels of an image into a nonoverlapping set
of closed regions. Once these regions are discovered we can
determine “boundary” pixels which segment the image. The
Berkeley Segmentation Engine (BSE) [6] is one of the classical
segmentation algorithms used for this task. It represents the
pixels in the image as nodes in a graph and defines the segmen-
tation task as a graph partitioning problem. We refer the reader
to earlier works for the details on generating such a graph [1],
[6]. Spectral clustering [6] is used as the graph partitioning
algorithm. In this method, an eigendecomposition is used to
generate embeddings for each pixel. We replace those embed-
dings with the ones produced by the SymNMF algorithm and

leave the rest of the pipeline intact. Figure 13 displays the
boundary and regions discovered for the lighthouse image.

VI. DISCUSSION AND FUTURE WORK

The experiments in the preceding sections show that the
proposed SymNMF algorithms perform well both in terms
of scaling and low-rank approximations. In comparing ANLS
and GNCG, our results show both a block coordinate descent
and a second-order method can be parallelized efficiently. We
did not observe large deviations in convergence between the
two methods, so the relative efficiency depends mostly on
the per-iteration costs. As seen from our scaling experiments,
GNCG runs about twice as fast when the matrix multiply
time is dominant, which we expect for large n and small
k. However, when the other parts of the algorithm come
into play (small n and relatively large k), as is the case for
the pixel similarity matrices, ANLS is more competitive,
depending on the number of CG iterations used by GNCG.

We also mention some of the limitations of the current work
which we hope to address in the future. The first limitation
is the use of square processor grids of the form p

p ⇥ p
p,

ignoring the symmetry in the input data. Generalizing the
approach to triangular grids could avoid the redundant storage
of A and possibly enable better load balancing and finding
effective communication patterns [32]. Another approach to
reducing the constraints on mapping a square grid to the
architecture is to develop a hybrid implementation, assigning
only 1 MPI process to each node (or socket) and employing
shared-memory parallel subroutines locally.

Though outside the scope of this work, we see many op-
portunities for further performance optimization for different
classes of sparse matrices from applications outside image seg-
mentation, such as text data and other undirected relationship
graphs. For example, in the extremely sparse case we should
switch from collective communication to a point-to-point com-
munication scheme [33]. Because the algorithms iteratively
apply the matrix, it may also be worth partitioning the matrix
data more carefully using graph or hypergraph partitioners to
achieve both load balance and low communication costs. As
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Fig. 12. K-Sweep with a dense synthetic matrix with n=14,000 on a single node with 4⇥4 processor grid

(a) Original Image (b) Boundary Map (c) Segmented Image

Fig. 13. Boundary detection and image segmentation using features generated by SymNMF.

discussed earlier and shown in Figure 11, for large sparse ma-
trices, the matrix multiply times decrease in proportion to the
solver times. In light of this, optimizations in the nonnegative
least squares solver such as those discussed in prior work [34]
could become important to the runtime of the ANLS method.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran scaling experiments for our parallel SymNMF algorithm
on OLCF’s Summit supercomputer using Spectrum MPI and Open-
BLAS as described in the paper.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modi�ed Artifacts:

Persistent ID: https://github.com/ramkikannan/planc
Artifact name: PLANC

Persistent ID: https://doi.org/10.5281/zenodo.3877635
Artifact name: Pixel Similarity Dataset

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit, IBM Power9 (1/socket,
2/node), dual NVLINK between sockets, 512 GB RAM, In�niBand
network, IBM Spectrum Scale �lesystem

Operating systems and versions: RHEL

Compilers and versions: GCC 6.4.0

Applications and versions: None

Libraries and versions: Spectrum MPI 10.3.1.2-20200121, Open-
BLAS (version 0.3.9)

Key algorithms: Gauss-Newton

Input datasets and versions: Functional Map of the World: light-
house 61 9, amusement park 186 6, shipyard 11 1

URL to output from scripts that gathers execution environment
information.
https://www.dropbox.com/s/sd79sdmtzig7z2c/summitenv. c

txt?dl=0õ!
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