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Abstract

This work presents a non-intrusive model reduction method to learn low-dimensional models of dynamical
systems with non-polynomial nonlinear terms that are spatially local and that are given in analytic form. In
contrast to state-of-the-art model reduction methods that are intrusive and thus require full knowledge
of the governing equations and the operators of a full model of the discretized dynamical system, the
proposed approach requires only the non-polynomial terms in analytic form and learns the rest of the
dynamics from snapshots computed with a potentially black-box full-model solver. The proposed method
learns operators for the linear and polynomially nonlinear dynamics via a least-squares problem, where the
given non-polynomial terms are incorporated in the right-hand side. The least-squares problem is linear
and thus can be solved efficiently in practice. The proposed method is demonstrated on three problems
governed by partial differential equations, namely the diffusion-reaction Chafee-Infante model, a tubular
reactor model for reactive flows, and a batch-chromatography model that describes a chemical separation
process. The numerical results provide evidence that the proposed approach learns reduced models that
achieve comparable accuracy as models constructed with state-of-the-art intrusive model reduction methods
that require full knowledge of the governing equations.

Keywords: Model reduction, data-driven modeling, nonlinear dynamical systems, scientific machine
learning, operator inference

1. Introduction

Model reduction constructs computationally efficient reduced models of large-scale dynamical systems by
approximating the high-dimensional states in low-dimensional subspaces of the state space. Reduced models
are especially beneficial in the many-query and outer-loop setting, such as in optimization, design, uncertainty
quantification, and control, where models are evaluated many times for different inputs. An overview of the
field of model reduction can be found in, e.g., [1, 2]. Most traditional model reduction techniques are of
intrusive nature, which means that full knowledge of the governing equations and the discretization of the full
models of the dynamical systems of interest are required. The intrusive nature limits the scope of traditional
model reduction methods. For example, consider proprietary software that implements the simulation of
a physical process. Details, and access to, the governing equations, discretization, and solver typically
are unavailable when working with proprietary software and thus traditional, intrusive model reduction
methods are not applicable. In contrast, non-intrusive model reduction techniques aim to learn reduced
models from snapshots, i.e., either numerical approximations or measurements of the states and the outputs
of the dynamical systems. There is a variety of non-intrusive model reduction techniques for linear systems,
yet methods for learning reduced-order nonlinear systems—which is the focus of this paper—are more scarce.
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For linear systems, the Loewner framework constructs reduced models from input-output measurements
by fitting a linear-time invariant model to frequency or time-domain data [3, 4, 5, 6]. System identifica-
tion techniques such as the matrix pencil approach [7], eigensystem realization algorithm [8, 9, 10, 11], and
vector fitting [12, 13] can accurately approximate dynamical systems and in some cases even retain struc-
ture. For nonlinear systems, non-intrusive model reduction generally requires a choice of parametrization
of the nonlinear term. For example, the Loewner approach has been extended from linear to bilinear [14]
and quadratic-bilinear systems [15]. Techniques based on libraries select the nonlinear functions that com-
pose the right-hand-side of a dynamical system from candidate functions that are chosen either by expert
knowledge [16] or through sparse approximation techniques [17, 18]. Dynamic mode decomposition [19, 20]
learns reduced models for nonlinear dynamical systems, yet its success depends on knowledge of suitable
observables that make the input-output map low-dimensional [21]. A promising approach to consider DMD
modes together with the fluctuation-dissipation theorem allows the authors in [22] to learn a linear ROM
for nonlinear turbulent flows. There are also hybrid approaches to learn only part of the nonlinear system,
e.g., in data-driven closure modeling, where a projection-based framework is pursued, but correction terms
are learned from data [23], or the Galerkin-ROMs can be re-calibrated [24, 25] to achieve greater accuracy.
Another approach to learning nonlinear reduced models is operator inference [26] that is applicable if the
nonlinear terms are polynomials in the state. The operator inference framework has been extended to general
nonlinear systems by utilizing variable transformations [27].

In practice, one is often confronted with a mixture of the intrusive and non-intrusive setting, such as
when the governing equations of the system of interest are known yet details about the discretization are
unavailable. For example, if one considers a reaction-diffusion process (such as the tubular reactor example
in Section 4.2), then the reaction term might be given analytically, whereas the discretization of the terms
corresponding to the diffusion are unavailable. We thus propose a novel non-intrusive model reduction
method that incorporates terms that are available analytically and that learns reduced operators for all
other terms from snapshot data. To this end, we build on the operator inference method and extend it
in multiple directions. First, we explicitly incorporate knowledge about non-polynomial terms that are
given analytically. Second, we combine operator inference with empirical interpolation [28, 29, 30] to make
the learned models online efficient in case of non-polynomial nonlinear terms. Third, we demonstrate that
structure in coupled (partial) differential equations can be retained in the learned reduced models, which
increases the predictive capabilities of the reduced models. We show that under certain conditions the
learned model converges to the same model that is derived with intrusive model reduction methods that
require full knowledge of the governing equations and the full-model solvers. Numerical results demonstrate
that our approach learns predictive reduced models for diffusion-reaction systems and simulations of chemical
processes.

The manuscript is structured as follows. Section 2 describes the problem setting and presents background
material on model reduction. Section 3 presents the proposed operator inference problem for nonlinear non-
polynomial systems. Section 4 presents numerical results that provide evidence of the wide scope of our
approach. Conclusions are drawn in Section 5.

2. Problem setting and preliminaries

In Section 2.1, we introduce the partial differential equation (PDE) model considered herein, followed
by its discretized version in Section 2.2. In Section 2.3, we describe the standard projection-based model
reduction technique and in Section 2.4 we state the problem setting of this paper.

2.1. Partial differential equation model

Let 0 < T ∈ R and consider a PDE of the form

∂s

∂t
= A(s) +H(s) + f(t, s) + B(u) (1)

for time t ∈ (0, T ], input u(t), state s(x, t) with x ∈ Ω ⊆ Rd, d = 1, 2, 3, and Ω a bounded open domain
with boundary ∂Ω. We assume boundary conditions s|∂Ω and initial conditions s(x, 0) are given such that
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the corresponding initial boundary value problem with governing PDE (1) is well posed up to time T . In
equation (1), A is a linear operator (satisfying A(as) = aA(s) for all a ∈ R and A(s1 + s2) = A(s1) +A(s2),
e.g., a difference or integral operator), the operator H is quadratic in s (satisfying H(as) = a2H(s) for all s,
e.g., H(s) = s · ∇s), the nonlinear function is f(t, s), and B is a linear input operator.

2.2. Discretized model

A semi-discrete numerical model for the PDE (1) is given by

ṡ(t) = As(t) + H(s(t)⊗ s(t)) + f(t, s(t)) + Bu(t), (2)

with finite-dimensional state s(t) ∈ Rn, input u(t) ∈ Rm, linear operator A ∈ Rn×n, quadratic operator

H ∈ Rn×n2

, input operator B ∈ Rn×m. The initial condition for the semi-discrete model (2) is s(0) = s0 and
the input at time t = 0 is u(0) = u0. Throughout this paper, we call (2) the full-order model (FOM). Here,
⊗ denotes the column-wise Kronecker product, which for a column vector s = [s1, s2, . . . , sn]> is given by

s⊗ s = [s2
1 s1s2 . . . s1sn s2s1 s2

2 . . . s2sm . . . s2
m] ∈ Rn

2

,

and for a matrix S = [s1, s2, . . . , sk] ∈ Rn×k is given by

S⊗ S = [s1 ⊗ s1 s2 ⊗ s2 . . . sk ⊗ sk] ∈ Rn
2×k.

In the following, we assume that each component function f1, . . . , fn : [0, T ] × R → R of f requires
evaluating f from the continuous model (1) at a single component of the state vector s(t) = [s1(t), . . . , sn(t)]>.
Formally, this means that f is

f(t, s) =

f(t, s1)
...

f(t, sn)

 . (3)

We introduced the PDE model (1) and the definition of f in (3) for a scalar model (describing the evolution
of one physical quantity, e.g., velocity) for ease of notation. For PDEs with ` physical variables, that means
that each component function in (3) can depend on other physical variables at the same spatial location.
Next, we give a concrete example of a PDE and its discretization with non-polynomial nonlinear terms as
in (3).

Example 1. Consider the PDE

∂

∂t
s(x, t) =

∂2

∂x2
s(x, t) + e−βts(x, t)−α + b(x)u(t)

with state s(x, t), diffusion operator ∂
∂x2 , time-dependent reaction term f(t, s) = e−βts−α, one-dimensional

input u(t), input function b(x) and constants α, β ∈ R+. Let s denote the discretized, finite-dimensional
state vector obtained through a finite difference approximation. A discretization of the diffusion operator
results in a matrix representation A, whose structure depends on the discretization scheme, approximation
order, and boundary conditions. Likewise, the discretized version of b(x) is B. For a vector s, we define
s−α := [si]

−α, i = 1, 2, . . . , n as the componentwise power of the vector entries. The discretized system reads
as

ṡ(t) = As(t) + e−βts(t)−α + Bu(t).

Note that the nonlinear function f(t, s(t)) = e−βts(t)−α does not require approximation of spatial derivatives.
In particular, evaluating the semi-discrete nonlinear function f(t, s) only requires application of f(t, s) at
every component of s.

In this work, we consider functions f(t, s) that are continuous in s and that are spatially local, which
means they involve nonlinear expressions in the state s; the class of problems not considered in this paper
are functions f that include differentials or integrals of s. Other examples of spatially local nonlinear terms
are the Arrhenius reaction model exp (γ − γ

s ) in the tubular reactor model in Section 4.2 and the function
s

α+ s
in the Batch Chromatography example in Section 4.3; see also [28, 30].
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2.3. Traditional projection-based model reduction for dynamical systems

In projection-based model reduction, the semi-discrete model (2) is projected onto a low-dimensional
subspace. Let r � n and let V = [v1, . . . ,vr] ∈ Rn×r be an orthonormal matrix, where the columns of V
span an r-dimensional subspace of Rn. A basis matrix V of such a subspace can be computed with, e.g.,
proper orthogonal decomposition (POD) [31, 32, 33]. Let S = [s1, . . . , sk] be snapshot matrix containing
solution snapshots si ≈ s(ti), where the si are solutions to (2) computed with a time-stepping scheme. POD
computes the basis matrix V from S via singular value decomposition (SVD).

Consider now the reduced operators

Ã = V>AV ∈ Rr×r , Ȟ = V>H(V ⊗′ V) ∈ Rr×r
2

, B̃ = V>B ∈ Rr×m , (4)

which are the restrictions of the matrices of the FOM from (2) to the image of V. To remove redundant terms
in the original Kronecker product, we use throughout the manuscript the product s ⊗′ s that contains as
components sisj , i, j = 1, 2, . . . , n, j ≥ i, which is the Kronecker product yet the duplicate terms are removed.
For instance, for s = [s1, s2]>, the standard Kronecker product yields s⊗ s = [s2

1 s1s2 s2s1 s2
2]> and without

redundant terms we have s⊗′ s = [s2
1 s1s2 s2

2]>. To this end, we define the matrix H̃ ∈ Rr×(r2+r)/2 (without
redundant terms) as

H̃ = Ȟ:,r(i−1)+j , i = 1, . . . r, i ≤ j ≤ r,

where Ȟ:,j denotes jth column of the matrix Ȟ. Moreover, we define the function f̃ : [0, T ]× Rr → Rr as

f̃(t, s̃(t)) = V>f(t,Vs̃(t)) ,

where s̃ ∈ Rr. Note that there are efficient reduction strategies that approximately compute f̃ so that f does
not have to be evaluated at all n components of Vs̃ [34, 28, 35, 30, 36]; we will return to such reduction

strategies of f̃ in Section 3.3. The reduced operators and f̂ define the reduced-order model (ROM)

˙̃s(t) = Ãs̃(t) + H̃(s̃(t)⊗′ s̃(t)) + f̃(t, s̃(t)) + B̃u(t) (5)

with the reduced state s̃(t) ∈ Rr at time t and with initial condition s̃(0) = s̃0. Constructing reduced
operators (4) via projection requires that the operators A,B,H of the system (2) are available in assembled

form or as matrix-vector products. Furthermore, each evaluation of f̃ requires evaluating components of f .

2.4. Problem setting

In this work, we consider the situation that we have a PDE model (1) with spatially local nonlinear term
f as described in Section 2.1, and that we can obtain snapshot data s(ti),u(ti) of the model (2) at times
0 = t0 < t1 < · · · < tk. However, the discretized operators A,H,B are unavailable. The goal of this work is
to learn a nonlinear ROM of the form (5).

3. Operator inference for nonlinear systems

In Section 3.1, we extend the operator inference framework for low-order polynomial systems from [26]
to the setting described in Section 2.1 with general non-polynomial nonlinear function f . In Section 3.2, we
present a result that shows that under certain conditions, the learned operators converge to their projection-
based counterparts. In Section 3.3, we discuss empirical interpolation [28, 30] to efficiently reduce the
non-polynomial nonlinear terms in the learned ROMs.
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3.1. Operator inference method

We now extend the operator inference method introduced in [26] for polynomially nonlinear systems to
systems with non-polynomial nonlinear terms that are spatially local. Let s1, . . . , sk be the solutions of the
FOM (2) at time steps t1, . . . , tk computed with a time stepping scheme and initial condition s0. Let the
inputs u(t0), . . . ,u(tk) be sampled at the same time steps. Then, the snapshot and input trajectory are
defined as

S :=

 s0 s1 · · · sk

 , U :=

 u(t0) u(t1) · · · u(tk)

 . (6)

Note that we can evaluate f(ti, s(ti)) using the solution s(t) and the analytical form of the spatially local
nonlinear term f . That is, we can post-process the snapshots to obtain

F =

 f(t0, s(t0)) f(t1, s(t1)) · · · f(tk, s(tk))

 . (7)

In the operator inference framework, the goal is to learn a ROM of the form (5) directly from data. One
starts with the projected trajectories of s(t), ṡ(t) and f(t, s), which are obtained via the following projections
onto the basis matrix V ∈ Rn×r:

Ŝ = V>S, F̂ = V>F. (8)

We denote with ˙̂sk the time derivative approximation of d
dt ŝ(tk), which can be computed from ŝ using a time

derivative approximation (see, e.g., [37, 38, 39]). We store the time-derivative approximations in the matrix

˙̂
S :=

 ˙̂s(t0) ˙̂s(t1) · · · ˙̂s(tk)

 . (9)

The optimization problem to compute Â, B̂ and Ĥ from the above projected data is:

min
Â,B̂,Ĥ

‖ ˙̂
S− F̂︸ ︷︷ ︸

:=R̂

−ÂŜ− B̂U− Ĥ(Ŝ⊗′ Ŝ)‖F (10)

where R̂ contains only known terms. Taken together, the solution of the operator inference problem for
Â, B̂, Ĥ yields a learned ROM of the form

˙̂s(t) = Âŝ(t) + Ĥ(ŝ(t)⊗′ ŝ(t)) + V>f(t,Vŝ(t)) + B̂u(t), (11)

which can then be used for predictive simulations. Algorithm 1 summarizes the algorithmic steps of this
section. In Figure 1, we illustrate the differences of the proposed approach of using operator inference together
with knowledge of spatially nonlinear functions to learn ROMs as compared to an intrusive projection-based
ROM.

Remark 1. We introduced the operator inference framework in the context of continuous-time nonlinear
systems. However, the framework carries over directly to discrete time systems of the form

sk+1 = Ask + H(sk ⊗′ sk) + f(tk, sk) + Buk. (12)

In this case, we replace S with S0 = [s0, s1, . . . , sk−1], set U = [u0,u1, . . . ,uk−1], and replace the time-
derivative matrix Ṡ with S1 = [s1, s2, . . . , sk].
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Algorithm 1 Operator inference for nonlinear systems.

1: Input: s0,S,U,F and a user-specified tolerance tol.
2: Collect derivative data Ṡ by numerical approximation or evaluation of a right-hand side residual on the

snapshot matrix S.
3: Compute the r dominant POD basis vectors of S, resulting in V such that

‖S−VV>S‖
‖S‖

≤ tol.

4: Determine projected initial condition ŝ0, reduced states Ŝ, reduced derivative
˙̂
S, and reduced nonlinear

terms F̂:

ŝ0 := V>s0, Ŝ := V>S,
˙̂
S = V>Ṡ, F̂ := V>F.

5: Solve the optimization problem (10), yielding Â, B̂, Ĥsq.

6: Output: ŝ0, Â, B̂, Ĥ.

Nonlinear PDEs
with spatially local nonlinear terms f(t, s)

Semi-discretize
and obtain ODE

Galerkin pro-
jection of ODE

Intrusive ROM

Data s(t), ṡ(t) from
a FOM solver

Apply Operator Inference
to learn Â, B̂, Ĥ mak-
ing use of known f(t, s)

Learned ROM

Figure 1: A comparison of a fully intrusive ROM approach with the proposed learning approach.

3.2. Analysis of operator inference framework

We extend the results from [26, Sec 3.2] to show that under certain conditions on the time discretiza-
tion, the learned operators converge to the intrusively obtained reduced operators. For this, we make two
assumptions on the time discretization of the FOM and ROM.

Assumption 1. The time stepping scheme for the FOM (2) is convergent, i.e.,

max
i∈{1,...T/∆t}

‖si − s(ti)‖2 → 0 as ∆t→ 0.

Assumption 2. The derivatives approximated from projected states, ˙̂sk, converge to d
dt ŝ(tk) as the dis-

cretization time step ∆t→ 0, i.e.,

max
i∈{1,...T/∆t}

‖ ˙̂si −
d

dt
ŝ(ti)‖2 → 0 as ∆t→ 0.
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Assumption 2 relates to the specific derivative approximation scheme that is used, its approximation
order and the time-step size. In this work, we employ a fourth-order time-stepping scheme, see Section 4 for
details. Other choices of time discretizations are possible, see e.g., [37, 38, 39] and the references therein.

Theorem 1. Let Assumptions 1–2 hold and let a basis matrix V = [v1,v2, . . . ,vr] ∈ Rn×r be given. Let

Ã, B̃, H̃ be the intrusively projected ROM operators from (4). If the data matrix D̂ = [Ŝ, U, Ŝ⊗′ Ŝ] has full
column rank, then for every ε > 0, there exists r ≤ n and a time step size ∆t > 0 such that for the difference
between the learned operators Â, Ĥ, B̂ and the (intrusive) projection-based Ã, H̃, B̃, we have

‖Â− Ã‖F ≤ ε, ‖B̂− B̃‖F ≤ ε, ‖Ĥ− H̃‖F ≤ ε.

Proof. The proof follows the ideas of the proof of [26, Theorem 1]. With the data matrices from (8)–(9), we

set D̂ = [Ŝ, U, Ŝ⊗′ Ŝ] as the data matrix, R̂ =
˙̂
S− F̂ as the residual, and Ô = [Â, B̂, Ĥ] are the operators

to be inferred, so the operator inference problem (10) can be formulated as

min
Ô
‖D̂Ô> − R̂>‖F . (13)

Denote by S̃ = [̃s1, s̃2, . . . , s̃k] the data matrix that is collected from taking k snapshots of the intrusive

ROM (5), and let D̃ = [S̃, U, S̃⊗′ S̃] and R̃ =
˙̃
S− F̃. With D̃, R̃ as data, the projected operators Ã, B̃, H̃

are a solution of the minimization problem (13), and if D̃ has full column rank, then the solution is also

unique. Next, we observe that Ŝ = S̃+∆S̃, i.e., the projected FOM data can be interpreted as a perturbation
of the ROM-simulated data, and as the dimension r increases, we have ‖∆S̃‖F → 0 because of Assumption 1,
and the fact that for the limiting case r = n the FOM (2) and ROM (5) are equivalent up to a rotation of

coordinates. Since Ŝ→ S̃ we also have by the continuity of fr that F̃→ F̂. Moreover, Assumption 2 ensures
convergence of ˙̂sk → d

dt ŝ(tk) and using again that for the limiting case r = n the FOM (2) and ROM (5) are

equivalent up to a rotation of coordinates, we have that d
dt ŝ(tk)→ d

dt s̃(tk) as r → n so ‖∆R̃‖F → 0. Taken

together we have ‖R̃ + ∆R̃‖F → ‖R̃‖F . Therefore, we have as a limiting result that

min
Ô

[
lim
r→n

∆t→0

‖D̂Ô> − R̂>‖F

]
= min

Ô

[
lim
r→n

∆t→0

‖[D̃ + ∆D̃]Ô> − [R̃ + ∆R̃]>‖F

]
= min

Ô
‖D̃Ô> − R̃>‖F , (14)

so the learned operators Ô converge to the intrusively projected operators Õ. In the pre-asymptotic case,
we then get the stated result in the theorem, which also uses the full-rank assumption on D̂ to deduce
‖Â− Ã‖F ≤ ε, ‖B̂− B̃‖F ≤ ε, ‖Ĥ− H̃‖F ≤ ε.

The theorem shows that the learned ROM operators converge to the projected ROM operators as r → n.
However, we do not obtain a convergence rate, and in our practical experience there are examples where the
difference in operators might not monotonically decrease for low orders of the ROM, such as the tubular
reactor example in Section 4.2. For the other examples in Sections 4.1 and 4.3, the norm did decrease for
low orders of the ROM. Most importantly, however, we see in the numerical results in Section 4 that in all
cases we can obtain accurate learned ROMs with convergent state-errors for r � n via the operator inference
framework.

The cost of the proposed framework of operator inference for nonlinear systems is similar to a standard
projection-based POD framework when k < n, i.e., we have more states than snapshots. Both the projection-
based ROM and the learned ROM require computing the POD basis from the snapshot set as well as time
integration of r-dimensional ROMs. The methods differ in that the operator inference requires projecting the
data S, Ṡ onto the subspace V (see step 4 of Algorithm 1), forming S⊗′ S and then solving a least-squares
problem in reduced dimension. The cost scales as O(rn). In contrast, the projection-based ROM requires
projecting the model matrices onto the subspace V, see (4), which also scales as O(rn). Note, that in that
last step we need to form V>H(V ⊗′ V) which is potentially expensive.
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Algorithm 2 Discrete empirical interpolation method [30, Algorithm 1]

1: Input: W = [w1, . . . ,wm].
2: p1 = arg maxi(|w1(i)|); W1 = [w1]; S1 = [ep1 ]; ρ1 = [p1]
3: for j = 2 : m do
4: Solve S>j−1Wj−1z = S>j−1wj for z;
5: rj = wj −Wj−1z; pj = arg maxi(|rj(i)|);
6: Uj = [Wj−1,wj ]; Sj = [Sj−1, epj ]; ρj = (ρj−1, pj);
7: end for
8: Output: Selection operator S = Sm

3.3. Empirical interpolation

In this section, we discuss empirical interpolation [28, 30] to accelerate the evaluation of V>f(t,Vŝ) in
the learned ROM. We employ the discrete empirical interpolation method (DEIM) from [30]. To this end,
we approximate

f̂(t,Vŝ(t)) ≈ f̂r(t,Vŝ(t)) = V>W(S>W)−1S>f(t,Vŝ(t)). (15)

The matrix W is computed by taking the SVD of the nonlinear snapshot matrix F in equation (7), and
setting W to the leading m left singular vectors of F. Here, S is an n × m matrix obtained by selecting
certain columns of the n × n identity matrix. The choice of the selected entries in S follows Algorithm 2,
which enforces interpolation S>f(t, ·) = S>[W(S>W)−1S>f(t, ·)] and simultaneously limits the local growth
of the spectral norm ‖(S>W)−1‖2, as this term occurs in the DEIM error bound [30]. The learned ROM
with DEIM interpolation is written as

˙̂s(t) = Âŝ(t) + Ĥ(ŝ(t)⊗′ ŝ(t)) + f̂r(t, ŝ(t)) + B̂u(t), (16)

where only m� n entries of f are evaluated, thus achieving computational speedup.

4. Numerical results

In this section, we test the efficiency of the proposed operator inference approach by means of several
problems, arising in different areas of science and engineering. We compare the quality of the learned ROM
with an intrusive ROM. Here, we use a projection-based POD method. Below we give some information
that applies to all our numerical simulations:

• All models are simulated using the routine ode15s in MATLAB® with relative error and absolute
error tolerances of 10−10.

• In the operator inference framework, we approximate the time derivative ˙̂si with a five-point stencil
˙̂si ≈ (−ŝi+2 + 8ŝi+1 − 8ŝi−1 + ŝi−2)/(12∆t), which has fourth-order accuracy. The first two and
last two time derivatives are computed using first-order forward and backward Euler approximations,
respectively.

We present three examples with increasing complexity to illustrate our approach.

4.1. Chafee-Infante model

We consider the one-dimensional Chafee-Infante equation [40], which is closely related to the Cahn-Hillard
equation [41]. The Chafee-Infante model has been studied extensively as a benchmark problem for nonlinear
MOR techniques, and has been reduced by means of various methods, see, e.g. [42, 43]. The Chafee-Infante
equation is a diffusion-reaction model with the governing equation, boundary and initial conditions as follows:

dv

dt
+ v3 =

∂2v

∂x2
+ u, (x, t) ∈ (0, 1)× (0, T ], v(0, t) = u(t), t ∈ (0, T ),

∂v

∂x
(1, t) = 0, t ∈ (0, T ), v(x, 0) = 0, x ∈ (0, 1).

(17)
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Figure 2: Chafee-Infante example: Decay of singular values of the snapshot matrix and the nonlinear snapshot matrix.

As a quantity of interest, we observe the output at the right boundary, i.e., y(t) = v(L, t). The model (17)
contains a cubic nonlinear term, which fits our discussion of spatially local nonlinear terms of Section 2.1.
Hence, we can use our proposed non-intrusive approach to construct a learned ROM.

The governing equations are spatially discretized via a finite difference scheme using 500 grid points.
We generate snapshots of the discretized state s(t) via numerical simulations of the semi-discrete system
in the time interval T = [0, 10]s with time step 10−3. We also collect snapshot data for the input u(t) =
10(sin(πt)+1). This allows us to build a snapshot matrix S and input matrix U. Furthermore, we construct
a nonlinear snapshot matrix F from the snapshot matrix S by applying the nonlinear function f from
equation (3), i.e., F(:, i) = f(S(:, i), ti) where (:, i) denotes the ith column of a matrix.

In Figure 2, we show the decay of the singular values of the snapshot matrix and nonlinear snapshot
matrix, indicating exponential decay for both. By taking the dominant 12 POD basis vectors, we construct an
intrusive ROM by explicitly computing the projected matrices, and also employ our non-intrusive framework
from Algorithm 1 to obtain a learned ROM. For the operator inference method, we leave out the first 10
recorded snapshots, as the transient response in the first 10 state vectors is very fast. A much smaller time
step could solve this issue, but we are often faced with a situation where a data set with a fixed time step is
given to us, and we have little control over the time step selection, which is the situation we consider here.
We employ DEIM approximation for the reduced nonlinear terms as discussed in Section 3.3. We select
DEIM basis vectors for the nonlinear term corresponding to relative singular values up to 10−8.

In Figure 3, we compare the output of interest for the FOM and both ROMs for the same input. Note
that the system is simulated for T = 20s, thus predicting the output for 10s, i.e., 100% past the training
interval. We observe that the learned ROM is more accurate at most time steps. While this appears counter-
intuitive at first, it might be possible that unresolved features (sometimes called closure terms) are learned
by the ROM. This remains a topic of further investigation.

In Figure 4, we compare the state approximation error of both ROMs. Both POD and our learned ROM
are accurate, with the learned ROM being slightly more accurate. We found that after r = 14, the non-
intrusive approach starts yielding unstable ROMs. This could be due to the fact that the singular values
corresponding to higher basis vectors are relatively small (order 10−10 in this example). Moreover, since
the training data remains the same as r is increased, there can be a situation where there is not enough
information in the training data to learn a more accurate ROM that inherits the stability from the FOM. We
do not observe instability in non-intrusive ROMs in general. Nevertheless, at this point the ROMs already
predict the output with accuracy 10−7, which is sufficient in most practical applications.

4.2. Tubular reactor model

We consider a one-dimensional non-adiabatic tubular reactor model with a single reaction, describing the
evolution of the species concentration ψ(x, t) and temperature θ(x, t). The dynamics of the model are given
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Figure 3: Chafee-Infante example: Output (left) and output errors (right) of the POD intrusive and the learned ROMs of order
r = 12.
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Figure 4: Chafee-Infante example: Convergence of relative state errors with increasing order of the POD intrusive ROMs and
the learned ROMs.

by the PDEs [44] as follows:

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−DF(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDF(ψ, θ; γ),

with spatial variable x ∈ (0, 1), time t > 0 and Arrhenius reaction term

F(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
. (19)

The parameters are the Damköhler number D, the Péclet number Pe, and the reaction rate γ. We set
D = 0.167, Pe = 5, and γ = 25. The reference temperature is θref(x, t) ≡ 1, and the constants are B = 0.5
and β = 2.5. Robin boundary conditions are imposed on the left boundary of the domain as follows:

∂ψ

∂x
(0, t) = Pe(ψ(0, t)− 1),

∂θ

∂x
(0, t) = Pe(θ(0, t)− 1),

and the Neumann boundary conditions on the right boundary are

∂ψ

∂x
(1, t) = 0,

∂θ

∂x
(1, t) = 0.

Moreover, the initial conditions are prescribed as

ψ(x, 0) = ψ0(x), θ(x, 0) = θ0(x).
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Figure 5: Tubular reactor example: Decay of the singular values of the snapshot matrix and the nonlinear snapshot matrix.

The quantity of interest is the temperature oscillation at the reactor exit, i.e., the quantity

y(t) = θ(x = 1, t).

The governing PDE is discretized with a finite difference approximation (see [45] for details) leading to a
discretized state s(t) ∈ R198 which takes the form

ṡ(t) = As(t) + f(s(t)) + B. (20)

Observe that in this example the input u(t) is constant, i.e., u(t) ≡ 1. The Arrhenius nonlinear term (19)
requires pointwise evaluations (local in space), which fits to our framework presented in Section 3. Thus,
we can apply the proposed non-intrusive operator inference framework to obtain a ROM by including PDE-
level information about the nonlinear terms into the learning framework. We build the snapshot matrix by
collecting snapshots in the time interval T = (0, 30]s which are δt = 10−3 apart.

Figure 5 shows the decay of the singular values of the snapshot matrix S and the nonlinear snapshot
matrix F. We use the leading r = 10 POD modes in the projection matrix V. We construct ROMs both
via explicitly computing the projected model terms, and via our non-intrusive approach. As in the previous
example, we make use of DEIM to efficiently evaluate the reduced nonlinear terms in both ROMs. We select
DEIM basis vectors for the nonlinear term corresponding to relative singular values up to 10−8.

Both ROMs are simulated until T = 60s, which is 100% longer than the training interval. Figure 6a shows
the quantity of interest obtained from the FOM and the two ROMs. Note, that for this set of parameters,
the model enters a self-excited limit-cycle oscillation. Figure 6b shows the output error |y(t)− ŷ(t)| for the
two ROMs. Both models produce similar output errors. This competitiveness of the learned ROM with the
projection-based POD model is remarkable, since after t = 30s outputs are purely predictive as the ROMs
exit the range of training data.

Figure 7 shows the relative error in the approximated states for both ROMs with increasing ROM order.
The learned ROM is more accurate than the POD-ROM in most cases. The errors for both models level-off
after r = 18 at a relative state error of 10−7, which is again accurate enough for most applications, certainly
for the temperature field considered in this example.

4.3. Batch Chromatography

In Section 4.3.1 we describe the PDE model and its discretization. Section 4.3.2 presents the structure-
preserving ROM generation in the projection-based setting, and Section 4.3.3 describes how we enforce the
coupling structure in the non-intrusive learning framework. Section 4.3.4 presents our numerical results.

4.3.1. Problem setup

Chromatography is a separation and purification process used in the chemical and pharmaceutical in-
dustry, and we consider one of the simplest chromatography processes, the so-called batch chromatography.
For a detailed description of the process, we refer to [46, 47]. The primary principle of the batch chro-
matography process for binary separation is shown in Figure 8. A mixture of products A and B is injected
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4 6 8 10 12 14 16 18 20

10−6

10−4

10−2

reduced model dimension

E
rr

o
r

b
/
w

F
O

M
a
n

d
R

O
M
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Figure 7: Tubular reactor example: Relative state errors produced by both ROMs, i.e., ‖S−VŜPOD‖/‖S‖ and ‖S−VŜNI‖/‖S‖.

Figure 8: The figure shows a chromatography process, separating a mixture, c.f. [48].

at the inlet of the column and then the feed mixture flows through the column. Since the to-be-separated
solutes exhibit different adsorption affinities to the stationary phase, they move at different velocities, and
thus separate from each other when exiting the column. At the column outlet, component A, which moves
faster, is collected between t1 and t2, and later, component B is collected between t3 and t4. Here, time t1
and t4 are determined by a minimum concentration threshold that the detector can resolve, and time t2 and
t3 are determined by the purity specifications imposed on the products.

The dynamics of the batch chromatographic column can be described by the following dimensionless
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coupled PDE system:

∂ci
∂t

+
1− ε
ε

∂qi
∂t

+
∂ci
∂x
− 1

Pe

∂2ci
∂x2

= 0, (21a)

∂qi
∂t

=
L

Q/εAc
κi

(
qEqi − qi

)
, (21b)

where i ∈ {1, 2}, x ∈ (0, L) is the spatial variable, and the liquid and solid phase concentrations of the
compound i are denoted by ci and qi, respectively; the constants ε, L are the interstitial liquid velocity,
the column porosity, and the column length, respectively; Pe denotes the Péclet number; Ac denotes the

cross-sectional area, defined as πD2

4 , where D is the diameter of the tube. The constant κi is the mass-

transfer coefficient of component i; moreover, qEq
i is the adsorption equilibrium concentration calculated by

the isotherm equation for the component i, given as follows:

qEq
i =

Hi,1 ci

1 +
∑
j=1,2

Kj,1c
f
j cj

+
Hi,2 ci

1 +
∑
j=1,2

Kj,2c
f
j cj

, (22)

where Hi,1 and Hi,2 are the Henry constants, and Kj,1 and Kj,2 the thermodynamic coefficients. Further-
more, the boundary conditions are specified by the Danckwerts relations:

∂ci
∂x

∣∣∣∣
x=0

= Pe (ci|x=0 − c
in
i ),

∂ci
∂x

∣∣∣∣
x=L

= 0, (23)

where cini is the concentration of component i at the inlet of the column. A sigmoid-type injection profile is
assumed, which is a differentiable approximation of a rectangular profile, given by

cini (t) =
1

1 + e−5(t−tinj)
, (24)

where tinj is the injection period. In addition, we have the following initial conditions:

ci(t = 0, x) = qi(t = 0, x) = 0, x ∈ [0, L], i ∈ {1, 2}. (25)

System (21) is a coupled set of PDEs, and more importantly, (21a) involves the derivatives of ci and qi.
However, we can modify (21a) such that the resulting equation does not have a ∂qi/∂t term. For this, we

set εc :=
ε− 1

ε
and insert (21b) by into (21a), yielding

∂ci
∂t

+
∂ci
∂x
− 1

Pe

∂2ci
∂x2

= εcκi

(
qEqi − qi

)
, (26a)

∂qi
∂t

= κi

(
qEq
i − qi

)
. (26b)

A finite volume discretization of the governing equations yields a discretized model of the form:
ċ1

q̇1

ċ2

q̇2

 =


A1 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



c1

q1

c2

q2

+


B
0
B
0

u(t) +

[
εc
1

]
⊗
[
f1(c1,q1, c2,q2)
f2(c1,q1, c2,q2)

]
, (27)

where c1,q1, c2,q2 ∈ Rn, A1,A2 ∈ Rn×n, B ∈ Rn, and n is the number of degrees of freedom in the

discretized field. The term fi(c1,q1, c2,q2) ∈ Rn is the evaluation of the nonlinear term κi

(
qEq
i − qi

)
on

the right-hand side of (26b) on the spatial grid. Note that this nonlinear term involves a rational function,
see (22), which again translates to a nonlinear term that is local in space, and hence the nonlinear function
fits the setting described in Section 2.1.
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4.3.2. Maintaining the coupling structure: Projection-based ROM

Classically, to obtain the basis for POD, one would stack all variables in one vector, i.e., [c>1 ,q
>
1 , c

>
2 ,q

>
2 ]>

and determine the common subspace V by taking the SVD of that data. However, by doing so, we observe
that both methods produce unstable ROMs. This is potentially due to the fact that the governing PDEs
are highly coupled and the resulting ROMs do not preserve the coupling topology structure. We present an
approach that uses the knowledge about the topology structure of a coupled system in the ROM.

To preserve the coupled topology structure, we first compute a basis for each subsystem, i.e., ci ≈
Vci

ĉi and qi ≈ Vqi
q̂i, i ∈ {1, 2}. Next, we construct a projection matrix with a block structure, i.e., we

approximate 
c1

q1

c2

q2

 ≈

Vc1

Vq1

Vc2

Vq2



ĉ1

q̂1

ĉ2

q̂2

 . (28)

With the above projection matrix V, a projection-based ROM preserves this structure, i.e.,
˙̂c1

˙̂q1
˙̂c2

˙̂q2

 =


Â1 0 0 0
0 0 0 0

0 0 Â2 0
0 0 0 0



ĉ1

q̂1

ĉ2

q̂2

+


B̂1

0

B̂2

0

u(t) +

[
εc
1

]
⊗

[
f̂1(ĉ1, q̂1, ĉ2, q̂2)

f̂2(ĉ1, q̂1, ĉ2, q̂2)

]
, (29)

where ĉ1, q̂1, ĉ2, q̂2 ∈ Rr, Â1, Â2 ∈ Rr×r, B̂1, B̂2 ∈ Rr. Note, that the dimension of the coupled ROM (29) is
4r, however, it has sparse structure, e.g., the linear system matrix has only 2r2 nonzero entries and the linear
input matrix has only 2r nonzero entries. Moreover, it is also possible to use different ROM dimensions for
each of the four physical states. Thus, enforcing the coupling structure does not necessarily lead to drastically
more expensive ROMs.

Remark 2. Maintaining the coupling structure in a ROM of the aggregate system is important for physical
interpretability, and can have numerical implications as well [49, 50, 51, 52]. For instance, structure-
preserving ROMs can lead to convergent feedback controllers for coupled systems [53] and have implications
on stability. We observe in our numerical experiments on the batch chromatography example, that unstable
ROMs arise when we do not preserve this structure. Conversely, when the coupling structure of the FOM
is maintained in the ROMs, we obtain stable ROMs. A theoretical justification of this observation for
nonlinear systems remains an open problem, though, for linear systems, stability analysis for coupled systems
is performed in [51].

4.3.3. Maintaining the coupling structure: Learned ROM

Having derived the form of the projection-based structure-preserving ROM leads to a strategy to enforce
the coupling structure in the operator inference framework as follows. First, we compute the block-diagonal
projection matrix V from (28). Second, we collect projected state and time-derivative data:

Ŝ =


V>c1

C1

V>q1
Q1

V>c2
C2

V>q2
Q2

 =:


Ĉ1

Q̂1

Ĉ2

Q̂2

 , ˙̂
S =


V>c1

Ċ1

V>q1
Q̇1

V>c2
Ċ2

V>q2
Q̇2

 =:


˙̂
C1

˙̂
Q1
˙̂
C2

˙̂
Q2

 . (30)

The input matrix U is assembled as given in (6) and the nonlinear term matrix F is built in a similar way
as given in (7). We then solve separate least-squares problems of the form

min
Âi,B̂i

‖ ˙̂
Ci − εcV>ci

F− ÂiĈi − B̂iU‖F , i ∈ {1, 2}. (31)
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Figure 9: Batch chromatography example: Decay of singular values of the collected snapshots for all four components separately
and the nonlinear snapshot matrix.

Recall the structure of the projection-based ROM in (29). For ˙̂qi, i ∈ {1, 2}, there are no linear terms on

the right hand side, and so there is no need to solve a least-squares problem. The expressions for ˙̂qi are

˙̂qi = fi(ĉ1, q̂1, ĉ2, q̂2) = V>qi
fi(Vc1

c1,Vq1
q1,Vc2

c2,Vq2
q2).

4.3.4. Results

For the numerical experiment, we choose the model parameters as follows: ε = 0.4, L = 10.5, Pe = 2000,
D = 2.6, κ1 = κ2 = 0.1, H1,1 = 3.728, H1,2 = 0.3, H2,1 = 2.688, H2,2 = 0.1, K1,1 = 46.6,K1,2 = 33.6,K2,1 =

3000,K2,2 = 1000, Q = 0.1018, cf1 = cf2 = 2.9 × 10−3, and tinj = 1.3s. For spatial discretization we choose
n = 400 (thus the overall state is 4n = 1600). The model is simulated until T = 10s and snapshots are
collected every δt = 5×10−5s. Such a fine time stepping allows us to obtain an accurate approximation of the
time derivative; however, we take every 100th snapshot of the state and time derivative while inferring the
operators in the least squares procedure. Figure 9 shows the decay of the singular values of each component,
showing a rather slow decay, which can be expected due to the transport nature of the problem. Next,
we compute ROMs via intrusive POD and our non-intrusive approach with the same matrix V as shown
in (28), where each component is reduced to order r = 22. As in the previous two examples, we incorporate
a DEIM approximation of the reduced nonlinear terms for both ROMs. We select DEIM basis vectors for
the nonlinear term corresponding to relative singular values up to 10−10. Figure 10, left, shows the quantity
of interest obtained from the time-domain simulations of the FOM and the two ROMs. Figure 10, right,
shows the (mean) relative error of the two outputs. The results indicate that the non-intrusive and intrusive
approaches yield ROMs of comparative accuracy. Figure 11 shows the relative error in the approximated
states for both ROMs with increasing ROM order. For ROM orders of r < 30, both the intrusive POD ROM
and the learned ROMs perform similarly. However, as r increases further, the error for the non-intrusive
models does not decrease as favorably as for POD intrusive models. This could be due to the condition
number of the operator inference problem (11). Adding regularization to the least-squares problem could
improve this as seen in [54] and also using data from several different simulations, similar to [26, Sec 3.6].

5. Conclusions

We have presented a data-driven model reduction method that non-intrusively learns reduced models
from data collected of the full model states. The presented method applies to non-polynomial nonlinear
models that are spatially local, and extends previous results for the polynomial case [26]. The method
exploits the spatially local structure of the nonlinear terms to generate nonlinear snapshots from state data
without requiring access to the discretization of the nonlinear term explicitly. Moreover, we presented a
convergence result that shows that under mild assumptions on the time stepping scheme, and if the time
step of the sampled data is sufficiently small, the non-intrusively learned reduced models converge to the
same reduced models as obtained with intrusive model reduction methods. The numerical results show
that the learned reduced models provide accurate predictions when compared to the full-model predictions.
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Figure 10: Batch chromatography example: A comparison of the POD intrusive model with the learned model of order r = 4×22.
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Figure 11: Batch Chromatography example: Relative errors ‖S−VŜPOD‖/‖S‖ and ‖S−VŜNI‖/‖S‖.

The three numerical experiments with reactive flows and chemical purification processes demonstrate that
the method works well for strongly nonlinear systems, and further information in form of known structure
can also be embedded into the learning framework. Future research directions motivated by this work
are: addressing the effect of measurement noise (from real data) on the learning procedure and ultimately
the learned ROMs; developing a suitable regularization strategy (possibly problem dependent) that could
improve the learned ROMs accuracy and stability; and including additional information, such as physical
constraints in the least-squares problem as suggested by [55].
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