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Fig. 1. An overview of the results of our study of diferent CCD methods run on 60 million queries (both vertex-face and edge-edge). For each method, we show

the number of false positives (i.e., the method detects a collision where there is none), the number of false negatives (i.e., the method misses a collision), and

the average run time. Each plot reports results in a logarithmic scale. False positives and negatives are computed with respect to the ground truth computed

using Mathematica [Wolfram Research Inc. 2020]. Acronyms are defined in Section 4.2.

We introduce a large scale benchmark for continuous collision detection
(CCD) algorithms, composed of queries manually constructed to highlight
challenging degenerate cases and automatically generated using existing
simulators to cover common cases. We use the benchmark to evaluate the
accuracy, correctness, and eiciency of state-of-the-art continuous collision
detection algorithms, both with and without minimal separation.

We discover that, despite the widespread use of CCD algorithms, existing
algorithms are either: (1) correct but impractically slow, (2) eicient but
incorrect, introducing false negatives which will lead to interpenetration, or
(3) correct but over conservative, reporting a large number of false positives
which might lead to inaccuracies when integrated in a simulator.

By combining the seminal interval root inding algorithm introduced
by Snyder in 1992 with modern predicate design techniques, we propose a
simple and eicient CCD algorithm. This algorithm is competitive with state
of the art methods in terms of runtime while conservatively reporting the

∗Joint irst authors

Authors’ addresses: Bolun Wang, LMIB & NLSDE & School of Mathematical Sciences &
Shenyuan Honor College, Beihang University, New York University, wangbolun@buaa.
edu.cn; Zachary Ferguson, New York University, zfergus@nyu.edu, zfergus@nyu.edu;
Teseo Schneider, New York University, University of Victoria; Xin Jiang, LMIB &NLSDE
& School of Mathematical Sciences, Beihang University, Peng Cheng Laboratory
in Shenzhen; Marco Attene, IMATI - CNR; Daniele Panozzo, New York University,
panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/1-ART1 $15.00
https://doi.org/10.1145/3460775

time of impact and allowing explicit trade of between runtime eiciency
and number of false positives reported.

CCS Concepts: • Computing methodologies → Collision detection;
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1 INTRODUCTION

Collision detection and response are two separate, yet intercon-
nected, problems in computer graphics and scientiic computing.
Collision detection specializes in inding when and if two objects
collide, while collision response uses this information to deform the
objects following physical laws. A large research efort has been
invested in the latter problem, assuming that collision detection
can be solved reliably and eiciently. In this study we focus on the
former, using an experimental approach based on large scale testing.
We use existing collision response methods to generate collision de-
tection queries to investigate the pros and cons of existing collision
detection algorithms.

Static collision detection is popular in interactive applications due
to its eiciency, its inability to detect collisions between fast moving
objects passing through each other (tunneling) hinders its applicabil-
ity. To address this limitation, continuous collision detection (CCD)
methods have been introduced: by solving a more computationally
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intensive problem, usually involving inding roots of a low-degree
polynomial, these algorithms can detect any collision happening in
a time step, often assuming linear trajectories.
The added robustness makes this family of algorithms popular,

but they can still fail due to loating-point rounding errors. Floating
point failures are of two types: false negatives, i.e., missed collisions,
which lead to interpenetration, and false positives, i.e., detecting
collisions when there are none.

Most collision response algorithms can tolerate minor imperfec-
tions, using heuristics to recover from physically invalid states (in
reality, objects cannot inter-penetrate). However, these heuristics
have parameters that needs to be tuned for every scene to ensure
stability and faithfulness in the simulation [Li et al. 2020]. Recently,
the collision response problem has been reformulated to avoid the
use of heuristics, and the corresponding parameter tuning, by disal-
lowing physically invalid conigurations [Li et al. 2020]. For instance,
in the attached video, the method in [Li et al. 2020] cannot recover
from interpenetration after the CCD misses a collision leading to
an unnatural łstickingž and eventual failure of the simulation. This
comes with a heavier burden on the CCD algorithm used, which
should never report false negatives.
We introduce a large benchmark of CCD queries with ground

truth computed using the exact, symbolic solver ofMathematica [Wol-
fram Research Inc. 2020], and evaluate the correctness (lack of false
negatives), conservatiness (false positive count), and runtime ef-
iciency of existing state of the art algorithms. The benchmark is
composed of both manually designed queries to identify degener-
ate cases (building upon [Erleben 2018]) and a large collection of
real-world queries extracted from simulation sequences. On the
algorithmic side, we select representative algorithms from the three
main approaches existing in the literature for CCD root-inding:
inclusion-based bisection methods [Redon et al. 2002; Snyder et al.
1993], numerical methods [Vouga et al. 2010; Wang et al. 2015], and
exact methods [Brochu et al. 2012; Tang et al. 2014]. Thanks to our
benchmark, we identiied missing cases that were not handled by
previous methods, and we did a best efort to ix the corresponding
algorithms and implementations to account for these cases.
The surprising conclusion of this study (Section 4.2) is that the

majority of the existing CCD algorithms produce false negatives, ex-
cept three: (1) symbolic solution of the system and evaluation with
exact arithmetic computed using Mathematica [Wolfram Research
Inc. 2020], (2) Bernstein sign classiication (BSC) with conservative
error analysis [Wang et al. 2015], and (3) inclusion-based bisection
root inding [Redon et al. 2002; Snyder et al. 1993]. (1) is extremely
expensive and, while it can be used for generating the ground truth,
it is impractical in simulation applications. (2) is eicient but gener-
ates many false positives and the number of false positives depends
on the geometric coniguration and velocities involved. (3) is one of
the oldest methods proposed for CCD. It is slow compared to state
of the art algorithms, but it is correct and allows precise control of
the trade-of between false positives and computational cost.
This extensive analysis and benchmark inspired us to introduce

a specialization of the classical inclusion-based bisection algorithm
proposed in [Snyder 1992] to the speciic case of CCD for triangu-
lar meshes (Section 5). The major changes are: a novel inclusion
function, an eicient strategy to perform bisection, and the ability

to ind CCD roots with minimal separation (Section 6). Our novel
inclusion function:

(1) is tighter leading to smaller boxes on average thus making
our method more accurate (i.e., less false positive);

(2) reduces the root-inding problem into the iterative evaluation
of a Boolean function, which allows replacing explicit interval
arithmetic with a more eicient loating point iltering;

(3) can be vectorized with AVX2 instructions.

With these modiications, our inclusion-based bisection algorithm
is only 3× slower on average than the fastest inaccurate CCD al-
gorithm. At the same time it is provably conservative, provides a
controllable ratio of false positives (within reasonable numerical
limits), supports minimal separation, and reports the time of impact.
We also discuss how to integrate minimal separation CCD in algo-
rithms employing a line search to ensure the lack of intersections,
which are common in locally injective mesh parametrization and
have been recently introduced in physical simulation by Li et al.
[2020].

Our dataset is available at the NYU Faculty Digital Archive, while
the implementation of all the algorithms compared in the bench-
mark, a reference implementation of our novel inclusion-based
bisection algorithm, and scripts to reproduce all results (Section 4)
are available at https://github.com/Continuous-Collision-Detection.
We believe this dataset will be an important element to support
research in eicient and correct CCD algorithms, while our novel
inclusion-based bisection algorithm is a practical solution that will
allow researchers and practitioners to robustly check for collisions
in applications where a 3× slowdown in the CCD (which is usually
only one of the expensive steps of a simulation pipeline) will be
preferable over the risk of false negatives or the need to tune CCD
parameters.

2 RELATED WORK

We present a brief overview of the previous works on continuous col-
lision detection for triangle meshes. Our work focuses only on CCD
for deformable trianglemeshes andwe thus exclude discussingmeth-
ods approximating collisions using proxies (e.g., Hubbard [1995];
Mirtich [1996]).

Inclusion-Based Root-Finding. The generic algorithm in the sem-
inal work of Snyder [1992] on interval arithmetic for computer
graphics is a conservative way to ind collisions [Redon et al. 2002;
Snyder et al. 1993; Von Herzen et al. 1990]. This approach uses in-
clusion functions to certify the existence of roots within a domain,
using a bisection partitioning strategy. Surprisingly, this approach
is not used in recent algorithms despite being provably conservative
and simple. Our algorithm is based on this approach, but with two
major extensions to improve its eiciency (Section 5).

Numerical Root-Finding. The majority of CCD research focuses
on eicient and accurate ways of computing roots of special cubic
polynomials. Among these, a most popular cubic solver approach
is introduced by Provot [1997], in which a cubic equation is solved
to check for coplanarity, and then the overlapping occurrence is
validated to determine whether a collision actually occurs. Reined
constructions based on this idea have been introduced for rigid [Kim
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and Rossignac 2003; Redon et al. 2002] and deformable [Hutter and
Fuhrmann 2007; Tang et al. 2011] bodies. However, all of these algo-
rithms are based on loating-point arithmetic, requiring numerical
thresholds to account for the unavoidable rounding errors in the
iterative root-inding procedure. In fact, even if the cubic polynomial
is represented exactly, its roots are generally irrational and thus
not representable with loating-point numbers. Unfortunately, the
numerical thresholds make these algorithms robust only for speciic
scenarios, and they can in general introduce false negatives. Our ap-
proach has a moderately higher runtime than these algorithms, but
it is guaranteed to avoid false negatives without parameter tuning.
We benchmark Provot [1997] using the implementation of Vouga
et al. [2010] in Section 4.
For most applications, false positives are less problematic than

false negatives since a false negative will miss a collision, leading
to interpenetration and potentially breaking the simulation. Tang
et al. [2010] propose a simple and efective ilter which can reduce
both the number of false positives and the elementary tests between
the primitives. Wang [2014] and Wang et al. [2015] improve its
reliability by introducing forward error analysis, in which error
bounds for loating-point computation are used to eliminate false
positives. We benchmark the representative method of Wang et al.
[2015] in Section 4.

Exact Root-Finding. Brochu et al. [2012] and Tang et al. [2014]
introduce algorithms relying on exact arithmetic to provide ex-
act continuous collision detection. However, after experimenting
with their implementations and carefully studying their algorithms,
we discovered that they cannot always provide the exact answer
(Section 4). Brochu et al. [2012] rephrase the collision problem as
counting the number of intersections between a ray and the bound-
ary of a subset of R3 bounded by bilinear faces. The ray casting
and polygonal construction can be done using rational numbers (or
more eiciently with loating point expansions) to avoid loating-
point rounding errors. In [Tang et al. 2014] the CCD queries are
reduced to the evaluation of the signs of Bernstein polynomials and
algebraic expressions, using a custom root inding algorithm. Our
algorithm uses the geometric formulation proposed in [Brochu et al.
2012], but uses a bisection strategy instead of ray casting to ind
the roots. We benchmark both [Brochu et al. 2012] and [Tang et al.
2014] in Section 4.

Minimal Separation. Minimal separation CCD (MSCCD) [Harmon
et al. 2011; Lu et al. 2019; Provot 1997; Stam 2009] reports collisions
when two objects are at a (usually small) user-speciied distance.
These approaches have two main applications: (1) a minimal sepa-
ration is useful in fabrication settings to ensure that the fabrication
errors will not lead to penetrations, and (2) a minimal separation
can ensure that, after loating-point rounding, two objects are still
not intersecting, an invariant which must be preserved by certain
simulation codes [Harmon et al. 2011; Li et al. 2020]. We bench-
mark [Harmon et al. 2011] in Section 6.2. Our algorithm supports
a novel version of minimal separation, where we use the �∞ norm
instead of �2 (Section 6.1).

Collision Culling. An orthogonal problem is eicient high-level
collision culling to quickly ilter out primitive pairs that do not

collide in a time step. Since in this case it is tolerable to have many
false positives, it is easy to ind conservative approaches that are
guaranteed to not discard potentially intersecting pairs [Curtis et al.
2008; Govindaraju et al. 2005; Mezger et al. 2003; Pabst et al. 2010;
Provot 1997; Schvartzman et al. 2010; Tang et al. 2009a, 2008; Volino
and Thalmann 1994; Wong and Baciu 2006; Zhang et al. 2007; Zheng
and James 2012]. Any of these approaches can be used as a prepro-
cessing step to any of the CCD methods considered in this study to
improve performance.

Generalized Trajectories. The linearization of trajectories com-
monly used in collision detection is a well-established, practical
approximation, ubiquitous in existing codes. There are, however,
methods that can directly detect collisions between objects follow-
ing polynomial trajectories [Pan et al. 2012] or rigid motions [Canny
1986; Redon et al. 2002; Tang et al. 2009b; Zhang et al. 2007], and
avoid the approximation errors due to the linearization. Our algo-
rithm currently does not support curved trajectories and we believe
this is an important direction for future work.

3 PRELIMINARIES AND NOTATION

Assuming that the objects are represented using triangular meshes
and that every vertex moves in a linear trajectory in each time step,
the irst collision between moving triangles can happen either when
a vertex hits a triangle, or when an edge hits another edge.
Thus a continuous collision detection algorithm is a procedure

that, given a vertex-face or edge-edge pair, equipped with their lin-
ear trajectories, determines if and when they will touch. Formally,
for the vertex-face CCD, given a vertex � and a face with vertices
�1, �2, �3 at two distinct time steps �0 and �1 (we use the super-
script notation to denote the time, i.e., �0 is the position of � at �0),
the goal is to determine if at any point in time between �0 and �1

the vertex is contained in the moving face. Similarly for the edge-
edge CCD the algorithm aims to ind if there exists a � ∈ [�0, �1]
where the two moving edges (��1, �

�
2) and (�

�
3, �

�
4) intersect. We will

briely overview and discuss the pros and cons of the two major
formulations present in the literature to address the CCD problem:
multi-variate and univariate.

Multivariate CCD Formulation. The most direct way of solving
this problem is to parametrize the trajectories with a parameter
� ∈ [0, 1] (i.e., �� (�) = (1 − �)�0� + ��

1
� and �� (�) = (1 − �)�0� + ��

1
� )

and write a multivariate polynomial whose roots correspond to
intersections. That is inding the roots of

�vf : Ωvf = [0, 1] × {�, � ⩾ 0|� + � ⩽ 1} → R3

with

�vf (�,�, �) = � (�) −
(

(1 − � − �)�1 (�) + ��2 (�) + ��3 (�)
)

, (1)

for the vertex-face case. Similarly for the edge-edge case the goal is
to ind the roots of

�ee : Ωee = [0, 1] × [0, 1]
2 → R3

with

�ee (�,�, �) =
(

(1−�)�1 (�) +��2 (�)
)

−
(

(1− �)�3 (�) + ��4 (�)
)

. (2)

In other words, the CCD problem reduces to determining if � has a
root in Ω (i.e., there is a combination of valid �,�, � for which the
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Fig. 2. Scenes from Erleben [2018] that are used to generate a large part of

the handcrated dataset.

vector between the point and the triangle is zero) [Brochu et al.
2012]. The main advantage of this formulation is that it is direct and
purely algebraic: there are no degenerate or corner cases to handle.
The intersection point is parameterized in time and local coordi-
nates and the CCD problem reduces to multivariate root-inding.
However, inding roots of a system of quadratic polynomials is dii-
cult and expensive, which led to the introduction of the univariate
formulation.

Univariate CCD Formulation. An alternative way of addressing
the CCD problem is to rely on a geometric observation: two prim-
itives intersects if the four points (i.e., one vertex and the three
triangle’s vertices or the two pairs of edge’s endpoints) are copla-
nar [Provot 1997]. This observation has the major advantage of only
depending on time, thus the problem becomes inding roots in a
univariate cubic polynomial:

� (�) = ⟨�(�), �(�)⟩ = 0, (3)

with

�(�) =
(

�2 (�) − �1 (�)
)

×
(

�3 (�) − �1 (�)
)

and �(�) = � (�) − �1 (�)

for the vertex-face case and

�(�) =
(

�2 (�) − �1 (�)
)

×
(

�4 (�) − �3 (�)
)

and �(�) = �3 (�) − �1 (�)

for the edge-edge case. Once the roots �★ of � are identiied, they
need to be iltered, as not all roots correspond to actual collisions.
While iltering is straightforward when the roots are inite, special
care is needed when there is an ininite number of roots, such as
when the two primitives are moving on the same plane. Handling
these cases, especially while accounting for loating point rounding,
is very challenging.

4 BENCHMARK

4.1 Dataset

We crafted two datasets to compare the performance and correctness
of CCD algorithms: (1) a handcrafted dataset that contains over 12
thousand point-triangle and 15 thousand edge-edge queries, and (2)
a simulation dataset that contains over 18 million point-triangle and
41 million edge-edge queries. To foster replicability, we describe the
format of the dataset in Appendix A.

The handcrafted queries are the union of queries simulatedwith [Li
et al. 2020] from the scenes in [Erleben 2018] (Figure 2) and a set of

Fig. 3. The scenes used to generate the simulation dataset of queries. We

use two simulation methods: (top) a sequential quadratic programming

(SQP) method with constraints and active set update from Verschoor and

Jalba [2019] and (botom) the method proposed by Li et al. [2020].

handcrafted pairs for degenerate geometric conigurations. These
include: point-point degeneracies, near collisions (within a loating-
point epsilon from collision), coplanar vertex-face and edge-edge
motion (where the function � (3) has ininite roots), degenerated
function �vf and �ee, and CCD queries with two or three roots.

The simulation queries were generated by running four nonlinear
elasticity simulations. The irst two simulations (Figure 3 top row)
use the constraints of [Verschoor and Jalba 2019] to simulate two
cow heads colliding and a chain of rings falling. The second two
simulations (Figure 3 bottom row) use the method of [Li et al. 2020]
to simulate a coarse mat twisting and the high speed impact of a
golf ball hitting a planar wall.

4.2 Comparison

We compare seven state-of-the-art methods: (1) the interval root-
inder (IRF) [Snyder 1992], (2) the univariate interval root-inder
(UIRF) (a special case of the rigid-body CCD from [Redon et al.
2002]), (3) the loating-point time-of-impact root inder [Provot
1997] (FPRF) implemented in [Vouga et al. 2010], (4) TightCCD
(TCCD) [Wang et al. 2015], (5) Root Parity (RP) [Brochu et al. 2012],
(6) a rational implementation of Root Parity (RRP) with the degen-
erate cases properly handled, and (7) Bernstein Sign Classiication
(BSC) [Tang et al. 2014]. For each method we collect the average
query time, the number of false positives (i.e., there is no collision
but the method detects one), and the number of false negatives (i.e.,
there is a collision but the method misses it). To obtain the ground
truth we solve the multivariate CCD formulation (equations (1) and
(2)) symbolically using Mathematica [Wolfram Research Inc. 2020]
which takes multiple seconds per query. Table 1 summarizes the
results. Note that łOursž corresponds to our new method that will
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Table 1. Summary of the average runtime in �� (t), number of false positive

(FP), and number of false negative (FN) for the six competing methods.

Handcrafted Dataset (12K) ś Vertex-Face CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 14942.40 124242.00 2.18 0.38 1.41 928.08 176.17 12.90 1532.54
FP 87 146 9 903 3 0 11 16 108
FN 0 0 70 0 5 5 13 386 0

Handcrafted Dataset (15K)ś Edge-Edge CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 12452.60 18755.80 0.48 0.33 2.33 1271.32 121.80 2.72 3029.83
FP 141 268 5 404 3 0 28 14 214
FN 0 0 147 0 8 8 47 335 0

Simulation Dataset (18M) ś Vertex-Face CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 115.89 6191.98 7.53 0.24 0.25 1085.13 34.21 51.07 0.74
FP 2 18 0 95638 0 0 23015 75 2
FN 0 0 5184 0 0 0 0 0 0

Simulation Dataset (41M) ś Edge-Edge CCD

IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 215.80 846.57 0.23 0.23 0.37 1468.70 12.87 10.39 0.78
FP 71 16781 0 82277 0 0 4593 228 17
FN 0 0 2317 0 7 7 27 1 0

be introduced and discussed in Section 5 and MSRF is a minimum
separation CCD discussed in Section 6.2.

IRF. The inclusion-based root-inding described in [Snyder 1992]
can be applied to both the multivariate and univariate CCD. For
the multivariate case we can simply initialize the parameters of �
(i.e., �,�, �) with the size of the domain Ω, evaluate � and check if
the origin is contained in the output interval [Snyder et al. 1993].
If it is, we sequentially subdivide the parameters (thus shrinking
the size of the intervals of � ) until a user-tolerance � is reached.
In our comparison we use � = 10−6. The major advantage of this
approach is that it is guaranteed to be conservative: it is impossible
to shrink the interval of � to zero. A second advantage is that a
user can easily trade accuracy (number of false positives) for ei-
ciency by simply increasing the tolerance � (Appendix D). The main
drawback is that bisecting Ω in the three dimensions makes the
algorithm slow, and the use of interval arithmetic further increases
the computational cost and prevents the use of certain compiler
optimization techniques (such as instruction reordering). We imple-
ment this approach using the numerical type provided by the Boost
interval library [Schling 2011].

UIRF. [Snyder 1992] can also be applied to the univariate function
in Equation (3) by using the same subdivision technique on the
single variable � (as in [Redon et al. 2002] but for linear trajectories).
The result of this step is an interval containing the earliest root
in � which is then plugged inside a geometric predicate to check
if the primitives intersect in that interval. While inding the roots
with this approach might, at a irst glance, seem easier than in the
multi-variate case and thus more eicient, this is not the case in our
experiments. If the polynomial has ininite roots, this algorithm will
have to reine the entire domain to the maximal allowed resolution,
and check the validity of each interval, making it correct but very

slow on degenerate cases (Appendix D). This results in a longer
average runtime than its multivariate counterpart. Additionally, it
is impossible to control the accuracy of the other two parameters
(i.e., �, �), thus introducing more false positives.

FPRF. Vouga et al. [2010] aim to solve the univariate CCD problem
using only loating-point computation. To mitigate false negatives,
the method uses a numerical tolerance � (Appendix E) shows how
� afects running time, the false positive, and negative). The major
limitations are that the number of false positives cannot be directly
controlled as it depends on the relative position of the input prim-
itives and that false negatives can appear if the parameter is not
tuned accordingly to the objects velocity and scale. Additionally,
the reference implementation does not handle the edge-edge CCD
when the two edges are parallel. This method is one of the fastest,
which makes it a very popular choice in many simulation codes.

TCCD. TightCCD is a conservative loating-based implementa-
tion of Tang et al. [2014]. It uses the univariate formulation coupled
with three inequality constraints (two for the edge-edge case) to
ensure that the univariate root is a CCD root. The algorithm ex-
presses the cubic polynomial � as a product and sum of three low
order polynomials in Bernstein form. With this reformulation the
CCD problem becomes checking if univariate Bernstein polynomi-
als are positive, which can be done by checking some speciic points.
This algorithm is extremely fast but introduces many false positives
which are impossible to control. In our benchmark, this is the only
non-interval method without false negatives. The major limitation
of this algorithm is that it always detects collision if the primitives
are moving in the same plane, independently from their relative
position.

RP and RRP. These two methods use the multivariate formulation
� (equations (1) and (2)). The main idea is that the parity of the
roots of � can be reduced to a ray casting problem. Let �Ω be the
boundary of Ω, the algorithm shoots a ray from the origin and
counts the parity of the intersection between the ray and � (�Ω)

which corresponds to the parity of the roots of � . Parity is however
insuicient for CCD: these algorithms cannot diferentiate between
zero roots (no collision) and two roots (collision), since they have
the same parity. We note that this is a rare case happening only
with suiciently large time-steps and/or velocities: we found 13
(handcrafted dataset) and 7 (simulation dataset) queries where these
methods report a false negative.

We note that the algorithm described in [Brochu et al. 2012] (and
its reference implementation) does not handle some degenerate
cases leading to both false negatives and positives. For instance,
in Appendix B, we show an example of a łhourglassž conigura-
tion where RP misses the collision, generating a false negative. To
overcome this limitations and provide a fair comparison to these
techniques, we implemented a naïve version of this algorithm that
handles all the degenerate cases using rational numbers to sim-
plify the coding (see the additional materials). We opted for this
rational implementation since properly handling the degeneracies
using loating-point requires designing custom higher precision
predicates for all cases. The main advantage of this method is that
it is exact (when the degenerate cases are handled) as it does not
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contain any tolerance and thus has zero false positives. We note
that the runtime of our rational implementation is extremely high
and not representative of the runtime of a proper loating point
implementation of this algorithm.

BSC. This eicient and exact method uses the univariate formula-
tion coupled with inequality constraints to ensure that the coplanar
primitives intersects. The coplanarity problem reduces to checking
if � in Bernstein form has a root. Tang et al. [2014] explain how this
can be done exactly by classifying the signs of the four coeicients of
the cubic Bernstein polynomial. The classiication holds only if the
cubic polynomial has monotone curvature; which can be achieved
by splitting the curve at the inlection point. This splitting, however,
cannot be computed exactly as it requires divisions (Appendix C).
In our comparison, we modiied the reference implementation to ix
a minor typo in the code and to handle � with inlection points by
conservatively reporting collision. This change introduces potential
false positives, and we refer to the additional material for more
details and for the patch we applied to the code.

Discussion and Conclusions. From our extensive benchmark of
CCD algorithms, we observe that most algorithms using the uni-
variate formulation have false negatives. While the reduction to
univariate root indings provides a performance boost, iltering the
roots (without introducing false positives) is a challenging problem
for which a robust solution is still elusive.
Surprisingly, only the oldest method, IRF, is at the same time

reasonably eicient (e.g., it does not take multiple seconds per query
as Mathematica), correct (i.e., no false negatives), and returns a small
number of false positives (which can be controlled by changing the
tolerance �). It is however slower than other state of the art methods,
which is likely the reason why it is currently not widely used. In
the next section we show that it is possible to change the inclusion
function used by this algorithm to keep its favorable properties,
while decreasing its runtime by ∼250 times, making its performance
competitive with state of the art methods.

5 METHOD

We describe the seminal bisection root-inding algorithm introduced
in [Snyder 1992] (Section 5.1) and then introduce our novel Boolean
inclusion function and how to evaluate it exactly and eiciently
using loating point ilters (Section 5.2).

5.1 Solve Algorithm [Snyder 1992]

An interval � = [�, �] is deined as

� = [�, �] = {� |� ⩽ � ⩽ �, �, �, � ∈ R},

and, similarly, an �-dimensional interval is deined as

� = �1 × · · · × ��,

where �� are intervals. We use L(�) and R(�) to refer to the left and
right parts of an unidimensional interval � . The width of an interval,
written as� (�) = � ( [L(�),R(�)]), is deined by

� (�) = L(�) − R(�)
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Fig. 4. 1D illustration of the first three levels of the inclusion based root-

finder in [Snyder 1992].

and similarly, the width of an �-dimensional interval

� (� ) = max
�={1,...,�}

� (�� ).

An interval can be used to deine an inclusion function. For-
mally, given an�-dimensional interval� and a continuous function
� : R� → R� , an inclusion function for �, written□�, is a function
such that

∀� ∈ � �(�) ∈□�(�).

In other words, □�(�) is a �-dimensional interval bounding the
range of � evaluated over an�-dimensional interval � bounding its
domain. We call the inclusion function□� of a continuous function
� convergent if for an interval �

� (� ) → 0 =⇒ �
(

□�(� )
)

→ 0.

A convergent inclusion function can be used to ind a root of a func-
tion � over a domain bounded by the interval �0 = [L(�1),R(�1)] ×
· · · × [L(��),R(��)]. To ind the roots of �, we sequentially bisect
the initial�-dimensional interval �0, until it becomes suiciently
small (Algorithm 1). Figure 4 shows a 1D example (i.e., � : R→ R) of
a bisection algorithm. The algorithm starts by initializing a stack �
of intervals to be checked with �0 (line 3). At every level ℓ (line 5), the
algorithm retrieves an interval � from � and evaluates the inclusion
function to obtain the interval �� (line 7). Then it checks if the root is
included in �� (line 8). If not � can be safely discarded since �� bounds
the range of � over the domain bounded by � . Otherwise (0 ∈ �� ),
it checks if� (� ) is smaller than a user-deined threshold � . If so it
appends � to the result (line 10). If � is too large, the algorithm splits
one of its dimensions (e.g., [L(�1),R(�1)] is split in [L(�1), �̃1]
and [�̃1,R(�1)] with �̃1 = (L(�1) +R(�1))/2) and appends the two
new intervals �1, �2 to the stack � (line 13).

Generic Construction of Inclusion Functions. Snyder [1992] pro-
poses the use of interval arithmetic as a universal and automatic
way to build inclusion functions for arbitrary expressions. However,
interval arithmetic adds a performance overhead to the computation.
For example, the product between two intervals is

[�, �] · [�, �] = [min(��, ��, ��, ��),max(��, ��, ��, ��)],

which requires four multiplications and two min/max instead of one
multiplication. In addition, the compiler cannot optimize composite
expressions, since the rounding modes need to be correctly set up
and the operation needs to be executed in order to avoid rounding
errors [Schling 2011].
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Algorithm 1 Inclusion-based root-inder

1: function solve(�0, �, �)
2: res← ∅
3: � ← {�0}

4: ℓ ← 0
5: while � ≠ ∅ do

6: � ← pop(�)
7: �� ←□�(� ) ⊲ Compute the inclusion function
8: if 0 ∈ �� then

9: if � (� ) < � then ⊲ � is small enough
10: res← � ∪ {� }

11: else

12: �1, �2 ← split(� )

13: � ← � ∪ {�1, �2}

14: ℓ ← ℓ + 1
return res

5.2 Predicate-Based Bisection Root Finding

Instead of using interval arithmetic to construct the inclusion func-
tion□� for the interval �Ω = �� × �� × �� = [0, 1] × [0, 1] × [0, 1]
around the domain Ω, we propose to deine an inclusion function
tailored for � (both for (1) and (2)) as the box

�� (�Ω) = [�
� , �� ] × [��, ��] × [�� , ��] (4)

with

��
= min

�=1,...,8
(��� ), ��

= max
�=1,...,8

(��� ), � = {�,�, �}

�� = � (��, ��, �� ), ��, ��, �� ∈ {0, 1}, and �,�, � ∈ {1, 2}.

Proposition 5.1. The inclusion function �� deined in (4) is the
tightest axis-aligned inclusion function of � .

Proof. We note that for any given �̃ the function � (�, �̃, �) is
bilinear; we call this function function ��̃ (�, �). Thus, � can be re-
garded as a bilinear function whose four control points move along
linear trajectories T (�)� , � = 1, 2, 3, 4. The range of ��̃ is a bilinear
surface which is bounded by the tetrahedron constructed by the
four vertices forming the bilinear surface, which are moving on T� .
Thus, � is bounded by every tetrahedron formed by T (�)� , implying
that � is bounded by the convex hull of the trajectories’ vertices,
which are the vertices �� , � = 1, · · · , 8 deining � . Finally, since �� is
the axis-aligned bounding box of the convex-hull of �� , � = 1, · · · , 8,
�� is an inclusion function for � .

Since the vertices of the convex hull belong to � and the convex
hull is the tightest convex hull, the bounding box �� of the convex
hull is the tightest inclusion function. □

Theorem 5.2. The inclusion function �� deined in (4) is conver-
gent.

Proof. We irst note that � is trivially continuous, second that
the standard interval-based inclusion function□� constructed with
intervals is axis-aligned. Therefore, from Proposition 5.1, it follows
that �� (� ) ⊆ □� (� ) for any interval � . Finally, since□� is conver-
gent [Snyder 1992], then also �� is. □

The inclusion function �� turns out to be ideal for constructing
a predicate: to use this inclusion function in the solve algorithm
(Algorithm 1), we only need to check if, for a given interval � , �� (� )
contains the origin (line 8). Such a Boolean predicate can be conser-
vatively evaluated using loating point iltering.

Conservative Predicate Evaluation. Checking if the origin is con-
tained in an axis-aligned box is trivial and it reduces to checking if
the zero is contained in the three intervals deining the sides of the
box. In our case, this requires us to evaluate the sign of � at the eight
box corners. However, the vertices of the co-domain are computed
using loating point arithmetic and can thus be inaccurate. We use
forward error analysis to conservatively account for these errors as
follows.
Without loss of generality, we focus only on the �-axis. Let
{��� }, � = 1, . . . , 8 be the set of �-coordinates of the 8 vertices of the
box represented in double precision loating-point numbers. The
error bound for � (on the �-axis) is

��ee = 6.217248937900877 × 10−15�3�
��vf = 6.661338147750939 × 10−15�3�

(5)

with
�� = max(�max, 1) and �max = max

�=1,...,8
( |��� |) .

That is, the sign of ��ee computed using loating-point arithmetic is
guaranteed to be correct if |��ee | > ��ee, and similarly for the vertex
face case. If this condition does not hold, we conservatively assume
that the zero is contained in the interval, thus leading to a possible
false positive. The two constants ��ee and �

�
vf are loating point ilters

for ��ee and ��vf respectively, and were derived using [Attene 2020].

Eicient Evaluation. The �,�, � predicates deined above depend
only on a subset of the coordinates of the eight corners of �� (� ).
We can optimally vectorize the evaluation of the eight corners us-
ing AVX2 instructions (∼4× improvement in performance), since it
needs to be evaluated on eight points and all the computation is
standard loating-point arithmetic. Note that we used AVX2 instruc-
tions because newer versions still have spotty support on current
processors. After the eight points are evaluated in parallel, applying
the loating-point ilter involves only a few comparisons. To further
reduce computation, we check one axis at a time and immediately
return if any of the intervals do not contain the origin.

Algorithm. We describe our complete algorithm in pseudocode
in Algorithm 2. The input to our algorithm are the eight points
representing two primitives (either vertex-face or edge-edge), a user-
controlled numerical tolerance � > 0 (if not speciied otherwise,
in the experiment we use the default value � = 10−6), and the
maximum number of checks �� > 0 (we use the default value
�� = 106). These choice are based on our empirical results (igures 8
and 9). The output is a conservative estimate of the earliest time of
impact or ininity if the two primitives do not collide in the time
intervals coupled with the reached tolerance.
Our algorithm iteratively checks the box � = �� (� ), with � =

�� × �� × �� = [�1, �2] × [�1, �2] × [�1, �2] ⊂ �Ω (initialized with [0, 1]3).
To guarantee a uniform box size while allowing early termination
of the algorithm, we explore the space in a breadth-irst manner
and record the current explored level ℓ (line 6). Since our algorithm
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Algorithm 2 Complete overview of our CCD algorithm.

1: function solve(�, �,�� )
2: � ← 0 ⊲ Number of check counter
3: � ← {{[0, 1]3, 0}} ⊲ Push irst interval and level 0 in �

4: ℓ� ← −1 ⊲ Previous checked level is -1
5: while � ≠ ∅ do

6: � , ℓ ← pop(�) ⊲ Retrieve level and interval
7: � ← �� (� ) ⊲ Compute the box inclusion function
8: � ← � + 1 ⊲ Increase check number
9: if � ∩�� ≠ ∅ then

10: if ℓ ≠ ℓ� then ⊲ � is the irst colliding interval of ℓ
11: �� ← �� ⊲ Save �-component of �

12: if � ⩾ �� then ⊲ Reached max number of checks
13: return L(�� ),� (�� ) ⊲ Return left side of ��

14:

15: if � (�) < � or � ⊆ �� then

16: if ℓ ≠ ℓ� then

17: return L(�� ),� (�� ) ⊲ Root found

18: else

19: �1, �2 ← split(� )

20: � ← � ∪ {{�1, ℓ + 1}, {�2, ℓ + 1}}
21: sort(�, order)

22: ℓ� = ℓ ⊲ Update the previous colliding level

23: return∞, 0 ⊲ � is empty and no roots were found

24:

25: function split(� = �� × �� × �� )
26: Compute �� , �� , �� according to (7)
27: �� ← � (�� )�� , �� ← � (�� )�� , �� ← � (��)��
28: � ← max(�� , �� , ��)
29: if �� = � then ⊲ �� is the largest
30: �1 ← [L(�� ), (L(�� ) + R(�� ))/2] × �� × �� ,
31: �2 ← [(L(�� ) + R(�� ))/2,R(�� )] × �� × ��
32: else if �� = � then ⊲ �� is the largest
33: �1 ← �� × [L(�� ), (L(�� ) + R(�� ))/2] × �� ,
34: �2 ← �� × [(L(�� ) + R(�� ))/2,R(�� )] × ��
35: else ⊲ �� is the largest
36: �1 ← �� × �� × [L(��), (L(��) + R(��))/2],
37: �2 ← �� × �� × [(L(��) + R(��))/2,R(��)]

38: return �1, �2

39:

40: function order({�1, ℓ1}, {�2, ℓ2})
41: if ℓ1 = ℓ2 then

42: return ��1 < ��2
43: else

44: return ℓ1 < ℓ2

is designed to ind the earliest time of impact, we sort the visiting
queue � with respect to time (line 21).

At every iterationwe check if� intersects the cube�� = [−�� , �� ]×
[−��, ��] × [−�� , ��] (line 9); if it does not, we can safely ignore �
since there are no collisions.
If � ∩ �� ≠ ∅, we irst check if � (�) < � or if � is contained

inside the �-box (line 15). In this case, it is unnecessary to reine the
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a b

Fig. 5. A 2D example of root finding (let) and its corresponding diagram

(right). A small colliding (red) box� that is not the earliest, since another box

� exists in the same level (� did not trigger the termination of the algorithm

since it is too big).
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Fig. 6. A 2D example of root finding (let) and its corresponding diagram

(right). Our algorithm stops when the number of checks � reaches�� ater

checking the box � , which is a non-colliding box (green). The algorithm will

return the first colliding box (� ) of the same level, right.

interval � more since it is either already small enough (if� (�) < �)
or any reinement will lead to collisions (if � ⊆ �� ). We return � ��
(i.e., the left hand-side of the � interval of � ) only if � was the irst
intersecting interval of this current level (line 16). If � is not the
irst intersecting in the current level, there is an intersecting box
(which is larger than �) with an earlier time since the queue is sorted
according to time (Figure 5).

If � is too big we split the interval � in two sub-intervals and push
them to the priority queue � (line 19). Note that, diferently from
Algorithm 1, we use a priority queue� instead of the stack � . For the
vertex-triangle CCD, the domain Ω is a prism, thus, after spitting
the interval (line 19), we append �1, �2 to � only if they intersect
with Ω. To ensure that � shrinks uniformly (since the termination
criteria, Line 15, is� (�) < �) we conservatively estimate the width
of � (in the codomain) from the widths of the domain’s (i.e., where
the algorithm is acting) intervals �� , �� , �� :

� > 0,� (�� ) <
�

��
,� (�� ) <

�

��
,� (��) <

�

��
=⇒ � (�� (� )) < �

(6)
with � a given constant and

�� = 3 max
�, �=1,2

∥� (0, �� , � � ) − � (1, �� , � � )∥∞,

�� = 3 max
�, �=1,2

∥� (�� , 0, � � ) − � (�� , 1, � � )∥∞,

�� = 3 max
�, �=1,2

∥� (�� , � � , 0) − � (�� , � � , 1)∥∞ .

(7)

Proposition 5.3. Equation 6 holds for any positive constant � .

Proof. While �� (� ) is an interval, for the purpose of the proof
we equivalently deine it as an axis-aligned bounding box whose
eight vertices are �� . We will use the super-script notation to refer
to the �,�, � component of a 3D point (e.g., ��� is the �-component
of �� ) and deine the set I = {1, . . . , 8}. By using the box deinition
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the width of �� (� ) can be written as

� (�� (� )) = ∥�� − �� ∥∞

with

��� = max
�∈I
(��� ) and ��� = min

�∈I
(��� ) .

Since �� (� ) is the tightest axis-aligned inclusion function (Proposi-
tion 5.1)

��� ⩽ max
�∈I

��� , ��� ⩽ min
�∈I

��� ,

where �� = � (�
�
� , �

�
� , �

�
�), with �, �, � ∈ {�, � }, thus for any coordinate

� we bound

��� − �
�
� = max

�, � ∈I
(��� − �

�
� ) ⩽ max

�, � ∈I
∥�� − � � ∥∞ .

For any pair of �� and � � we have

�� − � � = �1��,� + �2��,� + �3��,�,

for some indices �,�, �, �, �, � ∈ {1, 2} and constant �1, �2, �3 ∈
{−1, 0, 1} with

��, � = � (�� )
(

� (0, �� , � � ) − � (1, �� , � � )
)

,

��, � = � (�� )
(

� (�� , 0, � � ) − � (�� , 1, � � )
)

,

��, � = � (��)
(

� (�� , � � , 0) − � (�� , � � , 1)
)

,

since � is linear on the edges. We note that ��, � , ��, � , and ��, � are the
12 edges of the box �� . We now deine

��� = max
�, � ∈{1,2}

|���,� |, ��� = max
�, � ∈{1,2}

|���,� |, ��� = max
�, � ∈{1,2}

|���,� |

which allows us to bound

max
�, � ∈I

∥�� − � � ∥∞ ⩽ ∥�� + �� + �� ∥∞ ⩽ ∥�� ∥∞ + ∥�� ∥∞ + ∥�� ∥∞ .

Since

∥�� ∥∞ ⩽ � (�� ) max
�, �=1,2

∥� (�1, �� , � � ) − � (�2, �� , � � )∥∞ = � (�� )��/3,

and similarly ∥�� ∥∞ ⩽ ��/3, ∥�� ∥∞ ⩽ ��/3, we have

∥�� ∥∞ + ∥�� ∥∞ + ∥�� ∥∞ ⩽
� (�� )�� +� (�� )�� +� (��)��

3

Finally, from the assumption (6) it follows that

� (�� (� )) ⩽ max
�, � ∈I

∥�� − � � ∥∞ ⩽ ∥�� ∥∞ + ∥�� ∥∞ + ∥�� ∥∞ < �.

□

Using the estimate of the width of �� , �� , �� we split the dimension
that leads to the largest estimated dimension in the range of �
(line 28).

Fixed Runtime or Fixed Accuracy. To ensure a bounded runtime,
which is very useful in many simulation applications, we stop the
algorithm after an user-controlled number of checks�� . To ensure
that our algorithm always returns a conservative time of impact we
record the irst colliding interval �� of every level (line 11). When
the maximum number of check is reached we can safely return
the latest recorded interval �� (line 13) (Figure 6). We note that
our algorithm will not respect the user speciied accuracy when it
terminates early: if a constant accuracy is required by applications,
this additional termination criteria could be disabled, obtaining an
algorithmwith guaranteed accuracy but sacriicing the bound on the
maximal running time. Note that without the termination criteria
�� , it is possible (while rare in our experiments) that the algorithm
will take a long time to terminate, or run out of memory due to
storing the potentially large list of candidate intervals �.

5.3 Results

Our algorithm is implemented in C++ and uses Eigen [Guennebaud
et al. 2010] for the linear algebra routines (with the -avx2 g++ lag).
We run our experiments on a 2.35 GHz AMDEPYC™ 7452.We attach
the reference implementation and the data used for our experiments,
which will be released publicly.

The running time of our method is comparable to the loating-
point methods, while being provably correct, for any choice of
parameters. For this comparison we use a default tolerance � =

10−6 and default number of iterations �� = 106. All queries in
the simulation dataset terminate within 106 checks, while for the
handcrafted dataset only 0.25% and 0.55% of the vertex-face and
edge-edge queries required more than 106 checks, reaching an actual
maximal tolerance � of 2.14 × 10−5 and 6.41 × 10−5 for vertex-face
and edge-edge respectively. We note that, despite the percentages
begin small, by removing�� the handcrafted queries take 0.015774
and 0.042477 seconds on average for vertex-face and edge-edge
respectively. This is due to the large number of degenerate queries,
as can be seen from the long tail in the histogram of the run-times
(Figure 7). We did not observe any noticeable change of running
time for the simulation dataset.

Our algorithm has two user-controlled parameters (� and�� ) to
control the accuracy and running time. The tolerance � provides
a direct control on the achieved accuracy and provides an indirect
efect on the running time (Figure 8). The other parameter, �� ,
directly controls the maximal running time of each query: for small
�� our algorithmwill terminate earlier, resulting in a lower accuracy
and thus more chances of false positives (Figure 9 top). We remark
that, in practice, very few queries require so many subdivisions:
by reducing�� to the very low value of 100, our algorithm early-
terminates only on∼0.07% of the 60million queries in the simulation
dataset.

6 MINIMUM SEPARATION CCD

An additional feature of some CCD algorithms isminimal separation,
that is, the option to report collision at a controlled distance from
an object, which is used to ensure that objects are never too close.
This is useful to avoid possible inter-penetrations introduced by
numerical rounding after the collision response, or for modeling
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Table 2. Summary of the average runtime in �� (t), number of false positive (FP), and number of false negative (FN) for MSRF and our method.

Handcrafted ś Vertex-Face MSCCD Handcrafted ś Edge-Edge MSCCD Simulation ś Vertex-Face MSCCD Simulation ś Edge-Edge MSCCD

MSRF Ours MSRF Ours MSRF Ours MSRF Ours

� t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN

10−2 12.89 854 114 18.86K 2.6K 0 3.84 774 189 9.64K 4.8K 0 55.47 156.8K 18.3K 12.04 8.1M 0 14.42 354.1K 7.0K 19.12 8.3M 0
10−8 15.05 216 2 1.60K 159 0 2.89 230 18 3.42K 309 0 55.26 75 0 0.72 8 0 11.12 228 1 0.73 40 0
10−16 13.90 151 35 1.51K 108 0 2.90 231 21 2.92K 214 0 54.83 4 3.8K 0.71 2 0 10.70 10 4 0.72 17 0
10−30 13.59 87 141 1.39K 108 0 2.89 118 157 2.79K 214 0 53.73 0 10.2K 0.66 2 0 10.68 0 1.7K 0.67 17 0
10−100 14.45 16 384 1.43K 108 0 3.05 14 335 2.82K 214 0 53.53 0 18.6K 0.66 2 0 10.59 0 5.0K 0.68 17 0
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fabrication tolerances for additive or subtractive manufacturing. A
minimum separation CCD (MSCCD) query is similar to a standard
query: instead of checking if a point and a triangle (or two edges)
are exactly overlapping, we want to ensure that they are always
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tolerance � for diferent�� for the simulation dataset.

separated by a user-deined distance � during the entire linear tra-
jectory. Similarly to the standard CCD (Section 3) MSCCD can be
express using a multivariate or a univariate formulation, usually
measuring distances using the Euclidean distance. We focus on the
multivariate formulation since it does not require to ilter spurious
roots, we refer to Section 4.2 for a more detailed justiication of this
choice.

Multivariate Formulation. We observed that using the Euclidean
distance leads to a challenging problem, which can be geometrically
visualized as follows: the primitives will not be closer than � if � (Ω)
does not intersect a sphere of radius � centered on the origin. This
is a hard problem, since it requires checking conservatively the
intersection between a sphere (which is a rational polynomial when
explicitly parametrized) and � (Ω).
Studying the applications currently using minimal separation,

we realized that they are not afected by a diferent choice of the
distance function. Therefore, we propose to change the distance
deinition from Euclidean to Chebyshev distance (i.e., from the �2 to
the �∞ distance). With this minor change the problem dramatically
simpliies: instead of solving for � = 0 (Section 5), we need to
solve for |� | ⩽ � . The corresponding geometric problem becomes
checking if � (Ω) intersects a cube of side 2� centered on the origin.

Univariate Formulation. The univariate formulation is more com-
plex since it requires to redeine the notion of co-planarity for mini-
mum separation. We remark that the function � in (3) measures the
length of the projection of �(�) along the normal, thus to ind point
at distance � the equation becomes � (�) ⩽ ⟨�(�), �(�)⟩ = � ∥�(�)∥.
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based root-finder. Instead of checking if �� intersects with the origin, we

check if it intersects the interval [−�,� ] marked in light green.

To keep the equation polynomial, remove the inequality, and avoid
square roots, the univariate MSCCD root inder becomes

⟨�(�), �(�)⟩2 − �2∥�(�)∥2 .

We note that this polynomial becomes sextic, and not cubic as in
the zero-distance version. To account for replacing the inequality
with an equality, we also need to check for distance between �

and the edges and vertices of the triangle [Harmon et al. 2011]. In
addition to inding the roots of several high-order polynomials, this
formulation, similarly to the standard CCD, sufers from ininite
roots when the two primitives are moving on a plane at distance �
from each other.

6.1 Method

The input to our MSCCD algorithm are the same as the standard
CCD (eight coordinates, � , and�� ) and the minimum separation
distance � ⩾ 0. Our algorithm returns the earliest time of impact
indicating if two primitives become closer than � as measured by
the �∞ norm.
We wish to check whether the box �� (Ω) intersects a cube of

side 2� centered on the origin (Figure 10). Equivalently, we can
construct another box �′

�
(Ω) by displacing the six faces of �� (Ω)

outward at a distance � , and then check whether this enlarged box
contains the origin. This check can be done as for the standard CCD
(Section 5), but the loating point ilters must be recalculated to
account for the additional sum (indeed, we add/subtract � to/from
all the coordinates). Hence, the ilters for � ′ are:

��ee = 7.105427357601002 × 10−15�3�
��vf = 7.549516567451064 × 10−15�3�

(8)

As before, the ilters are calculated as described in [Attene 2020]
and they additionally assume that � < �� .
To account for minimum separations, the only change in our

algorithm is at line 7 where we need to enlarge � by � and in
lines 9 and 15 since �� needs to be replaced with �� = [−�� , �� ] ×

[−��, ��] × [−�� , ��].

6.2 Results

To the best of our knowledge, the minimum separation loating-
point time-of-impact root inder [Harmon et al. 2011] (MSRF) im-
plemented in [Lu et al. 2019], is the only public code supporting
minimal separation queries. While not explicitly constructed for
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separation distanced � = 10−50, 10−8, and 1 over the simulation dataset.

MSCCD, FPRF uses a distance tolerance to limit false negatives, sim-
ilarly to an explicit minimum separation. We compare the results
and performance in Appendix E.

MSRF. uses the univariate formulation, which requires to ind
the roots of a high-order polynomial, and it is thus unstable when
implemented using loating-point arithmetic.
Table 2 reports timings, false positive, and false negatives for

diferent separation distances � . As � shrinks (around 10−16) the
results of our method with MSCDD coincide with the ones with
� = 0 since the separation is small. For these small tolerances, MSRF
runs into numerical problems and the number of false negatives
increases. Figure 11 shows the average query time versus the sepa-
ration distance � for the simulation dataset, since our method only
requires to check the intersection between boxes, the running time
largely depends on the number of detected collision, and the average
is only mildly afected by the choice of � .

7 INTEGRATION IN EXISTING SIMULATORS

In a typical simulation the objects are represented using triangular
meshes and the vertices are moving along a linear trajectory in a
timestep. At each timestep, collisions might happen when a vertex
hits a triangle, or when an edge hits another edge. A CCD algorithm
is then used to prevent interpenetration; this can be done in diferent
ways. In an active set construction method (Section 7.1) the CCD
is used to compute contact forces to avoid penetration assuming
linearized contact behaviour. For a line-search based method (Sec-
tion 7.2), CCD and time of impact are used to prevent the Newton
trajectory from causing penetration by limiting the step length. Note
that, the latter approach requires a conservative CCD, while the
former can tolerate false negatives.
The integration of a CCD algorithm with collision response al-

gorithms is a challenging problem on its own, which is beyond the
scope of this paper. As a preliminary study, to show that our method
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can be integrated in existing response algorithm, we examine two
use cases in elastodynamic simulations:

(1) constructing an active set of collision constraints [Harmon
et al. 2008; Verschoor and Jalba 2019; Wriggers 1995], Sec-
tion 7.1;

(2) during a line search to prevent intersections [Li et al. 2020],
Section 7.2.

We leave as future work a more comprehensive study including
how to use our CCD to further improve the physical idelity of
existing simulators or how to deal with challenging cases such as
sliding contact response.
To keep consistency across queries, we compute the numerical

tolerances (5) and (8) for the whole scene. That is, �max, �max, and
�max are computed as the maximum over all the vertices in the
simulation. In algorithms 3 and 4 we utilize a broad phase method
(e.g., spatial hash) to reduce the number of candidates � that need
to be evaluated with out narrow phase CCD algorithm.

7.1 Active Set Construction

Algorithm 3 Active Set Construction Using Exact CCD

1: function ConstructActiveSet(�0, �1, �,�� )
2: � ← BroadPhase(�0, �1)
3: �� ← ∅

4: for � ∈ � do ⊲ Iterate over the collision candidates
5: � ← CCD(�0 ∩ �, �1 ∩ �, �,�� )
6: if 0 ⩽ � ⩽ 1 then
7: �� ← �� ∪ {(�, �)}

8: return ��

9:

10: function CCD(�0, �1, �,�� )
11: if �0 and �1 are edges then
12: � ← build �ee from �0 and �1 ⊲ Equation (2)
13: else

14: � ← build �vf from �0 and �1 ⊲ Equation (1)

15: return Solve(�, �,�� )

In the traditional constraint based collision handling (such as that
of Verschoor and Jalba [2019]), collision response is handled by per-
forming an implicit timestep as a constrained optimization. The goal
is to minimize a elastic potential while avoiding interpenetration
through gap constraints. To avoid handling all possible collisions
during a simulation, a subset of active collisions constraints �� is
usually constructed. This set not only avoids infeasibilities, but also
improves performance by having fewer constraints. There are many
activation strategies, but for the sake of brevity we focus here on
the strategies used by Verschoor and Jalba [2019].
Algorithm 3 shows how CCD is used to compute the active set

�� . Given the starting and ending vertex positions, �0 and �1, we
compute the time of impact for each collision candidate � ∈ � . We
use the notation �� ∩ � to indicate selecting the constrained vertices
from �� . If the candidate � is an actual collision, that is 0 ⩽ � ⩽ 1,
then we add this constraint and the time of impact, � , to the active
set, �� .

� = 10−1 � = 10−3 � = 10−6

Fig. 12. An elastic simulation using the constraints and active set method

of Verschoor and Jalba [2019]. From an initial configuration (let) we simulate

an elastic torus falling on a fixed cone using three values of � (from let

to right: 10−1, 10−3, 10−6). The total runtime of the simulation is afected

litle by the change in � (24.7, 25.2, and 26.2 seconds from let to right

compared to 32.3 seconds when using FPRF). For � = 10−1, inaccuracies in
the time-of-impact lead to inaccurate contact points in the constraints and,

ultimately, intersections (inset).

From the active constraint set the constraints of Verschoor and
Jalba [2019] are computed as

⟨�, �1� − �
2
� ⟩ ⩾ 0,

where � is the contact normal (i.e., for a point-triangle the triangle
normal at the time of impact and for edge-edge the edge-edge cross
product at the time of impact), �1� is the point (or the contact point
on the irst edge), and �2� is the point of contact on the triangle
(or on the second edge) at the end of the timestep. Note that, this
constraint requires to compute the point of contact, which depends
on the the time-of-impact which can be obtained directly from our
method.
Because of the diiculty for a simulation solver to maintain and

not violate constraints, it is common to ofset the constraints such
that

⟨�, �1� − �
2
� ⟩ ⩾ � > 0.

In such a way, even if the � constraint is violated, the real constraint
is still satisied. This common trick, implies that the constraints need
to be activated early (i.e., when the distance between two objects
is smaller than �) which is exactly what our MSCCD can compute
when using � = �. In Figure 12, we use a value of � = 0.001m. When
using large values of �, the constraint of Verschoor and Jalba [2019]
can lead to infeasibilities because all triangles are extended to planes
and edges to lines.
Figure 12 shows example of simulations run with diferent nu-

merical tolerance � . Changing � has little efect on the simulation
in terms of run-time, but for large values of � , it can afect accuracy.
We observe that for a � ⩾ 10−2 the simulation is more likely to
contain intersections. This is most likely due to the inaccuracies in
the contact points used in the constraints.

7.2 Line Search

A line search is used in a optimization to ensure that every up-
date decreases the energy �. That is, given an update, Δ� , to the
optimization variable � , we want to ind a step size � such that
� (� + �Δ�) < � (�). This ensure that we make progress towards a
minimum.
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Algorithm 4 Line Search with Exact CCD

1: function LineSearch(�, �0,Δ�, �, �,�� )
2: �1 ← �0 + Δ�

3: � ← BroadPhase(�0, �1) ⊲ Collision candidates
4: � ← 1
5: �� , �� ← Distance(�)

6: Compute �� from (8)
7: � ← max(��� , �)
8: while � < (� − � − �� − �� )/� do

9: � ← �/2
10: � ← ���

11: �� ← �

12: for � ∈ � do ⊲ � is bounded by earliest time-of-impact
13: �, �̄� ←MSCCD(�0 ∩ �, �1 ∩ �, �, �, �,�� )
14: � ← min(�, �)
15: �� ← max(�̄� , �� )

16: if � < (� − �� − �� − �� )/� then

17: � ← �� ⊲ Repeat with � validated from ��
18: Go to line 8.
19:

20: while � > �min do ⊲ Backtracking line-search
21: �1 ← �0 + �Δ�

22: if � (�1) < � (�0) then ⊲ Objective energy decrease
23: break

24: � ← �/2

25: return �

26:

27: functionMSCCD(�0, �1, �, �, �,�� )
28: if �0 and �1 are edges then
29: � ← build �ee from �0 and �1 ⊲ Equation (2)
30: else

31: � ← build �vf from �0 and �1 ⊲ Equation (1)

32: return SolveMSCCD(�, �, �,�� , �)

When used in a line search algorithm, CCD can be used to prevent
intersections and tunneling. This requires modifying the maximum
step length to the time of impact. As observed by Li et al. [2020],
the standard CCD formulation without minimal separation cannot
be used directly in a line search algorithm. Let �★ the earliest time
of impact (i.e., � (�★, �̃, �̃) = 0 for some �̃, �̃ and there is no collision
between 0 and �★) and assume that the energy at � (�0 + �★Δ�) <
� (�0) (Algorithm 4, line 22). In this case the step � = �★ is a valid
descent step which will be used to update the position � in outer
iteration (e.g., Newton optimization loop). In the next iteration, the
line search will be called with the updated position and the earliest
time of impact will be zero since we selected �★ in the previous
iteration. This prevents the optimization from making progress
because any direction Δ� will lead to a time of impact � = 0. To
avoid this problem we need the line search to ind an appropriate
step-size � along the update direction that leaves łsuicient spacež
for the next iteration, so that the barrier in [Li et al. 2020] will be
active and steer the optimization away from the contact position.

Formally, we aim at inding a valid CCD sequence {�� } such that

�� < ��+1, lim
�→∞

�� = �★, and ��/��+1 ≈ 1.

The irst requirement ensures that successive CCD checkswill report
an increasing time, the second one ensures that we will converge
to the true minimum, and the last one aims at having a łslowlyž
convergent sequence (necessary for numerical stability). Li et al.
[2020] exploit a feature of FPRF to simulate a minimal separation
CCD: in this work we propose to directly use our MSCCD algorithm
(Section 6).

Constructing a Sequence. Let 0 < � < 1 be a user-deined tolerance
(� close to 1 will produce a sequence {�� } converging faster) and ��
be the distance between two primitives. We propose to set � = ��� ,
and ensure that no primitive are closer than � . Without loss of
generality, we assume that � (� +Δ�) = 0, that is, taking the full step
will lead to contact. By taking successive steps in the same direction,
�� will shrink to zero ensuring �� to converge to �★. Similarly we
will obtain a growing sequence �� since � decreases as we proceed
with the iterations. Finally, it is easy to see that � = ��/��+1 which
can be close to one.

To account for the aforementioned problem, we propose to use our
MSCCD algorithm to return a valid CCD sequence when employed
in a line search scenario. For a step � , we deine �� as the tolerance,
�� the numerical error (8), and �� as the maximum numerical error
in computing the distances �� from the candidates set � (line 5). ��
should be computed using forward error analysis on the application-
speciic distance computation: since the applications are not the
focus of our paper, we used a ixed �� = 10−9, and we leave the
complete forward analysis as a future work. (We note that our
approximation might thus introduce zero length steps, this however
did not happen in our experiments.) If �� − (�� + �� + �� ) > � , our
MSCCD is guaranteed to ind a time of impact larger than zero. Thus
if we set � = ��� (line 7), we are guaranteed to ind a positive time
of impact if

�� >
�� + �� + ��

1 − �
.

To ensure that this inequality holds, we propose to validate � before
using the MSCCD with � (line 8), ind the time of impact and the
actual �� (line 12), and check if the used � is valid (line 16). In case
� is too large, we divide it by two until it is small enough. Note that,
it might be that

�� < �� + �� + �� ,

in this case we can still enforce the inequality by increasing the
number of iterations, decreasing � , or using multi-precision in the
MSCCD to reduce �� . However, this was never necessary in any of
our queries, and we thus leave a proper study of these options as a
future work.
As visible from Table 2, our MSCCD slows down as � grows.

Since the actual minimum distance is not relevant in the line search
algorithm, our experiments suggest to cap it at � (line 7). To avoid
unnecessary computations and speedup the MSCCD computations,
our algorithm, as suggested by Redon et al. [2002], can be easily
modiied to accept a shorter time interval (line 13): it only requires
to change the initialization of � (Algorithm 2 line 3). These two
modiications lead to a 8× speedup in our experiments. We refer

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:14 • Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Atene, and Daniele Panozzo

� = 10−3 � = 10−4.5 � = 10−6

Fig. 13. An example of an elastic simulation using our line search (Sec-

tion 7.2) and the method of Li et al. [2020] to keep the bodies from intersect-

ing. An octocat is falling under gravity onto a triangulated plane. From let

to right: the initial configuration, the final frame with � = 10−3, � = 10−4.5,
� = 10−6 all with a maximum of 106 iterations. There are no noticeable

diferences in the results, and the entire simulations takes 63.3, 67.9, and
67.0 seconds from let to right (a speed up compared to using FPRF which

takes 102 seconds). ©Brian Enigma under CC BY-SA 3.0.

to this algorithm with MSCCD (i.e., Algorithm 2 with MSCDD,
Section 6.1, and modiied initialization of � ) as SolveMSCCD.

Figure 13 shows a simulation using our MSCCD in line search to
keep the bodies from intersecting for diferent � . As illustrated in
the previous section, the efect of � is negligible as long as � ⩽ 10−3.
Timings vary depending on the maximum number of iterations.
Because the distance � varies throughout the simulation, some steps
take longer than others (as seen in Figure 11). We note that, if we use
the standard CCD formulation � = 0, the line search gets stuck in all
our experiments, and we were not able to ind a solution. Note that
for a line search based method it is crucial to have a conservative
CCD/MSCCD algorithm: the videos in the additional material shows
that a false negative leads to an artefact in the simulation.

8 LIMITATIONS AND CONCLUDING REMARKS

We constructed a benchmark of CCD queries and used it to study
the properties of existing CCD algorithms. The study highlighted
that the multivariate formulation is more amenable to robust im-
plementations, as it avoids a challenging iltering of spurious roots.
This formulation, paired with an interval root inder and modern
predicate construction techniques leads to a novel simple, robust,
and eicient algorithm, supporting minimal separation queries with
runtime comparable to state of the art, non conservative, methods.
While we believe that it is practically acceptable, our algorithm

still sufers from false positive and it will be interesting to see if
the multivariate root inding could be done exactly with reasonable
performances, for example employing expansion arithmetic in the
predicates. Our deinition of minimal separation distance is slightly
diferent from the classical deinition, and it would be interesting
to study how to extend out method to directly support Euclidean
distances. Another interesting venue for future work is the extension
of our inclusion function to non-linear trajectories and their eicient
evaluation using static ilters or exact arithmetic.
Our benchmark focuses only on CPU implementations: reim-

plementing our algorithm on a GPU with our current guarantees
is a major challenge. It will require to control the loating-point
rounding on the GPU (and compliant with the IEEE loating-point
standard), to ensure that the compiler does not reorder the opera-
tions or skip the computation of temporaries. Additionally it would
require to recompute the ground truth and the numerical constants
for single precision arithmetic, as most GPUs do not yet support

double computation. This is an exciting direction for future work to
further improve the performance of our approach.

We will release an open-source reference implementation of our
technique with anMIT license to foster adoption of our technique by
existing commercial and academic simulators. We will also release
the dataset and the code for all the algorithms in our benchmark to
allow researchers working on CCD to easily compare the perfor-
mance and correctness of future CCD algorithms.
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Fig. 14. Prism resulting from the input points and triangle in (9). The origin
is marked by the red dot.

A DATASET FORMAT

To avoid any loss of precision we convert every input loating-point
coordinate in rationals using GMP [Granlund and the GMP Devel-
opment Team 2012]. This conversion is exact since every loating
point can be converted in a rational number, as long as the numera-
tor and denominator are arbitrarily large integers. We then store
the numerator and denominator as a string since the numerator
and denominator can be larger than a long number. To retrieve the
loating point number we allocate a GMP rational number with the
two strings and convert it to double.
In summary, one CCD query is represented by a 8 × 7 matrix

where every row is one of the 8 CCD input points, and the columns
are the interleaved �,�, � coordinates of the point, represented as
numerator and denominator. For convenience, we appended several
such matrices in a common CSV ile. The last column represents
the result of the ground truth. For instance a CC query between
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where ��
���

and ��
��
�

are respectively the numerator and denominator

of the �-coordinate of � , and� is the same ground truth. The dataset
and a query viewer can be downloaded from the NYU Faculty Digital
Archive.

B EXAMPLE OF DEGENERATE CASE NOT PROPERLY

HANDLED BY [Brochu et al. 2012]
Let

�0
= [0.1, 0.1, 0.1], �01 = [0, 0, 1], �02 = [1, 0, 1], �03 = [0, 1, 1],

�1
= [0.1, 0.1, 0.1], �11 = [0, 0, 0], �12 = [0, 1, 0], �13 = [1, 0, 0]

(9)

be the input point and triangle. Checking if the point intersects
the triangle is equivalent to check if the prism shown in Figure 14
contains the origin. However, the prism contains a bilinear face that
is degenerate (it looks like a łhourglassž). The algorithm proposed
in [Brochu et al. 2012] does not consider this degenerate case and
erroneously reports no collision.
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Table 3. Summary of the average runtime in �� (t), number of false positive (FP), and number of false negative (FN) for FPRF and our method.

Handcrafted ś Vertex-Face MSCCD Handcrafted ś Edge-Edge MSCCD Simulation ś Vertex-Face MSCCD Simulation ś Edge-Edge MSCCD

FPRF Ours FPRF Ours FPRF Ours FPRF Ours

� t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN

10−2 2.41 1.8K 4 18.86K 2.6K 0 1.16 3.3K 19 9.64K 4.8K 0 8.04 869.1K 1 12.04 8.1M 0 8.01 1.1M 0 19.12 8.3M 0
10−8 4.53 83 3 1.60K 159 0 0.60 160 28 3.42K 309 0 8.00 4 2 0.72 8 0 0.77 16 0 0.73 40 0
10−16 2.23 29 69 1.51K 108 0 0.55 45 145 2.92K 214 0 7.78 0 5.2K 0.71 2 0 0.25 0 2.3K 0.72 17 0
10−30 2.24 9 70 1.39K 108 0 0.58 5 147 2.79K 214 0 7.77 0 5.2K 0.66 2 0 0.25 0 2.3K 0.67 17 0
10−100 2.31 9 70 1.43K 108 0 0.80 5 147 2.82K 214 0 7.75 0 5.2K 0.66 2 0 0.25 0 2.3K 0.68 17 0

C EXAMPLE OF INFLECTION POINT NOT PROPERLY

HANDLED BY [Tang et al. 2014]

Let
�0

= [1, 1, 0], �01 = [0, 0, 5], �02 = [2, 0, 2], �03 = [0, 1, 0],

�1
= [1, 1, 0], �11 = [0, 0,−1], �12 = [0, 0,−2], �13 = [0, 7, 0]

be the input point and triangle. Checking if they intersect at time �
is equivalent to inding the roots of

−72�3 + 120�2 − 44� + 3.

To apply the method in [Tang et al. 2014] we need to rewrite the
polynomial in form of Tang et al. [2014, Equation (1)]:

1�30 (�) −
35

3
�31 (�) +

82

3
�32 (�) + 14�

3
3 (�).

Their algorithm assumes no inlection points in the Bezier curve.
Thus it proposes to split the curve at the eventual inlection point
(as in the case above). The formula proposed in [Tang et al. 2014,
Section 4.1] contains a typo, by ixing it we obtain the inlection
point at:

� =
6�0 − 4�1 + �2

6�0 − 6�1 + 3�2 − �3
=

5

9
.

By using the incorrect formula we obtain � = 155/312, which is
not an inlection point. In both cases, � cannot be computed exactly
since it contains a division, and computing it approximately breaks
the assumption of not having inlection points in the Bezier form. In
the reference code, the authors detect the presence of an inlection
point using predicates, but do not split the curve (the case is not
handled). We modiied the code (patch attached in the additional
material) to conservatively return a collision in these cases.

Independently from this problem, their reference implementation
returns false negative (i.e. misses collisions) for certain conigura-
tions, such as the following degenerate coniguration:

�0
= [1, 0.5, 1], �01 = [0, 0.57, 1], �02 = [1, 0.57, 1], �03 = [1, 1.57, 1],

�1
= [1, 0.5, 1], �11 = [0, 0.28, 1], �12 = [1, 0.28, 1], �13 = [1, 1.28, 1] .

We could not ind out why this is happening, and we do not
know if this is a theoretical or numerical problem, or a bug in the
implementation.

D EFFECT OF � ON THE INTERVAL-BASED METHODS

UIRF, IRF, and our method have a single parameter � to control the
size of the interval. Increasing � will introduce more false positive,
while making the algorithms faster (Figure 15). Note that we limit
the total running time to 24h, thus UIRF does not have result for
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Fig. 15. Log plot of the efect of the tolerance � on the running time (top)

and false positives (botom) for the three (Ours, UIRF, and IRF) interval

based methods on the simulation dataset.

� > 10−6 (for � = 10−6 it takes 1ms per query in average). � has a
similar efect on the number of false positives for the three interval
basedmethods, while it has a more signiicant impact on the running
time for UIRF and IRF.

E MINIMUM SEPARATION WITH FPRF

In Table 3 we compare our method with FPRF by changing the
parameter � that mimics minimum separation.
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