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ARTICLE INFO ABSTRACT

Editor: Emma Stephens CONTEXT: The COVID-19 pandemic has resulted in immediate and wide impacts on human and agricultural
systems. While some of the positive and negative impacts of COVID-19 on the environment and economies are
emerging, there is not a comprehensive understanding of the potential impacts of COVID-19 on the most
vulnerable farmers.

OBJECTIVE: The purpose of this study is to evaluate the immediate impacts of COVID-19 on agricultural and food
systems in the United States. Our aim is to quantify the impacts on labor productivity in crops and livestock
production considering the heterogenous vulnerability of different farmworkers. We are interested in measuring
the production that is not realized due to COVID-19.

METHODS: In this paper, we introduce IMLAP, Immediate impact Model of Local Agricultural Production. This
model is an economic framework considering short-term agricultural production responses to economic, envi-
ronmental, and policy changes. We investigate the potential impacts of COVID-19 on the farmers in the U.S. for
each county with a special focus on female, Hispanic, black and African American, and small-scale producers.
RESULTS AND CONCLUSIONS: Considering the impacts of COVID-19 on labor, the findings of this study suggest a
decline in agricultural output in all the U.S. counties ranging from 1.18% to 7.14% of total production. Our
simulation results show that counties with a higher number of small-scale farms, non-white farmers, and female-
operated farms are the most vulnerable to COVID-19. Also, we argue that the stimulus policies and support
packages must target these communities of producers to ensure that their livelihood is protected. The findings
suggest that productivity growth (technological improvements) and international trade can eliminate the
negative impacts of pandemics.

SIGNIFICANCE: The proposed quantitative framework of this study is a simple yet novel model that empowers
diverse research communities to provide a quick analysis of the impacts of unprecedented events. It offers a
holistic framework to evaluate the response of agricultural production to changes in availability and productivity
of labor, machinery & equipment, land, fertilizer, seeds, and other inputs. This study presents new foundations
for agricultural research communities to provide solutions to agricultural resilience challenges and highlights the
significance of demand drivers, technological growth, and international trade in strengthening the food system.
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1. Introduction

Months after the beginning of the world-wide COVID-19 pandemic,
the positive and negative effects on food and agricultural systems are
being observed. Some of the positive effects of the pandemic on the
environment are reduction in greenhouse gas (GHG) emissions (Hanna
et al., 2020; Le Quéré et al., 2020; Venter et al., 2020), improved water
quality, and less noise pollution (Diffenbaugh et al., 2020). The negative
impacts of the pandemic on global poverty (World Bank, 2020), food
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production and supply chain (Barrett, 2020), welfare, and inequality
(Diffenbaugh et al., 2020) are also emerging. While uncertainty is the
nature of the agricultural system, COVID-19 has increased price uncer-
tainty for the farmers. Due to challenges posed by the pandemic, farmers
around the world are struggling to have a profitable production. Some
farmers face higher production costs due to limits on labor; some others
observe low sale revenues as the trade and storage margins on price are
getting larger. On the global scale, food prices started high in 2020 and
declined until June-May when the prices started to increase. Except for
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some dairy products, the prices have been rising in August. This volatile
situation can increase the risk of agricultural systems. A quantitative and
informative analysis could help to identify the impacts on potentially
vulnerable agricultural communities.

Labor has a significant role in the agricultural system. However, the
impact of COVID-19 has been significantly different across different
communities. Considering the effects of some risks such as COVID-19 on
various producers is important to identify which groups of producers are
more susceptible to the negative impacts of those risks. It is expected
that COVID-19 hit hardest the Hispanic, black, and African American
producers. These groups of farmers face more challenges relative to
other farmers even in the absence of a pandemic (Leslie et al., 2019).
Black farmers are disproportionally affected by COVID-19. The Centers
for Disease Control (CDC) declares that people of color and black people
are disproportionately represented in jobs which puts them at a greater
risk of exposure due to factors such as not being able to work remotely
(CDC, 20214a). Black farmers in the U.S. are older than other U.S. farmers
(60.8 versus 57.5 years in 2017), operate on small-scale farms, and have
difficulty obtaining credit (Taylor, 2018) which makes them more
vulnerable to COVID-19. Moreover, in August 2020, the number of black
or African American people employed in farm-related occupations
decreased by about 70% compared to August 2019 while it declined by
6% for white people (BLS, 2020).

Female farmers may be impacted by COVID-19 more than male
farmers. Woman farmers operate on a vast proportion of lands in the U.
S. In 2017, The female-operated farms accounted for 38% of the U.S.
agriculture sales and 43% of the U.S. farmland (USDA-NASS, 2019).
Should they need aids to manage their finical hardship due to COVID-19,
female producers are less likely to receive the subsidies compared to the
male producers; mainly due to the fact that women engage more in the
activities that are less likely to be subsidized such as small-scale farms
(Leslie et al., 2019). Additionally, the female farmers are mostly the
beginning farmer and have less access to credit and savings than the
male farmers (30% of female farmers had farms 10 years or fewer while
25% of male producers owned farms 10 years or fewer). Also, female
farmers are likely to face gender-based discrimination when they apply
for loans to develop their operations.

We expect that the small-scale farmers and marginal producers are
also among the most vulnerable to the pandemic. Some farmers have lost
their local restaurant customers leading to extra marketing and delivery
costs. On the other hand, large producers may benefit from this situation
due to their better investment in storage and marketing power. The
pandemic has decreased small farmers’ incomes as a source of livelihood
due to mobility restrictions, production disruptions, and a fall in
regional demand for agricultural commodities. COVID-19 may also
reduce the off-farm income that the small farmers use to cover their
production and living expenses and manage their farm debts (USDA-
ERS, 2021a).

In this paper, we suggest a simple yet informative approach to study
the effects of COVID-19 on agricultural producers accounting for
farmers’ race, gender, and farm size. Our approach is similar to the
Purdue Food and Agriculture Vulnerability Index (PFAVI) that quan-
tifies the loss in production as a result of farmworkers’ illness due to
COVID-19 (Lusk, 2020). However, PFAVI does not report the loss in
production considering different gender and races while we have
accounted for race, gender, and farm size in our analysis. We also
consider the differences in production technology and cost structure of
different producers across the US.

Deploying numerical and economic models can be beneficial in
different ways. Since COVID-19 is an unprecedented event, it is impos-
sible to recognize all possible impacts on the economy and agricultural
systems based on pure historical experience or conceptual models. The
economic model that considers producer behavior can be used to mea-
sure the responses of each community/producer. The economic models
can also be used to create simulations to test the hypothesis that cannot
be anticipated otherwise. These models can be deployed to evaluate
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different policy interventions that can be designed to mitigate the im-
pacts of COVID-19.

2. Methods

We introduce IMLAP, Immediate impact Model of Local Agricultural
Production. This model is an economic model considering short-term
agricultural production responses to economic, environmental, and
policy changes. The agricultural production includes crops and animals
and each location has its production structure. The major inputs in
production function are labor, land, equipment and machinery, chem-
icals, seeds, and fertilizer as illustrated in Fig. 1.

The equilibrium price and quantity of each input or output com-
modity are determined in the model according to the interaction of
agents in local markets. At each location (counties in the U.S.), the
economic behavior for six types of agents is considered. This includes
consumers, producers, landowners, capital owners, farmworkers, and
the suppliers of agricultural inputs (seeds, fertilizer, chemicals, etc).
Producers are categorized according to the farm size while farmworkers
are classified based on ethnicity and sex. The demand and supply for
each commodity are derived by solving the economic optimization
behavior of each agent following microeconomic production theory
(Klump et al., 2012; Kmenta, 1967; Lu and Fletcher, 1968).

2.1. Supply: labor, capital, land, and other agricultural inputs

The production function is a Nested Constant Elasticity of Substitu-
tion (Perroni and Rutherford, 1995; Prywes, 1986) system as shown in
Fig. 2. In this system, all the production inputs are combined in various
“nests”. For example, the labor nest consists of different labor types and
a parameter of substitution (63) governs the flexibility of replacing one
type of labor with another. Then, another parameter, 62, governs the
flexibility of replacing labor with machinery. This is a standard frame-
work widely used in agricultural economics for the assessment of agri-
cultural shocks and policies like in SIMPLE-G (Baldos et al., 2020), GTAP
(Corong et al., 2017), GCAM (Calvin et al., 2019), IMPACT (Rosegrant
et al., 2012), AIM (Fujimori et al., 2017), ENVISAGE (Van Der Mens-
brugghe, 2018), MAGNET (van Meijl et al., 2006), and EPPA (Jacoby
et al., 2006). The Technical Appendix provides more details about the
production function and its components.

Following the economic behavior of farmers discussed in the Tech-
nical Appendix, we derive the main analytical expression for this study
which follows the SIMPLE-G logic (Hertel and Baldos, 2016). The
following equation shows the main drivers of change in production by
farm type and county.

g.=>0.(q.+a.)+ >0 (4 +a,)
i 1
220 (g ra) + 20 (g )+
n k

®

here, ¢’  is the percentage change in the production of output y, by farm
type j in county c. While g shows the percentage change in the quantity
of associated input or output, ¢ is the share parameter, and « is the
productivity parameter. Then, i, [, n, k are indexes for intermediate in-
puts, labor, land, and capital, respectively. This equation shows an in-
crease in the quantity of any input (qi, ql, qk, g™ can increase production
given no reduction in other inputs and productivity. Also, it shows that
an increase in productivity of any input can increase agricultural output
given no reduction in other factors. However, if the use of other inputs is
likely to change due to changes in relative prices (look at the Appendix
for full functional forms), a computational framework is necessary to
calculate the final impact. The final impact for the county is the
weighted average of changes by farm size and producer type.
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Exogeneous shocks and policies

* Note: The COVID-19 shocks
for labor are computed based
on shares of family and hired
farmworkers by race and
ethnicity (Hispanic, white,
black or African American,
American indian, asian) and
gender (male and female) for
different farm sizes for each US

county.

Agricultural inputs

I
1
by county 1 by county

1
: Machinery & equipment
1
1
1
1 Animals
1
1
1
: Land and water

Technology and B
1

roductivi
P i : Fertilizer

1
1
1

Pandemics and : Seeds

health -

: Chemicals
1
1
: Fuel and energy
1
1
1
1 Farmworkers*
\

Local income

National income

Global income

Global production

Exogeneous demand drivers

Agricultural suppk
by county

Midsize farms

-

Small farms

\

I
|
I
1
|
I
I
1
I
I
1
1
1
1
I
1

Agricultural demand by county

Fig. 1. Modeling the impacts of COVID-19 in IMLAP model.

2.2. Demand: local, national, and global drivers

The change in demand for agricultural products comes from four
different sources including changes in direct local demand (qd®®), non-
local domestic demand (qd"*"®), exports or global demand (qdstobahy,
and stocks (gd*°). In this study, the changes related to demand are
exogeneous. The following equation shows major demand drivers of
local production.

qdi.ntal — wiﬂwlqd?m’ + (Dfloha[qdflubal + w:ariunalngarional 4 wz:tm:k\'qdjm(‘ks (2)
2.3. Model closure

To measure the short-run impacts of the COVID-19, the Leontief
structure is considered for the top nests of the production function, and
the Cobb-Douglas structure is assumed for lower nests (Miller, 2008).
Other supply and demand parameters are calibrated for each location
and each type of producer. Producers are categorized based on size and
gender averaged at each county level. Labor types consist of different
races and ethnicities to reflect different vulnerabilities to COVID-19. The
county-level contributions by farm size are estimated using the United
States Department of Agriculture (USDA) information on Production
Expenses by county (USDA-NASS, 2019). We assume the demand for

agricultural products is exogenous to the model. Another assumption is
that the relative wages of different labor types are unchanged. This
ensures no major labor substitution across the labor types. Finally, we
assume that the relative price of material inputs are also unchanged
ensuring no major change in the composition of material inputs.

2.4. COVID-19 scenarios

A pandemic like COVID-19 can affect agriculture in multiple ways.
Observations in April and May of 2020, suggest significant changes in
the labor market and temporary food shortage. Following these obser-
vations, this study evaluates the potential impacts of COVID-19 on
agricultural production in U.S. counties through a) changes in labor
productivity, and b) changes in global food purchases. We also consider
a scenario of continued productivity growth and yield improvements.

2.4.1. Scenario 1: lost labor productivity

Agriculture was considered an essential industry and was exempt
during the U.S. lockdown (Torpey, 2020). Note that agricultural workers
are not frequently exposed to infection at work (Hawkins, 2020). Thus
the unemployment rate in farm-dependent metro and non-metro areas
have been the lowest in the U.S. (Cromartie et al., 2020). However, there
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Fig. 2. Structure of local agricultural production.

are other ways that COVID-19 can affect labor productivity. This in-
cludes virus exposure out of the workplace, family and friend gather-
ings, shopping, outdoor dining, etc. Also, the illness of a family member
or a friend can negatively affect productivity. In the U.S., livestock
production suffered significantly in April and May of 2020 due to
COVID-19 cases in slaughterhouses, processing plants, and meat-
packing. This caused a temporary shortage and price increase. Here, we
assume the reduction in labor productivity and capacity follows the
pattern of hospitalization.

We cover all the counties in the Conterminous United States. For
agricultural commodities we consider “crops total” and “animal totals-
including produce”. For producer types, we consider race/ethnicity
(Hispanic, black and African American, American Indian, Asian, white,
and others) and farm sizes. The share of each type is calculated based on
the 2017 Census of Agriculture information obtained from USDA-NASS.
The impact of COVID-19 on labor productivity is defined with a harm
index based on the hospitalization rate of each labor type.

2.4.2. Scenario 2: exports

Not all the countries in the world were hit by COVID-19 simulta-
neously. China’s quick recovery created opportunities for other coun-
tries to stay in the agricultural markets. Despite interruption in
shipments, the U.S. soybean exports to China increased in 2020 as
China’s economy continued to grow. Also, the U.S. exports of animal
products have increased. These changes are not considered to be asso-
ciated with American domestic COVID-19 cases. However, it is the na-
ture of pandemics to hit different regions at different points in time.
USDA forecasts the volume of U.S. exports increased in 2020 (Kenner
and Jiang, 2021). So, we associate a 1.4% change in U.S. agricultural
exports due to COIVD-19 which is roughly equivalent to the increase of
exports to China.

2.4.3. Scenario 3: continued productivity growth and yield improvements
Without COVID-19, total agricultural output was expected to grow
following its recent trend. Regarding livestock and meat production, the
average annual growth from 2016 to 2019 has been around 2.7%.
However, its actual growth in 2020 has been around 1.1% compared to
2019. So, the 1.6% can be assigned to the growth not realized due to
COVID-19. The potential growth is also expected for crops depending on
weather conditions. U.S. corn yield in 2020 is estimated to be 2.7%

higher than the 2019 yields (USDA-NASS, 2021). Therefore, we assume
around a 2.7% increase in total factor productivity for all production
practices.

3. Results

Following a simple production model, this study estimates the likely
impacts of COVID-19 on labor productivity and overall agricultural
production. We report the impacts by U.S. counties, states, and farm
sizes.

3.1. Lost labor productivity

According to CDC, around 22.85% of the population of 18 to 65 years
old have been symptomatic for COVID-19 in 2020 (CDC, 2021b). Based
on CDC estimates the average productivity lost is calculated for the US.
Considering a two-week mandatory quarantine for the symptomatic
person and people in close contacts, we estimate around 45.7% of people
at this age had to stop working for two weeks, which is about 4% of total
annual working days. In other words, around 1.9% of total labor hours
had been lost due to COVID-19 in 2020. Table 1 shows the estimated
impacts of COVID-19 on different farmworkers in crop and livestock
production. Overall, the productivity of workers in livestock production
is larger due to the Apr-May lockdown. Also, the productivity lost is the
highest for Hispanic farmworkers followed by Black & African American
farmworkers. This is the direct result of applying the CDC hospitaliza-
tion factor for these communities.

Table 1
Estimated productivity lost due to COVID-19.
Hispanic  Black & African White  Others
American
CDC hospitalization 3.2x 2.9% 1x 2.0x
factor
Average productivity
lost
in crop production (%) 3.53 3.20 1.10 2.20
in livestock production 6.72 6.09 2.10 4.20

(%)
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3.2. National-level results by farm size

The findings suggest that the impact of COVID-19 on the agricultural
system in the U.S. is equivalent to 2.63% of total agricultural produc-
tion. This is around $10 billion worth of crops and livestock products.
Fig. 3 summarizes the results by farm size in terms of the potential
production not realized. In percentage change, the small farms are 20%
more vulnerable to COVID-19 than large farms. However, in absolute
values, the amount of production not realized due to COVID-19 is bigger
in large farms as their share in agricultural production is higher.

3.3. State-level results

Considering county-specific labor composition (race and ethnicity)
and production (crops and livestock), we calculate the production not
realized due to COVID-19 by counties and aggregate it to states. Fig. 4
shows the change in farm production due to COVID-19, boosted exports,
and continued growth in yields and TFP (total factor productivity) for
major agricultural states. The yellow and blue colors show an increase in
production and the red colors show a fall in production. The findings
suggest that all the states will have lower agricultural production. The
biggest damage is in California that may lose around $1.5 billion worth
of agricultural outputs due to COVID-19. However, the increase in
yields, the continued productivity growth, and boosted agricultural
exports can eliminate the negative impacts and even cause an increase in
production. Overall, the combination of all three scenarios can lead to a
1.47% increase in total agricultural production ($5.7 billion).

3.4. County-level results

On average, the model predicts a 2.63% lower agricultural output
due to COVID-19 for the whole U.S. However, the impact is not uniform
across space as shown in Fig. 5. The impact ranges from around —7.14%
to around —1.18%. Note that this is average over the county. In other
words, the within-county heterogeneity is not modeled here. The map
shows the livestock producing regions such as South Dakota and
Wyoming face high drops inoutput. These regions have also a high
concentration of female-operated farms. Texas and Arkansas that have
more black farmers than any other states also experience a reduction in
their sales. On the other hand, Midwest and around Mississippi are less
affected.
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4. Discussion

The USDA has provided different estimates about U.S. agricultural
production in 2020. According to USDA Farm Income Projections in
February 2020, the net farm income was expected to grow 3.3% in 2020
from 2019 levels (Schnepf, 2020). In U.S. Farm Sector Financial In-
dicators released in February 2021, it was predicted that cash receipt has
increased by 0.3% for all agricultural products, and increased by 5.5%
for production of crops while it drops by 5.4% for animals and related
products (USDA-ERS, 2021b). We estimate a 1.47% increase in pro-
duction volume when combining COVID-19 impacts with yield and ex-
ports. There are several reasons for the difference with USDA forecasts.
First, our model projects volume without looking at prices. The USDA
forecast includes prices. This is important as farm-level cattle prices
have declined by 4.9% in 2020 (USDA-ERS, 2021c). Also, we did not
consider many other changes in the real world including changes in
stocks, household consumptions, prices, and other demand components.
With only three shocks (COVID-19, exports, and yields), we were able to
predict the right direction of the change. One major factor can be the
change in food spending. According to USDA, total food spending
(including “food at home” and “food away from home”) averaged
$125.3 billion per month in Jan-Jun 2020, a 6.9% reduction from
$134.7 billion per month in 2019. This is mainly a result of less spending
on food away from home. Another reason can be un-identified changes
in other agricultural inputs. Overall, the observed changes in other
agricultural inputs are small and there is no robust evidence to show the
linkage to COVID-19. The USDA estimated a small increase in the ex-
penses of feed purchases, labor, fertilizer, seed, and rents in 2020
compared to 2019. However, total production expenses for 2020 are
projected to be 1.3% lower than 2019 due to a decline in other expenses,
especially interest payments (USDA-ERS, 2021d). With no robust evi-
dence on the significant role of COVID-19 on other inputs, we assumed
no covid-related shocks in other agricultural inputs. Thus, we considered
the impact of COVID-19 on labor only, not other inputs. We expect that
considering the changes in output prices and input costs may have a
more uniform impact across the US. However, more information and
further numerical analysis are required to do a comprehensive
investigation.

The heterogeneous impact of COVID-19 on agriculture indicates a
change in the organization of agricultural production. From small farms
to large farms and from more labor contribution to higher

Potential production not realized due to COVID-19
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Fig. 5. Estimated share of production not realized due to COVID-19, by county. Source: simulation results.

mechanization and automation. This is in the short-term and just due to
changes in the scale of production by heterogeneous farms. As small
farmers are more affected, they may exit the market in the short-term or
decide to change the production technology and strategies.

Also, supportive policies may have different effectiveness regarding
the size of farms. Since tax payments contribute to a large proportion of
total expenses for small farms (USDA-NASS, 2019), tax credits can be an
effective policy for them. This suggests a policy for protecting agricul-
tural systems via tax channel should target the small farmers. Moreover,
labor contributes to a higher portion of expenses in small farms
compared to large farms. An increase in labor costs due to protective
concerns will shrink the profit margin for small farmers more than large
farmers. Also, the share of cash rents is lower for small farms which
means that they mostly own their land Thus, a rent-based supportive
program will be less beneficial to small farmers. Finally, the share of
fertilizer is lower for small farms (USDA-NASS, 2019). Thus, the
fertilizer-based policies are more effective for large farms compared to
small farms. In fact, due to the lower use of fertilizers by the smaller
farms relative to the larger farms, the trade and price policies that can
reduce the use of fertilizers can be effective in supporting the smaller
farms.

5. Conclusion

Transformation to a more resilient and sustainable society in pres-
ence of a pandemic requires prioritizing the management of small-scale
farms, consistent with the SDG 15 which demonstrates that: “Protect,
restore and promote sustainable use of terrestrial ecosystems, sustain-
ably manage forests, combat desertification, and halt and reverse land
degradation and halt biodiversity loss”. In addition, sustainable small-
scale farms can be greatly productive and produce a higher yield.
Increased yield results in more agricultural income and more food se-
curity. It also leads to less pollution due to lower pesticide and fertilizer
use (FAO, 2020). Therefore, protecting small-scale and marginal farms
seems vital to achieve sustainable development goals. The government
can support small-scale farmers by providing tax credits. Since tax
payments contribute to a large proportion of total expenses for small
farms, tax incentives can be effective tools to mitigate the negative
impacts of COVID-19 on these farms.

In this paper, we introduced IMLAP, the Immediate Impact Model of
Local Agricultural Production, to estimate the likely impacts of COVID-
19 for U.S. counties. We considered the heterogeneous impacts on small
farms and different farmworkers across the continental U.S. We
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identified high-risk vulnerable communities. Our estimations suggest
that COVID-19 may have a heterogeneous impact on the farmers oper-
ating on different farm sizes and farmers from different racial groups.
The support policies and packages must target the most vulnerable
communities including the female and non-white farmers to ensure that
their livelihood is protected. Also, our estimations show that COVID-19
has a spatially heterogeneous impact. This means that policies must
consider this regional heterogeneity to decrease the economic implica-
tions of COVID-19 and efficiently support the agricultural systems.

We find that improvement in yields is critical to offset the damage
from COVID-19. Thus, natural disasters may intensify the negative im-
pacts of COVID-19 and can change the spatial pattern of the damage.
The direct impacts of the disasters are the loss of human lives, assets, and
harvest or livestock, as well as lower food security. The indirect costs are
the so-called higher-order costs (Hallegatte and Przyluski, 2010). Some
of these indirect losses are due to the output loss that arise from a
decrease in production, because of the disaster itself, or because of the
reduction in the productivity of inputs of production including labor,
capital, and land. Part of the indirect negative impacts is a result of the
damages to the infrastructure, such as electricity and transportation.
Some other negative impacts may be due to the disruption of supply
chains. A compound disaster resulting from occurring pandemics and
natural disasters can diminish the resilience of different economic sec-
tors such as agriculture, environment, and energy (Bahalou Horeh and
Hagqiqi, 2020). The combined disaster augments disruptions in produc-
tion, field crop, and livestock. It also can lead to higher prices of food
and agricultural products relative to when the pandemic or the natural
disaster happen individually. The coincidence of natural stress and
pandemics may also lead to food security problems in more vulnerable
regions. The proposed model of this study is an ideal framework for
immediate assessment of such impacts.

In this paper, we discussed the immediate impacts of COVID-19 on
agricultural systems. However, COVID-19 can have different impacts on
a longer timescale. In the long-run, the farmers will move toward
substituting labor-intensive technology with capital-intensive methods.
Therefore, to minimize the impacts of risks and uncertainties similar to
COVID-19, it is expected that farmers use less labor but more capital,

Appendix A. Appendix
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fertilizer, seed, energy, and other inputs in their production process in
the future.

This study shows the significance of labor productivity for creating
the knowledge needed to evaluate the impacts of unprecedented
changes in agricultural and food systems through data-intensive analysis
and simple economic modeling. The knowledge provided by this
approach is critical for integration with planning and policies to eval-
uate the benefits of potential solutions for agricultural resilience chal-
lenges. This paper calls attention to the significance of labor
productivity responses when analyzing the impacts of pandemics like
COVID-19. The important implication of the findings is that researchers
should be aware of the significance of productivity growth and inter-
national trade and conduct a more careful analysis in a global context.

The outcomes of this study provide novel findings of the degree to
which continued productivity growth, yield improvements, and inter-
national trade can eliminate the damages from COVID-19. It also ex-
pands a quantitative understanding of the underlying processes leading
to changes in the food system. Thus, policymakers should consider
technological growth and international trade in planning and choosing
strategies to solve the challenging resilience problems. We have found
that productivity loss varies by race and ethnicity. Therefore, a
community-specific supportive policy can keep the agricultural pro-
duction while meeting resilience goals.
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This appendix describes the IMLAP model in more detail. The model considers demand and supply drivers for aggregate crops and aggregate
livestock production. The producer goal is to minimize the cost of purchasing the inputs subject to the production function. The production function is
a nested CES (constant elasticity of substitution) as illustrated in Fig. 2. The general from of a single nest CES system can be shown as the following set

of equations:

"gnZPiQi

o

1/p
st. 0=A |:Zﬁ[(AiQi)p:| P = o]

(A-1)

where, i is an index for inputs, P stands for price of output, P; shows price of input i, Q is used for quantity of output, Q; is the quantity of input, A is
an index for total productivity, A; is an index for input-specific productivity, f is the primal share coefficient, ¢ is the substitution elasticity, and p is
called CES exponent. A solution to this system is described in many microeconomics textbooks and computational models (e.g. Van Der Mensbrugghe,
2018). Solving this optimization problem yields the demand for each input. There are two specific forms of this function as illustrated in Table A-1. The
Leontief form assumes no substitution between inputs. This form is helpful for short-run analysis and specific technologies. The Cobb-Douglass form is
equivalent to a substitution elasticity of one. This specification has constant expenditure shares irrespective of relative input prices (and changes in
technology).

Table A-1
Solutions to different specifications of CES function.

CES Leontief, 6 = 0 Cobb-Douglas, 6 = 1

(continued on next page)
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Table A-1 (continued)

CES Leontief, 6 = 0 Cobb-Douglas, 6 = 1
— B(A:A)L P
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With this introduction, we describe equations showing input use in agricultural production for the proposed nested CES form. The producers
employ each input mainly based on relative prices and the scale of production. The demand is obtained by solving the cost minimization problem of
the producer given its specific production possibility frontier and the nested CES structure. Four composite input bundles are introduced including the
capital-labor bundle (KL), composite labor (LT), material-land (MN), and composite materials (MT). Let Q be the quantity and P show the price. The
following equation shows the employment of machinery and equipment capital (k) for producer type j for county c:

y -1 q 2= 1 YV P{(‘ " P,f.l(' ”
0. = p.(43)" (Af:«) Qe (Pj@f ) (Pj@ (A-2)
1€ 1€

where, k, y, and kl are used to show the variables associated with capital, output, and the KL composite. Here, f is the CES parameter, A is the
productivity index, o7 is the substitution elasticity between KL composite and MN composite, and o3 is the substitution elasticity between capital and
labor. This equation shows the employment of machinery and equipment increases with an increase in the scale of production or a decline in the
relative price of capital. A similar equation shows the employment of labor type [ and includes the labor composite layer (LT) as shown in the following
equation:

N N - AN AN AN
[ y \%1— 1 - Y Jc J,¢ J,¢
O = A" (4.)" 0 (Pﬁ,) (P;;) (p;,() (A-3)

where, all the notations are similar to the previous equation. Here, o3 shows the substitution elasticity between different labor types. The substitution
parameter is important in this study as it provides a margin for adaptation when one category of labor is less productive. This equation implies the
employment of each labor category depends on the scale of production, productivity, and relative wage, and other prices. The following equation
shows the derived equation for land use, n, in county c for farm type j:

; \ 01 o4
no__ pon y o1 n o3 Pji P!rtlf"
Qj,c - ﬂ/‘.c (A/l) < j.c) Qt (ij(n P;Z.L‘ (A_4)

where, n is used for land and mn for the material-land composite bundle. The demand for land also depends on the scale of production, the price index
of composite materials, productivity, and substitution parameters. Here, 64 shows the substitution elasticity between land and materials (fertilizer,
seeds, chemicals, etc). This parameter governs the intensifications in agricultural production. Finally, the use of material inputs for agricultural
production is determined based on the following equation:

i i y \o1—1 i 023 \ P)c " P’T - met ”
0. =F)"" (4.)" @ (P;,,) = (= (A5)
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where, i is used for material inputs, and o5 shows the substitution elasticity between other input materials (fertilizer, seeds, chemicals, etc).
The costs of production should not exceed the sum of revenues and other transfers (e.g. government supports). The following equation ensures that
the zero-profit condition holds.

y _ i i [ i 7" 1 k
P/Y«CQ]yV' + Tij" - ZP/'.L‘QJ',C + ZPJ',CQ/'.L‘ + ;P/..l‘Qj.C + ;P_I/{.CQ/'.E (A-6)

total revenue  other transfers

total costs

The price index of composite bundles is the weighted average of associated inputs. Let ¢ show the cost weight of each input in the bundle. The
linear approximation of price indexes can be shown as the following equations.
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where, p and a are defined as the percentage change in price and productivity, respectively. In other words, the percentage change in the price of an
input bundle depends on the percentage change in the price of underlying inputs and their productivity changes. Thus, if prices are not changed and
the productivity is unchanged, the price index of composite input will not change.

Combining eqgs. A-2 to A-10, we can derive the main analytical expression for this study as shown in the following equation:

6= > 0 (dhe +ai) + D0 (dh +a.)
i 1
0 (gt ) + 0 (dh i) +al,
n k

(A-11)

here, ¢ is the percentage change in the production of output y, by farm type j in county c. Then, i, I, n, k are indexes for intermediate inputs, labor,
land, and capital, respectively. While g shows the percentage change in the quantity of associated input or output, € is the share parameter, and « is the
percentage change in productivity.

The demand for agricultural products comes from four different sources including direct local sales (QD"*™) non-local domestic sales (QD""ay
exports (QD%°*%), and stocks (QD*°*). The following equation shows major demand drivers of local production.

QDC — QDéoml + QDflubal + QD?a[[(mal + QDimck: (A'12)

The total supply of agricultural products in each county ¢, QS,;, is the sum of production of different farm types j, Q’j . as shown in the following
equation:

0S.=> 0,

J

(A-13)

The consumer in each county c, chooses between local and non-local variety of foods. We assume these varieties are imperfect substitutes and thus
change in their relative prices will affect their demand. Consumer demand for food is specified by solving the utility optimization problem for local and
non-local agricultural commodities as shown in the following equations:

Pcnlof o0
Dlac = A alo(‘ Ic c
Q c c (Pcinc)

(A-14)

where, QC is the consumer demand, c is the index for counties, loc is the abbreviation for local and nloc is the abbreviation for non-local, a is the CES
utility parameter, I represents income, PC is the consumer price, and oy is the substitution elasticity between local and non-local food varieties in the
utility. Note that PC*" shows the weighted average consumer price index for all the purchased food commodities. In this study, local income is

exogenous to the model.
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