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A B S T R A C T   

CONTEXT: The COVID-19 pandemic has resulted in immediate and wide impacts on human and agricultural 
systems. While some of the positive and negative impacts of COVID-19 on the environment and economies are 
emerging, there is not a comprehensive understanding of the potential impacts of COVID-19 on the most 
vulnerable farmers. 
OBJECTIVE: The purpose of this study is to evaluate the immediate impacts of COVID-19 on agricultural and food 
systems in the United States. Our aim is to quantify the impacts on labor productivity in crops and livestock 
production considering the heterogenous vulnerability of different farmworkers. We are interested in measuring 
the production that is not realized due to COVID-19. 
METHODS: In this paper, we introduce IMLAP, Immediate impact Model of Local Agricultural Production. This 
model is an economic framework considering short-term agricultural production responses to economic, envi
ronmental, and policy changes. We investigate the potential impacts of COVID-19 on the farmers in the U.S. for 
each county with a special focus on female, Hispanic, black and African American, and small-scale producers. 
RESULTS AND CONCLUSIONS: Considering the impacts of COVID-19 on labor, the findings of this study suggest a 
decline in agricultural output in all the U.S. counties ranging from 1.18% to 7.14% of total production. Our 
simulation results show that counties with a higher number of small-scale farms, non-white farmers, and female- 
operated farms are the most vulnerable to COVID-19. Also, we argue that the stimulus policies and support 
packages must target these communities of producers to ensure that their livelihood is protected. The findings 
suggest that productivity growth (technological improvements) and international trade can eliminate the 
negative impacts of pandemics. 
SIGNIFICANCE: The proposed quantitative framework of this study is a simple yet novel model that empowers 
diverse research communities to provide a quick analysis of the impacts of unprecedented events. It offers a 
holistic framework to evaluate the response of agricultural production to changes in availability and productivity 
of labor, machinery & equipment, land, fertilizer, seeds, and other inputs. This study presents new foundations 
for agricultural research communities to provide solutions to agricultural resilience challenges and highlights the 
significance of demand drivers, technological growth, and international trade in strengthening the food system.   

1. Introduction 

Months after the beginning of the world-wide COVID-19 pandemic, 
the positive and negative effects on food and agricultural systems are 
being observed. Some of the positive effects of the pandemic on the 
environment are reduction in greenhouse gas (GHG) emissions (Hanna 
et al., 2020; Le Quéré et al., 2020; Venter et al., 2020), improved water 
quality, and less noise pollution (Diffenbaugh et al., 2020). The negative 
impacts of the pandemic on global poverty (World Bank, 2020), food 

production and supply chain (Barrett, 2020), welfare, and inequality 
(Diffenbaugh et al., 2020) are also emerging. While uncertainty is the 
nature of the agricultural system, COVID-19 has increased price uncer
tainty for the farmers. Due to challenges posed by the pandemic, farmers 
around the world are struggling to have a profitable production. Some 
farmers face higher production costs due to limits on labor; some others 
observe low sale revenues as the trade and storage margins on price are 
getting larger. On the global scale, food prices started high in 2020 and 
declined until June–May when the prices started to increase. Except for 
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some dairy products, the prices have been rising in August. This volatile 
situation can increase the risk of agricultural systems. A quantitative and 
informative analysis could help to identify the impacts on potentially 
vulnerable agricultural communities. 

Labor has a significant role in the agricultural system. However, the 
impact of COVID-19 has been significantly different across different 
communities. Considering the effects of some risks such as COVID-19 on 
various producers is important to identify which groups of producers are 
more susceptible to the negative impacts of those risks. It is expected 
that COVID-19 hit hardest the Hispanic, black, and African American 
producers. These groups of farmers face more challenges relative to 
other farmers even in the absence of a pandemic (Leslie et al., 2019). 
Black farmers are disproportionally affected by COVID-19. The Centers 
for Disease Control (CDC) declares that people of color and black people 
are disproportionately represented in jobs which puts them at a greater 
risk of exposure due to factors such as not being able to work remotely 
(CDC, 2021a). Black farmers in the U.S. are older than other U.S. farmers 
(60.8 versus 57.5 years in 2017), operate on small-scale farms, and have 
difficulty obtaining credit (Taylor, 2018) which makes them more 
vulnerable to COVID-19. Moreover, in August 2020, the number of black 
or African American people employed in farm-related occupations 
decreased by about 70% compared to August 2019 while it declined by 
6% for white people (BLS, 2020). 

Female farmers may be impacted by COVID-19 more than male 
farmers. Woman farmers operate on a vast proportion of lands in the U. 
S. In 2017, The female-operated farms accounted for 38% of the U.S. 
agriculture sales and 43% of the U.S. farmland (USDA-NASS, 2019). 
Should they need aids to manage their finical hardship due to COVID-19, 
female producers are less likely to receive the subsidies compared to the 
male producers; mainly due to the fact that women engage more in the 
activities that are less likely to be subsidized such as small-scale farms 
(Leslie et al., 2019). Additionally, the female farmers are mostly the 
beginning farmer and have less access to credit and savings than the 
male farmers (30% of female farmers had farms 10 years or fewer while 
25% of male producers owned farms 10 years or fewer). Also, female 
farmers are likely to face gender-based discrimination when they apply 
for loans to develop their operations. 

We expect that the small-scale farmers and marginal producers are 
also among the most vulnerable to the pandemic. Some farmers have lost 
their local restaurant customers leading to extra marketing and delivery 
costs. On the other hand, large producers may benefit from this situation 
due to their better investment in storage and marketing power. The 
pandemic has decreased small farmers’ incomes as a source of livelihood 
due to mobility restrictions, production disruptions, and a fall in 
regional demand for agricultural commodities. COVID-19 may also 
reduce the off-farm income that the small farmers use to cover their 
production and living expenses and manage their farm debts (USDA- 
ERS, 2021a). 

In this paper, we suggest a simple yet informative approach to study 
the effects of COVID-19 on agricultural producers accounting for 
farmers’ race, gender, and farm size. Our approach is similar to the 
Purdue Food and Agriculture Vulnerability Index (PFAVI) that quan
tifies the loss in production as a result of farmworkers’ illness due to 
COVID-19 (Lusk, 2020). However, PFAVI does not report the loss in 
production considering different gender and races while we have 
accounted for race, gender, and farm size in our analysis. We also 
consider the differences in production technology and cost structure of 
different producers across the US. 

Deploying numerical and economic models can be beneficial in 
different ways. Since COVID-19 is an unprecedented event, it is impos
sible to recognize all possible impacts on the economy and agricultural 
systems based on pure historical experience or conceptual models. The 
economic model that considers producer behavior can be used to mea
sure the responses of each community/producer. The economic models 
can also be used to create simulations to test the hypothesis that cannot 
be anticipated otherwise. These models can be deployed to evaluate 

different policy interventions that can be designed to mitigate the im
pacts of COVID-19. 

2. Methods 

We introduce IMLAP, Immediate impact Model of Local Agricultural 
Production. This model is an economic model considering short-term 
agricultural production responses to economic, environmental, and 
policy changes. The agricultural production includes crops and animals 
and each location has its production structure. The major inputs in 
production function are labor, land, equipment and machinery, chem
icals, seeds, and fertilizer as illustrated in Fig. 1. 

The equilibrium price and quantity of each input or output com
modity are determined in the model according to the interaction of 
agents in local markets. At each location (counties in the U.S.), the 
economic behavior for six types of agents is considered. This includes 
consumers, producers, landowners, capital owners, farmworkers, and 
the suppliers of agricultural inputs (seeds, fertilizer, chemicals, etc). 
Producers are categorized according to the farm size while farmworkers 
are classified based on ethnicity and sex. The demand and supply for 
each commodity are derived by solving the economic optimization 
behavior of each agent following microeconomic production theory 
(Klump et al., 2012; Kmenta, 1967; Lu and Fletcher, 1968). 

2.1. Supply: labor, capital, land, and other agricultural inputs 

The production function is a Nested Constant Elasticity of Substitu
tion (Perroni and Rutherford, 1995; Prywes, 1986) system as shown in 
Fig. 2. In this system, all the production inputs are combined in various 
“nests”. For example, the labor nest consists of different labor types and 
a parameter of substitution (σ3) governs the flexibility of replacing one 
type of labor with another. Then, another parameter, σ2, governs the 
flexibility of replacing labor with machinery. This is a standard frame
work widely used in agricultural economics for the assessment of agri
cultural shocks and policies like in SIMPLE-G (Baldos et al., 2020), GTAP 
(Corong et al., 2017), GCAM (Calvin et al., 2019), IMPACT (Rosegrant 
et al., 2012), AIM (Fujimori et al., 2017), ENVISAGE (Van Der Mens
brugghe, 2018), MAGNET (van Meijl et al., 2006), and EPPA (Jacoby 
et al., 2006). The Technical Appendix provides more details about the 
production function and its components. 

Following the economic behavior of farmers discussed in the Tech
nical Appendix, we derive the main analytical expression for this study 
which follows the SIMPLE-G logic (Hertel and Baldos, 2016). The 
following equation shows the main drivers of change in production by 
farm type and county. 
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here, qy
j,c is the percentage change in the production of output y, by farm 

type j in county c. While q shows the percentage change in the quantity 
of associated input or output, θ is the share parameter, and α is the 
productivity parameter. Then, i, l, n, k are indexes for intermediate in
puts, labor, land, and capital, respectively. This equation shows an in
crease in the quantity of any input (qi, ql, qk, qn) can increase production 
given no reduction in other inputs and productivity. Also, it shows that 
an increase in productivity of any input can increase agricultural output 
given no reduction in other factors. However, if the use of other inputs is 
likely to change due to changes in relative prices (look at the Appendix 
for full functional forms), a computational framework is necessary to 
calculate the final impact. The final impact for the county is the 
weighted average of changes by farm size and producer type. 
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2.2. Demand: local, national, and global drivers 

The change in demand for agricultural products comes from four 
different sources including changes in direct local demand (qdlocal), non- 
local domestic demand (qdnational), exports or global demand (qdglobal), 
and stocks (qdstocks). In this study, the changes related to demand are 
exogeneous. The following equation shows major demand drivers of 
local production. 

qdtotal
c = ωlocal

c qdlocal
c + ωglobal

c qdglobal
c + ωnational

c qdnational
c + ωstocks

c qdstocks
c (2)  

2.3. Model closure 

To measure the short-run impacts of the COVID-19, the Leontief 
structure is considered for the top nests of the production function, and 
the Cobb-Douglas structure is assumed for lower nests (Miller, 2008). 
Other supply and demand parameters are calibrated for each location 
and each type of producer. Producers are categorized based on size and 
gender averaged at each county level. Labor types consist of different 
races and ethnicities to reflect different vulnerabilities to COVID-19. The 
county-level contributions by farm size are estimated using the United 
States Department of Agriculture (USDA) information on Production 
Expenses by county (USDA-NASS, 2019). We assume the demand for 

agricultural products is exogenous to the model. Another assumption is 
that the relative wages of different labor types are unchanged. This 
ensures no major labor substitution across the labor types. Finally, we 
assume that the relative price of material inputs are also unchanged 
ensuring no major change in the composition of material inputs. 

2.4. COVID-19 scenarios 

A pandemic like COVID-19 can affect agriculture in multiple ways. 
Observations in April and May of 2020, suggest significant changes in 
the labor market and temporary food shortage. Following these obser
vations, this study evaluates the potential impacts of COVID-19 on 
agricultural production in U.S. counties through a) changes in labor 
productivity, and b) changes in global food purchases. We also consider 
a scenario of continued productivity growth and yield improvements. 

2.4.1. Scenario 1: lost labor productivity 
Agriculture was considered an essential industry and was exempt 

during the U.S. lockdown (Torpey, 2020). Note that agricultural workers 
are not frequently exposed to infection at work (Hawkins, 2020). Thus 
the unemployment rate in farm-dependent metro and non-metro areas 
have been the lowest in the U.S. (Cromartie et al., 2020). However, there 

Fig. 1. Modeling the impacts of COVID-19 in IMLAP model.  
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are other ways that COVID-19 can affect labor productivity. This in
cludes virus exposure out of the workplace, family and friend gather
ings, shopping, outdoor dining, etc. Also, the illness of a family member 
or a friend can negatively affect productivity. In the U.S., livestock 
production suffered significantly in April and May of 2020 due to 
COVID-19 cases in slaughterhouses, processing plants, and meat
packing. This caused a temporary shortage and price increase. Here, we 
assume the reduction in labor productivity and capacity follows the 
pattern of hospitalization. 

We cover all the counties in the Conterminous United States. For 
agricultural commodities we consider “crops total” and “animal totals- 
including produce”. For producer types, we consider race/ethnicity 
(Hispanic, black and African American, American Indian, Asian, white, 
and others) and farm sizes. The share of each type is calculated based on 
the 2017 Census of Agriculture information obtained from USDA-NASS. 
The impact of COVID-19 on labor productivity is defined with a harm 
index based on the hospitalization rate of each labor type. 

2.4.2. Scenario 2: exports 
Not all the countries in the world were hit by COVID-19 simulta

neously. China’s quick recovery created opportunities for other coun
tries to stay in the agricultural markets. Despite interruption in 
shipments, the U.S. soybean exports to China increased in 2020 as 
China’s economy continued to grow. Also, the U.S. exports of animal 
products have increased. These changes are not considered to be asso
ciated with American domestic COVID-19 cases. However, it is the na
ture of pandemics to hit different regions at different points in time. 
USDA forecasts the volume of U.S. exports increased in 2020 (Kenner 
and Jiang, 2021). So, we associate a 1.4% change in U.S. agricultural 
exports due to COIVD-19 which is roughly equivalent to the increase of 
exports to China. 

2.4.3. Scenario 3: continued productivity growth and yield improvements 
Without COVID-19, total agricultural output was expected to grow 

following its recent trend. Regarding livestock and meat production, the 
average annual growth from 2016 to 2019 has been around 2.7%. 
However, its actual growth in 2020 has been around 1.1% compared to 
2019. So, the 1.6% can be assigned to the growth not realized due to 
COVID-19. The potential growth is also expected for crops depending on 
weather conditions. U.S. corn yield in 2020 is estimated to be 2.7% 

higher than the 2019 yields (USDA-NASS, 2021). Therefore, we assume 
around a 2.7% increase in total factor productivity for all production 
practices. 

3. Results 

Following a simple production model, this study estimates the likely 
impacts of COVID-19 on labor productivity and overall agricultural 
production. We report the impacts by U.S. counties, states, and farm 
sizes. 

3.1. Lost labor productivity 

According to CDC, around 22.85% of the population of 18 to 65 years 
old have been symptomatic for COVID-19 in 2020 (CDC, 2021b). Based 
on CDC estimates the average productivity lost is calculated for the US. 
Considering a two-week mandatory quarantine for the symptomatic 
person and people in close contacts, we estimate around 45.7% of people 
at this age had to stop working for two weeks, which is about 4% of total 
annual working days. In other words, around 1.9% of total labor hours 
had been lost due to COVID-19 in 2020. Table 1 shows the estimated 
impacts of COVID-19 on different farmworkers in crop and livestock 
production. Overall, the productivity of workers in livestock production 
is larger due to the Apr-May lockdown. Also, the productivity lost is the 
highest for Hispanic farmworkers followed by Black & African American 
farmworkers. This is the direct result of applying the CDC hospitaliza
tion factor for these communities. 

Fig. 2. Structure of local agricultural production.  

Table 1 
Estimated productivity lost due to COVID-19.   

Hispanic Black & African 
American 

White Others 

CDC hospitalization 
factor 

3.2× 2.9× 1× 2.0×

Average productivity 
lost     

in crop production (%) 3.53 3.20 1.10 2.20 
in livestock production 

(%) 
6.72 6.09 2.10 4.20  
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3.2. National-level results by farm size 

The findings suggest that the impact of COVID-19 on the agricultural 
system in the U.S. is equivalent to 2.63% of total agricultural produc
tion. This is around $10 billion worth of crops and livestock products. 
Fig. 3 summarizes the results by farm size in terms of the potential 
production not realized. In percentage change, the small farms are 20% 
more vulnerable to COVID-19 than large farms. However, in absolute 
values, the amount of production not realized due to COVID-19 is bigger 
in large farms as their share in agricultural production is higher. 

3.3. State-level results 

Considering county-specific labor composition (race and ethnicity) 
and production (crops and livestock), we calculate the production not 
realized due to COVID-19 by counties and aggregate it to states. Fig. 4 
shows the change in farm production due to COVID-19, boosted exports, 
and continued growth in yields and TFP (total factor productivity) for 
major agricultural states. The yellow and blue colors show an increase in 
production and the red colors show a fall in production. The findings 
suggest that all the states will have lower agricultural production. The 
biggest damage is in California that may lose around $1.5 billion worth 
of agricultural outputs due to COVID-19. However, the increase in 
yields, the continued productivity growth, and boosted agricultural 
exports can eliminate the negative impacts and even cause an increase in 
production. Overall, the combination of all three scenarios can lead to a 
1.47% increase in total agricultural production ($5.7 billion). 

3.4. County-level results 

On average, the model predicts a 2.63% lower agricultural output 
due to COVID-19 for the whole U.S. However, the impact is not uniform 
across space as shown in Fig. 5. The impact ranges from around −7.14% 
to around −1.18%. Note that this is average over the county. In other 
words, the within-county heterogeneity is not modeled here. The map 
shows the livestock producing regions such as South Dakota and 
Wyoming face high drops inoutput. These regions have also a high 
concentration of female-operated farms. Texas and Arkansas that have 
more black farmers than any other states also experience a reduction in 
their sales. On the other hand, Midwest and around Mississippi are less 
affected. 

4. Discussion 

The USDA has provided different estimates about U.S. agricultural 
production in 2020. According to USDA Farm Income Projections in 
February 2020, the net farm income was expected to grow 3.3% in 2020 
from 2019 levels (Schnepf, 2020). In U.S. Farm Sector Financial In
dicators released in February 2021, it was predicted that cash receipt has 
increased by 0.3% for all agricultural products, and increased by 5.5% 
for production of crops while it drops by 5.4% for animals and related 
products (USDA-ERS, 2021b). We estimate a 1.47% increase in pro
duction volume when combining COVID-19 impacts with yield and ex
ports. There are several reasons for the difference with USDA forecasts. 
First, our model projects volume without looking at prices. The USDA 
forecast includes prices. This is important as farm-level cattle prices 
have declined by 4.9% in 2020 (USDA-ERS, 2021c). Also, we did not 
consider many other changes in the real world including changes in 
stocks, household consumptions, prices, and other demand components. 
With only three shocks (COVID-19, exports, and yields), we were able to 
predict the right direction of the change. One major factor can be the 
change in food spending. According to USDA, total food spending 
(including “food at home” and “food away from home”) averaged 
$125.3 billion per month in Jan-Jun 2020, a 6.9% reduction from 
$134.7 billion per month in 2019. This is mainly a result of less spending 
on food away from home. Another reason can be un-identified changes 
in other agricultural inputs. Overall, the observed changes in other 
agricultural inputs are small and there is no robust evidence to show the 
linkage to COVID-19. The USDA estimated a small increase in the ex
penses of feed purchases, labor, fertilizer, seed, and rents in 2020 
compared to 2019. However, total production expenses for 2020 are 
projected to be 1.3% lower than 2019 due to a decline in other expenses, 
especially interest payments (USDA-ERS, 2021d). With no robust evi
dence on the significant role of COVID-19 on other inputs, we assumed 
no covid-related shocks in other agricultural inputs. Thus, we considered 
the impact of COVID-19 on labor only, not other inputs. We expect that 
considering the changes in output prices and input costs may have a 
more uniform impact across the US. However, more information and 
further numerical analysis are required to do a comprehensive 
investigation. 

The heterogeneous impact of COVID-19 on agriculture indicates a 
change in the organization of agricultural production. From small farms 
to large farms and from more labor contribution to higher 

Fig. 3. Estimated share of production not realized due to COVID-19 by farm size.  
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mechanization and automation. This is in the short-term and just due to 
changes in the scale of production by heterogeneous farms. As small 
farmers are more affected, they may exit the market in the short-term or 
decide to change the production technology and strategies. 

Also, supportive policies may have different effectiveness regarding 
the size of farms. Since tax payments contribute to a large proportion of 
total expenses for small farms (USDA-NASS, 2019), tax credits can be an 
effective policy for them. This suggests a policy for protecting agricul
tural systems via tax channel should target the small farmers. Moreover, 
labor contributes to a higher portion of expenses in small farms 
compared to large farms. An increase in labor costs due to protective 
concerns will shrink the profit margin for small farmers more than large 
farmers. Also, the share of cash rents is lower for small farms which 
means that they mostly own their land Thus, a rent-based supportive 
program will be less beneficial to small farmers. Finally, the share of 
fertilizer is lower for small farms (USDA-NASS, 2019). Thus, the 
fertilizer-based policies are more effective for large farms compared to 
small farms. In fact, due to the lower use of fertilizers by the smaller 
farms relative to the larger farms, the trade and price policies that can 
reduce the use of fertilizers can be effective in supporting the smaller 
farms. 

5. Conclusion 

Transformation to a more resilient and sustainable society in pres
ence of a pandemic requires prioritizing the management of small-scale 
farms, consistent with the SDG 15 which demonstrates that: “Protect, 
restore and promote sustainable use of terrestrial ecosystems, sustain
ably manage forests, combat desertification, and halt and reverse land 
degradation and halt biodiversity loss”. In addition, sustainable small- 
scale farms can be greatly productive and produce a higher yield. 
Increased yield results in more agricultural income and more food se
curity. It also leads to less pollution due to lower pesticide and fertilizer 
use (FAO, 2020). Therefore, protecting small-scale and marginal farms 
seems vital to achieve sustainable development goals. The government 
can support small-scale farmers by providing tax credits. Since tax 
payments contribute to a large proportion of total expenses for small 
farms, tax incentives can be effective tools to mitigate the negative 
impacts of COVID-19 on these farms. 

In this paper, we introduced IMLAP, the Immediate Impact Model of 
Local Agricultural Production, to estimate the likely impacts of COVID- 
19 for U.S. counties. We considered the heterogeneous impacts on small 
farms and different farmworkers across the continental U.S. We 

Fig. 4. Change in U.S. agricultural production in different scenarios for the major agricultural states.  

Fig. 5. Estimated share of production not realized due to COVID-19, by county. Source: simulation results.  

I. Haqiqi and M. Bahalou Horeh                                                                                                                                                                                                            



Agricultural Systems 190 (2021) 103132

7

identified high-risk vulnerable communities. Our estimations suggest 
that COVID-19 may have a heterogeneous impact on the farmers oper
ating on different farm sizes and farmers from different racial groups. 
The support policies and packages must target the most vulnerable 
communities including the female and non-white farmers to ensure that 
their livelihood is protected. Also, our estimations show that COVID-19 
has a spatially heterogeneous impact. This means that policies must 
consider this regional heterogeneity to decrease the economic implica
tions of COVID-19 and efficiently support the agricultural systems. 

We find that improvement in yields is critical to offset the damage 
from COVID-19. Thus, natural disasters may intensify the negative im
pacts of COVID-19 and can change the spatial pattern of the damage. 
The direct impacts of the disasters are the loss of human lives, assets, and 
harvest or livestock, as well as lower food security. The indirect costs are 
the so-called higher-order costs (Hallegatte and Przyluski, 2010). Some 
of these indirect losses are due to the output loss that arise from a 
decrease in production, because of the disaster itself, or because of the 
reduction in the productivity of inputs of production including labor, 
capital, and land. Part of the indirect negative impacts is a result of the 
damages to the infrastructure, such as electricity and transportation. 
Some other negative impacts may be due to the disruption of supply 
chains. A compound disaster resulting from occurring pandemics and 
natural disasters can diminish the resilience of different economic sec
tors such as agriculture, environment, and energy (Bahalou Horeh and 
Haqiqi, 2020). The combined disaster augments disruptions in produc
tion, field crop, and livestock. It also can lead to higher prices of food 
and agricultural products relative to when the pandemic or the natural 
disaster happen individually. The coincidence of natural stress and 
pandemics may also lead to food security problems in more vulnerable 
regions. The proposed model of this study is an ideal framework for 
immediate assessment of such impacts. 

In this paper, we discussed the immediate impacts of COVID-19 on 
agricultural systems. However, COVID-19 can have different impacts on 
a longer timescale. In the long-run, the farmers will move toward 
substituting labor-intensive technology with capital-intensive methods. 
Therefore, to minimize the impacts of risks and uncertainties similar to 
COVID-19, it is expected that farmers use less labor but more capital, 

fertilizer, seed, energy, and other inputs in their production process in 
the future. 

This study shows the significance of labor productivity for creating 
the knowledge needed to evaluate the impacts of unprecedented 
changes in agricultural and food systems through data-intensive analysis 
and simple economic modeling. The knowledge provided by this 
approach is critical for integration with planning and policies to eval
uate the benefits of potential solutions for agricultural resilience chal
lenges. This paper calls attention to the significance of labor 
productivity responses when analyzing the impacts of pandemics like 
COVID-19. The important implication of the findings is that researchers 
should be aware of the significance of productivity growth and inter
national trade and conduct a more careful analysis in a global context. 

The outcomes of this study provide novel findings of the degree to 
which continued productivity growth, yield improvements, and inter
national trade can eliminate the damages from COVID-19. It also ex
pands a quantitative understanding of the underlying processes leading 
to changes in the food system. Thus, policymakers should consider 
technological growth and international trade in planning and choosing 
strategies to solve the challenging resilience problems. We have found 
that productivity loss varies by race and ethnicity. Therefore, a 
community-specific supportive policy can keep the agricultural pro
duction while meeting resilience goals. 
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Appendix A. Appendix 

This appendix describes the IMLAP model in more detail. The model considers demand and supply drivers for aggregate crops and aggregate 
livestock production. The producer goal is to minimize the cost of purchasing the inputs subject to the production function. The production function is 
a nested CES (constant elasticity of substitution) as illustrated in Fig. 2. The general from of a single nest CES system can be shown as the following set 
of equations: 

min
Qi

∑

i
PiQi

s.t. Q = A

[
∑

i
βi(AiQi)

ρ

]1/ρ

, ρ =
σ − 1

σ

(A-1) 

where, i is an index for inputs, P stands for price of output, Pi shows price of input i, Q is used for quantity of output, Qi is the quantity of input, A is 
an index for total productivity, Ai is an index for input-specific productivity, β is the primal share coefficient, σ is the substitution elasticity, and ρ is 
called CES exponent. A solution to this system is described in many microeconomics textbooks and computational models (e.g. Van Der Mensbrugghe, 
2018). Solving this optimization problem yields the demand for each input. There are two specific forms of this function as illustrated in Table A-1. The 
Leontief form assumes no substitution between inputs. This form is helpful for short-run analysis and specific technologies. The Cobb-Douglass form is 
equivalent to a substitution elasticity of one. This specification has constant expenditure shares irrespective of relative input prices (and changes in 
technology).  

Table A-1 
Solutions to different specifications of CES function.  

CES Leontief, σ = 0 Cobb-Douglas, σ = 1 

(continued on next page) 

I. Haqiqi and M. Bahalou Horeh                                                                                                                                                                                                            



Agricultural Systems 190 (2021) 103132

8

Table A-1 (continued ) 

CES Leontief, σ = 0 Cobb-Douglas, σ = 1 

Qi = βi(AiA)
σ−1Q

(
P
Pi

)σ

P =
1
A

[
∑

i
βi

(
Pi

Ai

)1−σ
] 1

1 − σ  

Qi = βi(AiA)
−1Q

P =
1
A

∑

i
βi

(
Pi

Ai

)
Qi = βiQ

(
P
Pi

)

P =
1
A

∏

i

(
Pi

Ai

)βi   

With this introduction, we describe equations showing input use in agricultural production for the proposed nested CES form. The producers 
employ each input mainly based on relative prices and the scale of production. The demand is obtained by solving the cost minimization problem of 
the producer given its specific production possibility frontier and the nested CES structure. Four composite input bundles are introduced including the 
capital-labor bundle (KL), composite labor (LT), material-land (MN), and composite materials (MT). Let Q be the quantity and P show the price. The 
following equation shows the employment of machinery and equipment capital (k) for producer type j for county c: 

Qk
j,c = βk

j,c

(
Ay

j,c
)σ1−1

(
Ak

j,c

)σ2−1
Qy

j,c

(
Py

j,c

Pkl
j,c

)σ1
(

Pkl
j,c

Pk
j,c

)σ2

(A-2)  

where, k, y, and kl are used to show the variables associated with capital, output, and the KL composite. Here, β is the CES parameter, A is the 
productivity index, σ1 is the substitution elasticity between KL composite and MN composite, and σ2 is the substitution elasticity between capital and 
labor. This equation shows the employment of machinery and equipment increases with an increase in the scale of production or a decline in the 
relative price of capital. A similar equation shows the employment of labor type l and includes the labor composite layer (LT) as shown in the following 
equation: 

Ql
j,c = βl

j,c

(
Ay

j,c
)σ1−1

(
Al

j,c

)σ2−3
Qy

j,c

(
Py

j,c

Pkl
j,c

)σ1
(

Pkl
j,c

Plt
j,c

)σ2
(

Plt
j,c

Pl
j,c

)σ3

(A-3)  

where, all the notations are similar to the previous equation. Here, σ3 shows the substitution elasticity between different labor types. The substitution 
parameter is important in this study as it provides a margin for adaptation when one category of labor is less productive. This equation implies the 
employment of each labor category depends on the scale of production, productivity, and relative wage, and other prices. The following equation 
shows the derived equation for land use, n, in county c for farm type j: 

Qn
j,c = βn

j,c

(
Ay

j,c
)σ1−1

(
An

j,c

)σ2−3
Qy

j,c

(
Py

j,c

Pmn
j,c

)σ1
(

Pmn
j,c

Pn
j,c

)σ4

(A-4)  

where, n is used for land and mn for the material-land composite bundle. The demand for land also depends on the scale of production, the price index 
of composite materials, productivity, and substitution parameters. Here, σ4 shows the substitution elasticity between land and materials (fertilizer, 
seeds, chemicals, etc). This parameter governs the intensifications in agricultural production. Finally, the use of material inputs for agricultural 
production is determined based on the following equation: 

Qi
j,c = βi

j,c

(
Ay

j,c
)σ1−1

(
Ai

j,c

)σ2−5
Qy

j,c

(
Py

j,c

Pmn
j,c

)σ1
(

Pmn
j,c

Pmt
j,c

)σ4
(

Pmt
j,c

Pi
j,c

)σ5

(A-5)  

where, i is used for material inputs, and σ5 shows the substitution elasticity between other input materials (fertilizer, seeds, chemicals, etc). 
The costs of production should not exceed the sum of revenues and other transfers (e.g. government supports). The following equation ensures that 

the zero-profit condition holds. 

Py
j,cQy

j,c
⏟̅̅̅⏞⏞̅̅̅⏟

total revenue

+ TRj,c
⏟̅⏞⏞̅⏟

other transfers

=
∑

i
Pi

j,cQi
j,c +

∑

l
Pl

j,cQl
j,c +

∑

n
Pn

j,cQ
n
j,c +

∑

k
Pk

j,cQ
k
j,c

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
total costs

(A-6) 

The price index of composite bundles is the weighted average of associated inputs. Let φ show the cost weight of each input in the bundle. The 
linear approximation of price indexes can be shown as the following equations. 

pkl
j,c =

∑

l
φl

j,c

(
pl

j,c − al
j,c

)
+

∑

k
φk

j,c

(
pk

j,c − ak
j,c

)
(A-7)  

pmn
j,c =

∑

i
φi

j,c

(
pi

j,c − ai
j,c

)
+

∑

n
φn

j,c

(
pn

j,c − an
j,c

)
(A-8)  

plt
j,c =

∑

l
φl

j,c

(
pl

j,c − al
j,c

)
(A-9)  

pmt
j,c =

∑

i
φi

j,c

(
pi

j,c − ai
j,c

)
(A-10)  
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where, p and a are defined as the percentage change in price and productivity, respectively. In other words, the percentage change in the price of an 
input bundle depends on the percentage change in the price of underlying inputs and their productivity changes. Thus, if prices are not changed and 
the productivity is unchanged, the price index of composite input will not change. 

Combining eqs. A-2 to A-10, we can derive the main analytical expression for this study as shown in the following equation: 

qy
j,c =

∑

i
θi

j,c

(
qi

j,c + ai
j,c

)
+

∑

l
θl

j,c

(
ql

j,c + al
j,c

)

+
∑

n
θn

j,c

(
qn

j,c + an
j,c

)
+

∑

k
θk

j,c

(
qk

j,c + ak
j,c

)
+ ay

j,c

(A-11)  

here, qy
j,c is the percentage change in the production of output y, by farm type j in county c. Then, i, l, n, k are indexes for intermediate inputs, labor, 

land, and capital, respectively. While q shows the percentage change in the quantity of associated input or output, θ is the share parameter, and α is the 
percentage change in productivity. 

The demand for agricultural products comes from four different sources including direct local sales (QDlocal), non-local domestic sales (QDnational), 
exports (QDglobal), and stocks (QDstocks). The following equation shows major demand drivers of local production. 

QDc = QDlocal
c + QDglobal

c + QDnational
c + QDstocks

c (A-12) 

The total supply of agricultural products in each county c, QSc, is the sum of production of different farm types j, Qy
j,c. as shown in the following 

equation: 

QSc =
∑

j
Qy

j,c (A-13) 

The consumer in each county c, chooses between local and non-local variety of foods. We assume these varieties are imperfect substitutes and thus 
change in their relative prices will affect their demand. Consumer demand for food is specified by solving the utility optimization problem for local and 
non-local agricultural commodities as shown in the following equations: 

QDloc
c = λαloc

c Ic

(
PCnloc

c

PCloc
c

)σ0

(A-14)  

where, QC is the consumer demand, c is the index for counties, loc is the abbreviation for local and nloc is the abbreviation for non-local, α is the CES 
utility parameter, I represents income, PC is the consumer price, and σ0 is the substitution elasticity between local and non-local food varieties in the 
utility. Note that PCtot shows the weighted average consumer price index for all the purchased food commodities. In this study, local income is 
exogenous to the model. 
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