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ABSTRACT: The solution to chemical kinetic models for a kinexns: Kinetics of Reactions

particular reactor configuration is usually composed of a set of
stiff ordinary differential equations (ODEs), where a number of rate

System/

LTIl —> Experiments ]
parameters have to be estimated to fit with experimental :
observations. This presents a twofold challenge—first, to solve the 3
stiff set of ODEs accurately and efliciently, and second, to estimate o— s
the model parameters precisely by optimizing the objective function. M
In recent years, stochastic optimization methods for parameter Simulated Sensitivity
estimation have gained popularity over the classical optimization Response Analysis

methods as the former do not require a reasonable initial guess and Parameters Ontimi o
have the capability to escape local minima. In this study, we t S Pz::,:':":is
systematically examined 10 different stochastic optimization Kn::::’ge

algorithms and evaluated their performance to estimate the model

parameters for the previously developed propane oxidation mechanism, popularly known as the San Diego mechanism. In doing this,
we developed an open source python package kinexns to efficiently solve the kinetic model using CVode solver, perform sensitivity
analysis to determine important model parameters, and optimize the model parameters by using the different stochastic methods.
The different algorithms we considered are Monte Carlo (MC), Latin hypercube sampling (LHS), maximum likelihood estimation
(MLE), Markov chain Monte Carlo (MCMC), shuffled complex evolution algorithm (SCE-UA), simulated annealing (SA), robust
parameter estimation (ROPE), artificial bee colony (ABC), fitness scaled chaotic artificial bee colony (FSCABC), and dynamically
dimensioned search algorithm (DDS). The results indicated that the MLE and DDS provide more reliable parameter approximation
among all of the algorithms evaluated.

1. INTRODUCTION chemical processing, the development of an accurate kinetic
Mechanistic kinetic models are essential tools in understanding model is essential for optimal process design, plant safety,
chemical and biochemical processes. They usually consist of quality assurance, further analysis in the downstream,
reaction mechanisms with numerous elementary reactions minimization of waste, and better control over trouble-
whose rate parameters are often unknown or taken from the shooting. Therefore, complex kinetic models are an integral
existing literature. In some cases, these parameters are part of modern biological/chemical processes such as
estimated through quantum chemistry calculations using combustion,*”® pyrolysis of biomass for alternative fuel
transition state or more advanced kinetic rate theories. production,”™” catalytic conversions,"”'" cell metabolic pro-
However, regardless of how the rate parameters are obtained, cesses,'” and enzymatic reactions."?

when combined together, they seldom realistically fully predict Though a kinetic mechanism is essential to describe a
experimental results as the operating condition, component complex chemical process, inaccurate descriptions of chemistry
molecular composition, and uncertainty in rate parameters may and poorly optimized kinetic parameters can cause a
vary significantly.”” The uncertainty in rate parameters derives mechanism to fail or inaccurately describe the process.

from variation in experimental measurements, increasing the
difficulty of creating and training reliable and transferable
kinetic models. For example, the rate constant of the reaction
H + O, & O + OH has been examined at least 77 times in the
literature.” Nevertheless, mechanistic models are preferred
over empirical models (often called “lumped” models) since
the parameters bear physical meanings and can provide useful
insights about the process. Moreover, comprehensive mecha-
nistic models offer more predictive power given their deep
connection to underlying molecular-scale transformations. In

Typically, optimizing the kinetic parameters is the most
challenging part as the number of parameters is usually high
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and they are extremely correlated within some uncertainty
limits. At the same time, optimizing the model is not sensitive
to all of the parameters; therefore, performing sensitivity
analysis is required to list the most important parameter for
both product and process optimization.'* In routine circum-
stances, when the experimental data is collected from a reactor
and the reaction mechanism is connected with rate constants,
thermodynamics, and the physical description of the reactor,
usually a system of ordinary differential equations (ODEs) is
generated. To perform parameter optimization and, often, any
types of sensitivity analyses, it is required to solve the system of
ODEs thousands of times. This imposes additional challenges
in model optimization as these systems of ODEs are very stiff,
which usually comes from disparate reaction rates between
elementary steps, e.g., radical intermediate formation rates or
termination steps. Therefore, an efficient stiff ODE solver is
required to accelerate the model development process. Thus,
developing a mechanistic kinetic model often consists of the
following few basic steps: (i) formulation of the reaction
mechanism to describe the chemistry, (ii) identification of the
rate parameters and thermodynamic quantities from the
literature or through quantum chemistry calculation, (iii)
finding an efficient stiff ODE solver to accelerate model
solution, (iv) performing sensitivity analysis to determine
important model parameters, (v) optimizing model parameters
to better describe experimental observations, and, finally, (vi)
revising the initial model to better describe the chemistry.
Furthermore, the mechanism also needs to be completed,
which is often difficult to achieve because of multiplicity of
mechanisms."

Over the years, several databases of chemical reactions
with kinetic parameters have been developed. In addition, with
the help of efficient quantum chemistry software, it is possible
to reasonably estimate the rate of elementary reactions. These
initially estimated or obtained rate parameters can be a
reasonable starting point to begin developing the kinetic model
of interest; however, these might change based on the
operating conditions and/or reactor types; therefore, param-
eter fitting or optimization is required. As mentioned
previously, this is the most complex step of mechanistic
modeling because the optimization depends on the initially
estimated parameter values as they are highly correlated.
Additionally, for gradient-based optimizers such as steepest
gradient descent or conjugate gradient methods, the initial
parameter choice(s) might lead the model to get trapped in a
local minimum. Therefore, stochastic optimization methods
have recently garnered more interest in use in optimizing
chemical kinetic models for their ability to escape the local
minima and converge to the global minima.

Stochastic optimization methods are general purpose
optimization protocols, some of which are very flexible and
can be applied to varieties of objective functions. The simplest
one is the Monte Carlo (MC) method,"® where the objective
function is evaluated over the entire parameter space.
However, the number of required iterations increases
exponentially with increasing numbers of parameters to
optimize. Over the years, a good number of variants of
stochastic or Monte Carlo algorithms have emerged, some of
which even closely mimic efficient optimization approaches
seen in nature. These various stochastic optimization
algorithms have been used frequently in optimizing chemical
kinetic models. For example, Vahteristo et al.'’ used the
Markov chain Monte Carlo (MCMC) method® to estimate

16,17

parameters for Diels—Alder reaction kinetics. Katare et al.”'
used genetic algorithms (GAs),”* which is a method inspired
by the natural selection process, to optimize large kinetic
models. Several other works*> >* have reported the use of
other stochastic methods like simulated annealing (SA),*
particle swarm optimization (PSO),** differential evolution
(DE),* shuffled complex evolution (SCE),*® Latin hypercube
sampling (LHS),”” and robust parameter estimation (ROPE)**
method. In addition, Da Ros et al*’ compared various
algorithms such as SA, PSO, DE, and artificial bee colony
(ABC)*™ to estimate parameters for biochemical kinetic
models and concluded that DE performs better compared to
others. In contrast, Najari et al.*' compared DA and ABC and
demonstrated that ABC is a more reliable algorithm to use.
Since some algorithms contain tunable parameters to work
efficiently, it is understandable that one algorithm might work
better under certain parameter settings. This poses further
challenges to the researchers as they need to tune multiple
adjustable parameters before discovering which setting works
better for their system. Although the above list is not
exhaustive, we chose it for this study because it represents
the set available methods with open source implementations
available off-the-shelf in Python.

In spite of the development of a number of global stochastic
optimizers, their relative performance in optimizing large
chemical kinetic models is still debatable. The advent of free
open source tools like Python makes many of these algorithms
available nearly instantaneously, but comparative studies about
their effectiveness for chemical kinetics problems are still
needed. Since global optimization is itself a very difficult
problem, kinetic model optimization usually starts with an
already existing model, and new reactions are added to revise
the model where rate parameters are estimated through
quantum chemical calculations. Then, optimization is
performed only for the parameters that are important or
sensitive toward the experimental observations, which is used
to fit the model. Therefore, though it is called global
optimization, the number of parameters optimized is inten-
tionally kept limited to maximize accuracy. For example,
Siouris et al.** optimized the Arrhenius rate parameters for a
21-step fuel degradation mechanism, while Ding et al**
optimized only 15 parameters to fully describe their
lignocellulosic biomass pyrolysis process. However, a system-
atic study of how many parameters can be estimated
simultaneously while optimizing the kinetic model and how
the initial estimation of the model parameters affects the
optimization quality is still missing, which will be of great
importance for both process and product optimization. Thus,
the focus of this study is to address both of these questions
while comparing the performance of various stochastic
optimizers and devise a methodology to successfully optimize
a relatively large chemical kinetic model.

In this study, we systematically studied the performance of
10 different stochastic optimization algorithms, namely, Monte
Carlo (MC), Latin hypercube sampling (LHS), maximum
likelihood estimation (MLE),” Markov chain Monte Carlo
(MCMC), shuffled complex evolution algorithm (SCE-UA),
simulated annealing (SA), robust parameter estimation
(ROPE), artificial bee colony (ABC), fitness scaled chaotic
artificial bee colony (FSCABC),** and dynamically dimen-
sioned search algorithm (DDS).* The system we consider is
the San Diego mechanism*® of propane oxidation, which has
46 species and 244 reactions; this mechanism is already

https://dx.doi.org/10.1021/acs.iecr.0c04009
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optimized and well known. In this study, we treated the
distribution of various species concentrations generated from
an already optimized San Diego mechanism as our training
data, and then we randomized the rate parameters/constants
to try to reproduce the observables using the stochastic
algorithms mentioned above. It is important to mention here
that some of the algorithms such as SA, ROPE, ABC, and
FSCABC include adjustable parameters; however, we only
consider a standard setting with default parameters or those
suggested in the main documentation. Our main goal is to
compare different algorithms, quantify their relative errors, and
identify those algorithms that can optimize a significant
number of parameters of a kinetic model to a reasonable
accuracy but with minimum required adjustment of
algorithmic parameters. After identifying a few candidate
algorithms from initial screening, we present a detailed
investigation to determine how well they perform.

Another obstacle in the field is the inability to reproduce the
results of any of the many published kinetic models before one
invests significant time and effort to rewrite the codes and
troubleshooting them. Therefore, in the process of investigat-
ing the performance of various stochastic optimization
algorithms, we have developed an open source Python package
called kinexns,”” which can handle the major steps of
developing chemical kinetic models, namely, building and
solving the system of ODEs for a simple closed system,
performing sensitivity analysis, and optimizing kinetic param-
eters using various optimizers. Thus, an additional goal of this
work was to publish the complete code and supporting files, as
a well-documented, open source Python module that users
with basic knowledge of Python can begin using immediately
and start developing their own kinetic models.

2. CHEMICAL KINETIC MODEL AND
COMPUTATIONAL DETAILS

2.1. Kinetic Model and ODE Solver. As mentioned
previously, details of the reactions and kinetic parameters are
taken from the San Diego mechanism™®® for propane oxidation.
The input files were in Chemkin file format;*® kinexns can
parse mechanisms prepared in that format, converting them for
further processing. For simplicity, we considered a perfectly
mixed isothermal batch reactor; therefore, the model equations
are straightforward ODEs for the concentrations of each
species

a0,

dt (1)
where C, is the concentration and R, is the net rate of

production of the kth species.
The rate of production can further be written as

I
Ry = Z Ui,
i=1 (2)

where I is the number of reactions in the mechanism and vy, is
the stoichiometric coefficient of kth species in the ith reaction,

which is further defined as
U = Vg — (3)

where the superscript ' indicates forward stoichiometric
coeflicients, while indicates reverse stoichiometric coef-
ficients. The rate of progress variable g; for the ith in eq 2 can

further be defined as

K K
94, = kg H Cl?k,‘ — ky H Cl?k,:
k=1 k=1 (4)

where C, is the molar concentration of the kth species and kg
and k,; are the forward and reverse rate constants of the ith
reaction, respectively. These rate constants can be further
calculated using the modified Arrhenius equation

k= AT”exp(—i)

RT ()
where A is the pre-exponential factor, T is the temperature, n is
a constant, E, is the activation energy, and R is the universal
gas constant.

The mechanism we considered contains 46 individual
species and 244 elementary reactions. Our python package
automates the model building process and generates the
system of ODEs ready to be solved once it reads all of the
reactions and associated rate parameters. Due to the order of
magnitude differences in both species formation rates and
reaction rates, the system of ODEs is usually very stiff and
requires an efficient ODE solver as the system needs to be
solved thousands of times for both sensitivity analysis and
optimization. At the same time, the solver has to be available
open source so that we can use that in our python module.
Therefore, we used the CVode ODE solver,* a solver for stiff
and nonstiff ODE systems (initial value problem), developed
at Lawrence Livermore National Laboratory as a part of
SUNDIALS library.® CVode is also used in other multiscale
software like OpenMKM>" for chemical kinetic modeling. In
python, CVode solver is available through assimulo®” package,
which has been integrated with kinexns. As suggested in the
SUNDIALS website for stiff systems, the solution method was
set to use backward differentiation formulas (BDFs) for the
linear multistep method and Newton iteration for the
nonlinear solver iteration. The user has control to set both
the absolute and relative tolerance values; however, in case the
solver fails to converge to a solution as the minimum allowable
step size is reached, kinexns reduces the absolute tolerance by
two orders of magnitude on the fly and tries to solve again until
a solution is obtained.

2.2. Sensitivity Analysis. The first step in any kinetic
model optimization is to identify the set of active parameters
(i.e, the rate parameters that have the strongest impact on
model outputs). For this reason, a global sensitivity analysis of
the model parameters is required. Therefore, kinexns performs
a variance-based global sensitivity analysis (Sobol sensitivity
analysis)**>° with the help of the SALib*° python package.
Sensitivity analysis can be performed on different model
outputs (in our case, mostly the species concentrations) to
various model inputs. Since we are interested in finding the
reactions and their rate parameters to which the model outputs
are highly sensitive to, in our case, the rate parameters were
allowed to vary one order of magnitude above and below their
specified values in the model at a specific temperature. Next,
SALib, integrated with kinexns, can be used to generate a large
set of parameter combinations that uniformly covers the entire
parameter space. Once the simulations are performed over all
of the parameter combinations, first-order, second-order, and
total order sensitivity indices can be calculated through SALib.
This procedure has also been followed in a previous
publication from our lab.*” Additionally, kinexns is equipped
with generating bar plots for top n-sensitive reactions (can be

https://dx.doi.org/10.1021/acs.iecr.0c04009
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specified by the user) with sensitivity indices and drawing
those reactions in a png file with the help of the rdkit>® package
to quickly visualize and identify the reactions. As mentioned
previously, we used the Sobol sensitivity analysis, which is a
global and model-independent sensitivity analysis method
based on variance decomposition. Here, the total sensitivity
indices (St;) of a model parameter X; are calculated as Sy; = S;
+ Ei#Sﬁ, where §; and S; are the first- and second-order Sobol
sensitivity indices, respectively. For mathematical details, the
users are referred to the original publications.>>>”

2.3. Optimization. Our main focus of this study is to test
the performance of various stochastic algorithms to optimize
kinetic models. Therefore, kinexns is integrated with an open
source python package, spotpy,”® which is a general purpose
stochastic optimization module equipped with various
stochastic algorithms. Spotpy was initially developed for
optimizing environmental models, but it has the ability to be
used for any optimization problem. The user has the control to
choose which algorithm to use for optimization as well as
which parameters to optimize. In kinexns, the user can decide
either the reaction rate constants (at a speciﬁc temperature) or
Arrhenius rate parameters (within a temperature range) to
optimize. Also, the user can specify the reaction numbers
whose rate constants/parameters are to be optimized.

Every optimization problem requires an objective/cost
function to optimize; here, our cost function is to minimize
the error between the model results and the actual values
(generated by solving the model with the parameters from the
San Diego mechanism) by using a weighted root-mean-square
error (RMSE)G1

n

1
RMSEweighted = Z ;

\2
model [l]

[i]

yactual [l] —J,

0.1y

actual

(6)

where RMSE is the root-mean-square error, y’s are the species
concentrations in mol L™}, and the index i refers to the set of
all species, temperatures, and times for which fitting data is
available. This formula assumes a relative error in each
observation of 10% and calculates the residual accordingly to
consider the fact that the experimentally obtained data contain
some degree of error.

3. RESULTS AND DISCUSSION

Kinetic models are usually fit to some experimentally
measurable data such as species concentrations. However, in
this study, since we already have an optimized mechanism and
our focus is to determine how accurately we can reproduce the
results from that mechanism, we solved the model using the
rate parameters listed in the San Diego mechanism and used
the resulting data as our training data. Next, we used the
concentration of a particular subset of species as our “training
data” and used eq 6 as a cost function (training RMSE) to
optimize the model. At the same time, we used the
concentration data of all of the remaining species as our
“test data” and calculated the weighted RMSE, which is
referred to as the “test RMSE”. We note for clarity that our
definition of the train and test data for this study are somewhat
different from conventional machine learning models where
the entire data set is split into train and test data and both the
train and test data have the same set of dependent variables/
features. However, in our case, where we can loosely compare
the rate constants with features, it is possible that the features

19215

for one output in the test set (concentration of a particular
species) are completely absent in the feature list of the training
set, especially later in this study when we only optimized the
sensitive reactions. Still, in our study, the test RMSE might give
us an insight into how our fitted model works for the species
that have not been used while optimizing the model.

3.1. Fivefold Cross-Validation. It is well known that our
choice of training data can significantly affect both model and
algorithm performance;*>* therefore, it is necessary to find
out how sensitive the algorithms are if we randomly choose our
training data. To quantify this, we performed fivefold cross-
validation with our training data to estimate how the results of
relevant statistical analysis can be generalized given that the
model is trained with different independent data sets. Here, we
randomized our species (46 in total) into five equal but
independent subsamples (nine species in each sample) and
used the concentration of those species as our training data set
and performed five different optimization tasks. Concen-
trations of all of the remaining species that were not included
in training are used to calculate test RMSE. In this step, we
only optimized the rate constants of all of the reactions in the
mechanism (244 in total) at an arbitrarily chosen temperature
of 950 K.

The training data was generated by solving the kinetic model
with Arrhenius parameters listed in the San Diego mechanism
at 950 K. Since we are studying propane combustion, we
initialized our system with concentrations of 1 and 5 mol L™
for propane and oxygen, respectively, to create a stoichiometric
mixture. Next, we randomized all of the rate constants
calculated at 950 K within one order of magnitude above or
below their prescribed value. Optimization of all 244 rate
constants was performed using 10 different stochastic
optimization algorithms in kinexns. We also note that there
could be internal dependencies between these rate parameters.
Although such a determination is out of the scope of this study,
we note that a second-order sensitivity analysis would be
helpful in extracting such relationships. Next, to perform
fivefold cross-validation, five different optimization exercises
are carried out for each algorithm with 10000 optimization
steps for each. The number of optimization steps is an
adjustable parameter of the model, and later, we showed how
our choice of 10000 steps was enough to reasonably fit the
model of interest.

Figure 1 shows a bar plot of the average RMSE values with
standard deviations for fivefold cross-validation of all 10

RMSE by Algorithms after Cross Validation
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P

© & ¢ © & & &
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Figure 1. Average RMSE (log scale) with standard deviations for
different algorithms after fivefold cross-validation.
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Figure 2. Average RMSE with standard deviations of train (molecules) and test (radicals) sets for different algorithms for (a) order 1 and (b) order
2 cases, and (c) average number of iterations required to optimize the objective function for different algorithms (order 1).

algorithms. It is clear from Figure 1 that DDS gives the lowest
average RMSE with a very small standard deviation for training
data, which is followed by MLE. The trend is similar for test
RMSE as well, which is usually higher than training RMSE as
our fitted models have never seen the test data. All other
models except DDS and MLE perform more or less similar in
terms of training RMSE, followed by SCE, SA, and MCMC.
Also, in general, the standard deviation for training data is
usually lower than that of test data, while for some cases (MC,
MCMC, ROPE, and FSCABC), they are quite high for test
data indicating that some of the fitted models might have
converged to local minima; therefore, their test accuracy is very
low. On the other hand, the low training RMSE values DDS
and MLE could be a sign of strong overfitting; still, these two
are performing reasonably well for test RMSE compared to
other models. Therefore, we can conclude that both DDS and
MLE are less sensitive to the choice of fitting data than the
other algorithms in the set, and either algorithm could be a
good choice for our application. Additionally, we observe that
SCE has the best train to test the RMSE ratio, so it could also
be a reasonable choice for our application.

3.2. Optimization of Rate Constants. The fivefold cross-
validation results shown in the previous section demonstrate
that algorithms like MLE and DDS do not depend on our
choice of training data (i.e, the uncertainty on the mean
training errors is very low). However, in the kinetic model
optimization of complex systems, the radical concentrations
are generally impossible to measure, and researchers usually
use the concentrations of experimentally measured stable

molecules to fit their model. Therefore, as the next step, we
decided to take the concentrations of all 19 stable molecules in
the mechanism as our training data and concentration of all
remaining 27 radical species as our test data (n.b., we assume
to take the predicted radical species concentrations from the
San Diego propane mechanism as the “ground truth”,
recognizing that those values have not been fully validated
with experimental observations). Additionally, in an effort to
estimate the allowable variation in initial rate parameters for
each algorithm, reaction rate constants were varied 1 and 2
orders of magnitude above and below of their prescribed value
calculated at 950 K. These two cases are referred to as orders 1
and 2 below. To get a statistical estimate on the RMSE values,
10 different sets of initial guesses for all 244 rate constants are
generated for each of the cases at 950 K, which is then
optimized (also for 10 000 optimization steps for each) using
the 10 different algorithms under consideration.

The average RMSE of both the cases (orders 1 and 2) for
train and test data and number of iterations required to get the
optimum values for order 1 case are shown in Figure 2. Here,
we bootstrapped our RMSE data to better estimate the
confidence interval. Bootstrapping is a powerful analysis tool
that quantifies the uncertainties associated with any measured
data set by increasing the number of data points through
sampling with replacement. Through bootstrapping, we
generated 500 estimates of data sets of a sample size of 10
for each case reported in Figure 2. All of the means and
standard deviations reported in Figure 2 are calculated from
the bootstrapped samples. The trends observed in Figure 2a,b
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Figure 3. Distribution of species mole fraction (propane, oxygen, and water) before and after optimization using MLE, DDS, and FSCABC
algorithms and comparison with the exact distribution for order 1 case. Each column represents an algorithm, while each row represents a species.
(a) Algorithm: MLE, species: propane; (b) algorithm: DDS, species: propane; (c) algorithm: FSCABC, species: propane; (d) algorithm: MLE,
species: oxygen; (e) algorithm: DDS, species: oxygen; (f) algorithm: FSCABC, species: oxygen; (g) algorithm: MLE, species: water; (h) algorithm:
DDS, species: water; and (i) algorithm: FSCABC, species: water. Note that in this example a total of 244 parameters were optimized while using a
total of 100 “experimental” data points for optimization (representing 19 species over the time series shown in the figure at a temperature of 950

K).

are very similar to those in Figure 1 as DDS and MLE give the
lowest RMSE for training data, while ABC and FSCABC are
being the highest. However, no particular trend is observed for
test RMSE values in terms of algorithms. In fact, test RMSEs
for MLE and DDS are very high for the order 2 case compared
to the other algorithms. In general, test RMSE values for order
2 cases are a couple of magnitudes higher than the order 1
values, while no significant change in training RMSE is
observed when an algorithm-wise comparison is made. This
indicates that the algorithms (particularly DDS and MLE) still
work well when the initial guesses are randomized over a
broader range but only for training data sets. Since the test data
set only contains the concentration of radicals that are
impossible to measure experimentally, having a higher test
RMSE does not alter our conclusion on the performance of the
algorithms.

Figure 2c¢ shows the average number of iterations required
by each algorithm to optimize the cost function for order 1
case (the graph for order 2 case has not been shown as it is
essentially similar). These numbers are obtained by getting the
iteration number that reports the lowest RMSE value for the
training set for each algorithm of 10 different simulations and
then averaging them; here, no stopping criteria were used since
some of the algorithms like DDS do not have the concept of
stopping criteria. Iterations required by algorithms like MC,
LHS, SCE, SA, ROPE, and FSCABC to report the lowest
RMSEs are much less than the maximum iteration number
(10000) and vary within a broad range. This means these
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algorithms have either became trapped in a local minimum
after some while, which they fail to escape or already have
converged their errors. However, DDS and MLE require
almost always finding a better minimum but at a cost of longer
training. Since there are no prescribed stopping criteria, these
two algorithms will keep finding better minima in search of
global minima as the simulation progresses. The nature of
finding the minima by various algorithms can be explained
more by how these algorithms work. Figure S1 in the
Supporting Information shows the RMSE vs iteration for one
sample run. Algorithms like MC, LHS, SCE, SA, ROPE, and
FSCABC randomly evaluate the cost function using various
parameter combinations within the parameter space and do
not keep a memory of the previous best parameter
combination, so it is easier for them to drift away from the
global minima. However, DDS, MLE, and MCMC have an
acceptance/rejection criterion and parameter combination
only gets updated when the criterion is met—most of the
time, this provides a better solution. Therefore, these
algorithms are more likely to converge toward global minima.
Also, this confirms that our choice of iteration number
(10 000) was enough for all of the algorithms to converge to
their respective minima.

As an additional performance metric, it is also important to
visualize how closely the model solutions reproduce the
ground truth data over the time series of the combustion
model. Therefore, in Figure 3, we have plotted the optimized
distribution profile of three major species (propane, oxygen,
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and water) for order 1 case obtained using MLE, DDS, and
FSCABC algorithms. As expected, the initial distributions
shown in Figure 3 are within 1 order of magnitude of the exact
solutions; this behavior is expected as the rate parameters are
allowed to vary within 1 order of magnitude of the known
values from the San Diego mechanism. A similar figure for
order 2 case can be found in the Supporting Information
(Figure S2). Our choice of algorithms in these figures is based
on their performances as MLE and DDS are the best-
performing ones and FSCABC is the worst.

Figure 3 shows that both MLE and DDS can almost
identically reproduce the fitting (exact) distributions, which is
expected from the previous discussion as they both report very
low RMSE values. However, FSCABC fails to reproduce the
exact distributions though the same initial distribution data was
used. This is very much expected from our discussions related
to Figure 2 as the average train RMSE resulted from fitting
through FSCABC is very high. Similar trends can also be
observed for order 2 case (Figure S2); however, the fitted
distributions obtained from MLE and DDS are not as accurate
as the order 1 case as the rate constants were allowed to vary
more, which made the optimization task more complicated.

3.3. Sensitivity Analysis. The results presented in the
above sections give us some initial idea about which stochastic
algorithms might perform better in the kinetic model
development; however, the method we presented is problem-
atic in the sense that we only optimized the rate constants at a
specific temperature while the kinetic models are usually
developed over a temperature range. Thus, in spite of
optimizing the rate constants, we need to optimize the
Arrhenius rate parameters shown in eq 5.

Therefore, for each reaction, we need to optimize three
parameters (A, n, and E,) instead of one, which increases the
numbers of parameters to optimize by threefold. As a result,
performing sensitivity analysis on the model parameters is
necessary to figure out the parameters sensitive from model
output, consequently reducing the number of model
parameters to optimize, thereby reducing the model complex-
ity.

To determine the sensitive rate constants, which in turn will
give us the sensitive reactions, we allowed the rate constants to
vary 1 order of magnitude above and below their prescribed
value. Our python package, kinexns, integrated with SALib*®
was used for the sensitivity analysis. At first, we generated
490 000 parameter combinations based on the quasi-random

Sobol sequence™ that uniformly cover the entire possible input
parameter space. Model outputs are simulated for each
parameter combination. Therefore, we examined the sensitivity
of all of the species concentration outputs (46 species in total)
to all 244 rate constant values by calculating the variance-based
total sensitivity indices. Figure S3 in the Supporting
Information shows a heat map of sensitivity indices for the
rate constants, which are evaluated to examine the sensitivity of
the model outputs—the concentration of all of the species
presented in the mechanism. The reaction numbers in Figure
S3 and hereafter correspond to the order of appearance of the
reactions in the input file; other than that, they bear no
particular significance. Most of the sensitivity indices in Figure
S3 are either zero or close to zero indicating that the specific
model output is not sensitive to those reactions. Since we have
already stated that the optimization of kinetic model is almost
always performed on the experimentally measurable values
such as species concentration, next, we limited our search for
sensitive reactions to the concentration of stable molecules
only, which are experimentally measurable. Therefore, we
made a list of rate constants with the top five highest total
sensitivity indices for the model outputs for each of the 19
stable species. This gave us a unique and reduced set of 36
reactions that the model output is sensitive to. The heat map of
the sensitivity indices of the highly sensitive reactions for all 19
species is shown in Figure 4. Here, we would like to mention
that no cutoff value was used to choose the sensitive reactions;
we just listed the top five reactions sensitive to each stable
species concentration. Therefore, we have ended up listing a
few reactions that are not numerically highly sensitive to any of
the species (i.e., reaction numbers 162 and 163 in Figure 4). If
we had chosen a cutoff value, we could have further reduced
the number of reactions.

3.4. Optimization of Arrhenius Rate Parameters for
the Reduced Model. Now we have established a list of
sensitive reactions, which reduced the model complexity to a
great detail, the next step is to optimize the Arrhenius rate
parameters instead of rate constants over a temperature range.
For that purpose, we decided to randomize the Arrhenius rate
parameters (A, n, and E,) and fit the model data generated
over a temperature range between 850 and 1050 K. Again, the
choice of the temperature range is random as our goal is to
determine how accurately we can fit the model data. Here, we
calculated model solutions using the rate parameters
prescribed in the San Diego mechanism for all of the reactions
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from 850 to 1050 K with a temperature interval of 50 K and
treated the results as our fitting data. Next, we varied the
Arrhenius rate parameters (InA, n, and E,) for the 36 sensitive
reactions by +20% from their prescribed value and calculated
the rate constants at each temperature. The model was then
solved five times (at five different temperatures) to calculate
one RMSE. Similar to the previous section, we also calculated
test RMSE considering the radical concentrations as well. Since
the relationship between the Arrhenius rate parameters and the
rate constants is not linear, we also looked at how much
variation in rate constants we have introduced through our
method, which is shown in Figure S4 in the Supporting
Information section. As expected, the variation in rate constant
values for the 36 sensitive reactions is not uniform, but most of
them vary somewhere between +3 orders of magnitude from
their base value; this variation in rate constants is even higher
than that used for our order 2 case previously.

The quality of the fitting results for different algorithms after
fitting with 10 different initial combinations of Arrhenius rate
parameters is shown in Figure S. Similar to that observed in

7 RMSE by Algorithms after Bootstrapping

Train (Molecules)
10 Il Test (Radicals)

W W o o P ‘&0?60@0005

Algorithms

Figure S. Average RMSE with standard deviations for different
algorithms when Arrhenius rate parameters were optimized over a
temperature range.

Figures 1 and 2, MLE and DDS work better here, while ABC
and FSCABC perform the worst. However, some significant
differences are observed when we closely compare Figure S
with Figures 1 and 2. First, MCMC and SA start to perform
much better than before when we optimized the rate
parameters for sensitive reactions only; their train and test
RMSEs are very similar to those achieved for MLE and DDS.
This shows that both MCMC and SA can perform better when
a more guided optimization protocol is followed. Second, there
was no pattern between the train and test RMSEs previously,
but in Figure S, test RMSE follows the same pattern of train
RMSE (i.e., the algorithms giving low train RMSE also give low
test RMSE). Third, the overall test RMSE in Figure S for all of
the algorithms is lower compared to that in Figure 2b, though
the parameter variation is higher in the earlier. The reason
behind the second and third differences lies in the optimization
protocol we followed. Since we only optimized the rate
parameters of the reactions that are sensitive to the species
used to calculate train RMSE and kept all of the other
parameters the same as the base model parameters, noise
introduced initially in the test species is lower compared to
that in our previous protocol. Here, we want to reiterate the
fact that the test RMSE values bear much less significance as
these species are not measurable experimentally; however, it

gives us confidence in our model solutions and helps us to
evaluate the performance of the candidate algorithms.

In Figure 6, we compare the distribution of three major
species when our model is fitted to optimize Arrhenius rate
parameters for sensitive reactions and compared with the initial
distribution and exact distribution for three different
algorithms, MLE, DDS, and FSCABC, similar to Figure 3.
The distribution showed here is calculated at 950 K. As we
expected from the conclusion of Figure 5, MLE and DDS are
still able to closely reproduce fitting data. An important feature
to note about Figure 6 is that the initial distribution due to
randomizing the rate parameters is very different from the
exact distribution; still, both MLE and DDS are able to
converge toward the optimum distribution. On the other hand,
FSCABC is barely able to leave the initial distribution and
poorly reproduces the exact distributions. Therefore, our
observation that MLE and DDS are the best-performing
algorithms still holds here, though the fitting quality is not as
accurate as we observed in Figure 3.

The result presented so far shows that MLE and DDS
consistently reproduce fitting data with greater accuracy, while
FSCABC fails to estimate the parameters more and more as
fitting complexity increases. Therefore, in Figure 7, we looked
at the variation of the estimated parameters across these three
algorithms. The result presented here is taken from 10 different
optimization simulations started with 10 different initial sets of
parameters. The rate parameters are varied +20% from their
prescribed value with a hope that they will converge to their
original values upon optimization. Figure 7a shows the relative
variation of the estimated InA, while Figure 7b shows the
relative variation of the estimated E, values after optimization.
In an ideal case, all of the values shown in Figure 7 should
converge to a 1.0 after optimization as they are the ratios of
predicted to actual. However, in reality, the parameter values
oscillate around 1.0. The range of the values estimated and
their mean values can give us an idea of how each algorithm is
doing. For all three algorithms, the mean values of the
estimated parameters are more or less close to 1.0; however, in
Figure 7a, the relative variation in estimating the values of InA
by ESCABC is almost always higher than that of the other two
algorithms. It seems that FSCABC is estimating the InA values
within the entire range of parameter space, while both MLE
and DDS are able to find their optimized value within a more
confined space. This observation is not that pronounced in
Figure 7b, where relative variation in estimating energy barriers
is shown. Therefore, the failure of FSCABC to correctly
estimate rate parameters to improve model accuracy mostly
lies in its failure to predict the InA values correctly—this makes
complete sense as A is the most dominant parameter in
calculating the rate constants and small variance in InA can
lead to drastically different rate constants as we have to take
the exponential of InA to calculate the rate constants.

Combining Figures 5 and 7, an interesting observation can
be made in terms of global optimization. Namely, that several
combinations of model parameters can result in similar RMSE
values (i.e.,, there are many degenerate solutions). In some
cases, the RMSE value is so high that a global optimization is
not achieved. This clearly demonstrates the fact that the global
optimization is not guaranteed with any algorithm and if there
is a solution that might not be a unique one. It is also possible
to slightly increase or decrease the already reduced parameter
space and come up with a different global minimum.
Therefore, it is still ambiguous that which model (i.e., set of
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Figure 6. Distribution of species mole fraction (propane, oxygen, and water) before and after optimization using MLE, DDS, and FSCABC
algorithms and comparison with the exact distribution when we optimized the Arrhenius rate parameters of the 36 sensitive reactions. Species
distributions are plotted for 950 K. Each column represents an algorithm, while each row represents a species. (a) Algorithm: MLE, species:
propane; (b) algorithm: DDS, species: propane; (c) algorithm: FSCABC, species: propane; (d) algorithm: MLE, species: oxygen; (e) algorithm:
DDS, species: oxygen; (f) algorithm: FSCABC, species: oxygen; (g) algorithm: MLE, species: water; (h) algorithm: DDS, species: water; and (i)
algorithm: FSCABC, species: water. In contrast to the fitting in Figure 3, this exercise optimized the Arrhenius rate parameters over a temperature
range of 850—1050 K, not the Arrhenius rate constants at a specific temperature.

optimized parameters) is to be employed. To address these
broader issues, it is important that the users carefully consider
the application or domain of the kinetic modeling and
hopefully identify multiple independent test/use cases for
further testing the models.

The results presented so far consistently show that MLE and
DDS are the best-performing algorithms for large-scale
optimization of kinetic models; MCMC follows next. However,
researchers have used other algorithms such as LHS, SCE,
ROPE, and ABC successfully in kinetic model optimiza-
tion.”#3%32*15% Therefore, it requires an explanation of why
our model fails to perform with these algorithms. If we look at
how the algorithms work, it reveals two important features of
the best-performing algorithms that we think could be
responsible for such behavior. First, algorithms like MLE,
DDS, and MCMC are hyperparameter-free optimizers. It
means that they can perform optimization under a universal
parameter setting that does not depend on the model or the
cost function. On the other hand, algorithms like SA require
parameters such as annealing scheduling temperature and
initial temperature to be specified before starting the
optimization. ABC requires parameters like number of
generations and maximum number of trials for abandoning
food source to be prespecified. These parameters are called
hyperparameters and may need different settings for different
problems. Therefore, these parameters need to be optimized
based on the system before an overall model optimization can
be performed; this is also a routine work in developing
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machine learning models where the hyperparameters are
optimized via grid search. Here, we have only used the default
hyperparameter settings for these algorithms made available in
spotpy. Interested readers can go through the spotpy
documentation (https://spotpy.readthedocs.io/en/latest/
Advanced_hints/ ) to learn more about the settings and how
to change them. We believe that, with proper hyperparameter
settings, SCE, ROPE, ABC, and FSCABC might be able to
estimate model parameters more accurately; however, this adds
an extra layer of complexity to optimize hyperparameters in an
already complicated problem (i.e., a problem in which there
are substantial computational costs generating the model
simulation results); therefore, hyperparameter-free optimizers
are always preferred. Second, MLE, DDS, and MCMC are
“greedy”-type algorithms; it means that they have an
acceptance/rejection criterion. For these algorithms, the
current solution, also the best solution identified so far, is
only updated with a solution that has met the acceptance/
rejected criteria. If the cost function RMSE found in the next
iteration is lower than the current one, the solution is always
accepted. On the other hand, if it is higher, the solution is only
accepted if they are within some probability limit. This enables
the ability to escape the local minima and at the same time
keeps the track of previously found best solutions. Therefore,
these algorithms have a better chance to escape local minima
and converge to the global one; however, it will involve more
optimization steps.
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Figure 7. Variation in reaction rate parameters after optimization through MLE, DDS, and FSCABC. (a) Relative variation in estimating InA and
(b) relative variation in estimating E,. Variation is reported from 10 different simulations with 10 different initial parameter sets to optimize.

As a final analysis, we explored how the training RMSE
changes when we systematically increase the number of species
used to train this model. Here, we have chosen only four
different algorithms instead of all 10, namely, MLE, MCMC,
SA and DDS, as we have already shown that these are the top-
performing algorithm for our model. For this analysis, we
choose different numbers of stable species (3, 6, 9, 12, 15, and
19) whose concentration will be used to train the model. The
choice of species in each system is random. Next, we
performed sensitivity analysis on the model outputs of the
chosen species to create a list of reactions (top five reactions,
which each species output is sensitive to were chosen); the rate
parameters of these reactions are used only for the training.
Table 1 shows the number of reactions included for each case;

Table 1. Number of Species Included in the Model vs
Number of Reactions to Optimize

no. of species 3 6 9 12 15 19
no. of reactions 12 15 22 28 34 36

with increasing number of species to train the model, the
number of reactions to optimize also increases but the relation
is not exactly linear. Next, we optimized all of the cases for five
different initial parameter sets; all other procedures of
optimization remain the same.

Figure 8a shows that, for all four algorithms, training RMSE
increases linearly with the number of species used to train the
model. When the number of species is low, the training RMSE
of all of the algorithms is very low; this is expected, as the
model is optimized to reproduce only a small number of
species concentration. At the same time, the number of

parameters to optimize is low too. As the number of species
increases, though all of the training RMSE increases, a
diverging tendency between the models is observed. The
increase in RMSE values with increased number of species is
due to two main reasons: first, the number of parameters to
optimize increases, which makes the optimization process
difficult, and second, the relationship between the number of
species to optimize and the number of sensitive reactions is not
linear (Table 1), which leads to fewer data points per species
to optimize. RMSEs obtained from MCMC and SA
optimization start to slightly diverge from RMSEs obtained
from MLE and DDS. This indicates that, as the number of
parameters to optimize starts to increase, the performance of
MCMC and SA algorithms starts to deteriorate more quickly
compared to that of MLE and DDS. Therefore, we can finally
conclude that MLE and DDS are the best-performing
stochastic algorithms that can be used to optimize complex
chemical models with great complexity.

Finally, we wanted to understand how the training RMSE
changes if we include all of the 19 stable species to train, but
instead of optimizing only the parameters of the most sensitive
reactions, we try to optimize all of the parameters of the model
(244 reactions). Figure 8b compares the training RMSE of the
reduced and complete mechanism. For all of the four
algorithms considered, it is observed that training RMSE
increases slightly when the complete mechanism is optimized
instead of the reduced mechanism. This demonstrates the
importance of sensitivity analysis. First, since the model is not
equally sensitive to all of the parameters, it is not required to
optimize all of the model parameters at the same time. This, in
turn, reduces the model complexity. Second, though both the
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Figure 8. (a) Variation of RMSE with the number of species included in the model to train and (b) comparison of RMSE values between the
reduced (36 reactions) and complete (244 reactions) mechanism. Results are only shown for MLE, MCMC, SA, and DDS algorithms.

optimization exercise (36 reactions vs 244 reactions) use the
same fitting, the training RMSE for the 244-reaction case is
always higher as it is trying to optimize a greater number of
parameters, although the model is not sensitive to a majority of
those. Therefore, by choosing the parameters that the model is
sensitive to and optimizing only those parameters, one can
achieve higher accuracy in the model rather than optimizing all
of the parameters in a single go. This clearly demonstrates the
requirement of sensitivity analysis before performing any
optimization.

One of the major concerns of these stochastic methods over
the gradient-based method is the increased computational cost
compared to gradient-based ones that use simple numerical
differentiation to optimize. However, there is a strong
possibility that the gradient-based optimization will be trapped
in a local minimum; therefore, it is used for these types of
optimizations only when there is high confidence in the initial
parameter guesses. To provide some context for readers, we
make some general estimates of computational costs. The
computational cost of this study can be divided into two parts:
solving the ODEs and optimizing the loss functions. The
former is the same for all of the algorithms and usually took
~0.6—0.7s for each iteration (simulations were run on the UW
Hyak supercomputer cluster (Intel(R) Xeon(R) Gold 6230
CPU@2.10 GHz machine)). Also, in Table S1 in the
Supporting Information, we have tabulated the time required
to complete 100 iterations for all of the algorithms, which
includes both solving the ODEs and optimizing the loss
functions. Since for all of the cases the system of ODEs is
solved 100 times each, the discrepancy in time comes from the
optimization part where SCE-UA and LHS are the fastest and
SA is the slowest. However, multiprocessing is implemented
into kinexns, which allows us to run all of those optimization
algorithms simultaneously (multicore, single node), which
reduces the computation time significantly.

Finally, though some of the stochastic methods discussed in
this manuscript performed reasonably well for the tests we
performed for propane oxidation mechanism, we have to keep
in mind that this mechanism is on the smaller side with only 46
species and 244 reactions. Reaction mechanisms for larger
hydrocarbons and fuel mixtures are more complicated with
hundreds of species and thousands of reactions,®> which
presents additional challenges as more parameters need to be
optimized. At this point, it is still to be determined how these
stochastic optimization algorithms will handle this situation
and with what level of robustness. This is especially true when
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the number of parameters for global optimization exceeds the
available training data. As this is often the case for global
optimization of complex mechanisms, and researchers have
been using a few alternatives to reduce the parameter space.
One of those alternatives, sensitivity analysis to determine
model-sensitive parameters, is also used in this study. Another
frequently used method is combining reactions based on their
classes known by reaction class methodology and proposed by
Curran et al.**®” and Sarathy et al.®® As mentioned, both of
these methods will help to develop a reduced mechanism with
smaller parameter space to optimize.

4. CONCLUSIONS

Process optimization lies at the center of any industrial bio/
chemical process, and accurate, efficient optimization methods
are required to successfully estimate the model parameters.
Here, we presented a comprehensive study on how different
stochastic optimizers work when they are subjected to the
same optimization task. At the same time, we suggested some
best practices required for large-scale kinetic model optimiza-
tion, hopefully beneficiary new entrants in chemical kinetic
modeling. Among the 10 different algorithms we studied, two
algorithms, namely, MLE and DDS, performed consistently
better over all other algorithms; MCMC and SA followed them
in terms of accuracy when a systematic optimization procedure
was introduced through sensitivity analysis. On the other hand,
ABC and FSCABC were always the worst ones, though
previous studies have shown that upon setting correct
hyperparameters, they are also able to estimate model
parameters with reasonable accuracy.””*'

One major outcome of this study is to demonstrate that the
hyperparameter-free optimizers such as MLE and DDS are the
best-performing algorithms for chemical kinetic modeling,
which can globally optimize a high number of model
parameters with reasonable accuracy even when the initial
guess values are far from the optimized ones. This will reduce
the load from the modelers’ side significantly as they do not
have to optimize the hyperparameters for the algorithms.
Hyperparameter setting usually varies from model to model;
therefore, hyperparameter-free algorithms would be easily
transferable when a different system is to be optimized. Also,
this is the first time that the use of DDS algorithm to optimize
a chemical kinetic model is demonstrated. DDS was initially
optimized for efficient watershed modeling,* and the authors
demonstrated that DDS requires only 15—20% of the number
of model evaluations compared to SCE to find equally good

https://dx.doi.org/10.1021/acs.iecr.0c04009
Ind. Eng. Chem. Res. 2020, 59, 19212-19225


http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.0c04009/suppl_file/ie0c04009_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c04009?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c04009?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c04009?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c04009?fig=fig8&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://dx.doi.org/10.1021/acs.iecr.0c04009?ref=pdf

Industrial & Engineering Chemistry Research

pubs.acs.org/IECR

value for the objective function. Here, we demonstrated that
this method can be successfully used in optimizing chemical
kinetic models as well. Similarly, there are limited examples of
MLE optimizers for the application of chemical kinetic models
in the literature. Additionally, with proper hyperparameter
settings, algorithms like MCMC, SA, and ABC could
potentially perform much better than reported in this study
and we propose that future efforts should consider computa-
tionally efficient and systematic procedures for hyperparameter
tuning.

A major challenge in this field is the difficulty in reproducing
and utilizing published models. Over the past few decades,
numerous kinetic models have been developed; however,
either the documentations provided in the literature are not
clear enough or the codes written to solve the proposed model
are not made available to quickly and successfully reproduce
the results. Reconstruction of the models can take weeks as a
lot of coding and debugging is required. Also, researchers
might have to change their platform to perform sensitivity
analysis and model optimization, the two most important
aspects of model generation. Thus, another major aspect of this
study was to develop an open source python package, kinexns,
that can solve the model efficiently, identify sensitive
reactions/model parameters, and perform model optimization.
We have published the entire code base on Github and have
made it available to other researchers. The code is written in
modules and can read Chemkin input files. All of the model
building processes (building the system of ODEs) are
automated so that the user can start using the package with
relative ease. Also, the user can add his/her own features easily
with the existing code base (e.g., the package can now only
handle batch reactors; however, it can be easily expanded to
solve semibatch reactor models if a new module is added). We
hope the ease of using this package will facilitate the
improvement and expansion of existing kinetic models while
developing new ones. This package could also be a good
resource to use in classroom teaching of building and solving
chemical kinetic models.
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Propagation of RMSE for various algorithms with
iterations (Figure S1), distribution of species mole
fraction for order 2 case (Figure S2, constructed
similarly as Figure 3), sensitivity indices of all reactions
(Figure S3), maximum variation of reaction rate
constants when the model is optimized over a
temperature range (Figure S4); all of the codes
developed can be found at https://github.com/
cmashraf/kinexns;47 example jupyter notebooks dem-
onstrating the complete workflow with sample input files
can be found at https://github.com/cmashraf/kinexns/
tree/master/Notebooks (PDF)
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