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Abstract—Nonnegative Matrix Factorization (NMF) is an ef-
fective tool for clustering nonnegative data, either for computing
a flat partitioning of a dataset or for determining a hierarchy
of similarity. In this paper, we propose a parallel algorithm for
hierarchical clustering that uses a divide-and-conquer approach
based on rank-two NMF to split a data set into two cohesive parts.
Not only does this approach uncover more structure in the data
than a flat NMF clustering, but also rank-two NMF can be com-
puted more quickly than for general ranks, providing comparable
overall time to solution. Our data distribution and parallelization
strategies are designed to maintain computational load balance
throughout the data-dependent hierarchy of computation while
limiting interprocess communication, allowing the algorithm to
scale to large dense and sparse data sets. We demonstrate the
scalability of our parallel algorithm in terms of data size (up
to 800 GB) and number of processors (up to 80 nodes of the
Summit supercomputer), applying the hierarchical clustering
approach to hyperspectral imaging and image classification data.
Our algorithm for Rank-2 NMF scales perfectly on up to 1000s
of cores and the entire hierarchical clustering method achieves
5.9x speedup scaling from 10 to 80 nodes on the 800 GB dataset.

Index Terms—low-rank approximation, distributed-memory
parallel algorithms, scalable clustering

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) has been
demonstrated to be an effective tool for unsupervised learning
problems including clustering [4], [18], [21]. An NMF
consists of two tall-and-skinny non-negative matrices whose
product approximates a nonnegative data matrix. That is,
given an m×n data matrix A, we seek nonnegative matrices
W and H that each have k columns so that A ≈ WHT.
Each pair of corresponding columns of W and H form a
latent component of the NMF. If the rows of A correspond
to features and the columns to samples, the ith row of the
H matrix represents the loading of sample i onto each latent
component and provides a soft clustering. Because the W
factor is also nonnegative, each column can typically be
interpreted as a latent feature vector for each cluster.

Hierarchical clustering is the process of recursively
paritioning a group of samples. While standard NMF is
interpreted as a flat clustering, it can also be extended for
hierarchical clustering. Kuang and Park [15] propose a
method that uses rank-2 NMF to recursively bipartition the
samples. The method determines a binary tree such that all
leaves contain unique samples and the structure of the tree
determines hierarchical clusters.A single W vector for each

node can also be used for cluster interpretation. We discuss the
hierarchical method in more detail in Section II and § III-A.

We illustrate the output of the hierarchical clustering method
with an example data set and output tree. Following Gillis et
al. [9], we apply the method to a hyperspectral imaging (HSI)
data set of the Washington, D.C national mall, which has pixel
dimensions 1280×307 and 191 spectral bands. Figure 1 visu-
alizes the output tree with 6 leaves along with their hierarchical
relationships. The root node, labeled 0, is a flattening of the
HSI data to a 2D grayscale image. Each other node is repre-
sented by an overlay of the member pixels of the clusters (in
blue) on the original grayscale image. The first bipartitioning
separates vegetation (cluster 1) from non-vegetation (cluster
2), the bipartitioning of cluster 1 separates grass (cluster 3)
from trees (cluster 4), the bipartitioning of cluster 2 separates
buildings (cluster 5) from sidewalks/water (cluster 6), and so
on. If the algorithm continues, it chooses to split the leaf node
that provides the greatest benefit to the overall tree, which can
be quantified as a node’s “score” in various ways.

While the hierarchical clustering method offers advantages
in terms of interpretation as well as execution time compared
to flat NMF, implementations of the algorithm are limited to
single workstations and the dataset must fit in the available
memory. Currently available implementations can utilize
multiple cores via MATLAB [15] or explicit shared-memory
parallelization in the SmallK library [5].

The goal of this work is to use distributed-memory paral-
lelism to scale the algorithm to large datasets that require
the memory of multiple compute nodes and to high processor
counts. While flat NMF algorithms have been scaled to HPC
platforms [2], [8], [12], [17], our implementation is the first
to our knowledge to scale a hierarchical NMF method to
1000s of cores. As discussed in detail in § III-B, we choose
to parallelize the computations associated with each node in
the tree, which involve a Rank-2 NMF and the computation
of the node’s score. We choose a data matrix distribution
across processors that avoids any redistribution of the input
matrix regardless of the data-dependent structure of the tree’s
splitting decisions so that the communication required involves
only the small factor matrices. Analysis of the algorithm
shows the dependence of execution time on computation and
communication costs as well as on k, the number of clusters
computed. In particular, we confirm that many of the dominant
costs are logarithmic in k, which is favorable to the linear or
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Fig. 1: Hierarchical Clustering of DC Mall HSI

sometimes superlinear dependence of flat NMF algorithms.
We demonstrate in Section IV the efficiency and scalability

of our parallel algorithm on three data sets, including the
HSI data of the DC mall and an image classification data set
involving skin melanoma. The experimental results show that
our parallelization of Rank-2 NMF is highly scalable, main-
taining computation bound performance on 1000s of cores. We
also show the limits of strong scalability when scaling to large
numbers of clusters (leaf nodes), as the execution time shifts
to becoming interprocessor bandwidth bound and eventually
latency bound. The image classification data set requires 800
GB of memory across multiple nodes to process, and in scaling
from 10 nodes to 80 nodes of the Summit supercomputer (see
§ IV-A), we demonstrate parallel speedups of 7.1× for a single
Rank-2 NMF and 5.9× for a complete hierarchical clustering.

II. PRELIMINARIES AND RELATED WORK

A. Non-negative Matrix Factorization(NMF)

The NMF constrained optimization problem

min
W,H!0

‖A−WHT‖2

is nonlinear and nonconvex, and various optimization tech-
niques can be used to approximately solve it. A popular ap-
proach is to use alternating optimization of the two factor ma-
trices because each subproblem is a nonnegative least squares
(NNLS) problem, which is convex and can be solved exactly.
Many block coordinate descent (BCD) approaches are possible
[13], and one 2-block BCD algorithm that solves the NNLS
subproblems exactly is block principal pivoting [14]. This
NNLS algorithm is an active-set-like method that determines

the sets of entries in the solution vectors that are zero and
those that are positive through an iterative but finite process.

When the rank of the factorization (the number of columns
of W and H) is 2, the NNLS subproblems can be solved
much more quickly because the number of possible active sets
is only 4. As explained in more detail in § III-A1, the optimal
solution across the 4 sets can be determined efficiently to
solve the NNLS subproblem more quickly than general-rank
approaches like block principal pivoting. Because of the
relative ease of solving the NMF problem for the rank-2
case, Kuang and Park [15] propose a recursive method to
use a rank-2 NMF to partition the input data into 2 parts,
whereby each part can be further partitioned via rank-2 NMF
of the corresponding original data. This approach yields a
hierarchical factorization, potentially uncovering more global
structure of the input data and allowing for better scalability
of the algorithm to large NMF ranks.

The hierarchical rank-2 NMF method has been applied
to document clustering [15] and hyperspectral image
segmentation [9]. The leaves of the tree also yield a set of
column vectors that can be aggregated into an approximate
W factor (ignoring their hierarchical structure). Using this
factor matrix to initialize a higher-rank NMF computation
leads to quick convergence and overall faster performance
than initializing NMF with random data; this approach is
known as Divide-and-Conquer NMF [6]. We focus in this
paper on parallelizing the hierarchical algorithms proposed
by Kuang and Park [15] and Gillis et al. [9].

B. Parallel NMF
Scaling algorithms for NMF to large data often requires

parallelization in order to fit the data across the memories
of multiple compute nodes or speed up the computation
to complete in reasonable time. Parallelizations of multiple
optimization approaches have been proposed for general
NMF [2], [5], [8], [12], [17]. In particular, we build upon
the work of Kannan et al. [7], [11], [12] and the open-source
library PLANC, designed for nonnegative matrix and tensor
factorizations of dense and sparse data. In this parallelization,
the alternating optimization approach is employed with various
options for the algorithm used to (approximately) solve the
NNLS subproblems. The efficiency of the parallelization
is based on scalable algorithms for the parallel matrix
multiplications involved in all NNLS algorithms; these
algorithms are based on Cartesian distributions of the input
matrix across 1D or 2D processor grids.

C. Communication Model
We use the α-β-γ model [1], [3], [20] for analysis of

distributed-memory parallel algorithms. In this model, the cost
of sending a single message of n words of data between two
processors is α+β ·n, so that α represents the latency cost of
the message and β represents the bandwidth cost of each word
in the message. The γ parameter represents the computational
cost of a single floating point operation (flop). In this
simplified communication model, we ignore contention in the
network, assuming in effect a fully connected network, and
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other limiting factors in practice such as the number of hops
between nodes and the network injection rate [10]. We let p
represent the number of processors available on the machine.

All of the interprocessor communication in the algorithms
presented in this work are encapsulated in collective com-
munication operations that involve the full set of processors.
Algorithms for implementing the collective operations are
built out of pairwise send and receive operations, and we
assume the most efficient algorithms are used in our analysis
[3], [20]. The collectives used in our algorithms are all-reduce,
all-gather, and reduce-scatter. In an all-reduce, all processors
start out with the same amount of data and all end with a copy
of the same result, which is in our case a sum of all the inputs
(and the same size as a single input). The cost of an all-reduce
of size n words is α ·O(logp)+(β+γ) ·O(n) for n> p and
α ·O(logp)+ (β+ γ) ·O(nlogp) for n < p. In an all-gather,
all processors start out with separate data and all end with a
copy of the same result, which is the union of all the input
data. If each processor starts with n/p data and ends with n
data, the cost of the all-gather is α ·O(logp)+β ·O(n). In a
reduce-scatter, all processors start out with the same amount
of data and all end with a subset of the result, which is in our
case a sum of all the inputs (and is smaller than its input). If
each processor starts with n data and ends with n/p data, the
cost of the reduce-scatter is α·O(logp)+(β+γ)·O(n). In the
case of all-reduce and reduce-scatter, the computational cost
is typically dominated by the bandwidth cost because β%γ.

III. ALGORITHMS

A. Sequential Algorithms
1) Rank-2 NMF: Using the 2-block BCD approach for

a rank-2 NMF yields NNLS subproblems of the form
min
H̄!0

‖WH̄
T − A‖ and minW̄!0 ‖HW̄

T − AT‖. In each

case, the columns of the transposed variable matrix can be
computed independently. Considering the ith row of H̄, for
example, the NNLS problem to solve is

min
h̄i,1,h̄i,2!0

∥∥∥∥
[
w1 w2

][h̄i,1

h̄i,2

]
−ai

∥∥∥∥

= min
h̄i,1,h̄i,2!0

∥∥h̄i,1w1+h̄i,2w2−ai
∥∥

where w1 and w2 are the two columns of W and ai is the
i column of A. We note that there are four possibilities of
solutions, as each of the two variables may be positive or zero.

As shown by Kuang and Park [15], determining which
of the four possible solutions is feasible and optimal can be
done efficiently by exploiting the following properties:

• if the solution to the unconstrained least squares problem
admits two positive values, it is the optimal solution to
the nonnegatively constrained problem,

• if W and A are both nonnegative, then the candidate
solution with two zero values is never (uniquely) optimal
and can be discarded, and

• if the unconstrained problem does not admit a positive
solution, the better of the two remaining solutions can be
determined by comparing aTj w1/‖w1‖ and aTj w2/‖w2‖.

If the unconstrained problem is solved via the normal equa-
tions, then the temporary matrices computed for the normal
equations (WTW and ATW) can be re-used to determine
the better of the two solutions with a single positive variable.

Algorithm 1 implements this strategy for all rows of H
simultaneously. It takes as input the matrices C = ATW
and G = WTW, first solves the normal equations for
the unconstrained problem, and then chooses between the
two alternate possibilities as necessary. We note that each
row of H is independent, and therefore this algorithm is
easily parallelized. Solving for W can be done using inputs
C=AH and G=HTH.

Algorithm 1 Rank-2 Nonnegative Least Squares Solve [15]
Require: C is n×2 and G is 2×2 and s.p.d.

1: function H= RANK2-NLS-SOLVE(C,G)
2: H=CG−1 % Solve unconstrained system
3: for i=1 to n do
4: if hi1<0 or hi2<0 then
5: % Choose between single-variable solutions
6: if ci1/

√
g11<ci2/

√
g22 then

7: hi1=0
8: hi2=ci2/g22
9: else

10: hi1=ci1/g11
11: hi2=0
12: end if
13: end if
14: end for
15: end function
Ensure: H=argmin

H̄!0

‖A−WH̄
T‖ is n×2 with C=ATW

and G=WTW

Given that the computational complexity of Algorithm 1
is O(n) (or O(m) when computing W), and the complexity
of computing WTW and HTH is O(m + n), the typical
dominant cost of each iteration of Rank-2 NMF is that of
computing ATW and AH, which is O(mn).

2) Hierarchical Clustering: A Rank-2 NMF can be used
to partition the columns of the matrix into two parts. In this
case, the columns of the W factor represent feature weights
for each of the two latent components, and the strength of
membership in the two components for each column of A is
given by the two values in the corresponding row of H. We
can determine part membership by comparing those values:
if hi1>hi2, then column i of A is assigned to the first part,
which is associated with feature vector w1. Membership can
be determined by other metrics that also take into account
balance across parts or attempt to detect outliers.

Given Rank-2 NMF as a splitting procedure, hierarchical
clustering builds a binary tree such that each node corresponds
to a subset of samples from the original data set and each
node’s children correspond to a 2-way partition of the node’s
samples. In this way, the leaves form a partition of the
original data, and the internal nodes specify the hierarchical
relationship among clusters. As the tree is built, nodes are
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Fig. 2: Hierarchy node classification

split in order of their score, or relative value to the overall
clustering of the data. The process can be continued until a
target number of leaves is produced or until all remaining
leaves have a score below a given threshold.

A node’s score can be computed in different ways. For
document clustering, Kuang and Park [15] propose using
modified normalized discounted cumulative gain, which mea-
sures how distinct a node’s children are from each other using
the feature weights associated with the node and its children.
For hyperspectral imaging data, Gillis et al. [9] propose using
the possible reduction in overall NMF error if the node is
split – the difference in error between using the node itself or
using its children. We use the latter in our implementation.

In any case, a node’s score depends on properties of
its children, so the computation for a split must be done
before the split is actually accepted. To this end, we define a
frontier node to be a parent of leaves; these are nodes whose
children have been computed but whose splits have not been
accepted. Figure 2 depicts the classification of nodes into
internal, frontier, and leaf nodes. As the tree is built, the
algorithm selects the frontier node with the highest score to
split, though no computation is required to split the node.
When a frontier node split is accepted, it becomes an internal
node and its children are split (so that their scores can be
computed) and added to the set of frontier nodes. When the
algorithm terminates, the leaves are discarded and the frontier
nodes become the leaves of the output tree.

Our hierarchical clustering algorithm is presented in
Algorithm 2 and follows that of Kuang and Park [15]. Each
node includes a field A, which is a subset of columns
(samples) of the original data, a feature vector w, which is its
corresponding column of the W matrix from its parent’s Rank-
2 NMF, a score, and pointers to its left and right children. A
priority queue Q tracks the frontier nodes so that the node with
the highest score is split at each step of the algorithm. We use
a target number of leaf clusters k as the termination condition.
When a node is selected from the priority queue, it is removed
from the set of frontier nodes and its children are added.

The splitting procedure is specified in Algorithm 3. After
the Rank-2 NMF is performed, the H factor is used to
determine part membership, and the columns of the W
factor are assigned to the child nodes. The score of the node
is computed as the reduction in overall NMF error if the
node is split, which can be computed from the principal

Algorithm 2 Hierarchical Clustering [15]
Require: A is m×n, k is target number of leaf clusters

1: function T = HIER-R2-NMF(A)
2: R=node(A) % create root node
3: SPLIT(R)
4: inject(Q,R.left) % create priority queue
5: inject(Q,R.right) % of frontier nodes
6: while size(Q)<k do
7: N =eject(Q) % frontier node with max score
8: SPLIT(N .left) % split left child
9: inject(Q,N .left) % and add to Q

10: SPLIT(N .right) % split right child
11: inject(Q,N .right) % and add to Q
12: end while
13: end function
Ensure: T is binary tree rooted at R with k frontier nodes,

each node has subset of cols of A and feature vector w

singular values of the subsets of columns of the node and its
children, as given in Line 6. The principal singular values of
the children are computed via the power method. Note that
the principal singular value of the node itself need not be
recomputed as it was needed for its parent’s score.

Algorithm 3 Node Splitting via Rank-Two NMF
Require: N has a subset of columns given by field A

1: function SPLIT(N )
2: [W,H]=RANK2-NMF(N .A) % split N
3: partition N .A into A1 and A2 using H
4: N .left=node(A1,w1) % create left child
5: N .right=node(A2,w2) % create right child
6: N .score=σ2

1(A1)+σ2
1(A2)−σ2

1(N .A)
7: end function

Ensure: N has two children and a score

B. Parallelization
In this section, we consider the options for parallelizing

Hierarchical Rank-2 NMF Clustering (Algorithm 2) and
provide an analysis for our approach. The running time
of an algorithm is data dependent because not only does
each Rank-2 NMF computation require a variable number
of iterations, but also the shape of the tree can vary from a
balanced binary tree with O(logk) levels to a tall, flat tree
with O(k) levels. For the sake of analysis, we will assume
a fixed number of NMF iterations for every node of the tree
and we will analyze the cost of complete levels.

The first possibility for parallelization is across the nodes
of the tree, as each Rank-2 NMF split is independent. We
choose not to parallelize across nodes in the tree for two
reasons. The first reason is that while the NMF computations
are independent, choosing which nodes to split may depend
on global information. In particular, when the global target is
to determine k leaf clusters, the nodes must be split in order
of their scores, which leads to a serialization of the node
splits. This serialization might be relaxed using speculative
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execution, but it risks performing unnecessary computation.
If the global target is to split all nodes with sufficiently high
scores, then this serialization is also avoided and node splits
become truly independent. We choose not to parallelize in
this way to remain agnostic to the global stopping criterion.

The second reason is that parallelizing across nodes
requires redistribution of the input data. Given a node split
by p̂ processors, in order to assign disjoint sets of processors
to each child node, each of the p̂ processors would have to
redistribute their local data, sending data for samples not in
their child’s set and receiving data for those in their child’s
set. The communication would be data dependent, but on
average, each processor would communicate half of its data
in the redistribution set, which could have an all-to-all com-
munication pattern among the p̂ processors. For a node with n̂
columns, the communication cost would be at least O(mn̂/p̂)
words, which is much larger than the communication cost per
iteration of Parallel Rank-2 NMF, as we will see in § III-B2.

By choosing not to parallelize across nodes in the tree,
we employ all p processors on each node, and split nodes in
sequence. The primary computations used to split a node are
the Rank-2 NMF and the score computation, which is based
on an approximation of the largest singular value. We use an
alternating-updating algorithm for Rank-2 NMF as described
in Section II, and we parallelize it following the methodology
proposed in [7] and presented in Algorithm 4.

The communication cost of the algorithm depends on the
parallel distribution of the input matrix data A. In order to
avoid redistribution of the matrix data, we choose a 1D row
distribution so that each processor owns a subset of the rows
of A. Because the clustering partition splits the columns of
A, each processor can partition its local data into left and
right children to perform the split without any interprocessor
communication. If we use a 2D distribution for a given node,
then because the partition is data dependent, a data redistribu-
tion is required in order to obtain a load balanced distribution
of both children. Figure 3 presents a visualization of the
node-splitting process using a 1D processor distribution. In the
following subsections, we describe the parallel algorithms for
Rank-2 NMF and approximating the principal singular value
given this 1D data distribution and analyze their complexity
in the context of the hierarchical clustering algorithm.

1) Algorithms:
a) Parallel Rank-2 NMF: Algorithm 4 presents the paral-

lelization of an alternating-updating scheme for NMF that uses
the exact rank-2 solve algorithm presented in Algorithm 1 to
update each factor matrix. The algorithm computes the inputs
to the rank-2 solves in parallel and then exploits the parallelism
across rows of the factor matrix so that each processor solves
for a subset of rows simultaneously. The distribution of all
matrices is 1D row distribution, so that each processor owns
a subset of the rows of A, W, and H. We use the notation
Â to refer to the (m/p)×n local data matrix and Ŵ and Ĥ
to refer to the (m/p)×2 and (n/p)×2 local factor matrices.
With this distribution, the computation of WTW and HTH
each is done via local multiplication followed by a single
all-reduce collective. All processors own the data they need to

AW

HT

A1w1 A2w2

Fig. 3: Parallel splitting using Rank-2 NMF and 1D processor
distribution. A Rank-2 NMF computes factor matrices W and
H to approximate A, the values of H are used to determine
child membership of each column (either red or blue), and the
corresponding column of the W matrix represents the part’s
feature weighting. The 1D distribution is depicted for 3 proces-
sors to show that splitting requires no interprocessor redistribu-
tion as children are evenly distributed identically to the parent.

compute their contribution to ATW; in order to distribute the
result to compute the rows H independently, a reduce-scatter
collective is used to sum and simultaneously distribute across
processors. To obtain the data needed to compute Ŵ, each
processor must access all of H, which is performed via an all-
gather collective. The iteration progresses until a convergence
criterion is satisfied. For performance benchmarking we use
a fixed number of iterations, and in practice we use relative
change in objective function value (residual norm).

b) Parallel Power Method: In order to compute the
score for a frontier node, we use the difference between
the principal singular value of the matrix columns of the
node and the sum of those of its children. Thus, we must
determine the principal singular value of every node in the
tree once, including leaf nodes. We use the power method to
approximate it, repeatedly applying AAT to a vector until it
converges to the leading right singular vector. We present the
power method in Algorithm 5. Note that we do not normalize
the approximate left singular vector so that the computed
value approximates the square of the largest singular value.

Given the 1D distribution, only one communication collec-
tive is required for the pair of matrix-vector multiplications.
That is, the approximate right singular vector v is redundantly
owned on each processor, and the approximate left singular
vector u is distributed across processors. Each processor can
compute its local û from v without communication and use
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Algorithm 4 Parallel Rank-2 NMF
Require: A is m×n and row-distributed across processors

so that Â is local (m/p)×n submatrix
1: function [W,H]= PARALLEL-RANK2-NMF(A)
2: Initialize local Ŵ randomly
3: while not converged do
4: % Compute H

5: ĜW =Ŵ
T
Ŵ

6: GW =ALL-REDUCE(ĜW )

7: B̂=Â
T
Ŵ

8: Ĉ=REDUCE-SCATTER(B̂)
9: Ĥ=RANK2-NLS-SOLVE(Ĉ,GW )

10: % Compute W

11: ĜH =Ĥ
T
Ĥ

12: GH =ALL-REDUCE(ĜH)
13: H=ALL-GATHER(Ĥ)
14: D̂=ÂH
15: Ŵ=RANK2-NLS-SOLVE(D̂,GH)
16: end while
17: end function
Ensure: A≈WHT with W, H row-distributed

the result for its contribution to v = ATu. An all-reduce
collective is used to obtain a copy of v on every processor
for the next iteration, and the norm is redundantly computed
without further communication. We used the relative change
in σ as the stopping criterion for benchmarking.

Algorithm 5 Parallel Power Method
Require: A is m×n and row-distributed across processors

so that Â is local (m/p)×n submatrix
1: function σ= PARALLEL-POWER-METHOD(A)
2: Initialize v randomly and redundantly
3: while not converged do
4: û=Âv
5: ẑ=Â

T
û

6: v=ALL-REDUCE(ẑ)
7: σ=‖v‖
8: v=v/σ
9: end while

10: end function
Ensure: σ≈σ2

1(A) is redundantly owned by all procs

2) Analysis:
a) Parallel Rank-2 NMF: Each iteration of Algorithm 4

incurs the same cost, so we analyze per-iteration computation
and communication costs. We first consider the cost of the
Rank-2 NNLS solves, which are local computations. In the
notation of Algorithm 1, matrix G is 2× 2, so solving the
unconstrained system (via Cholesky decomposition) and
then choosing between single-positive-variables solutions if
necessary requires constant time per row of C. Thus, the
cost of Algorithm 1 is proportional to the number of rows
of the first input matrix. In the context of Algorithm 4, the
per-iteration computational cost of rank-2 solves is then

O((m+n)/p). The other local computations are the matrix
multiplications Ŵ

T
Ŵ and Ĥ

T
Ĥ, which also amount to

O((m + n)/p) flops, and Â
T
Ŵ and ÂH, which require

O(mn/p) flops because they involve the data matrix. Thus,
the computation cost is γ ·O((mn+m+n)/p) and typically
dominated by the multiplications involving A. We track the
lower order terms corresponding to NNLS solves because their
hidden constants are larger than that of the dominating term.

There are four communication collectives each iteration,
and each involves all p processors. The two all-reduce
collectives to compute the Gram matrices of the factor
matrices involve 2× 2 matrices and incur a communication
cost of (γ+β+α)·O(logp). The reduce-scatter and all-gather
collectives involve n×2 matrices (the size of H) and require
β ·O(n)+α ·O(logp) in communication cost (we ignore the
computation cost of the reduce-scatter because it is typically
dominated by the bandwidth cost). If the algorithm performs
ı iterations, the overall cost of Algorithm 4 is

γ ·O
(
ı(mn+m+n)

p

)
+β ·O(ın)+α·O(ılogp). (1)

b) Parallel Power Method: Similar to the previous
analysis, we consider a single iteration of the power method.
The local computation is dominated by two matrix-vector
products involving the local data matrix of size O(mn/p)
words, incurring O(mn/p) flops. The single communication
collective is an all-reduce of the approximate right singular
vector, which is of size n, incurring β ·O(n) + α ·O(logp)
communication. We ignore the O(n) computation cost of
normalizing the vector, as it will typically be dominated by
the communication cost of the all-reduce. Over  iterations,
Algorithm 5 has an overall cost of

γ ·O
(
mn

p

)
+β ·O(n)+α·O(logp). (2)

Note the per-iteration cost of the power method differs by
only a constant from the per-iteration cost of Rank-2 NMF.
Because the power method involves single vectors rather than
factor matrices with two columns, its constants are smaller
than half the size of their counterparts.

c) Hierarchical Clustering: To analyze the overall cost
of the hierarchical clustering algorithm, we sum the costs
over all nodes in the tree. Because the shape of the tree is
data dependent and affects the overall costs, for the sake of
analysis we will analyze only complete levels. The number
of rows in any node is m, the same as the root node, as
each splitting corresponds to a partition of the columns.
Furthermore, because each split is a partition, every column
of A is represented exactly once in every complete level
of the tree. If we assume that all nodes perform the same
number of NMF iterations (ı) and power method iterations
(), then the dominating costs of a node with n columns is

γ ·O
(
(ı+)mn+ı(m+n)

p

)
+β ·O((ı+)n)

+α·O((ı+)logp).
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Because the sum of the number of columns across any level
of the tree is n, the cost of the &th level of the tree is

γ ·O
(
(ı+)mn+ım2!

p

)
+β ·O((ı+)n)

+α·O((ı+)2!logp).

(3)

Note that the only costs that depend on the level index & are
the latency cost and a lower-order computational cost.

Summing over levels and assuming the tree is nearly bal-
anced and has height O(log k) where k is the number of
frontier nodes, we obtain an overall cost of Algorithm 2 of

γ ·O
(
(ı+)mn

p
logk+

ımk

p

)
+β ·O((ı+)nlogk)

+α·O((ı+)klogp).

(4)

We see that the leading order computational cost is loga-
rithmic in k and perfectly load balanced. If the overall running
time is dominated by the computation (and in particular the
matrix multiplications involving A), we expect near-perfect
strong scaling. The bandwidth cost is also logarithmic in k
but does not scale with the number of processors. The latency
cost grows most quickly with the target number of clusters k
but is also independent of the matrix dimensions m and n.

IV. EXPERIMENTAL RESULTS

A. Experimental Platform
All the experiments in this section were conducted on

Summit. Summit is a supercomputer created by IBM for the
Oak Ridge National Laboratory. There are approximately
4,600 nodes on Summit. Each node contains two IBM
POWER9 processors on separate sockets with 512 GB of
DDR4 memory. Each POWER9 processor utilizes 22 IBM
SIMD Multi-Cores (SMCs), although one of these SMCs
on each processor is dedicated to memory transfer and is
therefore not available for computation. For node scaling
experiments, all 42 available SMCs were utilized in each node
so that every node computed with 42 separate MPI processes.
Additionally, every node also supports six NVIDIA Volta
V100 accelerators but these were unused by our algorithm.

Our implementation builds on the PLANC open-source
library [7] and uses the Armadillo library (version 9.900.1)
for all matrix operations. On Summit, we linked this version
of Armadillo with OpenBLAS (version 0.3.9) and IBM’s
Spectrum MPI (version 10.3.1.2-20200121).

B. Datasets
a) Hyperspectral Imaging: We use the Hyperspectral

Digital Imagery Collection Experiment (HYDICE) image of
the Washington DC Mall. We will refer to this dataset as
DC-HYDICE [16]. DC-HYDICE is formatted into a 3-way
tensor representing two spatial dimensions of pixels and one
dimension of spectral bands. So, a slice along the spectral
band dimension would be the full DC-HYDICE image in that
spectral band. For hierarchical clustering, these tensors are
flattened so that the rows represent the 191 spectral bands
and the columns represent the 392960 pixels. The data set is
approximately 600 MB in size.
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Fig. 4: Strong Scaling for Clustering on DC-HYDICE

b) Image Classification: The SIIM-ISIC Melanoma
classification dataset, which we will refer to as SIIM-ISIC
[19], consists of 33126 RGB training images equally sized at
1024×1024. Unlike with hyperspectral imaging, the resulting
matrix used in hierarchical clustering consists of image pixels
along the rows and individual images along the columns.
So, the resulting sized matrix is 3145728 × 33126, which
is approximately 800 GB in size. Given its size, SIIM-ISIC
requries 10 Summit nodes to perform hierarchical clustering.

c) Synthetic Dataset: Our synthetic dataset has the
same aspect ratio of SIIM-ISIC but consists of fewer rows
and columns by a factor of 3. The resulting matrix is
1048576×11042. We choose the smaller size in order to fit
on a single node for scaling experiments.

C. Performance
For all hierarchical clustering experiments in this section,

the number of tree leaf nodes k was set at 100, the number
of NMF iterations was set to 100, the power iteration was
allowed to stop iterating after convergence, and only complete
levels were considered for analysis purposes for both level
and strong scaling plots.

1) Single-Node Scaling for DC Dataset: DC-HYDICE is
small compared to the other datasets, so it can easily fit on one
compute node. Also, its small number of 191 rows doesn’t al-
low for parallelizing beyond that number of MPI processes. So,
this dataset was used for a single-node scaling experiment on
Summit from 1 to 42 cores. Because Rank-2 NMF is memory
bandwidth bound, we expect limited speedup on one node due
to the memory bandwidth not scaling linearly with the number
of cores. Figure 4 shows that there is enough speedup (14× on
42 cores) for it to be worth parallelizing such a small problem,
but perfect scaling requires more memory bandwidth. In this
experiment, the processes were distributed across both sockets
so that an even number of cores on each socket are used.

2) Rank-2 NMF Strong Scaling: We perform strong scaling
experiments for a single Rank-2 NMF (Algorithm 4) on the
synthetic and SIIM-ISIC datasets. The theory (Equation (1))
suggests that perfect strong scaling is possible as long as the
execution time is dominated by local computation. Both the
matrix multiplications and NNLS solves scale linearly with
1/p (we expect MatMul to dominate), but the bandwidth cost
is independent of p and latency increases slightly with p.

Figures 5a and 5b show performance relative to the
smallest number of compute nodes required to store data and
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(a) Synthetic Data

10 20 30 40 50 60 70 80

Number of Compute Nodes

1

2

3

4

5

6

7

R
e
la
ti
v
e
S
p
e
e
d
u
p

(b) SIIM-ISIC Data

Fig. 5: Strong Scaling Speedup for Rank-2 NMF
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Fig. 6: Time Breakdown for Rank-2 NMF on Synthetic

factor matrices. For these data sets, we observe nearly perfect
strong scaling, with 42× speedup on 40 compute nodes (over
1 compute node) for synthetic data and 7.1× speedup on 80
compute nodes (over 10 compute nodes) for SIIM-ISIC data.

The relative time breakdowns are presented in Figures 6
and 7 and explain the strong scaling performance. Each
experiment is normalized to 100% time, so comparisons
cannot be readily made across numbers of compute nodes. For
both data sets, we see that the time is dominated by MatMul,
which is the primary reason for the scalability. The dominant
matrix multiplications are between a large matrix and a matrix
with 2 columns, so it is locally memory bandwidth bound,
with performance proportional to the size of the large matrix.
In each plot, we also see the relative time of all-gather and
reduce-scatter increasing, which is because the local compu-
tation is decreasing while the communication cost is slightly
increasing with p. This pattern will continue as p increases,
which will eventually limit scalability, but for these data sets
the MatMul takes around 80% of the time at over 2000 cores.

3) Hierarchical Clustering Strong Scaling: From
Equation (4), we expect to see perfect strong scaling in
a computationally bound clustering problem with target
cluster count k = 100. As k is large, we expect the latency
cost of small problems deep in the tree to limit scalability.

Figure 8a demonstrates the scalability of the synthetic data
set on up to 40 nodes, and we observe a 15× speedup com-
pared to 1 node. Figure 9 shows the relative time breakdown
and explains the limitation on scaling. On 40 nodes, compu-
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Fig. 7: Time Breakdown for Rank-2 NMF on SIIM-ISIC
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Fig. 8: Strong Scaling Speedup for Clustering

tation still takes 60% of the total time, but the all-gather and
reduce-scatter costs have grown in relative time because they
do not scale with p. Because all-reduce involves only a con-
stant amount of data and its time remains relatively small, we
conclude the communication is bandwidth bound at this scale.

With the larger SIIM-ISIC dataset, it’s possible to scale
much further as seen in Figure 8b, where we observe a
5.9× speedup of 80 compute nodes compared to 10. From
Figure 10, we see that the communication cost constitutes
less than 20% of the total time even at 80 compute nodes.

We note that the speedup of the overall hierarchical
clustering algorithm is not as high as for a single Rank-2
NMF (measured at the root node). This is due to inefficiencies
in the lower levels of the tree, as we explore in the next section.

4) Level Scaling: To compare execution time across
levels of a particular tree, we consider only complete levels.
From Equation (3), the dominant computational term (due to
MatMul) is constant per level, the lower order computational
term (represented by NNLS) grows like O(2!), and the
latency cost grows similarly like O(2!).

Figure 11 show absolute time across levels for the synthetic
data set on 1 node. The MatMul cost decreases slightly per
level, which may be explained by cache effects in the local
matrix multiply, as each node’s subproblem decreases in
size. The NNLS grows exponentially, as expected, and
communication is negligible.

Figure 12 shows the level breakdown for the synthetic data
on 40 nodes, where we see different behavior. MatMul cost
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Fig. 9: Time Breakdown for Clustering on Synthetic
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Fig. 10: Time Breakdown for Clustering on SIIM-ISIC
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Fig. 11: Level Times for 1 Compute Node on Synthetic

is again constant across levels and the NNLS cost becomes
dominating at lower levels suggesting it does not scale as well
as MatMul. We also see all-reduce time becoming significant
as communication time increases, indicating that the nodes at
lower levels are becoming more latency bound. Thus, we see
that the poorer scaling at the lower levels of the tree is the
main reason the overall hierarchical clustering algorithm does
not scale as well as the single Rank-2 NMF at the root node.

5) Rank Scaling: To confirm the slow growth in running
time of the hierarchical algorithm in terms of the number
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Fig. 12: Level Times for 40 Compute Nodes on Synthetic
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Fig. 13: Rank Scaling for Hierarchical and Flat NMF

of clusters k, we perform rank scaling experiments for DC-
HYDICE and synthetic data. Assuming a balanced tree and
relatively small k, Equation (4) shows that the dominant
computational cost is proportional to logk, while a flat NMF
algorithm has a dominant cost that is linear in k [12]. Figure 13
shows the raw time for various values of k, confirming that
running time for HierNMF grows more slowly in k than a
flat NMF algorithm (based on Block Principal Pivoting) from
PLANC [7] with the same number of columns and processor
grid. We see that for sufficiently large k, the hierarchical algo-
rithm outperforms flat NMF and it scales much better with k.

V. CONCLUSION

As shown in the theoretical analysis (§ III-B2) and
experimental results (§ IV-C3), Algorithm 2 can efficiently
scale to large p as long as the execution time is dominated
by local matrix multiplication. The principal barriers to
scalability are the bandwidth cost due to Rank-2 NMF, which
is consistent across levels of the tree and proportional to the
number of columns n of the original data set, and the latency
cost due to large numbers of tree nodes in lower levels of the
tree. When n is small relative to m and the number of leaves
k and levels & are small, then these barriers do not pose a
problem until p is very large. However, if the input matrix is
short and fat (i.e., has many samples with few features), then
the bandwidth cost can hinder performance for smaller p.
Likewise, if k is large or the tree is lopsided, then achieving
scalability for very small problems is more difficult. We
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also note that in the case of sparse A, it becomes more
difficult to hide communication behind the cheaper matrix
multiplications, and other costs may become more dominant.

One approach for reducing the bandwidth cost of Rank-2
NMF is to choose a more balanced data distribution over a 2D
grid, as proposed by Kannan et al. [11]. This will reduce the
communicated data and achieve a local data matrix that is more
square, which can improve local matrix multiplication perfor-
mance. The downside of this approach is requiring a redistri-
bution of the data for each split, but if many NMF iterations
are required, then the single upfront cost may be amortized.

Another approach to alleviate the rising latency costs of
lower levels of the tree is to parallelize across nodes of the
tree. This will result in fewer processors working on any
given node, reducing the synchronization time among them,
and it will allow small, latency-bound problems to be solved
simultaneously. Prioritizing the sequence of node splits is
more difficult in this case, but modifying the stopping criterion
for splitting to use a score threshold instead of a target number
of leaves will allow truly independent computation.

In the future, we also plan to compare performance of
Algorithm 2 with flat NMF algorithms and employ the
Divide-and-Conquer NMF technique [6] of seeding an
iterative flat NMF algorithm with the feature vectors of the
leaf nodes. The parallel technique proposed here can be
combined with the existing PLANC library [7] to obtain
faster overall convergence for very large datasets.
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