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Deciphering the Biodiversity—Production
Mutualism in the Global Food Security Debate
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Without changes in consumption, along with sharp reductions in food waste and
postharvest losses, agricultural production must grow to meet future food de-
mands. The variety of concepts and policies relating to yield increases fail to inte-
grate an important constituent of production and human nutrition — biodiversity.
We develop an analytical framework to unpack this biodiversity-production mutu-
alism (BPM), which bridges the research fields of ecology and agroeconomics and
makes the trade-off between food security and protection of biodiversity explicit.
By applying the framework, the incorporation of agroecological principles in
global food systems are quantifiable, informed assessments of green total factor
productivity (TFP) are supported, and possible lock-ins of the global food system
through overintensification and associated biodiversity loss can be avoided.

Consequences of Increasing Food Production

The quest for greater crop output for food and non-food products [1-3] leads to both an increase in
agricultural land use and an increase in yields, typically achieved through an intensification of culti-
vation methods that help to close yield gaps (see Glossary) [4,5,62]. This, in turn, leads to aloss of
biodiversity in agricultural landscapes [7] and increases pressure on natural diversity [8], which con-
tinues declining despite ongoing efforts for protection [9]. The avoidance of food waste and dietary
changes offer two demand-side options to reduce pressure on food production [10], but these have
thus far not been achieved at the macro level [11].

Biodiversity is a crucial component of ecosystem functions that are essential for agricultural
production, such as soil fertility, pollination, and biocontral (i.e., the control of plant pests by their nat-
ural enemies) [12—15]. This interdependence of biodiversity and agricultural production has led to a
variety of concepts that aim to optimize the management of agricultural landscapes, balancing yields,
biodiversity, and sustainability [16]. These concepts make use of agroecological principles [17],
promote organic farming [18] suggest ecological intensification [19], or sustainable intensifi-
cation (Sl) [20], compare land sharing and land sparing concepts [21-23] and take the perspec-
tive of managing a coupled socioecological system (SES). While there is much published research on
the SES concept, quantitative, empirically-based, and model-based implementations are largely
lacking or their improvement through process-based validation is pending [24]. As a result, it is cur-
rently not possible to capture and quantify the biodiversity-production mutualism (BPM) in its entirety.
However, recent research provides the necessary basis for such a comprehensive, quantitative,
process-based understanding of the BPM concept [15,24,25].

A Multidisciplinary Perspective on the Relationship between Agriculture and Biodiversity
How is Biodiversity Affected by Cropland Management?

Management of agricultural landscapes serves the provisioning of agricultural goods and has had
mostly negative impacts on biodiversity [7,8]. This occurs through both the expansion and
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intensification of cultivated areas, which in turn warps the composition of landscapes and their struc-
ture. Conventional intensification to increase yields is typically done by homogenizing the landscape
(fewer, larger fields), increasing inputs (labor, fertilizer, irrigation, chemicals), and/or augmenting har-
vest intensities [26—29]. Conventional intensification typically leads to a loss of species present and
a change in the composition of communities, for example, in the form of a general decrease in abun-
dance [7,8,18]. There is evidence of a long-term decline in insect species due to habitat loss and ag-
ricultural intensification [30,31]. This can also be associated with a proportionally greater abundance
of pest species due to a reduction in biological pest control [32]. Ecological intensification directly or
indirectly addresses that trade-off [19,33]; however, a process-based understanding of these rela-
tionships is context-dependent and, therefore, highly fragmented [34,35]. Homogenization of environ-
mental conditions typically leaves a few abundant generalists, while specialists tend to be lost [24,36].
Pests and their predators react differently to the composition of the surrounding landscapes [15].
Consequently, predicting the effects of intensification requires careful consideration of multiple factors,
including landscape configuration and species characteristics [25,37,38]. This requires a broader per-
spective that includes management of landscapes.

Comprehensively Measuring Agricultural Sustainability: Green Total Factor Productivity

The positive effect of intensifying land management on yields is well studied. The relevant range of
classical reductionist production functions is regarded as positively sloped in input intensification,
as no rational agent would purchase inputs to reduce production (Figure 1A). However, groups of
farmers operating in interlinked agricultural landscapes may find that their individual choices collec-
tively reduce productivity because each operator ignores the mutualism of biodiversity and production
(Figure 4.1 in [39]). Hence, the yield function in intensification may become flat or even turn negatively
sloped when BPM is considered (Figure 1B). This suggests a revision to agroeconomic models. In
standard models, each input is usually weighted according to its economic contribution, and an
index of all outputs can be obtained by weighting each crop according to its share in the total eco-
nomic value. If the output index increases faster than the input index, total factor productivity
(TFP) increases [40]. TFP was proposed to provide a metric for agricultural sustainability [41,42],
but since the output and input measures typically cover only those aspects for which markets
exist, nonmarket implications are ignored [43].

TFP growth can be neutral or beneficial to biodiversity. For example, pest- or disease-resistant
varieties can achieve the same yields with reduced use of potentially harmful chemicals. Here,
the technology can have positive external effects (e.g., improved health or reduced chemical
runoff) [44]. However, new technologies are not always environmentally friendly. For example,
the use of the dicamba weed killer in conjunction with new soybean varieties has led to numerous
lawsuits from people who suffered collateral damage from drifting dicamba [45]. These negative
results due to the new technology would be ignored in traditional TFP approaches but would be
captured by a green TFP approach — also termed total resource productivity (TRP) [43]. Green
TFP or TRP include negative outputs (such as pollution or biodiversity loss) and inputs based
on natural resources (such as groundwater or biodiversity) valued for their societal contribution
rather than at their (often lower or zero) market value. Green TFP has been suggested as a
more appropriate performance measure. However, attempts at operationalization have fre-
quently failed [39], partly due to missing indicators but also due to a lack of available modeling
concepts. Applying the BPM concept can inform estimates of green TFP [46].

A landscape-related perspective that incorporates BPM has rarely been brought to bear in pro-
duction agriculture, for at least two reasons. First, the missing indicators problem — valuation of
nonmarket inputs and outputs — is challenging because the details of the BPM relationship are
complex and location specific. Second, relatively few individual farms operate at the scale where
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Glossary

Agroecological principles: are
supposed to contribute to transforming
food systems by applying ecological
principles (ecological intensification) to
ensure a regenerative use of natural
resources while addressing the need for
socially equitable food systems. While
the focus initially was on understanding
field-level farming practices, now
landscape-scale processes (such as
BPM) as well as the development of
equitable and sustainable food systems
are considered [17].

Closing yield gaps: aims at assessing
differences between observed yields
and those attainable under comparable
bioclimatic conditions. Differences are
identified by either statistical or model-
based comparisons to similar regions
[4,5,62]. Critiques: (i) such comparisons
cannot account for socioeconomic
constraints (prices for inputs and
outputs; access to markets, credit, and
technology) and ignore impacts on
ecosystems and biodiversity; and (i)
nutritional values are considered implicit,
‘hidden hunger’, that is, lack of
micronutrients, unaddressed.
Ecological intensification: entails the
replacement of anthropogenic inputs or
enhancement of crop productivity
through fostering biodiversity-based
ecological functions in agricultural
practices [19]. Recent research tends to
focus on specific processes

(e.g., pollination) rather than outcomes
(e.g., profits) and results are presented
at spatiotemporal scales that are less
relevant to farmers [33].

Land sharing: less intense, wildlife
friendly farming at the cost of further
agricultural expansion [6]. Critiques: (i)
studies adopt a regional, rather than a
global perspective [21]; (ii) its scale
dependency hampers a clear
association of landscapes to sharing or
sparing type [22]; and (jii) the sparing
concept suggests to preserve
biodiversity at distant sites while
compromising biodiversity in farmlands,
which maintains ecosystem functions
such as biocontrol or pollination (BPM
concept).

Land sparing: an increase of set aside
land for biodiversity protection while
increasing production (mostly through
intensification) on the remaining
managed land.

Organic farming: characterizes farm
management that focuses on wildlife
friendly farming by avoiding the use of
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Figure 1. Conceptual Juxtaposition of Current Agronomic Models (A) and the Biodiversity—Production Mutualism (BPM) Concept (B). In both cases,
panels (A) and (B), landscape management for agriculture with all its aspects (gray box) impacts production positively (gray arrow). The relationship between input
intensity levels and yields can be assumed as a saturation function [lower part of panel (A)]. The BPM concept, panel (B), specifically considers positive effects of
biodiversity and ecosystem functions on yields, but also negative effects of land management on biodiversity-based ecosystem functions. In the BPM concept,

however, a humpback-shaped curve can be expected due to declining yields at very high levels of input intensity.

taking a landscape-related perspective results in private gains to the owner/operator of the farm.
As shown in Figure 1, recognizing the BPM concept opens the possibility that, for intensively
operated land, biodiversity gain may coincide with minor yield losses; or, for extensively operated
land, substantial yield gain can occur with limited intensification if biodiversity, and hence the
BPM relationship, is maintained. Indeed, gains along both dimensions may be possible [47], for in-
stance, with positive effects of intercropping, as shown in a recent global-scale meta-analysis [48].

Rethinking the BPM in Agroeconomic Models

Modeling the BPM

To implement and test the BPM concept, substantially revised agroecological models and their
implementation in an analytical framework are required. Box 1 illustrates how the mutual feed-
backs between biodiversity and production can be integrated into regional or global
agroeconomic models. The starting point is the simulation of plant production for a given location
depending on the environmental conditions and the inputs for agriculture. In order to make these
simulations dependent on ecological functions and incorporate multitrophic interactions, suitable
scaling parameters are required that consider landscape structure and composition.
Homogeneous spatial units providing the input parameters for yield simulations are usually de-
rived from spatially referenced intersection data on environmental conditions. For the analytical

synthetic pesticides, usually with
expected lower yields or profits [18], that
is, a specific farm level application of
agroecological principles and ecological
intensification. Critiques: (i) there is no
explicit use of biodiversity, which would
require landscape-scale management
beyond farm level [23] and (i) certification
schemes vary across regions and
countries.

Sustainable intensification (Sl): is
closely related to agroecological
principles but suggests a multifaceted
approach and oversees the entire food
system by considering nutrition, food
sovereignty, and adaptation to localities
defined by socioeconomic as well as
environmental conditions. SI
encompasses four aspects: (i) attain
higher yields, while (i) achieving a major
reduction in environmental impacts, (i)
achieve a drastic reduction in resource
intensive foods (change diet gap), and

Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx 3




Box 1. Analytic Framework Deciphering the BPM

An agro-ecological and -economic framework that comprehensively accounts for the most relevant land and non-land in-
puts, including biodiversity, starts with underlying crop growth processes. Figure IA illustrates how growth of individual
crops depends on environmental parameters £, such as available water, nutrients, and soil fertility, but also anthropogenic
inputs, such as labor, irrigation, and fertilizer. This is illustrated by a differential equation estimating crop growth Y dynam-
ically. Crop growth could be implemented in more complex ways, that is, by distinguishing different plant organs, or in
more aggregated ways, such as using regression models that do not account for intra-annual dynamics. To upscale such
models to larger regions or even to the global level, such models are often repeatedly run with changing model parameters
depending on the location x and by using spatial maps that supply data on cropland extent, environmental conditions E,
and anthropogenic input A (Figure IC).

Incorporating multitrophic interactions of crop growth with aboveground biodiversity in such an approach is challenging,
as biodiversity changes are driven beyond the point scale. A crop growth model that fully accounts for the BPM requires
incorporating landscape-scale properties, which are the relevant drivers of biodiversity, such as composition and config-
uration of the landscape as well as input intensity [63]. While information on input intensity L, is often available on a grid
scale, such as fertilizer F, irrigation /, or labor L, the quantification of landscape composition and structure can be assessed
by landscape metrics (e.g., [52]). A specific multitrophic interaction (e.g., pollination, biocontrol) defines the radius around a
field in which landscape configuration, composition, as well as input intensity matters for the relevant biodiversity metrics
(BD), such as presence, absence, or abundance of important species traits that provide pollination or biocontrol services.
For example, insect-based pollination landscape metrics can be calculated for a radius of 2560 m, 750 m, or 1 km around
fields, distances of up to 3 km can be relevant for both pollination and biocontrol-providing organisms [64—66].

Biodiversity data on species’ presence or abundance in turn alters the crop growth process, either by promoting or reduc-
ing growth. Besides the well-established functions, which modify a maximum growth rate r,,,,, given available water or nu-
trients, this maximum growth rate r,,,,, can be adapted based on multitrophic interactions (Figure IC).
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Figure I. Recipe for Embedding Landscape-Scale Biodiversity-Driven Ecological Functions (Multitrophic
Interactions) in Global Agroeconomic Models.
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(iv) acknowledge a diversity of region-
specific approaches [20].

Total factor productivity (TFP): has
been considered a metric for agricultural
sustainability [41,42]. Growth in TFP
denotes growth in an index of all outputs
subtracted by the growth in an index of
all inputs, influenced by changes in
knowledge and management [40]. To
account for inputs and outputs, such as
climate, soils, and biodiversity, for which
no markets exist, green TFP, also
termed total resource productivity (TRP),
has been suggested [46].



framework to implement BPM, these scaling parameters must additionally consider landscape
structure and composition as well as negative externalities due to input intensity, which ensures
the interdependence between biodiversity and yields in the yield estimates. This allows a nuanced
quantitative assessment of the effects of changes in landscape parameters or input inten-
sity on crop yields and biodiversity. Established model systems, like LPJmI [49], INVEST
(http://naturalcapitalproject.stanford.edu/software/invest), or SWAT (http://swat.tamu.edu), could
serve as testbeds for implementing our analytical framework.

Worked Examples for Pollination

It is estimated that in 23% of cultivated terrestrial landscapes yields are declining, most likely due
to land degradation, lack of ecosystem functionality, and declining biodiversity [9]. The associa-
tion of yield losses with lack of farmland biodiversity-based ecosystem functions is challenging
because: (i) the use of chemicals or technical processes may compensate for the loss of ecosys-
tem functions; (i) the remaining biodiversity may provide the same ecosystem functions; and/or
(iii) the negative effects of intensified cultivation methods on biodiversity and yields via BPM
may occur with a long time lag [50]. A comprehensive quantitative understanding of the mutual-
ism between biodiversity and production is urgently needed for both global and regional assess-
ments. With few exceptions, such as pollination [51], most ecosystem functions are still poorly
understood. Box 2 uses pollination as an example to illustrate how the BPM concept could be
implemented for other ecosystem functions.

Knowledge Gaps for Multitrophic Interactions

Data that could contribute to a better process-based understanding of ecosystem functions,
quantify the BPM concept, and support implementing the analytical framework are currently
being developed through data syntheses that consider landscapes, biodiversity, and agricultural
management. Even though these data syntheses are garnering attention [15,52,53], agronomic
indicators (management, yields) are often ignored in ecological studies; and biodiversity indica-
tors are underrepresented in agronomic studies [7,25,53,54]. The most crucial knowledge gap,
however, arises because ecosystem services, such as biocontrol, are complex and hence difficult
to implement in larger models. Biocontrol is a crucial service relevant to all agricultural commod-
ities, including staples that do not depend on animal pollinators [55]; and it applies to the control of
both weeds and arthropod pests. In order to overcome these shortcomings, studies that demon-
strate trait matching between pests and their natural enemies, that identify how pest densities and
damage relate to landscape structure, and that investigate the relative importance of different
types of pests for overall yields at global scales (including plant viruses and funguses) are
urgently needed.

Properly implemented, models deploying the analytical framework shown in Box 1 will enable
researchers to determine the circumstances in which biocontrol provides a more reliable, ro-
bust, cost-effective, and ecologically sustainable form of plant protection [56]. While robust
models that relate landscape structure to biocontrol are still lacking, there is evidence that a
more structured landscape can provide habitat for biocontrol species [15,53,57]. These have
the potential to at least partially replace commercial inputs [58] and show a positive relationship
between species richness of pollinators and biological control species, while controlling for
yield performance [53].

Implications for Global Food Security

A Food and Intensification Gradient Helps to Characterize Countries

A nuanced picture of the BPM in global food production can be derived by characterizing all
countries along a food and intensification gradient [27,28]. In regions with high income and
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Box 2. Application of Yield Models That Consider the BPM for a Pollination Example

Natural pollination supports production of 75% of all crops [12], and its contribution is estimated at €153 bilion worldwide [67]. Polination is critical for the production of macro-
and micro-nutrients: 90% of the crops that provide vitamin C, the majority of crops that produce vitamin A, calcium, fluoride, and a large portion of folic acid producing crops are
pollinated by animals [68].

Even though a complete global loss of pollination service is unlikely, using it as a thought experiment can help to provide insights into how current agroeconomic models
deal with such assumptions [69]. If pollination disappears and all other inputs remain unchanged, then output in the economic model decreases by the percentage loss
caused by the loss of pollination [12]. However, the resulting increase in food prices provides an incentive for intensification to mitigate the loss of production [69]. In
addition, rising prices on the world market encourage production increases in other parts of the world, particularly where dependence on pollinators is less pronounced.

Given comprehensive information on how crop yields depend on the abundance of pollinating species [12,54,70], we can — in the simplest case — assume a linear re-
lationship between the abundance of pollinating species and the achievable yield (Figure |). If an increase in yield is pursued via intensification, this very likely leads to a
reduction in insect species richness and their abundance, which in turn reduces the pollination function [14]. It can be hypothesized that increasing agricultural intensity in
landscapes with a high production of pollinator-dependent products will lead to the following pattern (Figure l): () yields increase with increasing intensification; (i) after
reaching a threshold (e.g., due to a decrease in pollinator abundance) yields start to decrease; (jii) the maximum level of possible yields is unknown and could also
depend on spillover effects (high land-use intensity in the surrounding areas). These negative repercussions of declining biodiversity-based ecosystem function on pro-
ductivity are not implemented in any global agroeconomic models used for global assessments of food security. In particular, two crucial questions remain unanswered
for the pollination case: (i) are potential yields accurate? and (i) is the nutritional value of agricultural production correctly assessed?
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Figure | (left). Yield Increases Differ by Crop Type of Pollinator Dependency Given Different Visitation Rates of Pollinating Species.

Figure Il (right). Application of Biodiversity—Production Mutualism Concept. Combining a saturating increase of yields under land-use intensification
(black line) with pollination functions, which decline under intensification through increased species loss, provides an application of the BPM
concept. This suggests — as a testable hypothesis — a hump-shaped relationship of pollination- dependent yields under intensification (see
Figure 1 in main text).

high-input intensity (e.g., Europe and North America), food demand is unlikely to increase be-
cause of negligible population growth and advanced or completed dietary transitions. In low-
income countries where input intensity is low [e.g., most of sub-Saharan Africa (SSA)], growth
in population and food demand per capita is expected to be rapid. The intermediate cases
(e.g., India, Indonesia) exhibit high variations in input intensity, continued population growth at a
moderate and declining rate, and ongoing but incomplete dietary transitions. The vast majority
of growth in global food demand over the next 30 years is expected to come from these low-
income and middle-income countries.

Implications of the BPM for Low-Intensification Low-Productivity Countries

Our framework suggest that in low-input areas, such as SSA, the scope for increasing production
is high, as is the scope for either damaging or preserving biodiversity [10]. In these regions, large
parts of the population, especially poor people, depend on agriculture for their livelihoods,
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allowing a dynamic agricultural sector to become an effective means of poverty reduction. The
BPM concept also highlights that to ensure healthy diets, which eliminate ‘hidden hunger’
(i.e., the lack of micronutrients in food consumption), functioning ecosystems are needed to
provide pollination-based commodities (Box 2). Growth in demand for food is expected to be
high, with a likely concomitant growth in food production in these regions.

Consistent with our framework, grain production growth has been rapid in SSA since about
2000, especially when South Africa (high-input-intensity agriculture) and Nigeria (oil exports
have slowed agricultural growth) are excluded (Figure 2). With appropriate understanding (i.e., fully
considering the BPM concept), a functioning ecosystem can be a partner in the drive to
improve livelihoods, reduce malnutrition, and preserve the global environment. Without this
understanding, area expansion and intensification in SSA present clear threats to biodiversity.
The framework suggests that accounting for BPM while seeking production increases may
lead to a more favorable outcome from all perspectives.
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Figure 2. Growth Rates of Cereals Production. (A) shows annualized growth rates of harvested area (dark) and production (light gray) from 2002 to 2005 and 2012 to
2015 for different world regions shaded in gray and labeled on the map. (B) displays the same annualized growth rates for selected countries along the intensification
gradient: high-input intensity (red), intermediate cases (blue), and low-input intensity (green). While high-intensity countries have been able to reduce harvested area, all
other regions and example countries have increased production through intensification both in terms of land use and yield per hectare. Source: Food and Agriculture
Organization of the United Nations — FAOSTAT (www.fao.org/faostat/ accessed August 2018).
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The Need for a Paradigm Shift in High-Input Agricultural Regions

In high-input regions, less rapid growth in demand for food creates scope for reducing commer-
cial and natural resource inputs [59]. The BPM framework suggests that this would provide in-
creasing production of positive externalities and reduction of negative ones. Once again, there
is evidence that this is happening. In Western Europe and East Asia, the growth of TFP was ac-
companied by little or no growth in agricultural output and a reduction in the overall amount of
conventional inputs, including land, used for agriculture over the last two decades [59]. In the
USA, TFP growth has remained strong, while overall input use has remained flat and yield growth
has slowed compared with SSA, Asia, or South America [60].

[t is important to highlight that a failure to realize adequate food production growth in low-input
regions will translate into production pressure in high-input regions via trade linkages. This
observation reinforces the need for mechanisms that channel these broadly positive trends in
such a way that the production of positive externalities is increased and the production of
negative externalities is minimized. In high-input environments, the concept of green TFP can pro-
vide a basis for reorienting policies, such as the subsidy system of the EU’s commmon agricultural
policy (CAP), towards environmental protection and results-based incentives [61]. In low-input
environments, like SSA, green TFP could help research and extension programs clarify the full
costs and benefits of alternative agricultural development pathways so that local actors can
make informed choices.

Concluding Remarks

The BPM concept provides the basis and a common language for different disciplines, such as
agronomy, agroecology, economics, and conservation ecology, to solve a question of utmost im-
portance: How do we manage the terrestrial resources of our planet in such a way that we pro-
duce enough healthy food without destroying our life-support system? To respond to this
question, it is argued here that a new metric of productivity is required — one that accounts not
only for all commercial inputs but also for interactions with the environment. The concept of
green TFP, or TRP, is one such measure. Indeed, in 2016 the Group of Twenty (G20) commis-
sioned a white paper on the subject of ‘Metrics of Sustainable Agricultural Productivity’ [39].
This opinion article features many of the themes raised in the paper, including the importance
of extending the traditional TFP measure as well as the need to link farm and landscape impacts
in order to capture what is here called BPM.

The BPM concept and its modeling framework (Box 2) links agroecological principles — well
known to farmers — with policy-relevant indicators, providing the quantitative base for
implementing green TFP and TRP. This can bridge the mismatches between scientific interest
in process understanding, farmers’ interest in profitability, and decision makers’ interest in
measurable indicators [33]. Thus, the suggested analytical efforts can support redirection of
existing agricultural subsidies towards more economically beneficial and ecologically effective
greening measures. We strongly recommend a substantial overhaul of available models and inte-
grated assessment tools. These must account for the inherent feedback between biodiversity,
ecosystem function, and resource provisioning, to be capable of identifying possible win-win op-
tions in land management that maintain or even increase productivity and halt biodiversity loss
(see Outstanding Questions).
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Outstanding Questions

Along a continuous gradient of land-use
intensification, is there is a tipping point
after which key facets of biodiversity
are unavoidably lost, resulting in dimin-
ished and potentially unstable yields?
Which aspects of land-use intensifica-
tion (such as energy, labor inputs, field
size, landscape configuration) deter-
mine such tipping points? Knowing
these major direct drivers supports
identifying appropriate measures to
stop biodiversity decline in managed
landscapes.

How can high-intensity farming
systems be managed to support and
re-establish biodiversity? Especially
landscape-scale measures, which
address farmland landscape composi-
tion and configuration, are known to
enhance farmland biodiversity, but
are not considered in agroeconomic
models as well as decision making by
farmers, who mostly focus on optimally
managed fields and largely overlook
landscape-scale consequences of
their actions.

What is the potential for green TFP to
quantify the extent of BPM? Which ag-
ricultural policy can be developed in
countries with low, intermediate, and
high input intensity applying a compre-
hensive measure, such as green TFP?

What are the specific key facets of
land-use intensification for biodiversity
in regions of lower land-use intensity
(i.e., SSA, India, Eastern Europe)? Are
there economic or policy measures
available that will reinforce these key el-
ements of the landscape, thereby
supporting both biodiversity and agri-
cultural production? Can small-scale
farmers be empowered to apply such
mechanisms (agroforestry, permacul-
ture, ecological intensification)? How
can this development be supported,
while avoiding tipping points that lead
to biodiversity loss and destruction of
ecosystem functioning?
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and modeling, and T.H. on global agroeconomic trade. All authors contributed equally to the
development of this opinion article.
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