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Highlights
As machine learning (ML) is gaining an
increasingly prominent role in chemical
research, so is the need to assess the
quality and applicability of ML models,
compare different ML models, and de-
velop best-practice guidelines for their
design and utilization. Statistical loss
function metrics and uncertainty quantifi-
cation techniques are key issues in this
context.
This review aims to draw attention to two issues of concern when we set out to
make machine learning work in the chemical and materials domain, that is,
statistical loss function metrics for the validation and benchmarking of data-
derived models, and the uncertainty quantification of predictions made by
them. They are often overlooked or underappreciated topics as chemists
typically only have limited training in statistics. Aside from helping to assess
the quality, reliability, and applicability of a given model, these metrics are also
key to comparing the performance of different models and thus for developing
guidelines and best practices for the successful application of machine learning
in chemistry.
Different analyses highlight different
facets of a model’s performance, and a
compilation of metrics, as opposed to a
single metric, allows for a well-rounded
understanding of what can be expected
from a model. They also allow us to
identify unexplored regions of chemical
space and pursue their survey.

Metrics can thus make an important
contribution to further democratize ML
in chemistry; promote best practices;
provide context to predictions and
methodological developments; lend
trust, legitimacy, and transparency to
results from ML studies; and ultimately
advance chemical domain knowledge.
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Assessing Machine Learning (ML) Models
The rapid advancement and transformation of ML technology has led to a boom in its utiliza-
tion, including in science and engineering. Chemical research is no longer an exception in this
development [1] and numerous areas have been identified in which ML is now employed to
great effect (see, e.g., [2–7]). While ML applications have resulted in a number of exciting
and valuable studies that have advanced chemical domain knowledge, it is worth noting
that there is still a considerable lack of quality control, guidance, uniformity, and established
protocols for the successful conduct of such studies. Unlike for other application domains of
ML or for other techniques used in chemistry, there are not decades of experience to build
upon. Guidelines established in other contexts do not necessarily translate to chemical
problem settings.

The choices that define chemical ML models, for example, with respect to featurization
(balancing expressiveness and cost), training data sampling (accounting for data volume
limitations, biases, imbalances), ML hyperparameter (see Glossary) and model selection
(balancing complexity and effectiveness), etc., have a dramatic impact on the resulting
models’ predictive performance and range of applicability. So far, the community has
mostly relied on ad hoc choices that are unlikely to yield the best possible outcomes.
The ability to quantify the quality, reliability, and applicability of ML models via metrics is
thus an obvious topic of interest. ML approaches that optimize the model design choices
do so by minimizing an error metric (e.g., via a fitness function in an evolutionary algo-
rithm [8]). The comparison of different models on the basis of these metrics can also yield
design recommendations, illuminate their implications, and thus result in best practices for
different problem scenarios within the chemistry domain. Ultimately, they may serve as the
foundation for meta-ML facilities and expert recommender systems as part of ML software
tools (e.g., [9–12]).
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Glossary
Binary cross-entropy: in a binary
classification problem, each sample
belongs to either one class or the other
(i.e., it has a known probability of 1.0 for
one class and 0.0 for the other). A
classifier model can estimate the
probability of a sample belonging to
each class. The binary cross-entropy is
used as ametric to assess the difference
between the two probability distributions
and thus the uncertainty of a classifier’s
prediction. (Also see cross-entropy,
categorical cross-entropy, and log loss.)
Categorical cross-entropy: for
multiclass classification problems, that
is, for problems involving more than two
categories (classes) of data, the cross-
entropy measures the difference
between the probability distribution of a
sample belonging to one class and the
probability distribution of that sample not
belonging to that class (i.e. belonging to
any of the other classes). This metric is
known as categorical cross-entropy.
(Also see binary cross-entropy.)
Cross-entropy: a measure of the
difference between two probability
distributions for a given set of samples.
(Also see binary cross-entropy,
categorical cross-entropy, and log loss.)
Evolutionary/genetic algorithm: This
is a heuristic-based approach inspired
by natural selection in biological
processes (i.e., survival of the fittest). It is
typically employed to tackle
(combinatorial) optimization problems, in
which gradients (needed for gradient
descent methods) are ill-defined (e.g., in
problems involving discrete or
categorical variables) or otherwise
inaccessible. Each possible solution
behaves as an individual in a population
of solutions and a fitness function (itself a
loss functionmetric) is used to determine
its quality. Evolutionary optimization of
the population takes place via
reproduction, mutation, crossover, and
selection iterations.
Fitness/objective function: This is a
loss function metric that assesses the
quality of a solution with respect to an
objective of an optimization. Its output
can be maximized or minimized (e.g., as
part of an evolutionary algorithm).
Harmonic mean: one of multiple types
of mean value metrics. Given a set of
sample values, the harmonicmean is the
inverse of the arithmetic mean of the
inverse of the sample values.
Hyperparameter: in ML,
hyperparameters are the parameters
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Pieces of the Metrics Puzzle
For ML regression and classification models, there are numerous statistical metrics (also
known as loss function metrics) that can be used to characterize their performance. The
notion of ‘no-free-lunch’ [13] in computational complexity and optimization theorizes that
the performance of any two methods or algorithms is equivalent when averaged across all
possible problems. This theorem applies to various aspects of both model selection and
validation in ML as well [14]. Loss function metrics are generally based on the comparison
of model predictions yi,pred and an assumed ground truth yi,true for a number of instances i,
which leads to prediction errors ei (Equation SI1) and relative prediction errors ri (Equation SI2),
respectively.

Different metrics illuminate different performance aspects of a model. A clear understanding
of the specific information a given metric conveys is a prerequisite to fully harnessing it. Blind
reliance on a random (e.g., default or commonly reported) metric is a missed opportunity at
best and leads to poor outcomes at worst. While particular metrics may be of greater or
lesser importance for different application problems, it is generally worth considering a com-
pilation of metrics. Individual metrics only yield limited insights and no single metric by itself
can fully capture the performance of an ML model. But taken together, different metrics com-
plement each other and, like pieces of a puzzle, paint a comprehensive picture of a model’s
quality.

The same metrics with respect to the same ground truth need to be compared between different
models or studies, otherwise the comparison is meaningless. As an alternative to comparing the
error metrics of two models (with respect to an independent ground truth), we can also choose
the ground truth to be the predictions of one of the models. In that case, the error metrics directly
reflect the differences between the two models.

It is important to stress that while error metrics can be applied to the predictions within the
training, validation, and test data set (including as part of k-fold cross-validation, in which
these sets get reshuffled), only the results for the unseen test set data is considered in the eval-
uation of the predictive performance of a model. The comparison of training and test set error
metrics is instructive as significant differences indicate a poorly trained (e.g., overfitted) model.
Similarly, the errors of the different instances of a k-fold cross-validation should be consistent.

In the following sections, we will provide a concise overview of a selection of particularly
useful metrics, highlight their advantages and disadvantages, and discuss how a suite of
these metrics can afford multifaceted insights into the behavior of a model. It is worth men-
tioning that much of this discussion is transferable to predictions of non-ML (e.g., physics-
based rather than data-derived) models [15]. We also stress that all prediction errors have
to be judged in the context of the intrinsic errors or uncertainties of the assumed ground
truth.

Metrics for Model Validation and Benchmarking
Regression Tasks
For regression tasks, the mean absolute error (MAE) and root mean square error (RMSE) are
two of the most commonly reported error metrics (Equations SI4 and SI5) and a number of
studies have been published debating the supremacy of one over the other [16–24]. (Note
that mean absolute deviation (MAD) and root mean square deviation (RMSD) are sometimes
used synonymously with MAE and RMSE, respectively. However, since these abbreviations
are also used for other statistical metrics, such as median absolute deviation, or with other
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that define the structure of a model and
control the learning process, as
opposed to other parameters that are
derived (‘learned’) from the data in the
course of training the model.
Log loss: the negative logarithm of the
likelihood of a set of observations given a
model’s parameters. While log loss and
cross-entropy are not the same by
definition, they calculate the same
quantity when used as fitness functions.
In practice, the two terms are thus often
used interchangeably.
Loss functionmetrics: statistical error
metrics used to assess the performance
of ML models and the quality of their
predictions.
Principal component analysis: a
technique to transform the feature basis,
in which a set of data is described, into a
basis that is adapted to the nature of the
given data. The principal components
are the eigenvectors of the covariance
matrix of the data set.
Tanimoto index: this metric is used to
assess the similarity between the finite
feature (e.g., descriptor, fingerprint)
vectors of two samples. The similarity
ranges from 0 to 1, with 0 indicating no
point of intersection between the two
vectors and 1 revealing completely
identical vectors.
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definitions, we do not recommend their use to avoid confusion or erroneous conclusions.)
The MAE [also called mean unsigned error (MUE)] provides straightforward information
about the average magnitude of errors to be expected from a model. However, as all errors
are weighted equally, differences in the magnitudes of errors get averaged out, that is, the
MAE alone does not offer insights into the uniformity or variability of prediction errors (and,
thus, the reliability of particular predictions). Metrics that rely on squared errors, such as
the RMSE or the less frequently reported mean square error (MSE), magnify larger errors
and are thus more sensitive to outliers (which are signaled by large RMSE values). Consid-
ered together, MAE and RMSE can yield information on the homogeneity or heterogeneity
of errors: if MAE and RMSE values are similar, this indicates prediction errors of relatively con-
sistent magnitude; if the RMSE is significantly larger than the MAE, this indicates large fluctu-
ations in the error magnitudes [25].

MAE and RMSE provide absolute errors that are decoupled from the prediction values. However,
the same absolute error has very different implications for smaller or larger prediction values. The
mean absolute percentage error (MAPE) and root mean square percentage error (RMSPE) given
by Equations SI6 and SI7, respectively, provide error metrics that are relative to the prediction
values and thus complement the absolute MAE and RMSE values. The comparison of MAPE
and RMSPE allow us to gauge the uniformity of prediction errors across the range of prediction
values (rather than their absolute uniformity; note that absolute and relative uniformity will gener-
ally not be achievable at the same time, unless the range of prediction values is very narrow). Use-
cases are limited to non-zero prediction values [26–29].

The unsigned errors discussed so far only consider error magnitudes, but not their direc-
tional distribution around the prediction. The mean error (ME) and mean percentage error
(MPE) given by Equations SI8 and SI9, respectively, allow us to identify systematic biases
in the directionality of errors. Unbiased absolute and relative errors have ME and MPE
values of 0.0. Positive ME and MPE values indicate systematic overpredictions and nega-
tive ones systematic underpredictions. Their magnitude corresponds to the degree of di-
rectional bias.

All metrics considered so far provide average errors. They can be complemented by the maxi-
mum absolute error (MaxAE) and maximum absolute percentage error (MaxAPE) given by Equa-
tions SI10 and SI11, respectively, as well as the difference of most extreme errors MaxE
(Equation SI12), (i.e., the spread between largest positive and negative errors). These three met-
rics provide absolute and relative worst cases in the observed prediction errors. Comparing the
maximum error metrics with their corresponding means indicates the degree of deviation be-
tween them.

We can further characterize the absolute and/or relative prediction error distributions. Ideally,
these should be normal distributions centered around 0.0 with narrow standard deviations σ
(Equation SI13), i.e., the square root of the variance σ2. The center of the error and percentage
error distributions are ME and MPE, respectively. A negligible directional bias means that a
method is accurate, while small σ means that a method is precise.

We can also quantify the extent of correlation between the prediction results and ground truth by
performing a linear regression. The coefficient of determination R2 (Equation SI14), with R the cor-
relation coefficient, of the fit is a widely reported metric. Maximizing R2 towards the upper limit of
1.0 is equivalent to minimizing the MSE. The slope and offset values of the linear regression
(i.e., deviations from 1.0 for the former and 0.0 for the latter) yield additional insights about
148 Trends in Chemistry, February 2021, Vol. 3, No. 2
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systematic error behavior that can complement our findings from the ME, MPE, and σ metrics.
Instead of the R2 value, some studies report the adjusted coefficient of determination Radj

2 (Equa-
tion SI15), which incorporates a measure of model complexity, thus giving information about the
quality/complexity ratio. While the R2 increases monotonously with the number of features or var-
iables added to a model, the Radj

2 increases only when useful features are added and decreases
otherwise. We could, in principle, also perform non‐linear regressions to further explore the nature
of systematic biases, but this is in practice rarely done, as the need for suchmetrics suggestsmore
fundamental flaws in ourMLmodel. Instead, we could employΔ-ML or transfer learning techniques
to directly correct for the discrepancies betweenmodel predictions and ground truth and thus aug-
ment and improve the original ML model.

Figure 1 shows the characteristics and utility of several of the regression metrics discussed in this
section for different types of errors.

In summary, a good ML model should make predictions with small MAE, RMSE, MAPE, and
RMSPE values; small differences between either MAE and RMSE (i.e., homogeneous abso-
lute errors) or MAPE and RMSPE (i.e., homogeneous relative errors); ME and MPE values
close to 0.0; small σ; small MaxAE and MaxAPE values with only modest differences to
MAE and MAPE, respectively; small MaxE value; R2 and slope close to 1.0 and offset
close to 0.0.

Classification Tasks
A simple way of visualizing and reporting the quality of results for classification tasks is via a con-
fusion matrix (Figure 2) [30], which can be used for both binary and multi-class classifications. A
confusion matrix is a square matrix (of size equal to the number of classes) that represents a
model’s performance by tabulating class-specific information about the number of correct and
incorrect predictions. For a binary classification task, a confusion matrix shows the total number
of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions.
These values can be used to calculate other evaluation metrics, including accuracy, precision,
and recall.

The simplest of these derived metrics is the accuracy, which is defined as the fraction of correctly
labelled predictions among the total number of cases examined (Equation SI16). While this metric
is easy to interpret and suitable for binary and multi-class classification alike, it falls short when
dealing with skewed or imbalanced data [31–33]. For cases where the data set is not necessarily
balanced, metrics such as precision and recall are preferred [34]. In binary classification prob-
lems, precision denotes the fraction of positive class labels that are predicted correctly by the
model (Equation SI17). Recall denotes the overall fraction of the positive class labels that
are correctly predicted (Equation SI18). It is preferred when false negatives are highly undesirable
(e.g., if a toxic chemical is falsely predicted to be non-toxic, then it will have far greater ramifications
than if a non-toxic chemical is classified as toxic). Thus, in situations where the negative class rep-
resents an overwhelming fraction of the training data, precision and recall are more useful than ac-
curacy since it is imperative that all data points belonging to the positive class are predicted
correctly. Accuracy, precision, and recall values close to the upper limit of 1.0 are indicative of a
well-performing model.

In most cases, there is a trade-off between precision and recall. The F1 score, which is the harmonic
mean of precision and recall (Equation SI19), is a useful metric when it is desirable to have a balance
between precision and recall [35,36]. The F1 score gives equal weight to precision and recall, how-
ever, when domain knowledge or other considerations indicate that more weight should be assigned
Trends in Chemistry, February 2021, Vol. 3, No. 2 149
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Figure 1. Comparing Pairs of Data Sets with Different Error Characteristics and How These Are Reflected in Different Error Metrics. The data sets each
contain 300 data points that are synthetically generated using yi = rn (k|l) · xi + rn (m|n), with linear and constant random noise rnwithin the ranges (k|l) and (m|n), respectively.
We use these ranges to simulate different error scenarios. Column 1 shows plots that compare the ‘predictions’ y, with the ground truth parity line y = x in black. Linear
regression lines for each data set are shown in their respective color. Columns 2 and 3 contain error density plots for selected metrics. (A1) Data sets with only linear
(red) or only constant errors (blue), chosen such that their mean absolute error (MAE) values are near identical (A2). While the red data has a slightly larger root mean
square error (RMSE), the blue data has dramatically larger mean absolute percentage error (MAPE) and root mean square percentage error (RMSPE) (A3). For the red
data, MAE and RMSE are similar and MAPE and RMSPE dissimilar, while the situation for the blue data is reversed. (B1) Data sets with a mix of linear and constant
error, one where these are directionally biased (red), the other unbiased (blue). The bias in red is reflected in significantly non-zero mean error (ME) (B2) and an incorrect
regression slope. As the red data follows the wrong trend, all error metrics are elevated (e.g., RMSE, B3). In (C1), the blue data is the same as in (B1). In the red data,

(Figure legend continued at the bottom of the next page.)
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Figure 2. Confusion Matrix for Binary
Classification Problems. The matrix can
be extended for multiclass classifications
where positive and negative classes are
replaced with classes A, B, C, etc.
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to one or the other, we can use a weighted F1 score (F1β), which introduces a weight parameter β to
adjust the precision-recall (PR) trade-off (Equation SI20).

In certain classification problems, the output of a classifier for a given input is a probability distri-
bution over a set of class labels rather than just themost likely class label. Metrics used to evaluate
predicted probabilities are different from those used to evaluate class labels. For predicted
probabilities resulting from binary classification, log loss L (also called binary cross-entropy)
(Equation SI21) is considered a good metric. Although it primarily serves as a fitness function
for classifiers, it can also be used as an evaluation metric. While it successfully accounts for the
uncertainty of a model’s prediction, it needs to be modified with class weights in case of imbal-
anced data. An extension of this metric for multiclass classifications is the categorical cross-
entropy [37,38].

While predicted probabilities give a more nuanced view of a classifier’s performance, distinct
class labels are preferred for most practical purposes. The latter are derived from the former via
a threshold. Two diagnostic metrics (along with domain knowledge) are commonly used to deter-
mine the best threshold value, which in turn determines the balance of the classes in the data set.
Thesemetrics are the receiver operating characteristic (ROC) curve [39,40] and the PR curve [41].
The ROC curve is a plot of the true positive rate (TPR) (Equation SI18) versus the false positive rate
(FPR) (Equation SI22) at each threshold value (Note that the TPR is the same as the recall). The op-
timum threshold value is one that has a high TPR and a low FPR.Given the ROC curve, we can also
compute the area under the ROC curve (AUC) [42–46], which is an important metric used formodel
selection in classification problems. The closer the AUC value is to the upper limit of 1.0, the better a
10% of the data points are replaced with outliers. The error of the remaining data is reduced such that the overall MAE of both sets match. The outliers result in increased
RMSE (C2), comparable with that seen for systematic errors (B3). They also by chance led to large non-zero MPE values (C3) that could easily be mistaken for a sign of
systematic bias. However, the slope and ME values readily disprove this notion.
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model performs. We utilize these metrics by plotting the ROC curve with different thresholds and
then comparing the AUC for the optimal threshold values for different models.

One shortcoming of ROC curves is that they do not work well for imbalanced or skewed data [47].
For such data sets, PR curves have greater utility [48]. A PR curve is a plot of the model’s preci-
sion versus recall at different threshold values. The threshold for which the model has both a high
precision as well as a high recall is selected as the optimum value. The F1 score at each threshold
can also be determined, along with the area under the PR curve (which is ideally close to 1.0 for a
good classifier) and is used for model selection.

In summary, the choice of metrics to assess the quality of an ML classification model depends on
the nature of the given data (i.e., balanced or imbalanced), application of the model (which deter-
mines the weight to be assigned to positive or negative class labels), and the nature of the
classifier itself (i.e., whether it predicts probabilities or individual class labels). As discussed
before, it is prudent to compute a set of metrics to obtain a well-developed understanding of a
model’s performance.

Metrics for Uncertainty Quantification
Aside from creating and benchmarking an ML model, an equally important task is to ascertain its
applicability to a target domain of interest. For chemistry and drug-related applications, where
generally the molecules are numerically represented using fingerprints [49–56], it is common
practice to use similarity metrics such as the Tanimoto index T [57] (also called Jaccard coeffi-
cient) (Equation SI23) to gauge the similarity of target molecules to those in the training set. Sim-
ilarity in the training and target domains indicates that the predictive performance of theMLmodel
should hold for the target domain. Formal uncertainty quantification is relatively straightforward if:
(i) the distribution of the data is known, (ii) the ML model is linear, or (iii) the model inherently
provides an uncertainty for each prediction (such as in Bayesian learning approaches, Gaussian
processes, or random forests [58]). If these scenarios do not apply, then we can use a number of
non-parametric, model-agnostic methods to quantify the reliability of predictions made by ML
models for a target or ‘query’ point. The perhaps best-known method that has successfully
been employed in both regression and classification problems is the ensemble variance (also
known as the sensitivity analysis) method. In this method, we create an ensemble of ML models
by repeatedly sampling (with replacement) subsets of the training data (also known as bootstrap
aggregating or bagging [59]). The variance in their predictions for a query point is used to deter-
mine whether or not the query point lies within the applicability domain [60–63]. The smaller the
variance in the predictions, the more likely it is that the query point falls into the applicability
domain, whereas larger variances are more likely an indication of the query point being an outlier.
Unfortunately, this method has a high computational overhead, in particular with complex models
and/or large data, which limits its practical utility.

Another class of methods is based on the range of descriptor values (or those of other
representations). For instance, we can examine every descriptor value in the query point
with the corresponding range across all points in the training data to assess the applicability
of the model to the query point [64]. In geometric methods, we construct convex hulls
around the training data to define the extent of the descriptor values. These methods
have also been extended to data obtained after a transformation of the initial set of descrip-
tors, such as a representation obtained from a principal component analysis (PCA).
However, insights about the density distribution of descriptor values cannot be inferred
from range-based methods.
152 Trends in Chemistry, February 2021, Vol. 3, No. 2



Outstanding Questions
How can we facilitate a greater
awareness, appreciation, and education
of statistical techniques as well as data
science more broadly? It has become
clear that there is a need to update
traditional curricula in the chemistry
domain to account for its rapidly
changing research landscape. It has
also become clear that these
analyses need to be incorporated
into ML software tools as prominent
features, for example, as part of
automated recommender systems.

How can we expand our notion of
benchmarking and error analysis to
put a stronger emphasis on cost-
benefit analysis? Given the increasing
complexity of MLmodels, which greatly
increases their computational demand,
it is worth asking if these efforts are
actually worthwhile, in particular if they
only lead to marginal improvements in
the predictive performance.

How can we advance the development
and utilization of local rather than global
error metrics? Errors are generally not
homogeneously distributed across all
predictions but will differ in different
prediction domains. As not all prediction
domains are of equal interest, it is
important to further advance methods
that can gauge the quality of predictions
where we are primarily interested
in them. In chemical applications,
this is often in extreme (potentially
extrapolative) value regions with sparse
training data and significantly larger
than average errors.

How can we better harness our
knowledge of the mathematical
structure of different MLmodels to con-
textualize the specific error behavior of
these models? Can we correlate the
nature of latent variables, parametriza-
tion, model robustness, etc., with the
predictive performance of the corre-
sponding ML model?
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Finally, we can also employ techniques that are distance-based, that is, they rely on the distance
of the query point from the distribution of the training set, assuming that ML predictions are trust-
worthy in regions of dense data. Distance-based metrics tend to be easy and inexpensive to
compute. Amodel’s applicability domain is determined via a predefined threshold for the distance
of a query point from a point within the distribution. This can either be the distance to the mean of
the distribution, average (or weighted-average [65,66]) distance to k-nearest neighbors (neigh-
bors with similar descriptor values) in the training set, or the maximum or average distance to
all of the points in the distribution. The Euclidean and Mahalanobis distances are the most com-
mon distance metrics employed to quantify the distance to a distribution of data points. The
Mahalanobis distance indicates the number of standard deviations a query point is away from
the mean of a distribution in each dimension that is used to describe the data.

These methods have also been adapted to artificial neural networks (including deep belief net-
works) where the distance of the query point from the distribution is measured in the latent
space corresponding to the final hidden layer [67]. A quantitative comparison of several methods,
including those described earlier, are detailed in [68–71].

Concluding Remarks
In the development and application of ML models, much attention is paid to issues such as the
choice of feature representation, data preprocessing, and model selection. While these are all im-
portant issues, this review highlights error analysis techniques and metrics as another vital part of
ML workflows. The presented analyses and metrics allow us to validate ML models and assess
their quality, reliability, and applicability. They also provide the foundation for model development,
model comparison, model optimization, and the establishing of guidelines for the deployment of
ML in the chemistry domain. Even sophisticated ML models that are trained on very large datasets
can easily fail when used without careful consideration of their limitations and such limitations need
to be reported so that potential users are aware of them (see Outstanding Questions). The
discussed metrics can serve this purpose by illuminating different aspects of the performance
of ML models, thus insuring that ML is in a position to advance chemical and materials domain
knowledge. The issue of metrics is crucial to further democratize the use of ML in the chemistry
community, to promote best practices, to contextualize prediction results and methodological
developments, and, more broadly, to instill the scientific outputs derived from ML work with
trust, legitimacy, and transparency.

Supporting Material
Metrics for Regression Tasks

ei ¼ yi;true−yi;pred ½SI1�

ri ¼
yi;true−yi;pred

yi;true
½SI2�

y ¼ 1
n

Xn
i¼1

yi ½SI3�

MAE ¼ 1
n
∑ni¼1 eij j ½SI4�

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑ni¼1 eij j2

r
½SI5�
Trends in Chemistry, February 2021, Vol. 3, No. 2 153



Trends in Chemistry
MAPE ¼ 1
n
∑ni¼1 rij j∙100% ½SI6�

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑ni¼1 rij j2

r
∙100% ½SI7�

ME ¼ 1
n
∑ni¼1ei ½SI8�

MPE ¼ 1
n
∑ni¼1ri∙100% ½SI9�

MaxAE ¼ max eif g; i ¼ 1;…; n ½SI10�

MaxAPE ¼ max rij j∙100%f g; i ¼ 1;…; n ½SI11�

ΔMaxE ¼ max eif g− min eif g; i ¼ 1;…; n ½SI12�

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑ni¼1 yi−yð Þ2

r
½SI13�

R2 ¼ 1−∑ni¼1
eij j2

yi;true−y
�� ��2 ½SI14�

R2
adj ¼ 1−

n−1ð Þ
n−m−1ð Þ ∑

n
i¼1

eij j2
yi;true−y
�� ��2 ½SI15�

Metrics for Classification Tasks

Acc ¼ TP þ TN
TP þ FP þ FN þ TN

½SI16�

Prec ¼ TP
TP þ FP

½SI17�

Rec ¼ TPR ¼ TP
TP þ FN

½SI18�

F1 ¼ 2
Prec∙Rec
Precþ Rec

½SI19�

F1β ¼ 1þ βð Þ Prec∙Rec

β2Precþ Rec
½SI20�

L ¼ − logP yi;truejyi;pred
� � ¼ − yi;true log yi;pred

� �þ 1−yi;true
� �

log 1−yi;pred
� �� � ½SI21�

FPR ¼ FP
FP þ TN

½SI22�
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T ¼ w
uþ v−w

½SI23�

where: Acc = accuracy; Prec = precision; Rec = recall; n = total number of data points; m = total
number of features; u = total number of features in 1st molecule; v = total number of features in 2nd

molecule; and w = number of common features between the two molecules.
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