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PROBABILISTIC ERROR ESTIMATION FOR NON-INTRUSIVE REDUCED
MODELS LEARNED FROM DATA OF SYSTEMS GOVERNED BY LINEAR
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS*
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Abstract. This work derives a residual-based a posteriori error estimator for reduced models learned
with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic
partial differential equations with control inputs. It is shown that quantities that are necessary for
the error estimator can be either obtained exactly as the solutions of least-squares problems in a
non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution
trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online
decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a
black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator
is used to bound the error of the reduced-model predictions for new initial conditions and new control
inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow
of the proposed approach from data to reduced models to certified predictions.

AMS Subject Classification. 65M60, 65P99, 65Y99, 65F99, 93C-05, 62G15, 65C-05, 65NI15.
The dates will be set by the publisher.

1. INTRODUCTION

Model reduction constructs reduced models that rapidly approximate solutions of differential equations by
solving in problem-dependent, low-dimensional subspaces of classical, high-dimensional (e.g., finite-element)
solution spaces [2,12, , ,34]. Traditional model reduction methods typically are intrusive in the sense that
full knowledge about the underlying governing equations and their discretizations are required to derive reduced
models. In contrast, this work considers non-intrusive model reduction that aims to learn reduced models from
data with only little knowledge about the governing equations and their discretizations. However, constructing
reduced models is only one aspect of model reduction. Another aspect is deriving a posteriori error estimators
that bound the error of reduced-model predictions with respect to the high-dimensional solutions that are
obtained numerically with, e.g., finite-element methods [ , ,30,37,41- ] This work builds on a posteriori
error estimators [11, ] from intrusive model reduction to establish error estimation for reduced models that are
learned with non-intrusive methods. The key contribution is to show that all quantities required for deriving the
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error estimator can be either obtained in a non-intrusive way via least-squares regression from initial conditions,
control inputs, and solution trajectories or bounded in a probabilistic sense, if the system of interest is known to
be governed by a linear parabolic partial differential equation (PDE) with control inputs. The key requirement
to make the estimator practical is that the high-dimensional system is queryable in the sense that during a
training (offline) phase one has access to a black box that one can feed with initial conditions and inputs and
that returns the corresponding numerical approximations of the high-dimensional solution trajectories. If one
considers learning reduced models from data as a machine learning task, then the proposed error estimator
can be considered as pre-asymptotic computable generalization bound [ | of the learned models because the
proposed estimator provides an upper bound on the error of the reduced model for initial conditions and inputs
that have not been seen during learning (training) the reduced model and the error-estimator quantities. The
bound is pre-asymptotic with respect to the number of data points and the dimension of the reduced model.

We review literature on non-intrusive and data-driven model reduction. First, the systems and control com-
munity has developed methods for identifying dynamical systems from frequency-response or impulse-response
data, e.g., the Loewner approach by Antonias and collaborators [ , 1C, 19], vector fitting [ , ], and eigensystem
realization [21, ]. In contrast, our approach will learn from time-domain data; not necessarily impulse-response
data. Second, dynamic mode decomposition | , 31,35, 16, | has been shown to successfully derive linear dy-
namical systems that best fit data in the To norm. However, the authors are unaware of error estimators for
models derived with dynamic mode decomposition. Third, there is operator inference [2£] that coincides with
dynamic mode decomposition in case of linear systems but is also applicable to data from systems with nonlinear
terms; see also the work on lift & learn for general nonlinear systems [ | and the work on dynamic reduced
models [28]. The error estimators proposed in the following will build on operator inference for non-intrusive
model reduction because, together with a particular data-sampling scheme [ ], operator inference exactly re-
covers the reduced models that are obtained via traditional intrusive model reduction. Thus, the learned models
are the traditional reduced models with well-studied properties known from intrusive model reduction.

We now review literature on error estimators developed for intrusive model reduction. First, the reduced-
basis community has developed error estimators for elliptic PDEs [ | and parabolic PDFs [ | with affine
parameter dependence, time-dependent viscous Burgers' equation [ , ], and linear evolution equations [ ,IE],
among others. For systems that are nonlinear and/or have non-affine parameter dependence, error bounds have
been established for reduced models with empirical interpolation in, e.g., [ , , ,44]. These error estimators
typically depend on the dual norm of the reduced-model residual and on other quantities of the underlying PDE
discretizations such as coercivity and inf-sup stability constants [ | that require knowledge about the weak form
of the governing equations that are unavailable in the setting of non-intrusive model reduction where one has
access to data alone. The work [ ] proposes a probabilistic error bound involving randomized residuals which
overcomes the need to compute constants in the error estimators; however, the reduced models are constructed
with traditional intrusive model reduction and, in particular, residuals are computed in an intrusive way which
conflicts with non-intrusive model reduction. In the systems and control community, the discrepancy between
the high-dimensional solutions of systems of ordinary differential equations and reduced-model solutions is
bounded in terms of the transfer functions, see, e.g., [ , 45].

This manuscript is organized as follows: Section 2 outlines preliminaries on spatial and temporal discretization
of linear parabolic PDEs and intrusive model reduction. Section 3 describes the proposed error estimator
for reduced models learned with operator inference from data. First, least-squares problems are derived to
infer residual-norm operators from data. Second, constants required for error estimation are bounded in a
probabilistic sense. These two novel components are combined together with an intrusive error estimator | 5]
into a computational procedure that realizes the full workflow from data to reduced models to certification of
reduced-model predictions, under certain conditions that are made precise. Numerical results are presented in
Section 4 and conclusions are drawn in Section 5.
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2. PRELIMINARIES

Section 2.1 reviews linear parabolic PDEs with spatial and time discretization discussed in Sections 2.2
and 2.3, respectively. The continuous-time problem is transformed into a discrete linear time-invariant system.
Intrusive model reduction is then recalled in Section 2.4. Section 2.5 outlines the problem formulation.

2.1. Linear parabolic PDEs with time-independent coefficients

Let 12 C Rm be a bounded domain and let 77= (0, 7) be a time interval with 7" > 0 fixed. Consider the
linear parabolic PDE on (x,2) E 12 x T given by

Nvix, t) =V (bT(x)Vw(x, t)) — c(x) 1 Vto(x, t) — d(x)w(x, t) + R(x), 2.1)

v(x,t) =0 for x & »D,
bT(x)Vw(x,t) ym=Uj@r) for xEP”, j= 1,...nr,
iv(x, 0) = h(x),

where iv : 12 x 77— R is the solution, 6 : 12 = Rm ‘'m, ¢ : 12 — Rm, ¢Z 12 — R are time-independent coefficients,
R : 12 — R is the source term and the boundary 512 is decomposed into the nr disjoint segments U~P = Py
with Neumann conditions and the remaining portion PD with Dirichlet condition. The control inputs are
{yP)}j=i f°’rz € T. Define [1], as the 2-th component of a vector and [-]y as the (2,j)-th component of a matrix.
Let further [bly, [cl«, d E L°°(12) for Z,7 E {!,...,m}, R, h E 12(12), and Uj E L2(T) for j = 1,..., nr where
L2, L'x correspond to the space of square-integrable and essentially bounded measurable functions, respectively.
For (2.1) to be parabolic, it is required that for any § E Rm and x E 12, there exists a constant 6 > 0 such that
> 9||fln [ ]

2.2. Spatial discretization

For the Sobolev space LTI(12), define V' = {v E ZP(!2) | virc = 0} which is equipped with the norm | ' |ly.
Denote by C°(T;L2(12)) the space of continuous functions w(?) : 7" — L2(12) with maxte’- \liv(?) ||[L2(Q) < oo
and L2(T;V) the space of all strongly measurable functions w(z) : 7°— V for which (/T ||[w(Z)||p dZ)1/2 < oo.
We seek iv E C°(T; 12(12)) n L2(T; V) such that

vj—tw ax —a(iv,v)+f(v) VrEV 22

where

=/ w1 (6TVW)d,x+ y[Vw'c+ nrd]dx

Jn Jn

and

N = nr

=7 iRix mE A% -dry;
Jn i=i

see [ , 11, 39] for details. In the following, we assume that the bilinear form a in (2.2) is coercive and continuous,
ie., 3 a >0 and 7 < oo for which a(v, v) > al||v||2, and a(iv,v) < 7|H|vIMlv f°r viw e V and / in (2.2) is
continuous. To discretize (2.2), consider a finite-dimensional approximation space ViV C V with basis

such that for iv E Vv, w(x, ) = w*(Z)y*(z). Setting v = y>j,1 = 1,..., N in (2.2) results in

Mdvst(t) Kw(t) + Fu(t) (2.3)
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where w(?) = [UR ¢ ZwWjv(t)]T € Kw, A E Rw'N such that /MJij = fQ ipjipi dx, K E Rw'N such that

[K]ij = —a(ipj, ipi), u(t) = [, ,wnr(#)|T E Rp with p = uT + 1, while
In PiRdx fiK pi cTn /"t pitiTwy
F =
jpi Pivhiv /PT piv v

If the source term R = 0, p = nT and the resulting u(?), " are obtained by truncating the first component of
u(t) and the first column of F defined above.

2.3. Time discretization

To temporally discretize the time-continuous system (2.3), let {tfc}f=0 C 7 be equally spaced points with
ffc+i — Ik = St and denote by wkluk the discrete time approximations to w(zk),u(tk). A one-step scheme can
be expressed as

— A = IMAATWE&H + FA+i) + (1W)M-i(ATw& + F~),  /))€[0,1] (2.4)

in which we recover the forward Euler, backward Euler, and Crank-Nicolson method with j3 = 0, j3 = 1, and
/3 = 1ij, respectively. We rewrite (2.4) as

wk+l = Awk+ Bgk+l (2.5)
with

A = (Tv - /mM-ifQ-ifTv + (1 - /3)<%M-i#),
B=(Tr2- iSStM"N K)-15tM~IF,
flfeti = (Suk+l + (1 — (3)uk,

and the NV x N identity matrix ZN. Note that gk+/ = uk for /3 = 0 while gk+! = uk+\ for 3 = 1. We refer to
W = [y0,..., wK] as a trajectory. We further define 0 as the set of input trajectories G = \g//..., gKI ERp'A
of arbitrary but finite length /\ so that J2k=il9k\i < oo fori = 1,... ,p, i.e. each component of'the discrete-time
input has finite norm on the time interval 7- Since Uj E L2(7), we only consider input trajectories G E Q.
In the following, we restrict ourselves to equidistant time discretizations. Non-equidistant discretizations in
time of (2.3) lead to time-varying systems instead of the time-invariant system (2.5) that we consider here; see
Section 5 for a discussion about the extension of the proposed approach to time-varying systems.

2.4. Traditional (intrusive) model reduction

Model reduction seeks an approximate solution to (2.5) which lies in a low-dimensional subspace V,, spanned
by the columns of Vn = [iq,..., vu] E RN with n << N. Various approaches exist for constructing the low-
dimensional subspace, see, e.g., [ ,12, 17, , ] In the following, we use the proper orthogonal decomposition
(POD) to construct Vn. Let [ti)0,...,2%0] be the snapshot matrix whose columns are the states wk. The
basis Fn for Vn is derived from the left singular vectors of the snapshot matrix corresponding to the » largest
singular values. Via Galerkin projection, the low-dimensional (reduced) system can then be derived as

wik+l = Awk+ Bgk+l (2.6)

where
A=y Ay» sR"-" B=VIBER""p (2.7)
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The low-dimensional solution wk approximates the solution wk to (2.5) through Vrwk We refer to W =
[xb0,..., wK-i] as a reduced trajectory.

2.5. Non-intrusive model reduction and problem formulation

Deriving reduced model (2.6) by forming the matrix-matrix products (2.7) of the basis matrix »n and the
operators A and B of the high-dimensional system is intrusive in the sense that 4 and B are required either in
assembled form or implicitly through a routine that provides the action of A and B to a vector. In the following,
we are interested in the situation where A and B are unavailable. Rather, we can simulate the high-dimensional
system (2.5) at initial conditions and control inputs to generate state trajectories. Building on non-intrusive
model reduction, we learn the reduced operators A and B from state trajectories without having A and B
available. A major component of intrusive model reduction, besides constructing reduced models, is deriving
error estimators that rigorously upper bound the approximation error of the reduced models with respect to the
high-dimensional solutions [11, 15, | ,4 - ] However, such error estimators typically depend on quantities
such as norms of A and residuals that are unavailable in non-intrusive model reduction. Thus, error estimators
developed for intrusive model reduction typically cannot be directly applied when reduced models are learned
with non-intrusive model reduction methods.

3. CERTIFYING REDUCED MODELS LEARNED FROM DATA

Our goal is two-fold: (i) learning the reduced operators (2.7) from state trajectories of the high-dimensional
system and (ii) learning quantities to establish a posteriori error estimators to rigorously bound the error
Wwk — yn-tyfe||2 in the 2-norm ||+ |2 of the reduced solution wk with respect to the high-dimensional solution wk
at time step k for different initial conditions and different inputs than what was used during (i). The reduced
operators and the quantities for the error estimators are learned under the setting that the high-dimensional
operators in (2.5) are unavailable in assembled and implicit form. We build on a non-intrusive approach for
model reduction based on operator inference [2E] and re-projection [27] and on an error estimator for linear
evolution equations [ ]. We show that the required quantities for the error estimator can be recovered from
residual trajectories corresponding to training control inputs in a non-intrusive way similar to learning the
reduced operators with operator inference and re-projection. These quantities then allow bounding the state
error for other inputs and initial conditions.

Section 3.1 reviews operator inference with re-projection introduced in [27] and provides novel results on
conditions which permit recovery of the reduced system operators. Section 3.2 discusses an error estimator
from intrusive model reduction as presented in [ ]. To carry over the error estimator | ] to the non-intrusive
model reduction case, an optimization problem is formulated in Section 3.3 whose unique solution leads to the
required quantities for error estimation under certain conditions. Sections 3.4 and 3.5 address prediction of the
state a posteriori error for other control inputs. The former utilizes a deterministic bound for the state error.
In contrast, the latter offers a probabilistic error estimator whose reliability, the probability of failure of the
error estimator, can be controlled by the number of samples. A summary of the proposed approach comprised
of an offline (training) and online (prediction) phase is then given in Section 3.6.

3.1. Recovering reduced models from data with operator inference and re-projection

Let »n be the basis matrix with n columns. Building on [ ], the work [ ] introduces a re-projection scheme
to generate the reduced trajectory W = [tc0,..., wK i] that would be obtained with the reduced model (2.6) as
if it were available by querying the high-dimensional system (2.5) alone with input trajectory G = \g/Z/... ,gK\.
We define a queryable system as follows.

Definition 1. 4 system (2.5) is queryable if'the trajectory [wn,.. ., %] with I\ > | can he computed for any
initial condition «+ E V, and any input trajectory G = [gl, .. ., gK] E Q.
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For example, system (2.5) can be black-box and queryable in the sense that the operators A and B are
unavailable but wl and G can be provided to a black box to produce W. In contrast, if there is a high-
dimensional system for which a trajectory M for an input trajectory G is given, without being able to choose
G and initial condition, then such a system is not queryable.

For a queryable system, the re-projection scheme alternates between time-stepping the high-dimensional
system (2.5) and projecting the state onto the space V, spanned by the columns of Fn Let wi E V,, be
the initial condition and define wi = F”wQ The re-projection scheme takes a single time step with the
high-dimensional system (2.5) with initial condition }»nw( and control input to obtain w\. The state w\
is projected to obtain w\ = F”wi, and the process is repeated by taking a single time step with the high-
dimensional system (2.5) with initial condition FVnwi and control input g2. The high-dimensional system is
re-simulated to obtain the re-projected trajectory W = M)0,...,2%0-1]. It is shown in [ ] that W is the
reduced trajectory W = [w0,..., wK-i] in our case of a linear system (2.5). Furthermore, the least-squares
problem

min V' \Awk + Bgk+l — wk+l (3.1)
AB k=o

has as the unique solution the reduced operators A and B if the data matrix
(W G| e R intyi (3.2)

has full rank and 7\ > n + p; see Corollary 3.2 in [27] for more details.

The following proposition generalizes the least-squares problem (3.1) to trajectories from multiple initial
conditions and shows that in this case there always exist initial conditions and input trajectories such that the
unique solution of the corresponding least-squares problem is given by the reduced operators A and B. This
may be necessary in scenarios for which \F in (3.2), which only depends on a single initial condition, is not
full rank despite K > n + p. This may occur if the system (2.5) evolves slowly such that the rows of \F are
numerically linearly dependent.

Proposition 2. There exist, n + p input, trajectories G\ .. ., G’"n+Pl E O, each offinite length K( E N for
(= 1,...,n+p, and n + p initial conditions w™\ . .., Wol+p/ E Vi such that, the generalized data matrix

wil)

- (vt
G(1) O++P) & )

$
with. re-projected, trajectories = [wE ..., E Rn ' K( has full rank, thereby guaranteeing the recovery
of the reduced, operators A, B via least, scjuares regression.

Proof. The generalized data matrix <F is induced by the least squares problem

n+p K(—1 2
min Y, ¥ w (3.3)
AB =1 k=0 :
which is an extension of the least squares problem (3.1) for the case when there are # = A ,n + p initial

conditions w™ ..., iyintp' and input trajectories G = [gle\ ..., g"]] E W’K( 1If <F is full rank, A, B

in (3.3) recover the reduced operators A, B as discussed in [ |.
We now derive specific initial conditions and control inputs that lead to a full-rank <F. First, we select n
linearly independent initial conditions WpI\..., oIl E V,, which exist because V,, has n dimensions. Cor-

respondingly, Wpl" ..., WoIl E Rn are linearly independent as well. To see this, note that Wol = Vflwf
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holds for i = | and thus Vn[w™,..., Woll] = [waql, ..., because wWil* ..., W™ E Vn. Be-
cause Fn has orthonormal columns, the rank of [wfl*,..., WQl*] = P"Awv™ ..., Wolll is equal to the rank
of VnCV™NwH, ... w|"*]) = [WQl* ..._ Woll}, which is n. Set =0p.i for i = 1,....n where Om ., rep-
resents an m x n matrix of zeros. Second, set WQI+1} = e = Wpl+p/ = ON.1 E V,, and select p linearly

independent control inputs g™+1\ ... ,g™tp" E O, which exist because Rp C Q per definition; see Section 2.3.
Taking these n+p initial conditions and input signals and time-stepping with re-projection the high-dimensional
system for a finite number of times steps leads to a generalized data matrix <& that contains at least the following
TOWS

T W(V|+P)l

79 | 7o)
The matrix <& therefore contains n + p linearly independent rows and thus has full rank. Note that /<e > | for
(=1,...,«+p. m|

Remark 3. Proposition 2 considers trajectories from, 'multiple initial conditions to show that initial conditions
and input, trajectories exist, to recover the reduced model via operator inference and re-projection. lIt. is possible
for the generalized data matrix  to be full rank even though fewer than n + p initial conditions are utilized.
However, Proposition 2 demonstrates in a. constructive manner that only at most, n + p initial conditions are
necessary to recover the reduced model. To ease exposition, we build on the formulation with a single initial
condition (3.1) in the following and in all our numerical results. However, the following results immediately
generalize to the formulation with 'multiple initial conditions used in Proposition 2.

3.2. Error estimation for linear reduced models in intrusive model reduction

We now elaborate on an a posteriori estimator for the state error in intrusive model reduction by following
the presentation by Haasdonk and Ohlberger | ]; note, however, that intrusive error estimation for reduced
models of parabolic PDEs has been studied by Grepl and Patera in [ | as well and the following non-intrusive
approach may extend to their error estimators too. For k E N, define the state error at time k as wk — Vawk
and the residual 7+t as

rk = AVnwk + Bgk+l — Vawk+1. 34
The state error is
k—1
= A&(wo — E»wo) + Y,. (3.5)
1=0
Define
k—1
AHco, ', ck w0, G) = collwo — VnwOh + ci+i\\rih (3.6)
1=0

which relies on the initial condition w0, input trajectory G E O, and constants c0,..., ¢k E R. The norm of
(3.5) is then bounded by

fe-i
W& — WWs < Ani|A%o,..., ||A%:; wo, G) |Afe 7 wo - Prnwob + " T1IW -"bllnb. 3.7)
1=0
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If max0<;<fc ||AZ|]2 < C for a constant (Gel, then the following holds

< Ar(C,...,C;wo0,QG).
k-f-1

The error wi — V0wl of the initial condition is the projection error wl — FrnV”wo and can be computed if
Vi and the initial condition wi are known.
3.3. Recovering the residual operators from residual trajectories

The residual norm ||rfe|2 at time step k is a critical component for the error estimator in [IE]; directly
computing ||rfc||2 using formula (3.4) would require either the high-dimensional system operators A and B or
querying the system (2.5) at each wk. Following [ ], the squared residual norm is expanded as

Ikfclli = wiIMIwk~+gl+1M2gk+1+2gl+1M3wk-+wl+IMAwk+l - 2wl,+lAwk — 2wf,+IBgk+l (3.3)
with the matrices

Mi = VIATAVn, Mo =BzB, M3=BTAVn, (3.9)

and M4 = V,, ’'n. Observe that after the reduced model has been obtained with operator inference and re-
projection (Section 3.1), the matrices A, B, and M4 can be readily computed without A and B. Only matrices
Mi, M2, M3 are needed additionally to compute the squared residual norm with (3.8).

Let W = [wO,''*, wx—n be the re-projected trajectory using an input trajectory G. Let further R =
[10,..., rjf-i] be the residual trajectory corresponding to the re-projected trajectory defined as

rk = AVnwk + Bgk+l — Vanwk+1,

following the residual expression in (3.4). The following proposition shows that M1,M2,M3 can be derived
via a least-squares problem using R, W, G.

Proposition 4. Define the data matrix D E MA ' KntP)(n+P+1) as

vech(2wiWQ - diag(wiwfi)) vechQwK_IwA. | — diag(wjf _iw”_J)
D vech(2glgf - diag(g™f)) vech(2g™g” -diag(9K9K)) (3.10)
2vec(gitD?") 2vec(g™w” J

where vec(-) is the vectoriza.tion operator, vech(-) is the half-vectorization operator of a symmetric matrix, and
diag(-) is a diagonal matrix preserving only the diagonal entries of its matrix argument. Let f'E MA whose
(k+ 1-th entry is

[/lfeti = linllo — wi+IM4Awk+1 + 2wJ+1Awk + 2wJ+1Bgk+]

and consider the least squares problem.

2
min \ ibIMi"Wih+gI+iM2gk+1+2gl+1 M3wk [f]kH) . (3.11)
XfEiir ", =

AfaEM" ",

AfaCIR" "

IfK > (n+p)(n+p+ 1)/2 and the data matrix D has full rank, the unique solution to (3.11) is M4 =
Mi, Mo = Mo, M3 = Ms with, objective value 0.
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Proof. The least squares problem (3.11) is equivalent to

mm\\Db-f\\] (3.12)
where
vech(Mi) ) .
o= vech(Mo) € 1M("+p)("+p+i)
_vec(Mg)

As the data matrix D is full rank with K > (n +p)(n +p + 1)/2, it follows that (3.12) has a unique solution.
This implies that (3.11) also has a unique solution due to the equivalence between (3.11) and (3.12). From the
residual norm expression (3.8), notice that Mi = Ai, Mo = Mo, Ms = M3 yields an objective value of 0
for (3.11). Therefore, it is the unique minimizer for the least squares problem (3.11). O

3.4. Error estimator based on the learned residual norm operators

Consider a queryable system (2.5). The residual trajectory of the re-projected state trajectory can be
computed during the re-projection step. Let Fn be a basis matrix, w)j'sin E Vv an initial condition, and
Gtram = [gI™Ill,... ,g”am| € 0 an input trajectory. Consider further the corresponding re-projected trajectory
VFtlam = [¢orain,..., and the corresponding residual trajectory Rflain = [fgram,..., r)!™]. Denote by

Vistin iy i\ 7 - (wp)

the data matrix for operator inference and £)tram the data matrix (3.10) with wk = wklam and gk = gk'am.
If \Ftram and £)tram have full rank with K > (n + p)(n + p+ 1)/2, the reduced model (2.6) can be recovered
together with A7, Mo, Ms defined in (3.8) following Section 3.1 and Proposition 4.

Set J > 0 as the number of time steps for prediction and let VUtest = ces be the state trajectory
resulting from system (2.5) subject to the initial state wjfst and the input trajectory Gtest = [g\est,... ,gifs1 €
Q. For the initial state wifst = V”™wjfst denote by W"test = [thiest,..., tyjest] the associated reduced state
trajectory produced by the recovered reduced model derived from operator inference and re-projection. The
norm of the residual of the trajectory 7  with respect to the high-dimensional model can be computed via
(3.8) by invoking AZi, Mo, Ms learned as in Proposition 4. Under certain conditions, the state error of wikst
can be bounded as follows.

Proposition 5. If \\rlestllo, k E N, is the residual norm ofw)fst calculated through (3.8), under the assumption
that ||A|2 < 1, the state error of the learned reduced model can be bounded via

|
-V i2<Ani, - V.wy F1mi2 (3.13)
3K 1=0

Proof. Using the basis matrix Fn, the input trajectory Gtest, the recovered reduced operators A4, B from
Section 3.1, and the recovered matrices A7, Mo, Ms from Proposition 4, the residual norm |[rj.estj)2 can be
computed for k = 0,..., J— 1.

From (3.5), we deduce

-V, 2 Fi “'! I (3.14)

The second inequality in (3.14) holds as |[A*|2 < ||A|2 <1 for 0 </ < k. O
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Remark 6. Proposition 5 shows that A™ is a pre-asymptotic, computable upper bound on the generalization
error of the learned reduced model with respect to control inputs.

The condition stated in Proposition 5 is met, for example, in the following situations. Let the bilinear form
a in (2.2) be symmetric. If/3 =0 in (2.5) (forward Euler) and the basis functions y», are, e.g., orthonormal such
that A7 is a multiple of the identity matrix, then A is symmetric and there exists a sufficiently small time-step
size St such that the spectral radius p{4) = || A||2 < 1. Alternatively, certain mass lumping techniques [ ] may
be applied to attain an AZ with such structure. Finally, if 3 = | in (2.5) (backward Euler), it can be shown
that there exists St such that the maximum singular value of (7 — StA/~1K)~I is at most 1, which relies on
the symmetry of A/ and K.

Remark 7. The error estimator A™ can be reformulated when the state error is measured with respect to a
different norm. Consider the reduced basis solution to a symmetric parabolic linear PDE. Let (-,-)L] tie the
inner product on L) and n <K N, be the low-dimensional finite element basis such. that the reduced
basis solution iu(x,t) to w(x,t) is expressed as iu(x,t) = Xu=i lvi(t)Vi(xxh Define the energy norm for v E V
dtt —tk as
k
Ib'Wlla = HWA'Wk: +<% "2
k'=1

A waa a/town, m | error o/ & recced 6a™ ,sa2&s/te,s

k
IMAfc) — w(-,fl)lU < St A2 r{tk>) TK ™ rfir)

i 1

where v(-) E Rw is the residual of the reduced basis solution at a particular time and K is the stiffness matrix
defined in Section 2.2. Using computations analogous to those carried out. in [ /, r(ffc'YTIC lr(ffc/) admits
an expression similar to (3.8) whose operators can be inferred using the strategy in Section 3.3. This enables
the calculation of the above bound for other control inputs without recourse to the high-dimensional system.
However, obtaining trajectories of r(tk')TK™r(tk') poses a challenge to training the error operators since this
presumes knowledge of K which is unavailable in our setting.

3.5. Probabilistic a posteriori error estimator for the state

We discuss an approach to bound [|JA*[|2, 0 </ < J, if the condition ||A]|2 < | in Proposition 5 is not met or
if it is unknown if [|A]|2 < | holds. We seek an upper bound for | Az||2 with probabilistic guarantees in order to
derive a probabilistic a posteriori error estimator for the state in Section 3.5.1. The practical implementation
of this error estimator is then discussed in Section 3.5.2. In the following, denote by N(p, S) the multivariate
Gaussian distribution with mean p, and covariance matrix E.

3.5.1. Probabilistic upper bound for ||A*|]2 and the state error

Lemma 8. Forl E N, let = Al Zi where Z\ ~ N(ON . \,IN) S0 that ©” is an N-dimensional Gaussian
random, vector with, mean zero and covariance AI(Al)T. Suppose that {©.P}.f£i are M E N independent, and

identically distributed N-dimensional random, vectors with, the same law as Then, for 7; > 0,

M

P 7 max [er13 > PI3 oy (3.15)

where | v is the cumulative distribution function of the chi-squared distribution with. | degree offreedom.
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Proof. 1t suffices to show that

(3.16)
because using the fact
. M
P(7,.jnaxJ|©(% < [IAT" ) = PN]|en{!j < f|A"|>

we conclude that
r/IN\iM
F.2 ~

£ (M maxtle(H||™ > [JA[N) = 1 - PNieMlid £ Mhl2 Mo |- F.
"\TV.

as desired. The proof of (3.16) uses ideas similar to that in [ ]. Recall that

A3 = yAm_((A'FA")

where \max(*) represents the largest eigenvalue of the matrix argument. Since (A4/)TAI is real and symmetric,
(A)TAl = QAQT where Q E Rw' N, QTQ = IN, and A is a diagonal matrix whose entries [A]** = A* satisfy
0 < Ai <'v+v < Ajy = ||Az|]ly By setting Z2 = QTZi, we have Z) ~ N{ON. 7,IN) and that

leW|* = (eWFf = Z[(A'fA = > ||AYIAN([Z2]iv)

where [Z2]N is the N-th component of Z2. Since [Z2]N ~ 1V(0,1), {/Z2]N)) ~ Xi, he. it is a chi-squared
random variable with | degree of freedom. It follows that for a constant y; > 0 with

fWI[ZH'=1) = i-f
we obtain
P(y,[leOII'2 > [|A']M) > P (yi([Z22]iv)' > 1) =1 -

O
Remark 9. Results similar to (3.15) can be obtained for other distributions on building on. eg., [, /.
Using (3.15), we derive a probabilistic a posteriori error estimator as the next result demonstrates.

Proposition 10. Forl =1, ..., ], let ©™ = Al Z where Z ~ N(ON . |; IN) so that ©i" is an N-dimensional
Gaussian random, vector with mean zero and covariance AI(Al)T. Let {Of be independent and identically
distributed N-dimensional random, vectors with the same law as ©” and define

I' = "H*.. TaxMlle‘©

for 71 >0,/ > 1 with. So = 1. For an initial state wo E VN and. an input, trajectory G, the following holds

(W {1I-"W&||3<Ar(S&,....,.So;wo,(3)jj>maxL.1-"] 1 3.17)
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Proof. Define the events £) = {Ey > |M" |||} for /= 1,..., J and the event
J
E () {||wk Vawk |2 < A™M(Sfc. ..., SO, w0, G)
k=1

Recall from (3.7) that

vk I wien < AT h;-tyO, ‘J,

holds, which means that we obtain
f(E) > £f(n"E)).

Using the Frechet inequality, we obtain

J

f(HiLiE;) >max 0,) E(E,)-J-1)

i=i
Therefore, using Lemma 8,
J 1 M J T i MN
P(E) > max (072 (1 — {Fxf (-ﬂ ) J-D ol /\.17)
— L

=1 it =]

3.5.2. Sampling random, vectors from queryable systems

We now discuss a practical implementation of the probabilistic error bound in Proposition 10. We resume
the setup outlined in Section 3.4. Recall that the reduced model (2.6) and M1,M2,M3 are recovered using
the input trajectory Gtram. Also, Wtest and ¥~  are the state and reduced state trajectories owing to the
input trajectory Gtest while ||rjest|2 is the residual norm of wikst calculated through (3.8).

To construct an upper bound for |-tyj.est — VAm/f}* ||2 according to Proposition 10, realizations of the random
vectors ~ NN .1, AI(ADT), | = need to be simulated. Therefore, for fixed M, if /zi}ff=] are
realizations of Z, realizations of ©” and hence a single realization

6 71 max HO(O

of S; for /= 1,..., J can be simulated by querying (2.5) for J time steps with control input gk = Op. | for all £
and with the realizations serving as M initial states, i.e. wi = 27 for i = 1,..., M. This produces M
trajectories of wk = 4kw(. Note that Co = 1.

For specified 7; > 0 which controls the confidence level (failure probability) of the probabilistic error estimator

in (3.17), an error estimate for |-tyjest —  TtYest|]2 for k = 1,..., J is provided by
fe-i
Ana, - _ =——— amit - taanis+ knis (s.1s)
1=0

which we refer to as learned error estimate. Observe that A™(Cfc, + + », Cof wjfst, Gtestj is a single realization of
the error estimator A™(5fc, ..., S0; wjfst, Gtest).
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Remark 11. Bounds on an output,, a quantity of interest which is obtained via a linear functional of the state
wk, can also be formulated if the norm of the output operator is available. Let the output at time k be expressed
as

Dk — Gwk
Sfor which it, is assumed that ||C|_2 is known. The output for the low-dimensional system, yk is therefore
Vk = CVnwk

Following [ ], since
vk — mb = 1|C(wh - vawk)b < ||c||2|wlc - vawkb,

and, A™M (£fc, .. ., £0, w0, G) is an error estimate for ||wh — Vawk |2, we deduce that yk — Ak and, yk + Ak are
lower and, upper bound, estimates for yk E R where

A% = ||C||2Ar ,Yo; wo, G). (3.19)

3.6. Computational procedure for offline and online phase

The proposed offline-online computational procedure for non-intrusive model reduction of certified reduced
models is summarized in Algorithm 2. It builds on the reprojection scheme in Algorithm | introduced in [ 7]
which is modified to include computation of the residual trajectory. The offline phase serves as a training stage
to determine the unknown quantities while the online phase utilizes these for certified predictions.

The inputs to Algorithm 2 include the number of time steps K (training), J (prediction), initial condition w0,
the snapshot matrix VFbasls = [w0, wbasls. ..., w)(asls] owing to the input trajectory Gbasls = [gbasls, ..., gf7sls] E
0, the basis dimension n, the input trajectories Qtlam”™Qtest for training and prediction, M > 1, {7z}f=1, and
the input trajectory Gnorm = [0p. 1;..., Op. J E Rp'J for finding an upper bound for ||AZ||2, | </ < J, and
the computational model (2.5) that can be queried.

The offline stage constitutes operator inference with reprojection (Section 3.1) and estimation of state error
upper bounds (Sections 3.3, 3.5) with the input trajectory Gtram E Q. It is composed of three parts: inferring
the reduced system, inferring the residual-norm operator, and finding an upper bound for the norm of A in the
error estimator. The offline phase proceeds by building the low-dimensional basis Fn from trajectories of the
state contained in VFbasls. The re-projection algorithm is then invoked to generate the re-projected states wyfam
and its residual rj.ram corresponding to the control input Gtram. Using data on wj.ram and Gtram, the least
squares problem (3.1) is formulated in order to recover the reduced system (2.6) in a non-intrusive manner. The
second part of the offline stage utilizes the inferred reduced system and data on the residual firam to set up the
least squares problem (3.11). Solving (3.11) yields the operators M1, M2,M3, which enable the computation
of the residual norm (3.8) at any time for a specified control input. Finally, upper bounds for the operator norms
|A*]]2 in the a posteriori error expression (3.6) are sought by querying the system (2.5) at initial conditions
consisting of M realizations of Z ~ N(ON i, 7N). The M trajectories corresponding to each initial condition
are employed in the definition of & which is a realization of the probabilistic bound S;, i.e. |Az|2 < E). Notice
that Algorithms | and 2 do not rely on knowledge of A, B in (2.5) and Mi, Mo, A3 in (3.8). Furthermore, it
is unnecessary to use the same input trajectory Gtram for solving the least squares problems (3.1) and (3.11).

In the online stage, the deduced quantities in the offline stage are invoked to compute the low-dimensional
solution (2.6), the norm of its residual (3.8), and consequently an upper bound for the state error (3.13) or (3.18)
for an input trajectory Gtest E Q.

Algorithm 2 serves as the reference for the numerical examples undertaken in Section 4.
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Algorithm 1 Data sampling with re-projection

. Set wi = V,,wo

2 for k — 0,..., K—1 do

3 Query (2.5) for a single time step to obtain wtmp = A Vawk + Bghk+]
4 Set wkol = 7 Witmp

5. Compute the residual 7k = wtmp — Vawk+]

6: end for

7. Return [ty0, wi, 11, wK| and [r0, fi,..., 7K-1]

Algorithm 2 Data-driven model reduction

Offline phase

Construct a low-dimensional basis }n from the snapshot matrix VEbasls

Generate {-w)ram}£=0 via. re-projection and its residual (Algorithm 1) using Gt,ram

Perform operator inference by solving (3.1) to deduce A, B

Infer Mi, Mo, M3 from (3.11) for the computation of (3.8)

Simulate M realizations {zQ.fli of Z ~ N(ON. 1, IN)

Produce M realizations of O™ for / = 1,..., J by querying (2.5) for J time steps with wi = z.h
[ T, \/ and input Gnorm

7. Compute Q = \J”™ maxi=li...iM HAPIli for /= 1,...,J

o A i

Online phase
8 Calculate the low-dimensional solution {-ihjest,}"=1 to (2.6) using the inferred A, B and input Gtest
Evaluate ||r).estj|3 for £ = O,..., J — | in (3.8) utilizing the deduced Mi, Mo, Mg
10 Estimate the a posteriori error for the state via (3.13) or (3.18) for A= 1,..., J

s

3.7. Computational cost comparison

We compare the computational cost for certifying low-dimensional models under intrusive and non-intrusive
model reduction. The cost for both approaches in the online phase is identical. In the offline stage, the
procedure of generating snapshots and a reduced basis are the same in the intrusive and the proposed non-
intrusive approach. The intrusive approach then assembles the reduced operators via matrix-matrix products
(2.7) and sets up the error estimator by computing the quantities AZl: Mo, M-3, {\\Al\lo}/=] which involves the
matrix-matrix products in (3.9) and computing the largest singular value of a matrix.

In contrast, the proposed non-intrusive approach samples trajectories via re-projection in which the full model
is queried. The reduced operators are then fitted to data by solving the least squares problem (3.1) which scales
according to 0{K(n + p)2). Finally, the error-estimator quantities MI! Mg, Mg, {Q},J=] are learned via least-
squares regression (3.12), which scales as

0 K {n+p)(n+p+1)

and by simulating the full model to realize probabilistic bounds of {||Az|[2}f=1.

4. NUMERICAL RESULTS

The numerical examples in this section illustrate the following points: 1) the quantities for error estimators
are learned from data up to numerical errors, 2) the learned low-dimensional system and the residual norm for
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the a posteriori error estimators are exact reconstructions of those resulting from intrusive model reduction,
3) the learned quantities can be used to predict the low-dimensional solution and provide error estimates for
specified control inputs, and 4) error estimators for the output, i.e. quantity of interest, can be deduced if the
output operator is linear in the state and its norm is available.

An implementation of operator inference with the proposed non-intrusive error estimation is available in
Pythonl. It requires a blackbox function that timesteps the high-dimensional system to perform non-intrusive
model reduction. It computes the reduced model operators and operators in the error estimator for both types
of model reduction. The sample script provided reproduces Figure 1b and 2c¢ below.

4.1. Error quantities

We compute the following quantities to assess the predictive capabilities of reduced models learned from data
for test input trajectories Gtest and test initial conditions wyjfst
Error of the reduced solution:

o |Wiest =V, w

] 4.1
1|PFtestj| F

where W'"teSt refers to the trajectory of the reduced system inferred via intrusive model reduction (VFteSt) or

operator inference (W ) and | ' ||F is the Frobenius norm.
Time-averaged residual norm:

e® (4.2)

where the residual norm ||rj.estj|2 is computed through the two approaches for model reduction we compare:
intrusive (||fiestj|2) vs operator inference (||fj.estj|2).
Relative average state error over time and its corresponding a posteriori error estimates tabulated in Table 1.

In (4.5), £, £k = O,..., J, are realizations of the random variables Ek defined in Proposition 10. In our
experiments, we set 7, = 7 for / = 1,..., J so that the probability lower bound in (3.17) becomes

01 — T 1\ 1M
max {Fxf (;)} ) . 4.7

Relative state error at a particular time point k and its corresponding a posteriori error estimates tabulated
in Table 2.

4.2. Heat transfer

The setup for non-intrusive model reduction applied to this example is first described which is followed by
the numerical results.

Ihttps://github.com/wayneisaacuy/OpInfErrEst
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Errors and error estimators

Definition

error of reduced solution

J—1 .
o DL e - V@i

. . 4.3)
T—1 (
via operator inference I Jwtest
intrusive model reduction A — i;é A};’(HARHL cee ||AO||2§ ’w(t)eSt7 GteSt) (4.4)
- J—1 ‘
upper bound for the state error Y0 Jwtest]f
realization of probabilistic AD — i;é A¥ (&, ... Go;wist, G (45)
- J—1 :
upper bound for the state error Y00 Jwtest
learned deterministic AB) i;é AP, Lwg, GteSt) (4.6)
upper bound for the state error o J=1 10 test '
bp I3 2o lwit [l
TABLE 1. Relative average state error over time and its corresponding error estimates obtained
from intrusive model reduction and operator inference.
Errors and error estimators Definition
error of reduced solution 4 |wtest — Vo, @2 (48)
via operator inference [lwtest||o ’
intrusive model reduction AG — A}f(HAk”L Ce ||AO||2; ’w(t)eSt7 GteSt) (4.9)
bound for the stat - test ’
upper bound for the state error ||wk Il
realization of probabilistic AG) A¥ (&, ..., o wi™", G**) 410
b d fi h o test ( : )
upper bound for the state error ||wk Il
learned deterministic A AP, Lwi, G (4.11)

upper bound for the state error

[l

TABLE 2. Relative state error at a particular time point & and its corresponding error estimates

obtained from intrusive model reduction and operator inference.
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4.2.1. Setup
For 0, = (0,1), 7= (0, 7), T =5, consider the heat equation on (x,2) G x T given by

a N
_W(Xaf) :AiAW(Xsf)5

iu(0,t) =0,
= u()
w(x, 0) = 0.
To discretize the PDF, 12 is subdivided into V= 133 intervals with width Ax = I/N. Let be linear hat

basis functions with ipi(jAx) = Sij where <Sy is the Kronecker delta function. We obtain the continuous-time
system

0
= Kw() +,,
w(f)
where [K]ij = -p ™ dx for i,j = In our simulation, we set p = 0.1 for the diffusivity

parameter and temporally discretized the continuous system using backward Euler with St = 0.01 being the
time step size.

The basis P’n was constructed from the snapshot matrix of K = 500 time steps driven by the control input
ubasls(t) = ¢* sin(207rf/T). The objective functions (3.1) and (3.12) were optimized using the input trajectory
Gtram = [0, z1,..., zK-i] where z« is a realization of i=1,..., K—1, which are independent and identically
distributed ~NV(0,1) random variables. The training control input need not be random but it aids in exciting
the system to produce a full rank data matrix for the least squares problems we solve. Random signals are also
utilized in system identification [ ]. If information is available on a specific signal that is appropriate for a
particular system, it could also be utilized in the training stage.

4.2.2. Results

We now assess the performance of the learned reduced model and quantities required for a posteriori error
estimation. In the online stage, the control input utest(f) = e( sin(127rf/T) was discretized using 500 time steps.
The quantities listed in Section 4 are calculated up to n = 8 basis vectors.

Figure | demonstrates that the reduced system and quantities required for error estimation can be recovered
up to numerical errors. In particular, Figure la plots (4.1) for the reduced solution resulting from intrusive model
reduction compared to that from operator inference. It demonstrates the theory established in earlier work [ 7]
on the recovery of the reduced operators in the system (2.6). Due to this, the error of the reduced trajectory
from either approach is almost identical. The quantity (4.2) involving the residual norm for both approaches
of model reduction is presented in Figure 1b. The plot shows that both methods are in close agreement. If the
conditions in Proposition 4 are met, the matrices M1,M2,M3 in (3.8) and hence the residual norm itself can
also be recovered.

In this simulation, our knowledge of A7, K informed the choice of St so that ||A]2 < | and thus, the
deterministic error estimator (3.13) is applicable. If this is not the case, the probabilistic error estimator
introduced in Section 3.5 can be utilized instead. Figure 2 shows the deterministic and probabilistic a posteriori
error estimates. For the probabilistic error estimate, we chose 7=1, M = 25, J = 500 so that PLB(y, M, J) %
0.9641. Only one realization of each of the random variables S;, / = 1,..., J was generated for this example.
Figures 2a and 2b display the learned reduced model error (4.8) and the intrusive (4.9), probabilistic (4.10),
and deterministic (4.11) error estimates at £ = | and ¢ = 5, respectively. These plots depict the intrusive
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le+O0 . . i + 1le+O0 ] ) ]
intrusive model reduction 4- intrusive model reduction 4-
. Oplnf -0 Oplnf Q-
basis dimension basis dimension
(A) state error (B) residual

FIGURE 1. Heat equation: The results in plots (a)-(b) indicate that the reduced system and the
quantities required for error estimation under operator inference, i.e. residual norm operators,
are equal to their intrusive counterparts up to numerical errors.

model reduction error estimate (3.7) for the state error. We notice that the intrusive and deterministic (non-
intrusive) error estimates are almost identical. In addition, the plots convey that the learned error estimate
(3.18) under operator inference is roughly of the same order of magnitude as the error estimate provided by the
intrusive approach. The calculated quantities for the time-averaged learned reduced model error (4.3) and its
corresponding intrusive (4.4), probabilistic (4.5), and deterministic (4.6) error estimates are likewise shown in
Figure 2c. The plot reveals that the behavior of the time-averaged relative state error is similar to that of the
relative state error at various time instances.

In practice, the learned error estimator may depend on the realizations of the random variables simulated.
In all simulations described above, we performed calculations using only a single realization of S;. We therefore
generate multiple realizations of E) and study the variability in the resulting learned error estimate associated
with various sets of realizations of O. Figure 3 compiles the mean (solid) of 100 realizations of the learned
error estimator (4.10) for # = | and # = 5 and (4.5) in Figures 3a, 3a, and 3c respectively. In each panel, the
vertical bars symbolize the minimum and maximum among the simulated realizations while the error estimate
from the intrusive approach is also shown. We observe from the minimum and maximum values that there is
low variability in the learned error estimates generated.

4.2.3. Computational cost

Finally, we compare the offline runtime for certifying low-dimensional models under intrusive and non-
intrusive model reduction. Note that the online runtime for both is identical. The comparison is carried
out for the experiment corresponding to Figure 2. The results are shown in Figure 4 where the runtime is
reported for reduced dimensions between | and 8, averaged over 100 runs. The runtime of both approaches is
dominated by setting up the error estimator. For intrusive model reduction, this is due to computing ||A*|2 for
I =1,..., J. For the proposed non-intrusive approach, this is due to querying the high-dimensional system to
obtain realizations of £;,/ = 1,..., J. The runtime of solving the least-squares problem (3.12) is negligible in
this example.

4.3. Convection-diffusion in a pipe

The setup for this problem is first described followed by the numerical results for two types of control inputs
and bounds on the output error.
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Oplnf error (4.8) -B-

Oplnf error (4.8) -g-

intrusive err. est. (4.9 4- intrusive err. est. (4.9 4-

d deterministic err. est. (4.11) O d deterministic err. est. (4.11) -O

'I learned err. est. (4.10) -Q- I learned err. est. (4.10) -Q
o Q
nd
a a

3 4 5 6 7
basis dimension

(A)error and error estimates at ¢ = |

1 2 3 4 5 6 7
basis dimension

(BJerror and error estimates at £ = 5

le-01
le-02
le-03|
le-04
le-05

le-06

- . -B- Ophif error (4.3)
le-07 4- intrusive err. est. (4.4) JON]
le-08 - -O deteiministic err. est. (4.6
16-09 -0 learned err. est. (4.5)

e-

3 4 5 6

basis dimension

(C) average error and error estimates over # G [0,5]

FIGURE 2. Heat equation: The plots illustrate that the deterministic (non-intrusive) error
estimator (3.13) and the learned (probabilistic) error estimator derived in Proposition 10 bound
the error of the reduced solution in this example. The intrusive and deterministic error estimates
are close. In addition, the learned error estimator indicates an error of the same order of
magnitude as the intrusive error estimator. The parameters used for the learned error estimator
were chosen as 7 = |, M = 25,J = 500 so that the learned estimator gives an upper with
probability PLB % 0.9641.

4.3.1. Setup

We now consider a parabolic PDF over a 2-D spatial domain according to the convection-diffusion equation.
Let 77= (0,0.5) and 12 = (0,1) x (0,0.25). For {x\,x2,t) GlIxT, the PDF examined is

“w(aq,a:2,f) =V - ("Vw(aq,a:2,f)) - (1,1) - Vw(aq,a:2,f), (4.12)

w(3q,%2,£)=0 for (21,22) GcKN\U)Li.E'a,
Vw(.21,22,f) 'm=Ui@) for (21,22) € Ei,i=1,... .5,
w(2’i, 22,0) = 0.
where the domain 12 and the segments E7, i = 1,..., 5 with Neumann conditions are visualized in Figure 5.

The finite element discretization is constructed using square elements with width A27 = Ax2 = 1/75 and
associated linear hat basis functions {yp(xi,xoTLi where V = 1121. The continuous-time system resulting
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FiGURE 3. Heat equation: The mean, minimum, and maximum of the quantities (4.10) and
(4.5) computed from 100 samples of the learned error estimator are shown. It is observed that
there is low variation among the samples of the learned error estimator.

from this PDF is

Mdv:h(t) Kw(t) + Fu(t)
where A is the mass matrix as before, \K\ij = —p fQ V+y ' dx — fO((1,1) » V+,-yt«dx for i,j = 1,..., N
and [FJij = pJE tptdx for i = 1,...,N,j = 1,..., 5. This was then discretized using forward Euler with the
time step size St = 10~5.

Two variants of this problem are investigated in Sections 4.3.2 and 4.3.3 in which we implemented different
pairs of control signals (ubasls(?), utest(t)) in each variation. The control inputs for basis generation and the
testing stage are more similar in nature in Section 4.3.2 than in Section 4.3.3. The same control input utrain(t) is
used to solve the optimization problems (3.1) and (3.10) for both variants which is discretized to obtain Gt,ram
The trajectory Gtram was simulated as follows: for the time points K =5x 104, [gk]j is a realization
of ZK' ~ N(0, sin2(jntk)) such that Zk \ Z~ are independent for £,/ = 1,...,1\ - 1, £k ™1

4.3.2. Results for exponentially growing sinusoidal control input,

The diffusivity parameter in this example is set to p = 0.5. The basis V7 is constructed using the control
input i/fasls(t) = sin(2j¢),j = 1,...,5 while the control input «dest(f) = e(sin(1.75jf),7 = 1,...,5 is used for
prediction in the online stage. Both of these control inputs are discretized in time using K = 5 x 104 (basis)
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FiGure 4. Heat equation. Comparison of runtime of the offline phase for intrusive model
reduction and the proposed non-intrusive approach. Setting up the error estimator dominates
the offline costs. In case of intrusive model reduction, the offline costs are dominated by
computing | A4112,/ = 1,..., J. In case of the proposed non-intrusive approach, the offline costs
are dominated by generating realizations /= 1,..., J, for the probabilistic bound.

03 an E3 E)

0.2
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Z1

FIGURE 5. Domain ( for the convection-diffusion PDF in Section 4.3 with segments of the
boundary with Neumann conditions indicated by thin solid lines.

and J =5 x 104 (prediction) intervals of equal width. To visualize trajectories of the high-dimensional system
resulting from the control input utest(t), Fig 6 illustrates w{xi, x2, ¢) for ¢ = 0.1,0.5.

We now examine the accuracy of the inferred reduced model and its state error estimate under operator
inference by computing the errors listed above. The quantity (4.2) corresponding to the intrusive and operator
inference approach as a function of the basis dimension # is contrasted in Figure 7. The plot demonstrates the
recovery of the residual norm (3.8) in the latter method. The reduced system operators for both methods are
also almost identical.

We then investigate the effect of the parameters 7 and M in the learned error estimator (3.18) in Figures 8
and 9. Figures 8a and 8b depict the learned reduced model error (4.8) and the intrusive (4.9) and learned
(probabilistic) (4.10) error estimates at times # = 0.1 and # = 0.5. Each panel presents, for 7 = 7,20,50, a
single realization (3.18) of the probabilistic error estimator (3.17) using M = 10 with their respective lower
bound probabilities of PLB % 0.7543, 0.9985, 0.9999. The same set of realizations of Ej for / = 1,..., J were
utilized for the values of 7 considered. For fixed M, the learned error estimates become more conservative with
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(A) high-dimensional system, £ = 0.1 (B) high-dimensional system, £ = 0.5

FiGUure 6. Convection-diffusion equation: Numerical approximation of the solution to (4.12)
at times ¢ = 0.1 and # = 0.5 for p = 0.5 and control input Gt,est.

intrusive model reduction -+-
Oplnf -G-

8§ 10 12 14 16

basis dimension

FIGURE 7. Convection-diffusion equation (Section 4.3.2): The graph indicates that the residual
norm (3.8) needed for the a posteriori estimate (3.6) can be recovered under operator inference.

respect to the intrusive error estimate in favor of increased confidence in the estimate; cf. the definition of 5) in
Proposition 10.

Figure 9 plots the same quantities shown in Figure § but for the parameters 7 = | and M = 35,100, 500,
i.e. M is varied while 7 is fixed. The lower bound probability values for each A are PLB % 0.9212,0.9999,1.
The sets of the M = 35,100, 500 realizations of for / = 1,..., J are nested. For this example, increasing
M did lead only to slight changes in the learned error estimate. The influence of A is more difficult to gauge
numerically since the maximum of may not differ substantially as a function of M. The results in
Figures 8 and 9 indicate that in this example, for a fixed value for PLB, it is more favorable to choose a larger
value of M and a smaller value of 7 to obtain a tighter learned error estimate that is close to the error estimate
from intrusive model reduction with a high confidence in the estimate. This is because increasing 7 results
in scaling £; by ,/y which then yields a more conservative error estimate (3.18) while only gaining a modest
increase in PLB. In contrast, increasing M (which requires additional queries to the full system) implies a faster
convergence of PLB to | without necessarily incurring a scaling of ~ We therefore see that there is a trade off

between a conservative bound and high PLB for 7 while there is a trade off between computational expense and
high PLB for M.
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FicUre 8. Convection-diffusion equation (Section 4.3.2). Increasing 7 leads to a more conser-
vative learned error estimate (3.18) for fixed M, J with respect to the intrusive error estimate.
This simultaneously corresponds to a larger lower bound probability PLB. The parameters
used were M = 10 and 7 = 7, 20, 50 for which PLB % 0.75,0.9985,0.9999.

~ Oplnf error E4. 8?
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FiGURE 9. Convection-diffusion equation (Section 4.3.2). Increasing M only slightly changes
the learned error estimate (3.18) for fixed 7, J in this example. The parameters used were 7=1
and M = 35,100, 500 for which PLB % 0.92, 0.99,1.

We now assess the variation in the realizations of the learned error estimator. The simulation is carried out
for 7 =1, M = 35. We generated 50 sets of M = 35 realizations of to produce 50 realizations of S; and of
the learned error estimate (4.10). The mean (solid) of the 50 realizations of (4.10) for # = 0.1 and ¢# = 0.5 are
illustrated in the panels of Figure 10 together with their minimum and maximum values (vertical bars). For
reference, the error estimate (4.8) under intrusive model reduction is also included. The plots show that the
variation among samples of the learned error estimator is low.
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FIGURE 10. Convection-diffusion equation (Section 4.3.2). The mean, minimum, and maxi-
mum of (4.10) based on 50 samples of the learned error estimator are depicted together with
the error estimate from intrusive model reduction. The parameters used were 7 = 1, M = 35.
There is a low variation among the samples of the learned error estimator.

4.3.3. Results for sinusoidal control input,

In this case, the diffusivity parameter is set to p = 1. The control input wzbasls(¢) for constructing the basis
Vn consists of

itbasls(t) = 5t sin(Trf) (4.13)

Ugasls(t) = N3 —+12 sin(37rf)
ti-4asls(f) = 5012 sin(47rf)

while the components of the control input utest(?) for prediction were chosen as z¢/5¢t{t) = sin(jitf+,-),7 = 1,..., 5
where Zj is a realization of a NV(0,1) random variable.

Figure 11 summarizes the predictive capabilities of operator inference. The quantity (4.2) is plotted in
Figure 1la wherein we see concordance between the intrusive and operator inference approaches. Observe that
the errors in Figure lla are larger than in Figure 7 since the basis and test control inputs are less similar
in nature. Figure lib contains graphs of the learned reduced model error (4.3) and the intrusive (4.4) and
learned (probabilistic) (4.5) error estimates in which | sample of the learned error estimator was generated. The
parameters for the learned error estimator were set to 7 = 1, M = 40, J = 5x 104 so that PhB (7, M, J) % 0.9883.
The learned error estimate is close to the error estimate given by the intrusive approach.

4.3.4. Results for bound on output error

We now study the efficiency of the learned error estimator for the state in constructing bounds for an output.
We resume the setup in the previous subsection wherein the control input is sinusoidal. We consider two
quantities of interest for this case, namely, = C™wk forj E {1,2} with the control input Gtest The

matrices and are defined as follows: The first output is the average of the state components of wk at
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FIGURE 11. Convection-diffusion equation (Section 4.3.3). The panels show that operator in-
ference recovers the residual norm necessary for deriving error estimates of the state. Further-
more, the learned state error estimate is only slightly higher than the error estimate provided
by the intrusive method.

each time which is

= C™wk where »-N (4.14)

The second output is the integral of the finite element approximation to w(x,#) over the edge £S at each time
given by

v = C™Wk where = / <pidT,.. ,/ ¢oNdT (4.15)
JEz JEz

The output yk and its bounds yk = Ak over time are displayed in Figures 12 (first output) and 13 (second
output); cf. Remark 11. These quantities were sketched for n € {7,12,17} basis dimensions in the first output
and n € {5,10,15} in the second output. The output bound Ak is computed via the learned error estimator for
the state A™ with the same parameters above, i.e. 7 = 1, M = 40, J = 5 x 104. The panels show that increasing
n yields a decrease in the output bound width 24k over time, i.e. the bounds are sharper with respect to the
output value. This is supported by Figure 11 which demonstrates decrease of the learned state error estimate
as a function of the basis dimension.

5. CONCLUSIONS

This work proposes a probabilistic a posteriori error estimator that is applicable with non-intrusive model
reduction under certain assumptions. The key is that quantities that are necessary for error estimators developed
for intrusive model reduction can be derived via least-squares regression from input and solution trajectories
whereas other quantities that are necessary can be bounded in a probabilistic sense by sampling the high-
dimensional system in a judicious and black-box way. The learned estimators can be used to rigorously upper
bound the error of reduced models learned from data for initial conditions and inputs that are different from
those used during the training phase (offline phase). Thus, the proposed approach establishes trust in decisions
made from data by realizing the full workflow from data to reduced models to certified predictions.



26 TITLE WILL BE SET BY THE PUBLISHER

0.035
—t— output (4.14)
0.025 -4 -
Ittt —
0.025 =
0.015
0.015
0003 output (:tl.-l4 0.005
0.005 g 0.005 _
(A) n = 17 bases (B) n = 12 bases (c) n =7 bases

ricure 12. Convection-diffusion equation (Section 4.3.3). The panels show the predictive
capability of the learned error estimator for the state error in constructing lower and upper
bounds for the output (average of state components). The bounds correctly indicate that the
errors of the predicted reduced-model outputs decreases if the basis dimension is increased.
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FIGURE 13. Convection-diffusion equation (Section 4.3.3). Similar behavior as described in
Figure 12 is observed in these panels for the quantity of interest based on the integral over the
Neumann boundary.

The framework introduced here for learning error estimators may be extended beyond linear time-invariant
systems by exploiting a posteriori error estimators from intrusive model reduction provided that these can be
derived for such systems. See [15] as an example for linear time-varying systems. While details remain future
work, it seems the proposed approach is applicable to linear time-varying systems for which the time-varying
operators can be decomposed as a linear combination of time-independent matrices with time-varying scalar
coefficients. These matrices are then inferred from data on the squared residual norm if the time-dependent
coefficients are known. For nonlinear systems, the method here should be adapted to specific nonlinear PDFs
for which error analysis of the intrusive reduced model is possible. This will be the subject of future work.
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