THE MINKOWSKI EQUALITY OF FILTRATIONS

STEVEN DALE CUTKOSKY

ABSTRACT. Suppose that R is an analytically irreducible or excellent local domain with
maximal ideal mr. We consider multiplicities and mixed multiplicities of R by filtrations
of mp-primary ideals. We show that the theorem of Teissier, Rees and Sharp, and Katz,
characterizing equality in the Minkowski inequality for multiplicities of ideals, is true for
divisorial filtrations, and for the larger category of bounded filtrations. This theorem is
not true for arbitrary filtrations of mpg-primary ideals.

1. INTRODUCTION

The study of mixed multiplicities of mp-primary ideals in a local ring R with maximal
ideal mp was initiated by Bhattacharya [1], Rees [30] and Teissier and Risler [37]. In [14]
the notion of mixed multiplicities is extended to arbitrary, not necessarily Noetherian,
filtrations of R by mp-primary ideals (mp-filtrations). It is shown in [14] that many basic
theorems for mixed multiplicities of mg-primary ideals are true for mg-filtrations.

The development of the subject of mixed multiplicities and its connection to Teissier’s
work on equisingularity [37] can be found in [18]. A survey of the theory of mixed mul-
tiplicities of ideals can be found in [36, Chapter 17|, including discussion of the results
of the papers [31] of Rees and [35] of Swanson, and the theory of Minkowski inequalities
of Teissier [37], [38], Rees and Sharp [34] and Katz [21]. Later, Katz and Verma [22],
generalized mixed multiplicities to ideals that are not all mp-primary. Trung and Verma
[40] computed mixed multiplicities of monomial ideals from mixed volumes of suitable
polytopes.

A filtration Z = {I,, }nen of a ring R is a descending chain

R=Iy>oL>I,D>---

of ideals such that I;I; C I;;; for all i,j € N. An mp-filtration Z = {I,,} is a filtration
Z = {I,}nen of R such that I,, is mp-primary for n > 1.

A filtration Z = {I, },en of a ring R is said to be Noetherian if @, I, is a finitely
generated R-algebra. B

The following theorem is the key result needed to define the multiplicity of an mg-
filtration. Let £r(M) denote the length of an R-module M.

Theorem 1.1. ([8, Theorem 1.1] and [9, Theorem 4.2]) Suppose that R is a local ring

of dimension d, and N(R) is the nilradical of the mp-adic completion R of R. Then the
limit

I,
(1) li G/ 1)

n— 00 nd

A~

exists for any mp-filtration T = {I,,}, if and only if dim N(R) < d.
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The problem of existence of such limits (1) has been considered by Ein, Lazarsfeld and
Smith [17] and Mustata [28]. When the ring R is a domain and is essentially of finite
type over an algebraically closed field k& with R/mpr = k, Lazarsfeld and Mustata [26]
showed that the limit exists for all mp-filtrations. Cutkosky [9] proved it in the complete
generality stated above in Theorem 1.1. Lazarsfeld and Mustata use in [26] the method of
counting asymptotic vector space dimensions of graded families using “Okounkov bodies”.
This method, which is reminiscent of the geometric methods used by Minkowski in number
theory, was developed by Okounkov [29], Kaveh and Khovanskii [24] and Lazarsfeld and
Mustata [26]. We also use this wonderful method. The fact that dim N(R) = d implies
there exists a filtration without a limit was observed by Dao and Smirnov.

As can be seen from this theorem, one must impose the condition that the dimension
of the nilradical of the completion R of R is less than the dimension of R to ensure the
existence of limits. The nilradical N(R) of a d-dimensional ring R is

N(R) ={x € R| 2" = 0 for some positive integer n}.
We have that dim N(R) = d if and only if there exists a minimal prime P of R such that
dimR/P = d and Rp is not reduced. In particular, the condition dim N (]A%) < d holds
if R is analytically unramified; that is, R is reduced. Thus it holds if R is excellent and
reduced. We define the multiplicity of R with respect to the mpg-filtration Z = {I,,} to be

en() = en(Ti ) = lim S,

The multiplicity of a ring with respect to a non Noetherian filtration can be an irrational
number. A simple example on a regular local ring is given in [14].
Mixed multiplicities of filtrations are defined in [14]. Let M be a finitely generated

R-module where R is a d-dimensional local ring with dim N(R) < d. Let

Z(1) ={I(W)n},. -, Z(r) = {I(r)n}
be mp-filtrations. In [14, Theorem 6.1] and [14, Theorem 6.6], it is shown that the function
CR(M/I(L)mny -+ L(7)mn, M)

(2) P(ny,...,ny) :W%gnoo "
is a homogeneous polynomial of total degree d with real coefficients for all ny,...,n, € N.

The mixed multiplicities of M are defined from the coefficients of P, generalizing the
definition of mixed multiplicities for mpg-primary ideals. Specifically, we write
1 d
(3) P(ni,....ny) = Z meR(I(l)[dl]v~-7I(7°)[dT]§M)n11"'ngr'
di+-+dr=d
We say that er(Z(1)l), ... Z(r)l4]; M) is the mixed multiplicity of M of type (di, ..., d,)
with respect to the mp-filtrations Z(1),...,Z(r). Here we are using the notation

(4) er(Z(W) . 2] )

to be consistent with the classical notation for mixed multiplicities of M with respect to
mp-primary ideals from [37]. The mixed multiplicity of M of type (dy, ..., d,) with respect
to mp-primary ideals I,...,I., denoted by eR(I{dl], e ,LEdT];M) ([37], [36, Definition
17.4.3]) is equal to the mixed multiplicity ep(Z(1)141], ... Z(r)l4]; M), where the Noether-
ian I-adic filtrations Z(1),...,Z(r) are defined by Z(1) = {1} }ien, - - -, Z(r) = {I} }ien.
We have that
(5) er(Z(j); M) = er(Z(j); M)
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for all j.

The multiplicities and mixed multiplicities of powers of mpg-primary ideals are always
positive ([37] or [36, Corollary 17.4.7]). The multiplicities and mixed multiplicities of
mpg-filtrations are always nonnegative, as is clear for multiplicities, and is established for
mixed multiplicities in [16, Proposition 1.3]. However, they can be zero. If R is analyti-
cally irreducible, then all mixed multiplicities are positive if and only if the multiplicities
er(Z(j); R) are positive for 1 < j <r. This is established in [16, Theorem 1.4].

When the module M is R and R is understood, we will usually write e(Z) = er(Z) and
e(Z(D)Nl, . Z(r)]) = ep(Z (D), ... Z(r)ld]).

Suppose that R is a d-dimensional local domain, with quotient field K. A valuation p
of K is called an mp-valuation if  dominates R (R C O,, and m, N R = mpg where O,, is
the valuation ring of x4 with maximal ideal m,,) and trdegg/y,,Op/my = d — 1.

Associated to an mp-valuation p are valuation ideals

(6) I(pw)n ={f € R| pu(f) = n}

for n € N. In general, the mp-filtration Z(u) = {I(p)n} is not Noetherian. In a two-
dimensional normal local ring R, the condition that the filtration of valuation ideals of
R is Noetherian for all mpg-valuations dominating R is the condition (N) of Muhly and
Sakuma [27]. It is proven in [6] that a complete normal local ring of dimension two satisfies
condition (N) if and only if its divisor class group is a torsion group. An example is given
in [5] of an mp-valuation p of a 3-dimensional regular local ring R such that the filtration
Z(p) is not Noetherian. The multiplicity e(Z(u)) is however a rational number. In Section
15, we give an example of an mp-valuation g dominating a normal excellent local domain
R of dimension three such that er(Z(n)) = er(Z(pg,)) is an irrational number. The
filtration is necessarily non Noetherian.

Divisorial filtrations are defined in Section 5, and briefly discussed in SubSection 2.4.
Divisorial filtrations are determined by prescribing multiplicities along a finite set of mg-
valuations. L

Let R be a local ring and Z = {I,,,} be an mp-filtration. Then the integral closure R[Z]
of RIZ] = >, <o Imu™ in Rlu] is R[Z] = > <, Jmu™ where {J,,} is the mpg-filtration
defined by J, = {f € R| f" € Iy, for some r > 0} (Lemma 5.6).

Bounded mpg-filtrations are defined in SubSection 5.6. A bounded mpg-filtration Z is
a filtration such that R[Z] = R[Z(D)] for some divisorial filtration Z(D). Every adic
filtration Z = {I™} of powers of a fixed mpg-primary ideal is bounded.

1.1. Rees’s Theorem. Rees has shown in [30] that if R is a formally equidimensional
local ring and I C I’ are mp-primary ideals then the following are equivalent:
1) e(I') = e(I)
2) ;nzg(l’)"t” =D oM™
3) I'=1
The statement 3) = 1) is true for an arbitrary local ring.
This raises the question of whether the conditions
1) e(T') = e(I)
2) > om0 Iht™ =250 Int™
are equivalent for arbitrary mp-filtrations 7' C Z.
The statement 2) = 1) is true for arbitrary mpg-filtrations in a local ring which satisfies

A~

dim N(R) < d. This is shown in [14, Theorem 6.9] and Appendix [12]. However the
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statement 1) = 2) is not true in general for mp-filtrations (a simple example in a regular
local ring is given in [14]).
Rees’s theorem is true for bounded mg-filtrations.

Theorem 1.2. (Theorems 13.1 and 14.4) Suppose that R is an excellent local domain or
an analytically irreducible local domain, Z(1) is a real bounded mp-filtration and Z(2) is
an arbitrary mg-filtration such that Z(1) C Z(2). Then the following are equivalent

1) e(Z(1)) = e(Z(2)).

2) There is equality of integral closures

S It =) I(2)mt™

m>0 m>0

in RJ[t].

1.2. The Minkowski inequalities and equality of mixed multiplicities. The Minkowski
inequalities were formulated and proven for mpg-primary ideals in reduced equicharacteris-

tic zero local rings by Teissier [37], [38] and proven for mp-primary ideals in full generality,

for local rings, by Rees and Sharp [34]. The same inequalities hold for filtrations.

Theorem 1.3. (Minkowski Inequalities for filtrations)([14, Theorem 6.3]) Suppose that R
1 a d-dimensional local ring with dim N(f%) <d, M is a finitely generated R-module and
Z(1) = {I(1);} and Z(2) = {I(2);} are mp-filtrations. Let e; = er(Z(1)[~1, T(2)l; M)
for 0 <1i<d. Then
) e <ei1eir1 for1 <i<d-—1.
) eieq_i < epeq for 0 <i<d.
) d<eg ’ezlfornggd.

1
)

1) en(T()T(2)); M)E < eff + e, where T(NT(2) = {I(1);1(2);}.

1
2

w

We write out the last inequality without abbreviation as
(7) eR(Z(1)Z(2)); M) < er(Z(1); M)d + er(Z(2); M)

where Z(1)Z(2) = {I(1)nI(2).,}. This equation is called The Minkowski Inequality.

The fourth inequality 4) was proven for mpg-filtrations in a regular local ring with
algebraically closed residue field by Mustata ([28, Corollary 1.9]) and more recently in this
situation by Kaveh and Khovanskii ([23, Corollary 7.14]). The inequality 4) was proven
with our assumption that dim N(R) < d in [9, Theorem 3.1]. Inequalities 2) - 4) can
be deduced directly from inequality 1), as explained in [37], [38], [34] and [36, Corollary
17.7.3).

There is a beautiful characterization of when equality holds in the Minkowski inequality
(7) by Teissier [39] (for Cohen-Macaulay normal two-dimensional complex analytic R),
Rees and Sharp [34] (in dimension 2) and Katz [21] (in complete generality).

They have shown that if R is a formally equidimensional local ring and (1), 1(2) are
mpg-primary ideals then the following are equivalent:

1) The Minkowski inequality

er(I(1)1(2))7 = e(I(1))7 + e(I(2)7
holds.



2) There exist positive integers a and b such that

D I(1)entn =) " I(2)bmtn.

n>0 n>0

3) There exist positive integers a and b such that I(1)¢ = I(2)®

The Teissier, Rees and Sharp, Katz theorem leads to the question of whether the fol-
lowing conditions are equivalent for mp-filtrations Z(1) and Z(2).

1) The Minkowski equality
er(Z(VI(2))7 = e(Z(1)7 + e(Z(2):

holds.
2) There exist positive integers a and b such that

> I()emtr = " 1(2)bmn,

n>0 n>0

We show in Theorem 8.4 that if Z(1) and Z(2) are mp-filtrations on a local ring R such
that dim N(R) < d and condition 2) holds then the Minkowski equality 1) holds, but the
converse statement, that the Minkowski equality 1) implies condition 2) is not true for
filtrations, even in a regular local ring, as is shown in a simple example in [14].

In Theorems 13.2 and 14.5, we show that 1) and 2) are equivalent for bounded mp-
filtrations on an analytically irreducible or excellent local domain, giving a complete gen-

eralization of the Teissier, Rees and Sharp, Katz Theorem for bounded mg-filtrations.

Theorem 1.4. (Theorem 15.2 and Theorem 14.5) Suppose that R is a d-dimensional ana-
lytically irreducible or excellent local domain and Z(1) and Z(2) are bounded mg-filtrations.
Then the following are equivalent

1) The Minkowski equality
e(Z()Z(2))7 = e(Z(1)) + e(Z(2)) 1

holds.
2) There exist positive integers a,b such that there is equality of integral closures

> I(Want™ = I(2)pnt"

n>0 n>0

in RJ[t].

We thank the referee for their helpful comments.

2. AN OVERVIEW OF THE PROOF

In this section, we suppose that R is a d-dimensional normal excellent local domain.

2.1. Multiplicities of filtrations. We summarize Sections 6 and 7 in this subsection.
We use the method of counting asymptotic vector space dimensions of graded families by
computing volumes of convex bodies associated to appropriate semigroups introduced in
[29], [26] and [24]. Let v be a valuation of the quotient field K of R which dominates R
and has value group isomorphic to Z?. Further suppose that v(f) € N¢ if 0 # f € R.
Then we can associate to an mp-filtration Z = {I,,} a semigroup I'(Z) C N%*! defined
by I'(Z) = {(v(f),n) | f € I,}. Let A(Z) be the intersection of the closure of the real
5



cone generated by I'(Z) with R? x {1}. Similarly, we define A(R) to be the subset of R?
constructed from I'(R) by replacing I,, with R for all n.
For ¢ € R+, let

H ={(z1,...,24) €ER? [m1 + -+ 24 < c}.

Using some commutative algebra, we find a constant ¢ > 0 such that

(8) ADN(AZ)NH) = A(R) \ (A(R) N H.).
Then A(Z) N HZ and A(R) N H_ are compact convex sets and by (34),
(9) eRd('I) = §[Vol(A(R) N H) — Vol(A(T) N H])]

where 6 = [0, /m, : R/mpg].

2.2. The Integral closure of a filtration Z and the convex sets A(Z). Suppose that
T’ C T are mp-filtrations. Then we have A(Z') C A(Z), so we have er(Z) = er(Z') if and
only if A(Z") = A(Z).

If 7’ is a Noetherian mpg-filtration, and Z is an mpg-filtration such that Z’ C Z, then
we have that er(Z') = er(Z) if and only if A(Z') = A(Z) which holds if and only if
RZ] =3, o Imu™ C >, ~oI,u™ = R[I']. This can be proven as follows. By taking
suitable Veronese subalgebras, we reduce to the case where Z and Z' are the filtrations of
powers of fixed mpg-primary ideals I and I’, so that the result then follows from Rees’s
Theorem [30] for normal excellent local domains. Rees’s theorem was discussed at the
beginning of Subsection 1.1.

For arbitrary mpg-filtrations Z' C Z such that R[Z] = > Int™ C >, <o I, t™ = R[T']
we have that ep(Z') = eg(Z), as shown in [14, Theorem 6.9] and [12, Appendix]. However,
as we mentioned in the beginning of Subsection 1.1, there exists a non-Noetherian mpg-
filtration Z' and a Noetherian mpg-filtration Z such that 7' C Z, er(Z') = er(Z) and

RIZ] =% ,50 Imt™ is not a subset of R[Z'] =3 o 1),t".

2.3. The invariant v,(Z). This subsection is a summary of Subsection 5.1. Let p be
an mp-valuation and Z be an mp-filtration. Define 7,,, = min{u(f) | f € I,,} and
Yu(T) = inf,{7=}. The numbers 7,, € Zq for all m but 7,(Z) can be an irrational
number, even when 7 is a divisorial mpg-filtration, as shown in Section 15) and explained
in Subsection 2.7.

Theorem 7.3 shows that if 7/ C Z and er(Z’') = er(Z) then v,(Z') = ~,(Z) for all
mp-valuations p. This is proven by taking the valuation v used to compute A to be
composite with p, so v(f) = (u(f),-+) € N¢ for f € R. The condition eg(Z') = er(Z)
implies A(Z') = A(Z) and v,(Z"),v.(Z) are the smallest points of the projections of A(Z’),
respectively A(Z) onto the first coordinate of RY.

2.4. Divisorial Filtrations. In this subsection, we summarize material from Section 5.
Let ¢ : X — Spec(R) be a birational projective morphism such that X is normal and is
the blow up of an mg-primary ideal. Let E1,..., E, be the prime exceptional divisors of
¢, and for 1 <1i <7, let ug, be the mg-valuation whose valuation ring is Ox g,. Suppose
that D = > a;E; with a; € N is an effective Weil divisor on X with exceptional support.

Define g, (D) = Vi, (Z(D)) for 1 < i < r. Then vg,(D) > a; for all i. We have that
ma; is the prescribed order of vanishing of elements of I(mD) along E; but myg, (D) is

asymptotically the actual vanishing.
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We remark that v,(Z(D)) can be an irrational number. By Theorem 15.2, the example
X of Section 15 has two prime exceptional divisors Fq and Es such that

3

9-+3

is an irrational number. This example is surveyed in Subsection 2.7.
We have that

(10) I(mD) = I([Y_ my,(D)E;])

for all m € N, where [z] is the round up of a real number x. In this way, we are led to
extend our category of divisorial mpg-filtrations to real divisorial mg-filtrations.

Now let Z = Z(3>_;_; aipi) with a; € N be a divisorial mp-filtration. A representation
of 7 is a pair ¢ : X — Spec(R) and a divisor »_; ; a;E; such that X is as in the above
paragraph, and pp, = p; for 1 <7 < s <r. We remark that it is not always possible to
construct an X for which r = s, even in dimension d = 2. An example of a two dimensional
excellent normal local domain without a “one fibered ideal” is given in [6]. A one fibered
ideal is an mpg-primary ideal I such that the normalization of its blowup has only one
prime exceptional divisor.

VE, (EQ) =

2.5. Rees’s theorem for divisorial mp-filtrations. It follows from Corollary 7.5 that if
Z(D;) C Z(Dy) are divisorial mg-filtrations such that e(Z(D2)) = e(Z(D1)), then Z(D3) =
Z(Dy). This is proven in Section 7. Let X — Spec(R) be a representation of D and D,
and write Dy = > a;E; and Dy = > b;E; as Weil divisors on X.

By Theorem 7.3, whose proof was discussed in Subsection 2.3, vg,(D1) = vg,(D2) for
1 <i<r. Thus I(mD;) = I(mD;) for all m € N by (10).

2.6. The Teissier, Rees and Sharp, Katz Theorem for divisorial mg-filtrations.
Suppose that we have equality in the Minkowski inequality (7) for the divisorial mp-
filtrations Z(D;) and Z(D2). We will give an outline of our proof that there exist a,b € Z~g
such that I(maD;) = I(bmD>) for all m € N. Let

f(n1,n2) ;= lim ER(R/I(mnlDl)I(meg)),

m— o0 md

Using the Minkowski inequalities e < ed~"¢!, of 3) of Theorem 1.3, we obtain in (67) of
Section 9 that

1 1

1 1 1
fln1,n2) = —(egm + edna)?

where ey = er(Z(D1)) and eq = er(Z(D2)).
We now survey Section 8. Define semigroups I'(n1,n2) = I'({I(mniD1)I(mnaD2)})
and associated closed convex sets A(ny,n2). We can find ¢ € Ry such that letting

1 1
H<I>,n1,n2 = {('7:17 cee wrd) € Rd ‘ Tyt xg < (,0661711 + gO@;TlQ},
Ag(ni,n2) = A(ng,ng) N H{:,nl,nz

and

Ag(ni,ng) = A(R)NHg .

ny’

we have (55) that

f(ny,ng) = 5[V01(Aq>(n1, ny) — Vol(Ag(ng,n2))]
7



as in (9). Since A(R) is a closed cone with vertex at the origin, by (28) and (59)
Vol(Ag(n1,n9)) = (n1aq + naaa)4p?Vol(A(R) N HY).
We now survey Section 10. We define in (70)

f(n17n2)

5 = )\(oqnl + OéQﬂQ)d.

h(ni,n2) = Vol(Ag(ny,n9)) = Vol(Aq,(nl,ng)) -

for some A\ € Ry.
Let

g(n1,n2) := Vol(n1As(1,0) + n2As(0, 1)),
which is a homogeneous real polynomial of degree d (Theorem 4.2) Since
nlA@(l, 0) + TLQA(I)(O, 1) C Aq>(n1, ng),
we have that g(ni,n2) < h(ng,ne) for all ny,ne € N, ¢g(1,0) = h(1,0) and g(0,1) = h(0,1).
Thus for 0 < t < 1,
h(1—t,t)a = (1—t)h(1,0)d +th(0,1)a = (1 —t)g(1,0)a + tg(0,1)
< g(1—t,0)7 <h(1—t,1)1.

=

where the first inequality on the second line is the Brunn-Minkowski inequality of convex
geometry (Theorem 4.3). We see from this equation that we have equality in the Brunn-
Minkowski inequality. Thus by Theorem 4.3, we have that Ag(1,0) and Ag(0,1) are
homothetic; that is, there is an affine transformation T'(Z) = ¢+~ such that T'(Ag(1,0)) =
Ag(1,0). We then show in Theorem 10.1 that

1
ei Ag(1,0) = e Ag (0, 1),

and applying Theorem 10.3, which is proved like Theorem 7.3 discussed in Subsection 2.3,
we get that

(D (D
(11) ’YEJ(l ) _ ’YEJ(l 2)

e ey

for1 <j<r.
It is Shown in Theorem 11.4 that (assuming the Minkowski equality holds) the real

number 4 is actually a rational number ¢ 7~ This is in spite of the fact that the multiplicities
d
€o

eo and e4 can be irrational numbers and the vz, (D;) can be irrational numbers (as shown

in the example of Section 15, which is surveyed in subsection 2.7).
Now combining this fact, (10) and (11) we obtain in Theorem 11.4 that

I(maD;) =T(X,Ox(— Zma’yE D1)E;i]) =(X,0x(—[>_ mbyg,(D2)E;i]) = I(mbDy)
=1

for all m € N.
The proof of Theorem 11.4 uses the invariant

wz(f) =max{m [ f € I}

for a filtration Z = {I,;,} and f € R, which is either a natural number or oo, and the fact
that an integral divisorial mp-filtration Z(D) has the good property that for f € R, there
exists d € Z~q such that wI(D)(f”d) = an(D)(fd) for all n € N (Lemma 11.3).
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It is natural to define

wz(f) = limsup wr(f")
n—00 n
which generalizes to filtrations the asymptotic Samuel function 77 (f) of an ideal in R ([36,
Definition 6.9.3]). We use a theorem of Rees in [33] about the asymptotic Samuel function

(reduced order) p,,, in our proof of Lemma 8.2.

2.7. An Example. The above concepts and results are analyzed in an example from [13]
in Section 15. The example is of the blowup ¢ : X — Spec(R) of an mp primary ideal in a
normal and excellent three dimensional local ring R which is a resolution of singularities.
The map ¢ has two prime exceptional divisors E; and Fs. The function

f(n1 77,2) — lim ER(R/I(mnlEl +mn2E2))

m—o0 m3

is computed in [13] and is reproduced here.

Theorem 2.1. ([13, Theorem 1.4]) For ny,ny € N,

3311? Zf ng < nq
fln1,ng) = { 78n% —8lnfny +2Tnind + 903 if iy <np <m (3 _ g)
(%_%)”g if”l(—§)<n2.

Thus f(n1,n2) is not a polynomial, but it is “piecewise a polynomial”; that is, R%, con-
sists of three triangular regions determined by lines through the origin such that f(ni,ns)
is a polynomial function within each of these three regions. The line separating the sec-
ond and third regions has irrational slope, and the function f(ni,n2) has an irrational
coefficient in the third region. The middle region is the ample cone and is also the Nef
cone.

We compute the functions g, and g, in [13, Theorem 4.1], as summarized in the
following theorem. Observe that yg, is an irrational number in the third region.

Theorem 2.2. ([13, Theorem 4.1]) Let D = nyEy + noFEo with ny,ny € N, an effective
exceptional divisor on X.

1) Suppose that na < ny. Then yg, (D) =mn1 and vg,(D) = n;.
2) Suppose that ny < ng < ng (3 — g) Then vg, (D) = n1 and vg,(D) = na.

3) Suppose that ny < — @) < ny. Then vg,(D) = ﬁng and yg,(D) = na.

In all three cases, —yg,(D)E1 — vg,(D)Es is nef on X.

We determine the divisors for which Minkowski’s inequality holds in the following Corol-
lary, reproduced from Section 15.

Corollary 2.3. (Corollary 15.3) Suppose that D1 and Dy are effective integral exceptional
divisors on X. If D1 and Do are in the first region of Theorem 15.1, then Minkowski’s
equality holds between them. If D1 and Ds are in the second region, then Minkowski’s
equality holds between them if and only if Dy is a rational multiple of D1. If D1 and
Dy are in the third region, then Minkowski’s equality holds between them. Minkowski’s
equality cannot hold between D1 and Do in different regions.

9



The above theorem allows us to compute the mixed multiplicities of any two divisors
Dy = a1E1 + agFEs and Dy = b1 E7 + by Ey by interpreting mixed multiplicities as the anti
positive intersection multiplicities of (85).

In particular, we can compare f(ni,ns) with the polynomial

ﬂR(R/I(mnlEl)I(mngEg)) ‘

P(ny,ng2) = lim

m—o0 md
We calculate in (88) that
P(ni,na) = gre(Z(E)P)nd +%e<< ) JZ(E2)M)niny
T he(@(EDN, () H)nyn3 + e(T(Ex) ¥
= 3303 + (3L + 23)n2ny (L@@L% Bymnd + (297 — 342 ) nd.

3. NOTATION

We will denote the nonnegative integers by N and the positive integers by Z~q, the set
of nonnegative rational numbers by Q>¢ and the positive rational numbers by Q. We
will denote the set of nonnegative real numbers by R>y and the positive real numbers by
R<p. For a real number z, [z] will denote the smallest integer that is > x and |x| will
denote the largest integer that is < z. If F1, ..., E, are prime divisors on a normal scheme
X and ay,...,a, € R, then |> a;E;| denotes the integral divisor ) |a;|FE; and [> a; E;]
denotes the integral divisor > [a;|F.

A local ring is assumed to be Noetherian. The maximal ideal of a local ring R will be
denoted by mp. The quotient field of a domain R will be denoted by QF(R). We will
denote the length of an R-module M by ¢r(M). Excellent local rings have many excellent
properties which are enumerated in [19, Scholie IV.7.8.3]. We will make use of some of
these properties without further reference.

Divisorial mpg-filtrations Z(D) = {I(nD)} will be defined in Section 5. If R is an
excellent local domain, Z(D) is determined by an effective exceptional Weil divisor on the
normalization of the blow up of an mg-primary ideal.

4. PRELIMINARIES

4.1. Approximation of irrational numbers. The following formula for approximation
of real numbers appears in [20] (Remark on bottom of page 156).

Lemma 4.1. Suppose that £, € Rsg. Then
a) There exist py,qo € Z~o such that

ng—@<g.

q0 q0
b) There exist pjy, q, € Z=o such that
a
_2 s @ <0
qO Q()

Proof Iff is a rational number we need only write £ = pg with pg, qo € Z=g (or £ =

o\\ X

Suppose that & is an irrational number. By [20, Theorem 170], we can express £ as an
infinite simple continued fraction. Let 2’—: be the convergents of this continued fraction for
10



n € Zso. By [20, Theorem 156], g, > n, and by [20, Theorem 164] and [20, Theorem 171],
we have that

dn qngn+1
with 0 < §,, < 1 for all n from which the lemma follows. O

4.2. The Brunn-Minkowski inequality in Convex Geometry. Let K and L be
compact convex subsets of R%. For \ € R>0, define

MK ={\z |z € K}
and for A1, A2 € R>¢, define the Minkowski sum
MK +XL={Mz+X y|ze K,yec L}
A proof of the following theorem can be found in [2, Section 29, page 42].
Theorem 4.2. Suppose that Ki,..., K, are compact convex subsets of R:. Then the

volume function Vol(\M Kj + -+ + A\ K) is a homogeneous real polynomial of degree d for
Alyenny Ap ERZ().

The coefficients of the polynomial of the theorem are called mixed volumes.
We now state the Brunn-Minkowski Theorem of convex geometry. A couple of proofs
of this theorem are on [2, Page 94] and in [25].

Theorem 4.3. Let K and L be compact convex subsets of R%. Then
(12) Vol (1 — t)K +tL) > (1 — £)Vol(K)# + tVol(L)4

for 0 <t < 1. Further, if Vol(K) and Vol(L) are positive, then equality holds in (12)
for some t with 0 < t < 1 if and only if K and L are homothetic; that is, there exists
0<céeR andy € R? such that L = cK + 7.

If K and L are homothetic, then equality holds in (12) for all t with 0 <t < 1.

5. MR-VALUATIONS AND DIVISORIAL mp-FILTRATIONS ON LOCAL DOMAINS R

5.1. mpr-valuations and mpg-filtrations. In this subsection, suppose that R is a d-
dimensional local domain, with quotient field K. A valuation p of K is called an mpg-
valuation if 1 dominates R (R C V), and m, N R = mpg where V,, is the valuation ring of
p with maximal ideal my,) and trdegp /p,, Vi/myu = d — 1.

Let Z = {I;} be an mp-filtration. Let p be an mp-valuation. Let

I(p)m ={f € R| p(f) Z2m} =m;NR,
and define

Tum(Z) = p(Im) = min{u(f) | f € In}
Since Ty mn(Z) < n7ym(Z), we have that

(13) Tuva<I) < min{TM’m(I) Tum(I)}
mn m = n
for m,n € N.
Define
m(Z
(14) Yu(T) = inf Tpm(Z),

11



Lemma 5.1. Suppose that R is an excellent local domain. Then a valuation p of the
quotient field K of R which dominates R is an mp-valuation of R if and only if the
valuation ring O, is essentially of finite type over R.

Proof. Since an excellent local domain is analytically unramified, the only if direction
follows from [36, Theorem 9.3.2]. Now we establish the if direction. Since O,, is essentially
of finite type over R, there exists a finite type R-algebra S and a prime ideal @ in .S such
that S is a sub R-algebra of O, and Sg = O,. In particular, ) N R = mpg. Since an
excellent local domain is universally catenary, the dimension equality (c.f. [36, Theorem
B.3.2.]) holds. Since a Noetherian valuation ring is a discrete valuation ring (c.f. [36,
Corollary 6.4.5]) it has dimension 1, so that ht(Q) = 1, from which it follows that x is an
mp-valuation. O

5.2. Divisors on blowups of normal local domains. In this subsection suppose that
R is a normal excellent local domain. Let ¢ : X — Spec(R) be a birational projective
morphism such that X is normal and X is the blowup of an mpg-primary ideal. Let
FEq, ..., E,. be the prime divisors on X with exceptional support. A real divisor D on X
with exceptional support is a formal sum D = >"._, a,E; with a; € R for all i. D is said
to be effective if a; > 0 for all i. D is said to be a rational divisor if all a; € Q and D is
said to be an integral divisor if all a; € Z.

Now suppose that D is an effective integral divisor with exceptional support. In this
case, D is a Weil divisor on X. A rank one reflexive sheaf is associated to the Weil divisor
D. Let U be the open set of regular points of X and let ¢ : U — X be the inclusion. We
have that dim(X \ U) < d — 2 since X is normal. Then D|U is a Cartier divisor. The
reflexive coherent sheaf Ox(—D) of Ox-modules is defined by Ox(—D) = i.Oy(—D|U)
The basic properties of this sheaf are developed for instance in [11, Section 13.2]. Since
R is normal, we have that I'(X,Ox) = R, and if D is a nontrivial integral exceptional
divisor with effective support, then I(D) = I'(X, Ox(—D)) is an mp-primary ideal.

Now let D = >"" | a;E; be an effective real divisor with exceptional support. Let Z(D)
be the mp-filtration Z(D) = {I(mD)} where

I(mD) = T(X, Ox(~ Zmal j

The round up [z]| of a real number z is the Smallest integer a such that + < a. When D
is an integral divisor, we have that I(mD) = I'(X, Ox(—mD)) for all m.

Let pug, be the mp-valuation whose valuation ring is Ox g, for 1 <7 < r. Let 7, ; =
TE;,;m(D) = Tmup, (Z(D)). Now define

Ve, (D) = Vum, (Z(D)).
We have that

I(mD) =T(X,0x(— ZalmE )={f€R|pg(f)>[ma;] for 1 <i<r}

Thus 75, m (D) > ma; for all m € N, and so
(15) vE; (D) > a; for all i.
Lemma 5.2. ([12, Lemma 3.1]) We have that
I(mD) =T(X,0x(— Zasz I'(X,0x(— Zm'yE i1))

12



for all m € N.
Proof. We have that

I(X,0x(— ZmVE 1)) € T(X, Ox(— ZalmE
by (15).
Suppose that f € T'(X,Ox(—[>i_; aimE;])). Then pug,(f) > 75, m(D) > myg, (D) for
all 4, so that ug, (f) > [myg,(D)] for all i since ug,(f) € N. O

5.3. Divisors on blowups of local domains. In this subsection, suppose that R is an
excellent d-dimensional local domain. Let S be the normalization of R, which is a finitely
generated R-module, and let my, ..., m; be the maximal ideals of S. Let ¢ : X — Spec(R)
be a birational projective morphism such that X is the normalization of the blowup of an
mp-primary ideal. Since X is normal, ¢ factors through Spec(S). Let ¢; : X; — Spec(Sp,)
be the induced projective morphisms where X; = X XSpec(s) Spec(Sy,;). For 1 < i <t,
let {E;;} be the prime exceptional divisors in ¢; *(m;).

A real divisor D on X with exceptional support is a formal sum D = )" a; ;E; ; with
a;; € Rfor all 7,7. D is said to be effective if all a; ; > 0. D is said to be a rational divisor
if all a; ; € Q and D is said to be an integral divisor if all a; ; € Z.

Suppose that D is an effective real divisor on X with exceptional support. Write
D= Z” a; jF; j with a; ; € R>g. Define D; = Z a; jF;; for 1 <i <.

Let D = Z ca; ;E; ; be an effective real d1V1sor Wlth exceptlonal support on X. Let

Z(D) be the mR filtration Z(D) = {I(mD)} where

I(mD) =T(X,Ox(— Zmaw 1)) NR.
When D is an integral divisor, we have that I(mD) =I'(X,0x(—mD)) N R for all m.

Now let D be an effective integral divisor with exceptional support.
Let

(16) I(D) = J(D)N R,

I(D;)=J(D;)NR
We have that
(17) S/J(D) = @ Sm, /T(Xi, Ox,(=Di)) = @ Sm, /T (D

=1 =1
and so
(18)  ¢r(S/J(D ZeR S/ T(Di)) =Y _[S/mi : R/mglls,, (Sm,/J(Dy)).
=1

We have that [S/m; : R/ mp] < oo for all i since S is a finitely generated R-module.
Let D(1),...,D(r) be effective integral divisors on X with exceptional support.
Lemma 5.3. ([12, Lemma 2.2]) For ny,...,n, € N,
lim lr(R/I(nni1D(1))---I(nn,D(r))) ~ im lr(S/J(nniD(1))--- J(nn.D(r)))

n—0o0 nd n—00 nd
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5.4. Divisorial mp-Filtrations. In this subsection, let R be a local domain.
Let p1,...,pus be mp-valuations, and aq,...,as € N with a; +--- 4+ as > 0. Then we
define a divisorial m g-filtration

I(Q1M1 +---+ asus) = {I<al,ufl +- 1+ as,us)n}
by
I(aypn + -+ asprs)n = T(p1)nay N - N (s na, -

We can also define real divisorial mg-filtrations by taking aq,...,as € R>o and defining
an mp-filtration Z(ajp1 + -+ + asps) = {I(a1p1 + - -+ + aspis)n} by

I(al,ul + -+ as#s)n = I(Nl)]'nal'\ n---N I(:us)fnas'\-

A real divisorial mpg-filtration will be called a rational divisorial m g-filtration if a; € Q>
for all 7+ and will be called an integral divisorial mpg-filtration, or just a divisorial mpg-
filtration if a; € N for all 4.

The first statement of the following proposition is proven for the case when Z = Z(ayp1 +
-+« + aype) is an integral divisorial mp-filtration in [12, Proposition 2.1]. However, the
proof given there extends to the case when Z is a real divisorial mg-filtration. The second
statement follows from [16, Theorem 1.4].

Proposition 5.4. ([12, Proposition 2.1], [16, Theorem 1.4]) Suppose that R is an excel-
lent, analytically irreducible d-dimensional local domain.

1) Suppose that T = Z(aip1 + - -+ + agur) s a real divisorial mp-filtration. Then
eR(I; R) > 0.

2) Suppose that Z(1),...,Z(r) are mpg-filtrations such that eg(Z(j)) > 0 for all j.
Then

er(Z() M) Tl R) >0
foralldy,...,d- e Nwithdy +---+d, =d.

If 7 is a real divisorial mpg-filtration on an analytically irreducible excellent local ring
R, then Rees’s Izumi Theorem [33] shows that 7,(Z) > 0 for all mp-valuations f.

5.5. Representations of divisorial mpg-filtrations on normal local rings. In this
subsection, suppose that R is a normal excellent local domain. We now define a represen-
tation of a real divisorial mp-filtration Z(byip1 + - -+ + bsus). Let ¢ : X — Spec(R) be a
birational projective morphism that is the blowup of an mpg-primary ideal such that X is
normal, and so that if Fy,..., E, are the prime exceptional divisors of ¢ and ug, are the
discrete valuations with valuation rings Ox g, for 1 <14 <, then p; = pg, for 1 <i <s
with 1 <s <.

The pair of X — Spec(R) and the real divisor biE; + --- 4+ bsEs will be called a
representation of the real divisorial mp-filtration Z(bypu1 + - - - + bsps).

We remark that it may not be possible to construct an X for which r = s, even in
dimension d = 2. This follows from the example of a two dimensional excellent normal
local domain without a “one fibered ideal” given in [6].

We now tie this back in with our original real divisorial mg-filtration Z(byp1+- - -+bsps),
for which the pair of X and b1 FEq1 + - - - + bsE; is a representation. Letting D be the real
divisor D = b1 F1 + --- + bsEs on X, we have for all m € N that

I(m(yg,(D)E1 + - + 76, (D)Er)) = I(mD) = I(bipn + -+ - + bspts)m
14



for all m. Thus we have equality of mg-filtrations
I(ve, (D)EL + - + 75, (D)Er) = T(D) = Z(bijun + -+ + bspis)-

In particular, every divisorial mp-filtration has the form Z(D) for some divisor D =
> a;E; with exceptional support on some X.

If the pair X’ and D’ is another representation of Z(byui + - -+ + bsps), then there
are prime exceptional divisors Ef, ..., El on X’ such that we have equality of local rings
Ox g, = OX’,E; =0, for1<i<sand D' =37  bEl.

We remark that even when Z is an integral divisorial mpg-filtration, v,(Z) can be an
irrational number for some mp-valuation . From 15.1, we find an example of X with two
prime exceptional divisors Fq and FEs such that

3
Ey)=——+
7E1( 2) 9_ \/g
is an irrational number. We will often abuse notation, denoting a real divisorial mpg-
filtration by Z(D).

5.6. Bounded mpg-Filtrations.

Definition 5.5. Let R be a local ring and Z be an mp-filtration. Let R[Z] be the R-algebra
RI] =) Int™

m>0

and R[Z] be the integral closure of R[Z] in the polynomial ring R]t].
If I is an ideal in a local ring R, let I denote its integral closure.

Lemma 5.6. Let R be a local ring and T be an mpg-filtration. Then

m: Z Imt™

m>0
where {J,} is the mp-filtration
I ={f € R| f" € Ly, for some r > 0}.

Remark 5.7. If T = {I'} is the filtration of powers of a fived mp-primary ideal I then
Im = I, for all m.

Proof. The ring R[Z] is graded by [36, Theorem 2.3.2]. Thus it suffices to show that for
f € R and n € Z~( we have that ft" is integral over R[Z] if and only if f" € I, for some
r > 1. Now ft" is integral over R[Z] if and only if there exists a homogeneous relation

(19) (F) 4 ag 1t (Ft) 4 - 4 at™ I () 4 4 apt™ =0
for some d > 0 with a; € I,,(4_; for all 4.

We will show that ft" is integral over R[Z] if and only if there exists 7 > 0 such that
fr € L. L

Suppose that f" € I.,. Then there exists a relation

() +aga () + -+ ai(f7) + - +ag=0

with a; € (1) C L (g—s for all i. Multiply this relation by t"d to get a relation of
type (19), showing that (ft")" is integral over R[Z]. Thus ft" is integral over R[Z].

Now suppose that ft" is integral over R[Z]. We will break the proof up into two cases.
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Case 1. Assume that R[Z] is Noetherian. Then there exists r > 0 such that I,; = I for
all i € Z~¢ by [4, Proposition 3, Section 1.3, Chapter III]. Since f"t"" is integral over R[Z],
there exists a relation (19) with f replaced with f" and n with rn, so a; € L,q—i) = I
and thus f" € I,.,.

Case 2.(General Case) Assume that Z is an arbitrary mpg-filtration.

For a € Z~o, let Z, = {Iqn} where I, = I, if n < aandif n > a then I, =) 1,1,
where the sum is over ¢,j > 0 such that i + j = n.

Now ft" integral over R[Z] implies there exits a > 0 such that ft" is integral over R[Z,].
By Case 1, there exists r > 0 such that " € I, ;n C Ly. O

Lemma 5.8. Let R be a local domain and Z(D) be a divisorial mpg-filtration. Then
R[Z(D)] is integrally closed in R][t].

Proof. We have that Z(D) = Z(aq 1 + - - - + aspus) where pq, .. ., us are mp-valuations and

aq,...,as € Ryg. Since R[Z] is graded, we must show that if f € R and n € Z~( are such

that ft" € R[Z(D)], then f € I(nD) = I(j11)[na;] N - N I (fts)[na,]- Now ft" € R[Z(D)]
implies there exists a relation

fitaaf + o Faif'++a=0
with a; € I(n(d —1i)D) for all i by (19). Suppose that f ¢ I(nD). Then there exists j
such that p;(f) < [noy]. Thus p;(f) < na; since p;i(f) € N and so

(d—)p;(f) <nl(d—i)oy < [n(d —i)ay]
for all 7 with 0 < ¢ < d. Thus

dpi (f) < [n(d —i)oy] +ip; (f)
for all 7« with 0 <14 < d so that
pi(f*+aga f + -+ aif' -+ ag) = dpi(f) €N

Thus f¢+ag_1f* 1+ +a;f' +---+ap # 0, a contradiction, and so f € I(nD). O

Definition 5.9. Suppose that R is a local domain. An mpg-filtration T = {I,,} is said to
be bounded if there exists an integral divisorial mpg-filtration Z(D) such that

R[Z] = R[Z(D))].
An mp-filtration T = {1} is said to be real bounded if there exists a real divisorial mp-

filtration Z(D) such that -
R[] = R[Z(D)].

Lemma 5.10. Suppose that R is an excellent local domain and T = {I"} is the mp-
filtration of powers of a fizted mg-primary ideal I. Then T is bounded.

Proof. We have that R[Z] = @,>0l"u"™ where I" is the integral closure of I" in R. The
algebra @,>0l™u™ is a finite R[Z]-module, so that {I"} is a Noetherian filtration. Let
¢ : X — Spec(R) be the normalization of the blowup of I and Fj, ..., E; be the prime

exceptional divisors of ¢. Then IOx = Ox(—a1Ey — -+ - — a Ey) for some aq,...,a; € Z~o
is an ample Cartier divisor on X and I"Ox = Ox(—na1E; — --- — nay Ey) for all n € N.
Thus for n € N,

1" =T(X,0x(—na1Ey — -+ —naEy)) N R = I(aipg, + -+ apig, )n
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where pp, is the mp-valuation whose valuation ring is Ox g,. Thus {I"} is the divisorial

filtration Z(aipp, + -+ + atpp,) = Z(D) where D = a1Ey + -+ + a;Ey and R[Z] =
R[Z(D)]. O
Proposition 5.11. Suppose that R is a local ring with dim N(R) <d and

Z(),..., Z(r),Z'(1),..., T (r)

are mp-filtrations such that R[Z'(i)] = R[Z(3)] for 1 <1i <r. Then we have equality of all
mized multiplicities

(20) e(I(l)[dﬂ’ o 7I(T)[dr]) _ e(I’(l)[dl], o ,I/(T)[dr])_

Proof. Write R[Z(i)] = @n>0J(i)n and let J(i) = {J(i)p} for 1 < i < r. We will show
that for all mixed multiplicities,

(21) e(Z(W) D, () = (g (1)), ... 7 (),

The same argument applied to Z'(1),...,Z'(r) and J(1),...,J(r) will show show that
equation (20) holds. Let

P, ) = Tim EET Wy 22 T () n,)

m—00 md

and

14 T ne = L)
Qna,...,ny) = tim BEADmm - L))
m—oQ m
Since @m>0.J (i)m Is integral over @y>0I(i)m for all i, we have that the graded R-algebra
Simtyenemy >0 (L)my -+ J (1), is integral over the graded R-algebra

@ml,...,mTZOI(l)m1 e I(T)mr'

Thus for fixed nqy,...,n, € N, we have that @p,>0J(1)mn, -+ J(r)mn, is integral over
Sm>0L (1)mny - - - L(7)mn,. By [14, Theorem 6.9] or [12, Appendix| (summarized in Sub-
section 1.1) we have that

P(n17"'anr):Q(nlv"'7n7“)

forallny,...,n, € N. Since P(ny,...,n,) and Q(n1,...,n,) are homogeneous polynomials
of the same degree d, we have that P(ni,...,n,) and Q(ni,...,n,) have the same values
for all ny,...,n, in the infinite field Q. Thus their coefficients are equal showing (21).

[l

6. A FRAMEWORK TO COMPUTE MULTIPLICITIES

In this section, we summarize a construction from [12, Section 3].

Let R be an excellent local domain of dimension d and let 1 be an mp-valuation. Since
R is excellent, there exists a birational projective morphism ¢ : X — Spec(R) such that
X is the normalization of the blow up of an mg-primary ideal, X is normal and there
exists a prime exceptional divisor F on X such that u = ug.

Let ¢ be a generator of the maximal ideal of the valuation ring Ox g. Regarding ¢! as
an element of the quotient field K of R, we compute its divisor (t7!) = ~E + D on X,
which is a Cartier divisor and where D is a Weil divisor which does not contain FE in its
support (D will have non exceptional support). Write D = D; — Dy where Dy and Dy are
effective Weil divisors which do not contain E in their supports.

Since X — Spec(R) is projective, there exists an ample Cartier divisor H on X.
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For all n, there exist natural inclusions of reflexive rank 1 sheaves
OX(—D2 —F+ TLH) C O)((—DQ + nH) C Ox<nH)

This can be seen by restricting to the nonsingular locus U of X (which has codimension
> 2 in X) and then pushing the sequence forward to X. Taking global sections, we thus
have inclusions

INX,0x(—Dy—FE+nH)) CT(X,0x(—D2+nH)) C I'(X,Ox(nH)).
Since H is an ample Cartier divisor, there exists a multiple n of H such that
INX,0x(—Dy — E+nH))

is a proper subset of I'(X, Ox(—D2 + nH)). Thus there exists 0 € I'(X, Ox(nH)) such
that the divisor (o) (considering o as a global section of Ox(nH)) is an effective Cartier
divisor which has the property that the Weil divisor (o) — Ds is effective and E is not in
the support of () — Ds.

Thus —E + D + (o) is a Cartier divisor and

—E+D+(0)=—FE+ D1 —Dy+(0)=—FE+F

where F' = Dy — Dy + (0) is an effective Weil divisor which does not contain E in its
support.
The natural inclusions Ox(—nE) — Ox(—nE + nF') for n € N induce inclusions

I(10)n = D(X, Ox(—nE)) N R — T(X, Ox(—nE)) = D(X, Ox(—nE + nF))

for all n.
Let ¢ € FE be a closed point that is nonsingular on both X and F and is not contained
in the support of F'. Let

(22) X=Xo0X1=E>D---DXs={q}

be a flag; that is, the X; are subvarieties of X of dimension d — j such that there is a
regular system of parameters by,...,bs in Ox 4 such that by = --- = b; = 0 are local
equations of X; for 1 < j <d.

The flag determines a valuation v on the quotient field K of R which dominates R as
follows. We have a sequence of natural surjections of regular local rings

Od—1

(23) OX,q = OXo,q & OXl,q = OXO,Q/(bl) 2.5 Odehq = Odez,tI/(bd—l)'

Define a rank-d discrete valuation v on K (an Abhyankar valuation) by prescribing for
seO X,q»

v(s) = (ordx, (s),0rdx,(s1), -+ ,ordx,(sa-1)) € (Z)1ex
where
_ S o S1 . Sd—2
51 =01 ordx, (s) )52 = 02 ordx,(s1) | 777 8d—1 = 0d-1 ordx, ;(sd—2)
b1 b2 bd—l

and ordx,,, (s;) is the highest power of b; 11 that divides s; in Ox, 4. We have that

v(s) = (N(S) = pe(s),w <b;fz(s)>>

18



where w is the rank-(d — 1) Abhyankar valuation on the function field of E determined by
the flag

E=X1D>--DXg={q}
on the projective k-variety E, where k = R/mpg.

By our construction, Ox(—E+F) is an invertible sheaf on X and so Ox(—E+F)®0g is
an invertible sheaf on E. Consider the graded linear series L,, 1= I'(E, Ox (—nE+nF)®o
Opg) on E. Recall that by = 0 is a local equation of E in Ox 4. Let g = by. Thus, since ¢
is not in the support of F', for n € N, we have a natural commutative diagram

(24)
I(p), CI(X,0x(—nFE)) — I'(X,0x(—mE+nF)) — I'(E,Ox(—nE+nF)® Of)
\J \ \J
Ox(—nE), = Ox(—nE +nkF), = Ox(-—nE+nF),®o0y, Op,q
= OX,qgn = OX,qgn = OE,q ®Ox,q OX,qgn

where we denote the rightmost vertical arrow by s — &,(s) ® g™ and the bottom horizontal
arrow is

f= [ﬂ ®g",
g

where [gin} is the class of gin in Op 4.

Let = be the semigroup defined by
(25) = = {(n,w(en(s))) | n € Nand s € T(E,Ox(—nE + nF) @0, Op)} C 7%,

and let
(26)
A(Z) be the intersection of the closed convex cone generated by Z in R? with {1} x R4,

By the proof of Theorem 8.1 [8], A(Z) is compact and convex. Let
(27) En = {(n,w(en(s))) | s e I(E,0z(—nE + nF) ®p, Ogr)}

be the elements of = at level n.

We will require the following important observation, which follows from the diagram
(24).

(28) Suppose that f € R and v(f) = (a1,...,aq). Then v(f) € E,,.

7. MULTIPLICITIES OF FILTRATIONS

Let notations be as in Section 6, so that R is an excellent local domain. We further
assume in this section that R is analytically irreducible.
Let Z = {I;} be an mp-filtration. For m € N, define

L(D)m = A{(v(f),m) | f € I} € N
which are the elements at level m of the semigroup
L(Z) = Unen{(v(f),m) | f € Im}.

Define an associated closed convex set A(Z) C RY as follows. Let X(Z) be the closed
convex cone with vertex at the origin generated by I'(Z) and let A(Z) = 3(Z) N (R? x {1}).
The set A(Z) is the closure in the Euclidean topology of the set

{(% %) | (a1, ..., a4,7) € T(Z) andi>0}.
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For m € N, define
D(R)m = {(v(f),m) | f € R} C N1,

which are the elements at level m of the semigroup

I'(R) = Unen{(v(f),m) | f € R}.

Define an associated closed convex set A(R) C R? as follows. Let ¥(R) be the closed
convex cone with vertex at the origin generated by I'(R) and let A(R) = S(R)N(RIx {1}).
The set A(R) is the closure in the Euclidean topology of the set

{(@ ,a—,d) | (a1,...,a4,i) € T(R) and i > 0}.
i i
Lemma 7.1. The closed convexr set A(R) is a closed convex cone in Réo with vertex at
the origin 0.

Proof. We identify R? x {1} with R?. We have that (v(1),1) = (0,...,0,1) € T'(R). Thus
(0,...,0) € A(R) C R%

Suppose that (ai,...,aq,i) € I'(R) with i > 0. Let z = (%,...,%) € A(R). Let
a € Qs¢. Then a = ™ with m,n € Z~¢. There exists f € R such that v(f) = (a1,...,aq).
Now f™ € Rso (v(f™),in) = (may,...,mag,in) € I'(R). Thus ax € A(R).

Suppose that € A(R) is non zero. Let U = {tz | t € R>p}. We must show that
U C A(R). Let y € U be nonzero. Then y = sz for some s € R+(. Suppose that € € R.

Choose § € R such that 6 < min{1, &, & }e. There exists (ai,...,aq,4) € T'(R) with

RERE
i > 0 such that [z — (%,...,%)| < ¢ and there exist m,n € Zx¢ such that |s — | < 0.
Now 2 (%,... %) € A(R) as we showed in the above paragraph. Let o = s — =,
v=x—(%,...,%). We compute
ly — T(%, ..., %) |sz — (s — a)(x —v)| = |sv + az — av|

< slv] + |al|z] + |a|jv] < |s]6 + |z]6 + 6% < 3e.

Since we can make e arbitrarily small and A(R) is a closed set, we have that y € A(R).
O

For ¢ € Ry, let

(29) H,={(z1,...,2q) €ER | z1 + - + 24 = ¢},
(30) H;:{(.rl,...,l‘d)ERd|aZ1+-~—|—$dSC}
and

(31) Hf ={(z1,...,2q9) eRY | 1+ - + x4 > c}.

Since A(R) is a closed cone in R? with vertex 0 and c¢Hy = H,, cH; = H_, we have
(32) A(R)NH. =c¢(A(R)NH;) and A(R) N H, =c¢(A(R)NHy).

The proof of the following lemma is a simplification of the proofs of Lemmas 8.2 and 8.3
in the following Section 8 (this is where the assumption that R is analytically irreducible
is needed).

Lemma 7.2. There exists A\ € Zsq such that A(Z) N HY = A(R) N HJ .
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For ¢ € Ryg define A, (Z) = A(Z) N H; and A (R) = A(R) N H;. These sets are
compact convex subsets of Rio.
Let A be the number defined in Lemma 7.2. If ¢ > ), then

(33) A(Z)\ Ac(Z) = A(R) \ Ac(R).
For m € N, let
CoZ)m ={(w(f),m)| f €I and a1 + -+ ag < mc}

and
I'e(R)={(w(f),i) | fe Rand a; + --- + aqg < mc}.

Define semigroups I'c(Z) = Upenl'c(Z)m and T'o(R) = Upmenl'c(R)m. The semigroups
I'.(Z) and T'.(R) satisfy the condition (5) of [8, Theorem 3.2] since they are contained in
RdJrl NH-

>0 M

We now verify that condition (6) of [8, Theorem 3.2] is satisfied; that is, that I'.(Z)
generates Z9t! as a group. Let G(I'.(Z)) be the subgroup of Z¥*! generated by I'.(Z).
The value group of v is Z¢ and e; = v(b;) for 1 < j < d is the natural basis of Z¢. Write

bj = Z% with f;,g; € R for 1 < j < d. There exists 0 # h € I. Thus hf;, hg; € I1.
Possibly replacing A with a larger value, we then have that (v(hf;),1), (v(hg;),1) € I'e(Z)
for 1 < j < d. Thus (e;,0) = (v(hf;) — v(hgj),0) € G(I'«(Z)) for 1 < j < d. Since
(v(hf;),1) € T'e(Z), we then have that (0,1) € G(I'c(Z)), and so condition (6) of [8,
Theorem 3.2] is satisfied.

Thus the limits
#L' (L)

i, B2 = voamy
and 4T.(R)
. L.(R)m
A, g VoladR)

exist by [8, Theorem 3.2]. As in [9, Theorem 5.6], if ¢ > A, where X is chosen sufficiently
large, then

. gR(R/Im)
(34) L
where 6 = [Ox p/myp : R/mpg).
Thus the multiplicity

= §[Vol(As(R)) — Vol(A.(T))]

er(Z) :=d! lim %{;—m) = dl0[Vol(A.(R)) — Vol(A.(2))].
m— 00 m
Define
(35) AX(Z) = A(Z) N H, for an mp- filtration 7 and A € R.

Theorem 7.3. Suppose that R is an analytically irreducible excellent local domain and that
Z(1) and Z(2) are mp-filtrations such that 1(1); C 1(2); for alli and er(Z(1)) = er(Z(2)).
Then

W(Z(1)) = 1u(Z(2))
for all mg-valuations p of R.

The proof which we give below follows from the first part of the proof of [12, Theorem
3.4], applied to our filtrations Z(1) and Z(2) (instead of the divisorial mp-filtrations Z(D;)
and Z(D3) of Cartier divisors D and Dj of the statement of [12, Theorem 3.4]).
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Proof. We apply the construction of Section 6 with pug, = p. Let m : R? — R be the
projection onto the first factor. By the definition of ~,(Z(4)) for ¢ = 1,2, and since for ¢
sufﬁmently large, 'yﬂ( (1)) is in the compact set m1(A(Z(3)), 77 (7,(Z(3)) N Ac(Z(i)) #
§ and 7;*(a) N ( (1)) = 0 if a < 7,(Z(7)). Since Z(1); C I( ) for all i, we have
that A.(Z(1)) C€ A(Z(2)). Now Vol(A.(Z(1)) > 0 for ¢ sufficiently large. Since we
assume er(Z(1)) = er(Z(2)), we have that Vol(A.(Z(1)) = Vol(A.(Z(2)) by (34) and so
Ac(Z(1)) = Ac(Z(2)) by [12, Lemma 3.2]. Thus v,(Z(1)) = v.(Z(2)). O

Corollary 7.4. Let R be a normal excellent local domain, T = {I,,} be an mpg-filtration
and Z(D) be a real divisorial mp-filtration. Suppose that I(mD) C I, for all m and
er(Z) =er(Z(D)). ThenZ =7Z(D).

Proof. The ring R is analytically irreducible since R is normal and excellent. Let the pair
X — Spec(R) and D = 37[_, a;E; be a representation of Z(D). We have that v, (Z) =
vE; (D) for 1 <i < r by Theorem 7.3. We have that I(mD) = Nl_,I(ug,) CIn
for all m by assumption. Suppose that f € I,,,. Then

ne(f) = TVEi7m(I) 2 MYug, (Z) = myg,(D)

for 1 <i <. Thus pg,(f) > [myg,(D)] for all 4, and so f € N_ I(1E,) [myp, (D)] =
I(mD). O

Corollary 7.5. Let R be an excellent local domain, Z(D) be a real divisorial mg-filtration
and T be an arbitrary mg-filtration. Suppose that I(nD) C I, for all n and egr(Z(D)) =
er(Z). Then T =Z(D).

Proof. If R is normal, the corollary is immediate from Corollary 7.4, so we may assume
that R is not normal. We use the notation of Subsection 5.3. Let S be the normalization
of R and let myq, ..., m; be the maximal ideals of S. Let X — Spec(R) and D =) a;;E; ;
be a representation of D. Let X; = X ®g Sy, for 1 < i <t. We have that D = Zle D)
where D(i) = >_; a; ;E; j. Let J(nD) = T'(X, Ox(—nD)), so that Z(D) = {I(nD)} where
I(nD) = J(nD) N R. Further, we have real divisorial m;-filtrations J(D(7)) = {J(nD;)}
on Sp,, which are defined by J(nD(i)) = I'(X;, Ox,(—nD(i))) = I'(X, Ox (—nD))Sp,.
Let Z.S,,, be the m;-filtration Z.S,,, = {I,Sm, }n>0. Then we have that

S/18 = (S, /TnSm.)

i=1

for all n and so
t

CR(S/I,S) =Y [S/mi: Rimglls,, (Sm,/InSm,)-

i=1

Now the proof of [12, Lemma 2.2] extends to this situation to show that

lim ER(RC{I ) _ tim ER(S/dInS)
n—00 n n—00 n
from which we deduce that
t
(36) er(Z) = _[S/mi: R/mgles,, (ZSm,).
i=1
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Similarly,
t

(37) er(Z(D)) = Z[S/mi : R/mples,,. (Z(D)Sm,)-

Let 0 # x be in the conductor of S/R. Then zJ(nD) C I(nD) for all n. Let
A= R[Z(D)] = Y I(nD)t",

n>0
B:=)_J(nD)t",
n>0
and for a € Z~, let
“A:= R[Z(D),],

where Z(D), is the a-th truncation of Z(D), that is, ®A is the sub R-algebra generated by
I(nD) such that n < a and let B be the sub S-algebra of B generated by J(nD) such
that n < a.

We have B C A and B, C A,. Suppose that f € J(mD)t™. Then f € (™B),,
and f" € (™B)yy, for all n so that xf™ € (™A)py for all n so that ™A[f] C 2(™A)
which is a finitely generated ™ A-module, so f is integral over the Noetherian ring ™A,
and therefore f is integral over A. Thus B is integral over A and so B is integral over
C:=>,>01(nD)St", and thus B,,, = Sy, [J (D(3))] is integral over Cyp,; = S, [Z(D)Sp,]
for 1 < i < t. We then have that

(38) €Sm, (Z(D)Sm;) = es,, (T (D(i))

for 1 <14 <t by [12, Theorem 1.4].
Let G =}, 5o Lat" be the integral closure of F'=3_ -, [,,St" in S[t]. Then

(39) €Sy, ({LnSm; }) = es,,. (TSm,)
for 1 <14 <t by [12, Theorem 1.4]. Now I(nD)Sy,, C I,,Sm, for all i, so that
(40) J(nD(i)) C L,Sm,
for all ¢ and so
(41) €5, (T (D(1))) = es,,, { LnSm. })
for 1 <i <t. We have that
t t

> _IS/mi: R/mgles,, ({LaSm,}) = Y _[S/mi : R/mgles,, (T (D(i)))

i=1 =1
by equations (38), (39), (36) and (37). Thus, by (41), we have
(42) €Sm, {LnSm; }) = es,, (T (D(7)))

for 1 <i <t. By Corollary 7.4, we then have that L,,S,,, = J(nD)S,,, for 1 <i <t, and
so Ly, = J(nD) for all n. Thus

I(nD)=RNJ(nD)C1I,C LyNR=JnD)NR=1I(nD)

for all n.
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Corollary 7.4 is proven when R is an excellent local domain and Dy and Dy are Cartier
divisors in addition to Z(D;) and Z(Ds) being integral divisorial mpg-filtrations in [12,
Theorem 3.5].

Remark 7.6. Suppose that R is an analytically irreducible excellent local ring, T = {I,} is
an mp-filtration and | € Z. Let J; be the mp-filtration J; = {I;,}. Then A(J;) = IA(Z).

The following proposition will be used in our study of mixed multiplicities. Here, A(A),
A(B) and v are as defined in Section 6.

Proposition 7.7. Suppose that R is a normal excellent local domain and that p : X —
Spec(R) is the normalization of the blow up of an mp-primary ideal with prime exceptional
dwisors Ey, ..., E,. Suppose that vi,...,7,& € R>o are such that y1 +--- + v > 0 and
£>0. Conszder the mp-filtrations A =Z(3 ;_, viE:) and B=1(Y;_, &viE;). Then

(A(A) = A(B).
Proof. We have that A = {A,} and B = {B,,} where

A, =T(X,0x(— Zn% i) and B, = I'(X, Ox/( (Zn&’yz il

It suffices to show that for all 7 € R sufficiently large, we have that
E(AA)NH) =AB)NH .

The half space H. is defined in (30).
Let C = {C,} be the mp-filtration defined by

Cn =T(X, Ox (=[Y_(n%i + DE:])).
i=1
Let E=FE1+-- -+ E,.

We now show that A(C) = A(A). Let 0 # f € mg. Then fA, C C, for all n. The
elements of the form % = (%,..., %) with g € Ay, and m > 0 are dense in A(A).
Since A(C) C A(A) is a closed set, it suffices to show that given ¢ > 0, there exists
n € Z~o and h € C, such that \V(h — %] <. For all t € Z~q, (v(g'),tm) € Ay, and

(v(fg"),tm) € Cypn. Thus 24 4 19 ¢ A(C), with
KWﬂ+Ww%¢@

1
poel i, =)l <e

for t > 0. Thus A(C) = A(A).
There exists 79 € Rsg such that

(43) A(R)N H;“O =A(A)N H;; =AC)N Hj_g
and

(44) AR)NHS, = AB)NH{,

by Lemma 7.2.

Suppose that 7 > 75. Choose § € R~ such that 7 — § > 79. Let

B =max{ly| [y € Ar(A)}.

The compact convex set A (A) is defined in (35). The numbers 7, ¢ and S will be fixed
throughout the proof.
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Given a € Ry, there exist pg, qo € Z>0 such that

(45) AP ecy
q0 q0
by Lemma 4.1, so that
(46) po < &qo < po + a.
Let m be a positive integer, and suppose that « is sufficiently small that
1

< —
“ mmax{~;}

Set p = mpg and ¢ = mqy. Then

Yip < €viq < vip + ayim
for all 4, so that

[vip] < [g7i€] < [pvil +1
for all ¢ and so

([Pl +1) < =[qvg] < = [ip]
implying
> (pyi+1)E Z 7€ Ei Z YipEi]
i=1

giving us that
(47) C, C B, C Ap.

We will now show that Ag-(B) = £A-(A).

First suppose that v = (Ul, ...,04) € Agr(B) and that vy + -+ +vg > §7 — £0. Then
v e A(B) ﬂH+ _es = A(R)N g _¢s- Then since A(R) is a cone with vertex at the origin,

1 1
£V € (gA(R)> NH' s=AR)NH' ;=AA)NH'
by (43) and so v = &u for some u € A, (A).

Now suppose that v = (vy,...,vq) € Aer(B) and vy + -+ +vqg < {7 — £6. Since the
elements of A(B) of the form % with m € Zso and f € B,, are dense in A(B), we may
suppose that v has this form. Let ¢ > 0. we will find u € £A(A) such that [v — u| < e.
Since A (A) is closed, this will show that v € A, (A).

Choose a € R+ such that
8
L

a < min{ —— €
mmax~y; T

Choose po, qo which satisfy (45). Thus
0<¢E— Po < e
q 4o

Writefzf]’—g+)\with0§)\<(%

Set p = mpg and ¢ = mqg, so that v = (“—1 ...,i) v) here f® € B,. Set

u:lf(al,...,ad> and w = )\<a... )
p p p p
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SOtha't/U_p( 7"')%):U+w. Now (ﬂ,..
a\'p P P

5<g+&anda<g,wehavethat

;d) € A(A) by (47). Since by (46),

%4_...4_% = %(%+...+M)<Q(57_55)
< %+p)(57—55)_7—5+———<T—5+%—%§
_ 1

Thus (ﬂ, ey %d) € A-(A) and |v — u| =

arbitrarily small, we have that v € (A (A).
We will now show that A7 (A) C Ag,(B).
First suppose that u = (ul, ooug) € EAL(A) and that ug + -+ +ug > &7 — €0, Then

%u € A, (A) with 1 FuL e %ud > 1 — 4, so that

lw| < NS < %3 < e. Since we can make ¢

éu € A(A)NHY , = A(R)NH*,

by (43) so

ue & (AR)NH 5) = AR)NH ;e =AB)NHf s

by (44). Since ui + -+ + ug < 7€ we have that u € Ag,(B).

Now suppose that u = (u1,...,uq) € EA-(A) and that ug +- - -+ug < E7—£5. Since the
elements of A(C) of the form % with m € Zsp and f € C), are dense in A(C) = A(A), we
may suppose that u is £ times an element of this form. Let ¢ > 0. we will find v € A7¢(B)
such that |u —v| < e. Since A;¢(B) is closed, this will show that u € A.¢(B).

Choose « € R+ such that

1 €

7t

o < max{m ﬁ

Choose pg, go which satisfy (45). Thus

o<e-0 &

q0 q0
Write£:%+)\with0§)\<(%.

_ _ _ ai aq : a ag\ _ v(fro)
Setp—mpoandq—mqo,sothatu—f(p ..,p) th(p, ,p)— m
D a1 ad _ — P (a1 a4 ) — (a1 a4
WherefOECpandp—i- + <7 d. Setv-q(p ..,p)-(q,...,q)and

w:)\(%,...,%‘i) so that u = v + w.

We have that v € A(B) by (47). We have that

KL <£(T—5) <E(r—0) <&T
q q q
so that v € Ag(B).
v —u| = Jw| < |A\B < ';—f < e. Since we can make ¢ arbitrarily small, we have that

u € Agr(B).
]
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8. COMPUTATION OF MIXED MULTIPLICITIES OF FILTRATIONS

Let notation be as in Section 6, so that R is a d-dimensional excellent local domain.
We further assume that R is analytically irreducible in this section.

Let Z(1) = {I(1);}, Z(2) = {I(2);} be mp-filtrations. We now define some sub semi-
groups of N%+1 which are associated to Z(1) and Z(2). For ny,ny € N, define

L(ni,n2) ={w(f), i) | f € I(L)in, (2)iny }-
We define an associated closed convex subset A(ni,ns) of R? as follows. Let ¥(nq,n2) be

the closed convex cone with vertex at the origin generated by I'(n1,n2) and let A(ny,ne) =
Y(n1,n2) N (R? x {1}). The set A(n1,n2) is the closure of the set
{(a—_l,...,a—_d> | (a1,...,aq4,7) € I'(n1,ny) and i > O}
i i
in the Euclidean topology of RY. We have that T'(R) = I'(0,0) and A(R) = A(0,0) as
defined in Section 7.

Lemma 8.1. For all m1, mo,n1,n2 € N, we have that
A(mi,me) + A(ng,n2) C A(my + n1, ma + na).
In particular,
n1A(1,0) +n2A(0,1) C A(ng, n2).
Proof. The set of points

{(a—,l,...,a—.d> | (a1,...,aq,1) € T'(my,m2) andi>0}
i i
is dense in the closed set A(mj,mg2). Thus it suffices to show that if (ai,...,aq,1) €

I'(my1,mg) and (b1,...,bq,7) € I'(n1,n2) with 4, j > 0, then
b b
<6L1+1’7ad+d> S A(m1+n1,m2—|—n2).

v J t J
With this assumption, there exists f € I(1)im,1(2)im, such that v(f) = (a1,...,aq)
and there exists g € I(1);n,1(2)n2 such that v(g) = (b1,...,bq). We have that f7¢* €
I(l)ij(m1+n1)I(2)ij(m2+n2) Y

(w(f7g"),i5) = (jar + b, . .., jaq +iba, ij) € T(m1 +ni, ma + ny).

Thus
ja1 + ib jaq + ib a b a b
(jl,, 1,...,j d,, d>:<,1—|—,1,...,,d—|—l.1>€A(m1+n1,m2—|—n2).
i) i i J i J
O
Lemma 8.2. There exists A € Z~q such that for all n1,na € N,
A(nl,ng) N {(l‘l, - ,SCd) S Rd ‘ x> (TLl + HQJX}
= AR)N{(x1,...,24) € R | 21 > (n1 +n2)A}.
Proof. Let vy, ..., be the Rees valuations of mp. Since R is analytically irreducible, the

topologies of the v; on R are linearly equivalent to the topology of 11 on R by Rees’s Izumi
Theorem [33]. Let 7y, be the reduced order. By the Rees valuation theorem (recalled in
[33]), for z € R,




so the topology of ¥y, is linearly equivalent to the topology induced by each v;. Further,
Um,, s linearly equivalent to the mp-topology by [32] since R is analytically irreducible.
Thus there exists o € Z~q such that I(u)me C mig for all m € N. Since I(1); and 1(2);
are mp-primary, there exists ¢ € Z-o such that m% C I(1); and m% C I(2)1, so that

m?%(”ﬁm) C I(1)p, I(2)p, for all ny,ng € Z>g. Let A = ca. Then

(48) 1(1) gy © ™" C 11, 12Dy
for all ny,ny € Z>o.

Suppose (ay,...,aq,m) € T(R) is such that m > 0 and % > (ny 4+ ng)X. Then there
exists f € R such that v(f) = (ai1,...,a4). In particular, u(f) = ar;. Thus pu(f) >
m(ni 4+ ng) so that f € I(a)mn, L(2)mn, by (48). Thus (ay,...,aq, m) € I'(n1,n2) and so

(ﬂ, ey %) S A(nl,nz).

m m

Lemma 8.3. There exists X € Z~q such that for all ny,no € N,

n _ +
Alny,ne) VHG oy = AER)NHG Loy

Proof. Recall the definitions of Z, =, and A(E) in equations (25), (26) and (27). The
set A(Z) C {1} x R is compact and convex as explained after (26). Thus there exists
b € Z+o such that A(Z) C {1} x [0,b]"!. Suppose that f € R and u(f) < 6 for some 4.
Let v(f) = (a1 = u(f),aq,...,aq). Then v(f) € =4, by (28) which implies
(L@,“fw>eAG)
a a
S0

(49) a; < db for all i.

Choose A > \bd where X is the constant of Lemma 8.2. Suppose (a1, ...,aq, m) € I'(R) is
such that m > 0 and

(50) g+ 2>y +mg)A
m m
It a a a
L (n1 + n2)\ then (i,...,—d> € A(ng,n2)
m m m

by Lemma 8.2. Suppose 7> < (ny +n2)A. Then a1 < m(ny+n2)Aso that a; < m(ny+ng)A\b
by (49). Thus
ap agq —
— 4+ — < (n1 4+ n2)bd\ < (n1 + n2)A,
m m
a contradiction to our assumption (50). Thus the conclusions of our lemma hold. 0
Given ® = (a1, az,¢) € RS, define

H ={(z1,...,2q) € R? | z1 4+ 4+ 24 > (@1n1 + agna)p}.

®,n1,n2

Let A be the number defined in Lemma 8.3. If

51 >
(51) v= min{aq, as}’

then for ny,ng € Z>o with ny +n2 > 0, we have

(a1n1 + agn2)p > (ng + ng)A
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SO

(52)  A(R)NHF

®,n1,n2

= A(nl,ng) NHE

®,n1,n2

= (n1A(1,0) + n2A(0,1)) N HY

®,n1,n2°

The second equality in (52) is obtained as follows. Lemma 8.3 implies that
A(L,O)NHS o =AR)NHL, ,and A0,1)NHY ,, = A(R)NHE .
Taking the Minkowski sum, we thus have

(n1A(1,0) +naA(0,1)) N HY

(bvn17n2

=A(R)N H;nm.

(53) A@(nl,ng) = A(nl,ng) \ A(?’Ll, ng) NH

P,ny,no’
Agp(n1,n2) = AR)\AR)NHE ..

These are compact, convex subsets of R?. For all ni,ns € N, we have that the Minkowski
sum

(54) n1As(1,0) + n2As(0,1) C Ag(ny,n2) C Ag(ni,na).
We now fix ni,ns € N. For m € N, let

Lo (n1,m2)m
= {(V(f)v m) = (ala -+ 4, m) | f € I(l)mnll(Q)mnz and al+---+aq < m(alnl + 0527712)90}7

Ly(n1,m2)m
={(v(f),m) = (a1,...,aq,m) | f € Rand a1 + --- + ag < m(ainy + agng)p}.

The semigroups I'g(n1,12) = Upenl'a(n1, n2)m, and f‘@(nl,ng) = UmeNf‘q>(n1,n2)m sat-
isfy conditions (5) and (6) of [8, Theorem 3.2] by the argument after Lemma 7.2. Thus
the limits

#lo(n1,m2)m _ Vol(Ag(n1,n2))

lim

m—oo md

and
. T'es(ni,no)m

777lgnOo W = Vol(Ag(n1,n2))

exist by [8, Theorem 3.2]. As in [9, Theorem 5.6, if ¢ > m, then
l I(D)mn, L(2)mn ~
(55) lim R(R/I( )mdl @mna) _ 5vvo1(Agp(n1, ) — Vol(Aa (11, n2))
where
(56) 0 =1[0,/m, : R/mpg].
The function
I(1 1(2
(57) F(minz) = tim BRI Wrn, (@) onny)
m—00 m

for ny,n2 € N of (2) and (3) is a homogeneous polynomial in R[z] of degree d.
Since Ag(1,0) and Ag(0,1) are compact convex subsets of R, the function
(

(58) g(ni,n2) = Vol(n1Ag(1,0) + n2Ag(0,1))
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is a homogeneous polynomial over R of degree d for all ny,n2 € R>o by Theorem 4.2. We
have that

Vol(Ag(n1,n2)) Vol(A(R) N H(:z1a1+n2a2)so)
(59) = Vol ((mai + noaz)(A(R) N Hy )
= (nmai +n2a2)%?Vol(A(R) N HY)
by (32). Thus by (55) and (59),

(60) Vol(Ag(n1,12)) = (n1ay + naao)4p?Vol(A(R) N H) — %f(nl,ng)

where f(n1,n2) is the function of (57). We have that
(61) Vol(Ag(ni,n2)) > g(ni,n2)
for all n1,ny € N by (54).

Theorem 8.4. Suppose that R is a local ring of dimension d with dim N(R) < d and Z(1)
and Z(2) are mp-filtrations of R. Suppose that there exist a,b € Z~q such that

(62) ST IWantm =Y I(2)pnt.

n>0 n>0
Then Z(1) and Z(2) satisfy the Minkowski equality

er(Z()Z(2)) = er(Z(1))7 + er(Z(2))4.

Proof. Let
P(nl, ng) — lim ER(R/I(l)mgll(mmnz)‘
m—oo m
Let Pi,..., Py be the minimal primes of R such that dim R/PZ =d. Let R; = ]A%/PZ for
1 <4 <s. The R; are analytically irreducible excellent local domains.
By the proof of Theorem 4.7 of [8] we have that

(Ri/I(l)mmI(Q)mani) )

md

S

. Ig,

Plonon) =3t
k=1

We first suppose that Z(1) and Z(2) are such that R[Z(1)] = R[Z(1)] and R[Z(2)] =
R[Z(2)] are integrally closed. Then I(1);q = I(2)m,p for all m € Z~y.
Let Jy = I(1)ma = I(2)mp for m € N and J = {J,,,}. Let

E mn mn

m—o0 Tnd

For 1 <i < s, let
. gRi (Ri/J(i)mmJ(i)mm)

Qi(n1,n2) = lim_ o

where J (i) = JnR;. We have that

S
Q(n1,m2) = > Qi(n1, ny)
i=1
by the proof of Theorem 4.7 of [8].
For each ¢, we apply the construction of Section 7 to the mp,-filtration {J(i),,} on R;
and we apply the construction of this section (Section 8) to the mp, -filtrations {J(7)m }

and {J(i)m} on R;. We use the notation of these sections.
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We have by Remark 7.6 that for all ni,no € N with ny + no > 0 that
(n1 +n2) A({J(D)m}) C AT (@)m}) + n2A{T(D)m}) = AT (@mn, }) + AT (D)mny })
C A(n1,n2) = AT (Dmny S (Dmnz }) © AT (Dmny+n0)}) = (01 + n2) A{T ()m})
so that A(ny,ng2) = (n1 +n2) A{J(i)m}).
Let ® = (1,1, ) with ¢ sufficiently large. Then

(63)  Aa(ni,ng) = [(m1 +n2) A{J()m )] N H, = (1 +n2)[A{J(D)m}) N Hy .

(n1+n2)e
By (55),
Qi(nl, ng) = 5[V01(A(p(n1, ng)) - VOl(Aq;(nl, ng))]
and by (59),
Vol(Ag(n1,n2)) = (n1 + n2) "Vol(A(R;) N H).
By (63),
Vol(Ag(n1,n2)) = (n1 + n2)Vol(A({J()m}) N Hg),
so that
Qi(n1,m2) = ci(ny +np)?
where

= 0[Vol(A(R;) N H,) — Vol(A({J(4)m}) N Hy )]
Thus letting ¢ = Y7, ¢;, we have that Q(n1,na) = c(nq + ng)®.
Now P(amq,bms) = Q(my, ma) so
ny n
P(nl,ng) = C(;l + f)d,
and substituting the values (n1,n2) = (1,1), (n1,n2) = (1,0) and (n1,n2) = (0,1) we get
that Z(1) and Z(2) satisfy Minkowski’s equality, establishing the theorem if R[Z(1)] and
R[Z(2)] are integrally closed.

Now suppose that Z(1) and Z(2) are arbitrary mp-filtrations satisfying (62). Define
mp-filtrations J (1) and J(2) by setting J(1) = {J(1),} and J(2) = {J(2),} where

> J(Wt" =) Tt and Y T(2)ut" = I(2)nt".

n>0 n>0 n>0 n>0

S IWantm = 3 T 1) ant™ and 3 I2)pntem = 37 T (2)pnt®"
> Want" =3 TWant™ = 3 1(Wont" = 3, J(Dpnt"

n>0 n>0 n>0 n>0

Now

SO

By the first part of the proof, 7 (1) and J(2) satisfy Minkowski’s equality, and there is an
expression

1 mn 2 mn
g Lo I @) _ 2y
m—00 m a b
By Proposition 5.11,

. AR(R/IT(V)mny J(2)mny) ni o na.g

P(ny1,n2) = "}gnoo mdl 2 = C(; ?) ;
and substituting the values (n1,n2) = (1,1), (n1,n2) = (1,0) and (n1,n2) = (0,1) we get
that Z(1) and Z(2) satisfy Minkowski’s equality. O
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9. EQUALITY IN THE MINKOWSKI INEQUALITY FOR MIXED MULTIPLICITIES

Let R be a d-dimensional analytically unramified local domain and Z(1), Z(2) be mg-
filtrations.
The polynomial f(ni,n2) of (57) has an expansion

1
fln,ng) = > N d2!eR(I(1)[d1}, T(2)ld2yp 2

di+do=d

where ep(Z(1)[41], 7(2)l%]) € R are the mixed multiplicities of Z(1) and Z(2) by (2) and
(3). Set e; = er(Z(1)l=4, Z(2)l) for 0 < i < d. Then

d
nl,Tlg —Z ' 'eml n2.
1=

We have by (5) that
eo = er(Z(1)) and eq = er(Z(2)).
By Formulas 3) and 1) of Theorem 1.3,

(64) ed <ellel for0<i<d
and
(65) 6? < ei—1€it1

for 1 <i<d-—1. We expand

eR<z<1>z<2>>—d!f<1,1>—Zdj() i() T el = (ef + el

=0

obtaining the Minkowski inequality (7). Observe that
(66)
Equality holds in the Minkowski inequality if and only if equality holds in (64) for all s.

In this case,

—1

d .
i 1
(67) f(n1,n2) Z T eind=ind = i (eons + feanz) .

1=0

We now show that when all e; are positive, the Minkowski equality holds between Z(1)
and Z(2) if and only if equality holds in (65). We use an argument from [36]. Applying
(65), we have

o () () = () ()

where there are i(d — i) terms on each side. We have equality in (68) for 1 <i <d —1 if

d—1 i
and only if equality holds in (65) for all . Now the LHS of (68) is “— and the RHS is 4

CO i
SO

7

(69) Equality holds in (65) for all 7 if and only if equality holds in (64) for all i.
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10. AN ANALYSIS OF THE MINKOWSKI EQUALITY

In this section, suppose that R is a d-dimensional excellent analytically irreducible local
domain and Z(1) and Z(2) are mp-filtrations. We further assume that equality holds in
Minkowski’s inequality (7) for Z(1) and Z(2). We also make the additional assumptions
that ep = er(Z(1)) > 0 and eq = er(Z(2)) > 0. We use the notation of Sections 9, 6 and
8.

Set a1 = {/eg and ap = {/eq. Choose ¢ so that (51) is satisfied for these values of oy and
ag. Set v = ¢?Vol(A(R)N H ). We then define the function h(ni,na) = Vol(Ag(n1,n2)).
We have that for all nq,ny € N,

d

(70) h(ni,mn2) = Vol(Ag(n1,n2)) = (v — )(oqnl + aong)

od!
where § is the constant of (56), by (60) and (67).
Recall the polynomial g(ni,n2) of (58). We have that Vol(As(1,0)) = ¢(1,0) =
h(1,0) > 0 and Vol(A(0,1)) = ¢(0,1) = h(0,1) > 0 and g(n1,n2) < h(ni,n2) for all
ni,ny € N by (61). Since g and h are homogeneous polynomials of the same degree, we
have that g(a1, a2) < h(a1, az) for all a1, as € Q>¢. Thus, by continuity of polynomials,
(71) g(ay,az) < h(ay,az) for all aj,as € R>o.
For 0 <t < 1, we have that

h(1—tt)i = (1—t)h(1,0)7 +
<g(l—tt)i<

th(0,1)d = (1 —t)g(1,0)a + tg(0,1)d
h(l—t,t)d.
by (70), Theorem 4.3 and (71). Thus g(1 —t,t)E =(1 —t)g(l,O)é +19(0, 1)5 for0<t<1

and so Ag(1,0) and Ag(0,1) are homothetic by Theorem 4.3.
We have Vol(Ag(0,1)) = £Vol(A(1,0)) by (70). Let T : R? — R, given by

T(¥) =cd+7
be the homothety such that T'(As(1,0)) = Ag(0,1). We have that
i—dVol(AcI,(l, 0) = Vol(Ag(0,1)) = Vol(T(As(1,0)) = cVol(Ag(1,0)
0

S0
_ /4
“Veo
By (53), (52) and (29), we have that
[0 for ¢ > Yegyp
(72) Ae(1,0) 0 Hy = { A(R)NH g, for o = g
and
[0 for o > Heqp
(73) Ae(0,1) N Hy = { A(R)N H{z/@p for 1 = Yeqp.

Writing ¥ = (1, . .-, Y4), we have T(H%SD) = H yegpt (v +-+~q)- Comparing equations
(72) and (73), we see that 41 + -+ 74 = 0.

Now A(R) N Hy = ¢¥(A(R) N Hy) for all ¢ € Ry by (32). Thus we may factor the
homeomorphism 7" : A(R) N H g5, — A(R) N H g5, by homeomorphisms

AR) N H gz 5 AR) N H gy 3 AR) N H gz
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But A(R)NH ez 18 @ nonempty compact set, so the second map cannot be well defined
unless 7 = 0.
In summary, we have established the following theorem.

Theorem 10.1. Suppose that R is a d-dimensional analytically irreducible excellent local
ring and Z(1) and Z(2) are mg-filtrations which have positive multiplicity eg = er(Z(1)) >
0 and eq = er(Z(2)) > 0 and that Minkowski’s equality

er(Z(1)Z(2))1 = er(Z(1))7 + ep(Z(2)
holds. Let notation be as in sections 6, § and 9. Then
Vealha(1,0) = {eoAs(0,1)
where ® = (e, {eq,p) in (53) and ¢ is sufficiently large.
We also obtain a partial converse to Theorem 10.1.

Theorem 10.2. Suppose that R is a d-dimensional analytically irreducible excellent local
ring and Z(1) and Z(2) are mpg-filtrations which have positive multiplicity eg = er(Z(1)) >
0 andeq = er(Z(2)) > 0. Suppose that YeqAs(1,0) = HegAs(0,1) for & = (Yeo, Vedq, )
in (53) with ¢ sufficiently large and that for the functions of (58) and (70) g(ni,n2) =
h(n1,n2) for all ny,ng € Z2. Then Minkowski’s equality
1 1 1

er(Z(1)Z(2))7 = er(Z(1))7 + er(Z(2))4

holds between Z(1) and Z(2).

Proof. The convex bodies Ag(1,0) and Ag(0,1) are homothetic, so by Theorem 4.3,
g(1 —t.1)1 = (1= 1)g(1,0)a +tg(0,1)

for 0 < ¢t < 1. Taking t = % and since ¢ is a homogeneous polynomial of degree d,

we obtain that g(1,1)a = g(1,0)d + ¢(0,1)a. Thus h(1,1)d = h(1,0)d + h(0,1)i. By
equations (59) and (60),

fni,nz) = 8[Vol(Ag(n1,n2)) — Vol(Ag(n1,n2))]
= §pVol(A(R) N Hy )(Hegni + Heana)® — Sh(ny, na).
Set ¢ = d!0p?Vol(A(R) N Hy). We have that

er(Z(1)Z(2)) = dIf(1,1) = &(Yeo + ea)” — didh(1,1),
eo =er(Z(1)) =d!f(1,0) = €eg — dl6h(1,0),
eq =er(Z(2)) =d!f(0,1) = €eq — d!6h(0, 1).
Let x = %, so that h(1,0) = xeg and h(0,1) = xeq. We have

h(1,1) = (h(1,0)7 + h(0,1)7)% = x({/eo + {/eq)"
and
er(Z(1)I(2)) = (€ — diox)(Yeo + {ea)™.
Now & — dldx = 1 so the Minkowski equality
er(Z(1)T(2))7 = er(Z(1))7 + er(Z(2))7

holds. O
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Theorem 10.3. Suppose that R is a d-dimensional analytically irreducible excellent local
ring and Z(1) and Z(2) are mp-filtrations such that egr(Z(1)) and er(Z(2)) are both non
zero and equality holds in the Minkowski inequality (7) for Z(1) and Z(2). Then for all
mp-valuations p of R, we have that

e(Z(2))47u(Z(1)) = e(Z(1))17u(Z(2))-

Proof. Starting with v = (u,w) in the construction of Section 6, construct Ag(n1,n2) as in
Section 8, so that the conclusions of Theorem 10.1 hold. Let 7 : R* — R be the projection
onto the first factor. By definition of v,(Z(1)), v,(Z(1)) is in the compact set 7(Aqs(1,0)),
7y, (Z(1)) N Ag(1,0) # 0 and 71 (a) N Ag(1,0) = 0 if a < 7,(Z(1)). In the same way,
we have that 77 1(7,(Z(2)) N Ag(0,1) # 0 and 7 1(a) N Ag(0,1) = 0 if a < 7,(Z(2)).

Let 7 : R — RY be the homothety T/(#) = ci where ¢ = ?g which takes Ag(1,0)
to Ag(0,1). Now since T' multiplies the first coefficient of an element of Ag(1,0) by ¢,
and the smallest first coefficient of an element of Ag(1,0) is v,(Z(1), the smallest first
coefficient of an element of A (0,1) is v,(Z(2)) = ey (Z(1)). O

Let us verify that these equalities do in fact hold in the classical case of mpg-primary
ideals I(1) and I(2) satisfying the Minkowski equality. In this case, we have the (Noe-
therian) mp-filtrations Z(1) = {I(1)"} and Z(2) = {I(2)*}. Since the Minkowski equality
holds, we have that there exists m,n € Z; such that I(1)™ = I(2)" where I(1)™ and
I(2)™ are the respective integral closures of ideals by the Teissier, Rees and Sharp, Katz
Theorem [39], [34], [21] recalled in Subsection 1.2. Now

o(T)7) = me(I(1)) = m*e(Z(1)),

e(I(2)7) = n’e(I(2)) = n’e(Z(2))
and
my(Z(1)) = mu(I(1)) = p(I(1)™),

myu(Z(2)) = np(I(2)) = up(1(2)"),

giving the desired formula

11. EQUALITY OF MIXED MULTIPLICITIES ON NORMAL EXCELLENT LOCAL RINGS

Theorem 11.1. Let R be a d-dimensional normal excellent local domain and let Z(Dy)
and I(D3) be real divisorial mp-filtrations. Let X — Spec(R) and D1 = >, a; E;,
Dy = Y70 bE; be a representation of D1 and Do. Suppose that Minkowski’s equality
holds for Z(D1) and Z(D3). Then there exists an effective real Weil diwvisor Y ;_, viE;
such that

=

Ve, (Di) = v;e(Z(D;))
for all j and i and

-

I(mD;) = T(X,0x (=Y _ my;e(Z(D;)) Ey])
j=1

fori=1 and 2 and all m € N.
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Proof. We have that both er(Z(D;)) and er(Z(D2)) are positive by Proposition 5.4. We
have that Eq, Fs,..., E, are the irreducible exceptional divisors of ¢ : X — Spec(R). For
1<5<r, let

- vE; (D1)
ez
By Theorem 10.3, taking p = pp,,
i = YE; (DQ)
T e(Z(Dy))s

for 1 <j <r. Now for i = 1,2 and m € N, we have by Lemma 5.2 that
I(mD;) = I(X,0x(~ me Ej]) = T(X, Ox(~ Zme D)4 Ej ).

O

Corollary 11.2. Let R be a normal d-dimensional excellent local domain and let Z(D»)
and T(Ds) be real divisorial mg-filtrations. Thus e; = eg(Z(D1)l4"4, T(Dy)l]) > 0 for
0 < i < d by Proposition 5.4. Let X — Spec(R) and D1 = ., azEz, Dy =37 | biE;
be a representation of D1 and Ds. Suppose that Minkowski’s equality holds for Z(D1) and

Z(D3) and that for some 1,
€; _ a c Q

€;—1 b

where a,b € Z~q. Then
I(maDy) = I(mbD3)
for allm € N.

Proof. With our assumption that the MlnkOWSkl inequality is an equality, we have from
d—j

the observation before (67) that e; = e, ed for all j. Since eg = er(Z(D1)),eq =
er(Z(Dz)) > 0, we have that 3 = e; 1ej41 for 1 < j < d—1 by (69). Thus :—Jl = St

J— J
for 1 <j<d-—1, and so -2 = ¢ for 1< j<dandso

€j—1
(“) €
0'

1
We have efvg,(D1) = e§vE,(D2) for all j by Theorem 10.3. Now for all j,

=

aveg;(D1)

vE;(D1)
bye,(Da) 66 Vg, (D)

=1

P—‘ &a..\»—\

so that ayg;(D1) = byg,(D2) for all j. The conclusions of the corollary now follow from
Lemma 5.2. O

Suppose that R is a local domain and Z = {I,,,} is a filtration of mpg-primary ideals.
We define a function wz on R by

(74) wrz(f) =max{m | f € I}

for f € R. We have that wz(f) is either a natural number or oco.
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Lemma 11.3. Suppose that R is a normal excellent local domain and that T = Z(D) is
a rational divisorial mg-filtration. Suppose that f € mpg is nonzero. Then wz(p)(f) < oo

and there exists d € Z~q such that wI(D)(f”d) = an(D)(fd) for alln € Z~y.

Proof. By assumption, there exists a representation X — Spec(R) and D =", a;E; of
Z(D) where the a; are all nonnegative rational numbers and some a; > 0. Let b; = ug, (f)
for 1 <4 <r. Then f € I(mD) if and only if ug,(f) = b; > ma; for 1 <14 <r. Since some
a; > 0 we have that wz(p)(f) < oo.
Let
b.
t:min{z|1<i<randai#0}.

ai
Since all b; > 0 and D is a rational divisor, t is a positive rational number, so we can write
t = g with ¢,d € Z~¢. Let ip be an index such that ¢t = Zﬂ For all n € Z~y we have

0

that pp, (") = ndug,(f) = ndb; > nca; for all i and VEiO(f”d) = ndb;, = nca;, so that
wz(p)(f*) = ne = nwzpy(f9). O
Theorem 11.4. Suppose that R is a d-dimensional normal excellent local ring. Let Z(Dy)
and Z(Ds3) be rational divisorial mg-filtrations. Let X — Spec(R), D1 = > ., a;E; and
Dy = Z;Zl b;E; be a representation of D1 and Dy (the a; and b; are nonnegative rational
numbers). Suppose that the Minkowski equality holds between Z(D1) and Z(D2). Then

_ Ver(Z(Ds))
= Yen@mon) <
Writing
Ver(Z(Ds) _a
/er(Z(Dy)) b

with a,b € Z~q, we have that
I(maDy) = I(mbD3)

for allm e N.
Proof. Minkowski’s inequality holds by assumption, and er(Z(D;)) > 0 for i = 1,2 by
Proposition 5.4. Thus by Corollary 11.1 we have that there exist 7; € R such that
VE; (D;) = e(I(Di))éij fori=1,2and 1 <j<r. Lety; = *ij(Dl) for 1 < j < r. Thus,
with & as defined in the statement of the theorem,

Ve, (D2) = &vE,(D1) = &vi
for all 7 and for all m € N,

I(le) X OX Zm% z

and

I(mDs) =T(X, Ox(— mezm

Let g € mp be nonzero. By Lemma 11.3, there exists d € Z, such that wI(Di)(gdl) =

lwz(p,y(g%) for i = 1,2 and all | € Zso. Let f = g°.
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Let m = wr(p,)(f) > 0 and n = wgp,)(f) > 0. Let 6 € Ryo. Now by Lemma 4.1,
there exists o € R+ such that a < % and there exists o/ € R~q such that o/ < % and
there exist positive integers po, qo, pj, ¢, such that

é——<@<§
q0

and
/

/
e<P et O
90 90
Let p = pom, ¢ = gom. Then ~;p < &v,q for all i so that I(¢D2) C I(pD1). We have that
f? € I(gD2) C I(pD1) so that wr(p,)(f%) > p. Thus since wz(p,)(f?) = qwrp,)(f)
(by our choice of f),

(07

(75) wI(Dl)(f) > %m = %WI(DQ)(f) > (€ - %)WI(DQ)(f)-

Let p’ = pin, ¢’ = gjn. Then ~;&q" < ~;p for all i so that I(p'D1) C I(¢'D3). We have
that f?o € I(p'D;) C I(¢'Ds). Thus since wI(DQ)(fpf)) = Pow1(py)(f) (by our choice of f),

we have that wz(p,)(f) > % = q‘?wz(Dl)(f). So
o o
(76) wz(p,)(f) < quI(DQ)(f) < (&+ qT)wI(DQ)(f)'
0 0

Combining equations (75) and (76), we have that
wrp)(f) < €+ 5 )wI(DQ)(f)

= ( O)U)Z Do) (f) + (q% + %)wI(Dg)(f)
< wrioy(f) + (2 + gy (f)
< (o) (f )+25

All these inequalities approach equahtles when the limit is taken as 6 = 0. Thus wz(p,) (f) =
§wr(p,)(f), and so

. wI(Dl)(f )

B wI(Dg)(f )

Now we prove the last statement of the theorem. By Theorem 10.3, we have that

D)
en(Z(D )>1'7E( 2)

for 1 < i <r. Substituting into I(maD1) = I'(X, Ox(—[>_;_, mayg,(D1)E;]), we obtain
that

€ Q0.

nyi(Dl)

I(maDy) = T(X,0x (=Y _ mbyg,(D2)E;]) = I(mbDy)
=1

K3
for all m € N. O

Theorem 11.5. Suppose that R is a d-dimensional normal excellent local ring. Let Z(Dy)
and I(Ds3) be real divisorial mpg-filtrations. Let X — Spec(R), D1 = > .., a;E; and
Dy = Ele b;E; be a representation of D1 and Dy. Then the following are equivalent
1) The Minkowski equality holds for Z(D1) and Z(D2)
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VE;(D2) _ er(Z(D2))

VE.(D1)  er(Z(Dy))

Q= al-

for all i.
3) For alli and j we have that

/.YEZ(DQ) _ ’YEJ(D2)
vE:(D1) e (D1)
Proof. We have that both er(Z(D1)) and er(Z(D2)) are positive by Proposition 5.4.

First suppose that Minkowski’s equality holds between Z(D;) and Z(D3). Then by
Theorem 10.3,

(77)

15,(D2) _ en(Z(Ds)
'VEi(Dl) 6R(I(D1))
for all . Thus 2) holds. If 2) holds then 3) certainly holds.

Now suppose that 3) holds for all ¢, 5. Let v; = vg,(D1) and let £ € Ry be such that
¢ = VE: (D2)
VE; (D1>
for all i. Then vg,(D2) = &y, (D;) for all i. For A € Ry and n € N, define
KA, =T(X,0x(=[nA1E1+ -+ n\yE])),

and a filtration of mp-primary ideals K(A) = {K(X),}. Observe that (X)) = Z(>"i_; MiE;).
For n1,no € N define

Q| al=

J(nl, ng)m == I(mnlDl)I(anDg)

and a filtration of mpg-primary ideals J(ni,n2) = {J(n1,n2)m}. We have that for all
ny, ne, J(n1,n2)m C K(ni + n2)y, for all m so that

AT (n1,m2)) € A(K(n1 + nag))

for all ny,ny. We further have that niA(Z(D1)) + n2A(Z(D2)) C A(J(n1,n2)) for all
ni,ng. We have that A(Z(D;)) = A(K(1)). Now by Proposition 7.7, we have that
A(Z(D3)) = EA(K(1)) and A(K(n1 + n28)) = (n1 + n28)A(K(1)). So niA(Z(D1)) +
naA(Z(D2)) = (n1 + n28)A(K(1)) and thus A(T(n1,n2)) = mA(Z(D1)) + n2A(Z(D2))
for all n1,no € N. Thus the conditions of Theorem 10.2 are satisfied, and so Minkowski’s
equality holds between Z(D;) and Z(D3). O

Theorem 11.6. Suppose that R is a normal excellent local ring. Let Z(D1) and Z(D2) be
rational divisorial mp-filtrations. Then Z(D1) and Z(D2) satisfy the Minkowski equality
if and only if there exist a,b € Z~q such that I(amDy) = I(bmDs3) for all m € N.

Proof. Let X — Spec(R), D1 =) ., a;E; and Dy = ., b;E; be a representation of Dy
and DQ.

If Z(Dy) and Z(D3) satisfy the Minkowski equality then there exist a,b € Z~( such that
I(amDy) = I(bmDy) for all m € N by Theorem 11.4.

Suppose that there exist a,b € Zs( such that I(amD;) = I(bmD;) for all m € N. With
this assumption, vg,(aD1) = vg,(bD2) for 1 < i < r. Now 7g,(aD1) = avyg,(D1) and
VE; (bD2) = bE, (D2), so




for 1 <4 <r. Thus the Minkowski equality holds for D; and Dy by Theorem 11.5. O

12. EXCELLENT LOCAL DOMAINS AND THE MINKOWSKI EQUALITY

Theorem 12.1. Suppose that R is a d-dimensional excellent local domain. Let Z(Dy)
and Z(D2) be integral divisorial mp-filtrations. Then the Minkowski equality holds between
Z(Dy) and Z(D2) if and only if there exist a,b € Z=q such that I(amDy) = I(bmD2) for
allm € N.

Proof. We use the notation of Subsection 5.3. Let S be the normalization of R with
maximal ideals m;. we have that Dy = Zﬁ:l D1 (i), Dy = Zle Do(i). Write

d
. ER(R/I(mnlDl)I(anDQ)) 1 d— 1
Plowima) = Jim e R

and

Pi(n1,n2) = lim C8pn; (Sm; /J (mn1 D1 (7)) J (mn2Da (7))

m—00 ma

We have that

(78) P(nl,ng) = ZaiPZ‘(nthg)

i=1
with a; = [S/m; : R/mp] for 1 < i < ¢ by Lemma 5.3 and (18). Let J(Dx(7)) be the
filtration {J(mDy (7))} for k = 1,2 and all 7.

Since D1, Dy # 0 we have that some Di(i) # 0 and some Ds(j) # 0. Thus e(i)g > 0
and e(j)g > 0 by Proposition 5.4 and so ey > 0 and e; > 0 by (32). Since the Minkowski
equality holds between Z(D1) and Z(D3) we have by (66) that equality holds in (65) for
the e;, so (67) holds which implies all e; > 0. Thus there exists £ € R+ such that

€1 €4
(79) g=foo

€0 €d—1
By (78) we have that e; = S"_, a;e(i); for all j. By the inequality (65) and (79) we have
that

1

0 < S aileli)ly —€e(i)? )2 = Sy aile(i)jon — 26e(i)?,1e(i)? + E2e(i); 1)
< S aile(i) o — 2eli); + Ee(i)j1)
= €j+1_2§6j+§2€j—1
= fzej,1 — 2526];1 + 5263;1 = 0.
Thus

1 1
ei)7y = Ee(i)7_, and e(i)} = e(i)j-1e(i)j41
for all 7. Since this holds for all j, we have that equality holds in (65) for all ¢ and j.
Further, we have that for a particular 4, either

(80) e(i); =0 for all j
or
(81) e(i); > 0 for all j.
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If (80) holds for a particular ¢, then e(i)g = e(i)q = 0 so we have the degenerate case
D(i); = D(i)2 = 0 by Proposition 5.4, so that

(82) J(mD1(i)) = J(nDa(i)) = Sy, for all m,n € N.

Suppose that (81) holds for a particular i. Then by (69), the Minkowski equality holds
between Z(D(i)1) and Z(D(i)2) for this . Thus there exists A\; € R such that

for all j. Thus

so that \; = & and so

Since D1, Dy # 0, (81) holds for some 4, so that & € Qsg by Theorem 11.4. Write £ = ¢
with a,b € Z~o. We have that J(maD1(i)) = J(mbD2(7)) for all ¢ such that (81) holds
and m € N by Theorem 11.4. Thus J(maD;) = J(mbD3) for all m € N by formula
(17) and thus I(maD;) = I(mbD3) for all m € N since I(maDy) = J(maD;) N R and
I(mbD3) = J(mbD2) N R for all m.
The converse follows from Theorem 8.4, since R[Z(D,)] = R[Z(D;)] for j =1, 2.
O

Theorem 12.1 is proven in dimension d = 2 in [12, Theorem 5.9] using the theory of
relative Zariski decomposition, which requires dimension two. This theory is also used to
prove the fact that the mixed multiplicities e; of integral divisorial filtrations are rational
numbers in dimension two. This fact is used in the proof of [12, Theorem 5.9]. The mixed
multiplicities of integral divisorial filtrations can be irrational numbers in dimension > 3,
as is shown in the example of Section 15.

The following corollary is proven in the case that d = 2 in [12, Corollary 5.10].

Corollary 12.2. Suppose that R is an excellent local domain and p1 and us are mpg-
valuations such that Minkowski’s equality holds between the mp-filtrations Z(u1) = {I(u1)m}

and Z(uz) = {I(u2)m}. Then uy = us.

Proof. We have by Theorem 12.1 that I(u1)en = I(u2)p, for all n and some positive
integers a and b which we can take to be relatively prime.

Suppose that 0 # f € I(pu1)n. Then f* € I(p1)an = I(12)pn so that apa(f) > bn. If
S € I(p2)pny1 then £ € I(u2)pwnr1) = I(11)a@ns1) 0 that p(f) > n. Thus

(83) 1 (f) = n if and only if ps(f) = %n.

Further, (83) holds for every nonzero f € QF(R) since f is a quotient of nonzero elements
of R.

Now the maps p1 : QF(R) \ {0} — Z and po : QF(R) \ {0} — Z are surjective, so there
exists 0 # f € QF(R) such that ui(f) = 1 and there exists 0 # g € QF(R) such that
t2(g) = 1 which implies that a = b = 1 since a, b are relatively prime. Thus p; = pa.

]
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Remark 12.3. With the assumptions of the above corollary and further assuming that R
is mormal, the functions wz,,) of (74) are wr,) = pi- Thus

wz(u) (f") = wi(f") = npi(f) = nwz,) (f)
for all nonzero f € R and v = 1,2. Thus the proof of Theorem 11.4 shows that

_ Wr() (f) _ m(f)
wI(uz)(f) p2(f)

for all nonzero f € mpg.

13. BOUNDED mp-FILTRATIONS
Bounded m pg-filtrations are defined in Subsection 5.6.

Theorem 13.1. Suppose that R is an excellent local domain, Z(1) is a real bounded mp-
filtration and Z(2) is an arbitrary mpg-filtration such that Z(1) C Z(2). Then the following
are equivalent

1) e(Z(1)) = e(Z(2))-

2) There is equality of integral closures

DIt =) I(2)mt™

m2>0 m>0

in RJ[t].

Proof. 2) implies 1) follows from [14, Theorem 6.9] or [12, Appendix| as summarized in
Subsection 1.1.

We now prove 1) implies 2). Let Z(D;) be the real divisorial mpg-filtrations such that
R(Z(1)) = R(Z(Dy)). Thus R(Z(D1)) € R(Z(2)) = R[Z(2)] so that Z(D;) C Z(2).
We have that e(Z(1)) = e(Z(D;)) and e(Z(2)) = e(Z(2)) by oy [14, Theorem 6.9] or [12,
Appendix]. Thus e(Z(D;)) = ¢(Z(2)) and so R(Z(D1)) = R(Z(2)) by Theorem 7.5. Thus
2) holds for Z(1) and Z(2).

g

Theorem 13.2. Suppose that R is a d-dimensional excellent local domain and Z(1) and
Z(2) are bounded mp-filtrations. Then the following are equivalent

1) The Minkowski inequality
e(Z(1)Z(2))

-
Il
a
P
N
—~
—
~—
N—
=
+
@
—
N
—
[\
S~—
N~—
=

holds.

2) There exist positive integers a,b such that there is equality of integral closures

> I(Want® = T(2)pnt"

n>0 n>0

in RJ[t].

Proof. Let Z(D1) and Z(D3) be integral divisorial mp-filtrations such that R(Z(1)) =
R(Z(D1)) and R(Z(2)) = R(Z(D2)). By Proposition 5.11, we have equality of functions

E(R/I(i)mml(i)mnz) — lim f(R/I(Di)mmI(Di)mnz)
m—00 md m—00 ma
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for i = 1,2 and all nj,n2 € N. Since 1) and 2) are equivalent for the integral divisorial
filtrations Z(D;) and Z(D2) by Theorem 12.1, they are also equivalent for the bounded
mp-filtrations Z(1) and Z(2). O

14. ANALYTICALLY IRREDUCIBLE LOCAL RINGS

Let R be an analytically irreducible local domain. A local ring R is analytlcally irre-
ducible if the mp-adic completion R is a domain. The complete local ring R is then an
excellent local domain.

Lemma 14.1. (36, Proposition 9.3.5]) Let R be an analytically irreducible local domain.
Then there is a 1-1 correspondence between mg-valuations of R and mg-valuations of R.

Lemma 14.2. Let R be a analytically irreducible local domain. Let pi,...,us be mp-
valuations and ny,...,ng € Zs. Let ji; be the unique extension of u; to a mR—valuation
for1 <i<s. Then

I(Ml)nl n---N I(:U“S)HSR = I(lal)nl n---N I(ﬂs)ns
and

(L(A)n, N NI (frs)ng) N R = T(p)n, N NI (s)n,
Proof. We certainly have that I(u1)n, M- -+ NI (fs)n. R C I(f11)ny NN I(fis)n,. Suppose
that f € I(fi1)n, M-+ NI (fis)n,. There exists a > 0 such that m% C I(fi1)n, N+ NI (fLs)n,

and aji;(mp) > n; for all 4. Since é/m“R = R/m$%, there exists g € R and h € mf, such
that f = g + h. For all 7, we have

pi(g) = fi(f — h) = min{fi(f), fi(h)} = ni.
Thus g € I(p1)n;, N N I(fts)n,- Now h = > ajb; with a; € m$ and b; € R. We have
that
piaz) = filaz) = afri(mg) > ni
for all 4 and j so that a; € I(p1)n, N -+ N I(fs)n, for all j. Thus f € (I(p1)n, N--- N
)R
Since A — A is faithfully flat, we have that

(L(A)n, N NI (fis)n,) VR = (I(p1)p, N -2 N I(NS)nsR) NR=1I(1)n, N NI (prs)n,.

O

By Lemma 5.8, if D = aju; + -+ + asps where p1s- .., ps are mp-valuations and
ai,...,as € Ry, then R[Z(D)] is mtegrally closed in R[t]. Let D = ajfi1 + - - -+ asfis and
(D) be the induced mp-filtration on R.

Lemma 14.3. Let R be an analytically irreducible local domain and suppose that T = {I,}
is a (real) bounded mp-filtration; that is, there exists a (real) divisorial mg-filtration Z(D)
such that the integral closure R[Z] of R[Z] in R[t] is R[Z(D)]. Let T = {I,,R}. Then
1 =1I(D) is a (real) bounded mp-filtration and the integral closure RI[Z] of R[T] in R[t] is
RIZ(D)].

Proof. RII(D)] = 3,50 I(mD)t™ is integral over R[I] = > o Int™ so the integrally

closed ring R[Z(D)] = Ym0 I(mD)Rt™ is integral over R[Z] = > >0 I, Rt™. O
43




Theorem 14.4. Suppose that R is an analytically irreducible local ring, Z(1) is real
bounded mp-filtration and Z(2) is an arbitrary mpg-filtration such that Z(1) C Z(2). Then
the following are equivalent

1) e(Z(1)) = e(Z(2)).

2) There is equality of integral closures

D It =) I(2)mt™

m>0 m>0

in RI[t].
Proof. We have that £5(R/I(j)mR) = (r(R/I(j)m) for j = 1,2 and all m € N. Thus

~

er(Z(j)) = ep(Z(4)) for j =1,2.
Let Z(D;) be the real divisorial filtration on R such that R[Z(1)] = R[Z(D:)]. By
Lemma 14.3, Z(D1)R = Z(Dy) is a real bounded mg-filtration and R[Z(1)R] = R[Z(D1)].

We have that R[Z(D;)] = R[Z(2)R] if and only if R[Z(D;)] = R[Z(2)] by Lemmas 14.2
and 14.3. Theorem 14.4 thus follows from Theorem 13.1, since R — R is faithfully flat. [

Theorem 14.5. Suppose that R is a d-dimensional analytically irreducible local ring and
Z(1) and Z(2) are bounded mp-filtrations. Then the following are equivalent

1) The Minkowski inequality
(Z()Z(2))7 = e(Z(1)) + e(Z(2))4

holds.
2) There exist positive integers a,b such that there is equality of integral closures

> I(Want® = I(2)pnt"

n>0 n>0

in R[t].

Proof. Since £5(R/I(1)mny I(2)mnyR) = Cr(R/I(1)imn I(2)mny) for all m,ni,ns € N, we
have that

8
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SN—
N
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N—
N~—
=
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N
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=
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—~
N
—~
[\
SN—
SN—
-

if and only if

A1 1 1

ep(Z(1)Z(2))d = ep(Z(1))d +ep(Z(2))a.
There exist integral divisorial mg-filtrations Z(D;) and Z(Ds) such that R[Z(1)] = R[Z(D;)]
and R[Z(2)] = R[Z(D3)]. By Lemma 14.2, we have that >, <, [(D1)anRt" = 3, 5o I(D2)pn RL"

if and only if ano I(D1)gnt™ = ano I(Dg)p,t™. Since ano I(j)ent™ = ano I(Dj)ent™
and

> I(j)en Bt = I(Dj)en R

n>0 n>0
for all ¢ € Z>¢ and j = 1,2, we have that 3 < I(1)ant™ = 3,50 [(2)pnt™ if and only if

S so I an Rt = 3,0 1(2)p Rt
By Lemma 14.3 and Theorem 13.2, we have that the conclusions of Theorem 14.5

holds. O
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15. AN EXAMPLE

In Theorem 1.4 [13], the following example is constructed. Let k be an algebraically
closed field. A 3-dimensional normal algebraic local ring R over k is constructed, and the
blow up ¢ : X — Spec(R) of an mp-primary ideal such that X is nonsingular with two
irreducible exceptional divisors F; and E5 is constructed.

The resolution of singularities of a three dimensional normal local ring which we con-
struct is similar to the one constructed in [15, Example 6] which is used to give an example
of a divisorial filtration with irrational multiplicity.

Theorem 15.1. ([13, Theorem 1.4]) Let D = ni Ey + naEo with ny,ng € N. Then

3377’:% ifng < ni
oy IO | 2t s - i << (3 )
m—00 m

(%_%>”3 if nq (3—§><n2.

We compute the functions yg, and yg, in [13, Theorem 4.1].
Theorem 15.2. ([13, Theorem 4.1]) Let D = n1E; + naEs with ny,ny € N, an effective
exceptional divisor on X.
1) Suppose that na < ny. Then yg, (D) =mn1 and vg,(D) = n1.
2) Suppose that n; < ng < ng (3 - ?) Then vg, (D) = n1 and vg,(D) = na.

3) Suppose that ny ( — g) < ny. Then vg,(D) = 973\/3712 and yg, (D) = na.
In all three cases, —yg,(D)E1 — vg,(D)FE2 is nef on X.

Corollary 15.3. Suppose that D1 and Do are effective integral exceptional divisors on
X. If D1 and D+ are in the first region of Theorem 15.1, then Minkowski’s equality holds
between them. If D1 and Dy are in the second region, then Minkowski’s equality holds
between them if and only if Dy is a rational multiple of D1. If D1 and Do are in the third
region, then Minkowski’s equality holds between them. Minkowski’s equality cannot hold
between Dy and Dy in different regions.

Proof. This follows from Theorems 11.5 and 15.2. U

The interpretation of mixed multiplicities as anti-positive intersection multiplicities is
particularly useful in the calculation of examples. We quote some statements from [12]
which, along with the calculations in Theorem 15.2 and the identities

(84) (EY) = 468, (Ef - Bz) = 162, (B1 - B3) = 54, (E3) = 54
on page 15 of [13] allow us to compute the mixed multiplicities of any divisors D; =
a1E + asEs and Dy = b1 E1 + boEs.

It is shown in [12, Theorem 8.3] that we have identities

(85) er(Z(D1)1"), Z(Dy) =) R) = —((=D1)® - (=Dy)®)

where ((—D1)% - (—D3)%) are the anti-positive intersection products defined in [12]. In
particular, eg(Z(D); R) = —((—D)%). Thus by (3), we have that [13, Formula (1.8)]

limy,— 00 ZR(R/](mnlDi)f(mnzDg))

m
di d
= - Zd1+d2=d d1!1d2! <(_D1>dl : (_DQ)d2>nlln22‘
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and [13, Formula (1.9)]

. L LR(R/ImD)) _(=D))

m—00 md d!

Proposition 15.4. ([13, Proposition 2.4]) Suppose that D1, . .., Dy are effective Q-Cartier
divisors with exceptional support such that the divisors — ) vyg,(D;)E; are nef for1 < j <
d. Then the positive intersection product (—Dy-,...,- — Dy) is the ordinary intersection

product (=Y vg,(D1)E; - ...- =Y vE,(Da)E;).
We now use this method to compute the mixed multiplicities of Z(E;) and Z(E3). By
Theorem 15.2
VB (E1) = 175, (E1) = 1, v, (E2) =
By formulas (84) and (86) and Proposition 15.4,
(88)
limy;, 00 m3
= Zi1+i2:3 #ER( (El)[“] I(EQ)[ZQ]) 5 12 ) .
=D i1 tia=3 ﬁ ((=ye, (B1)Er — 7E2(E1)E2)“ (=B, (B2) By — v, (E2) E2)2)) niin
_ Zn—i—lz 3 21'12 ((E1 + E2)21 . ( \[El + EQ)ZQ) nlllnéz

_ 891 |, 99 12042 27 2 2007 _ 9v3) .3
= 33n7 + ( 26 +3 26 3)ngng + ( 338 333 V3)mans + ( 169 338) ng,

3

% (B =1
073 VE, ()

ER(R/I(mmEl)I(mmEz))

in contrast to the function of Theorem 15.1.
We make a more detailed analysis in the third region.

Example 15.5. Suppose that D1 = a1FE1 + asFEs and Dy = b1 Ey + boEy are integral
divisors in the third region of Theorem 15.1, n1(3 — i) < ny. Then Z(D1) and I(D2)
satisfy equality in Minkowski’s inequality. We have

, . o (12042 273
;= T(D [3—1] T(D [7] — 3—11.% —eVRre  2tve
for0<i<3 andej—il:%fOTOgigB. Thus
I(mbng) = I(mang)

for all m € N.
Proof. By Theorem 15.2
3 3
Ve (D1) = 93 VB, (D1) = az, vE,(D2) = 9_7\/3527 VB, (D2) = ba.

By formula (86) and Proposition 15.4,
ZR(R/I(le) (mD23))

:Z“_i_w s lemleR(I(Dl)[“] I(DQ)[Q]) i1 122 | |
=D i pia=3 mg ((=vE, (D1)Er — VEQ(Dl)Ez)“ - (=, (D2) Ex — vg,(D2) Ea)™?)) ni'nf?

11 i2
_ i1, 12
=D i tia=3 21112 ( st — G2E2> ( . beEl 52E2> >n1 Ny
_ _i — E Z 1 ilbmn“n”
- 97\/3 2 i1+i2=3 i1 13! 1 Mg
_ (12042 27\f 1 d1782, 41, i2
= ( 169 169 > [Zi1+i2:3 1o by ny ”2}
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We obtain the formulas for the e; of the statement of the theorem from which we conclude
that the Minkowski equality is satisfied. The identity I(mbeD1) = I(magD2) now follows
from Corollary 11.2 and Corollary 11.1. O

(1]
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