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Abstract

Quantum chemistry must evolve if it wants to fully leverage the benefits of the inter-

net age, where the worldwide web offers a vast tapestry of tools that enable users

to communicate and interact with complex data at the speed and convenience of a

button press. The Open Chemistry project has developed an open-source framework

that offers an end-to-end solution for producing, sharing, and visualizing quantum

chemical data interactively on the web using an array of modern tools and

approaches. These tools build on some of the best open-source community projects

such as Jupyter for interactive online notebooks, coupled with 3D accelerated visual-

ization, state-of-the-art computational chemistry codes including NWChem and Psi4,

and emerging machine learning and data mining tools such as ChemML and ANI.

They offer flexible formats to import and export data, along with approaches to

compare computational and experimental data.
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1 | INTRODUCTION

We live in a golden age where data can be transmitted at light speed to almost anywhere on the planet. Yet modern scientific publishing, and

indeed much of the research process, languishes in a time where printing presses rule. It is long past time that these processes and publication

practices were modernized—there is no need to primarily rely on PDF tables and static images in an age where advanced JavaScript applications

Referee reports and author responses are made public under through the “Peer-Review Details” section.

Received: 8 April 2020 Revised: 19 August 2020 Accepted: 3 September 2020

DOI: 10.1002/qua.26472

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. International Journal of Quantum Chemistry published by Wiley Periodicals LLC.

Int J Quantum Chem. 2020;e26472. http://q-chem.org 1 of 20

https://doi.org/10.1002/qua.26472

https://orcid.org/0000-0002-5851-5272
https://orcid.org/0000-0002-1113-3728
https://orcid.org/0000-0001-8965-7495
https://orcid.org/0000-0002-3779-2246
https://orcid.org/0000-0002-0977-8439
https://orcid.org/0000-0003-2254-1345
https://orcid.org/0000-0003-4501-4118
https://orcid.org/0000-0002-7114-8315
mailto:mhanwell@bnl.gov
http://creativecommons.org/licenses/by/4.0/
http://q-chem.org
https://doi.org/10.1002/qua.26472
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fqua.26472&domain=pdf&date_stamp=2020-09-17


can run on cell phone browsers using hardware-accelerated rendering in 2D and 3D and where augmented and virtual reality is emerging as a

powerful, immersive alternative to more traditional approaches.

It is time for a paradigm shift that embraces fully digital workflows where all steps of research projects are documented, one in which modern

tools can be used to “show all steps of our research process.” To that end, the authors of this paper have been developing an ambitious open-

source platform to realize the dream of open science in a fully connected digital age. PDFs and flat images are relics of the past, attempts to map

the limitations of the printing press to the digital world. It is time to push the scientific research enterprise forward and drive innovation in soft-

ware to a point where interactive data outputs can be published for the whole world to see. We must look at the technologies available in modern

web browsers to offer seamless publication of data, code, and written results by leveraging the best open-source software, extending this soft-

ware where necessary to offer specialized views, entry points, and direct access to raw, partly processed data, to tools that extract the key infor-

mation from the data, and even notes, linked from figures in published works.

The modern scientific workflow takes place increasingly on a computer, or distributed set of computers/nodes/images. This needs to be

reflected in, and embraced throughout, the dissemination of research. Computational chemistry by its very nature is a prime example of this, and

we have the tools to document all steps in producing, processing/analyzing data, visualizing data, and linking that with the final publication. More

and more research is multidisciplinary in nature, with experimentalists, theoreticians, and computational scientists working closely together in

their pursuit of scientific discoveries that advance society. Integration of diverse data resources and analysis tools into complex research

workflows can be made much more accessible with modern technologies. In this paper, we will discuss our approach to the handling of data and

metadata, storing them on a flexible data server platform, representing rich data that can be exported and integrating computational chemistry

data generators (quantum chemistry and machine learning codes) with experimental data and approaches to generate and access the data through

the web using browser-based and desktop-based tools.

The project described has been developed in the open on GitHub using Open Source Initiative (OSI) approved open source licenses,[1] pri-

marily the three-clause Berkeley Software Distribution (BSD) license.[2] Issues were used to track new features to be developed and bugs in exis-

ting functionality. Pull requests offer a number of commits in a logical branch to add new features of fixing bugs; where possible, these feature

automated testing and line-by-line review of code additions/removals using the web interface. Focused software repositories were used for

each component, such as the server code in Python,[3] the web client code in JavaScript/TypeScript, and the deployment code/image build

instructions. A coordinating repository was also used to discuss high-level development of the platform within the “OpenChemistry”[4] organiza-

tion on GitHub.

The GitHub platform offers access control for registered users, including individual and team-level access control. Integrations with a number

of other platforms create a rich ecosystem where continuous integration jobs can be run for pull requests, when the main development branches

are merged and when release tags are created. Commits and release tags can be cryptographically signed, and releases offer snapshots of the soft-

ware at a particular point in time. Pull requests can be made by anyone, code can be reviewed by anyone, but only approved developers can

merge code to the main development branches. This offers a level of transparency and accessibility that is often the norm in open-source soft-

ware development but is not so common when developing code for scientific research. All code developed, along with all previous versions of the

code, remain available using these standard technologies and platforms. More recently, this has been used to document the data/metadata for-

mats, the build process for images, and the deployment of services.

2 | HANDLING DATA AND METADATA

If things work well, the data and metadata standards used will rarely be seen by end users, but they will enable the storage of data within server

instances and the seamless transfer of data into or out of these systems. Flexible standards must have formats that can be used from a number of

programming languages ranging from compiled languages such as C, C++, and Fortran on supercomputers/high-performance computing resources

to perform quantum chemistry calculations to interpreted languages such as Python for data analysis and JavaScript/TypeScript in web frontends

or C/C++ in desktop applications. They should also be suited to the needs of persistent data publication independent of any particular database

technology or programming language.

These considerations led to the choice to using JavaScript Object Notation (JSON)[5] as a core standard for data and metadata, with a view of

using related technologies such as JSON-LD (JSON for Linked Data)[6] where appropriate. Large data are preferably stored in binary formats,

which is where HDF5[7] was seen as one strong contender, and more recently, MessagePack[8] has gained traction due to its JSON-like structure

and wide language support thanks to its simple binary specification. JSON also lends itself for use in BSON[9] and jsonb[10]two binary JSON speci-

fications used in MongoDB[11] and PostgresSQL,[12] respectively.

In order to effectively share chemical data, we must establish data and metadata standards capable of representing everything we wish to

communicate. Furthermore, it must offer routes to extending the standards without causing breakage and churn in existing data. Ideally, commu-

nities should form to establish best practices and propagate this to a number of codes to prove viability and offer a body of work that demon-

strates the advantages of the approaches shown. Several existing formats have been used, such as XYZ,[13] SDF, XML-based formats such as
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CML,[14–17] and—more recently—JSON-based formats such as Chemical JSON.[18] Open Babel,[19] RDKit,[20] cclib[21], and ASE[22] offer conversion

between these and many other formats, aiding in the normalization of data from different sources when ingesting data.

The JSON specification was chosen for its wide language support, with fast simple parsers available in every language considered, including

those outlined previously: Python, C, C++, Fortran, JavaScript, and TypeScript. It is not a part of the core language, but it has become established

as a simple container format that can easily map to data structures in all of these languages, for example, Python dictionaries, C++ maps, and—

with a little work—the array and some shape information easily maps to NumPy arrays[23] in Python or one of a number of structures in C++ such

as the Eigen[24] matrix structures or Vector3 for position information. The text format is easy to inspect for casual users, and there are clear routes

to migrate to very similar binary containers in the future as outlined earlier. Due to the simplicity of the container format, fast parsers can be used,

and the loss of precision is of a secondary concern for visualization. It will, of course, be very important if exchanging data between quantum

chemistry codes and would warrant further consideration there.

The block below shows the Chemical JSON[25] representation of a water molecule. It contains a unique key of “chemicalJson” that can be

used to identify the convention being used, along with a numeric version identifier of “1.” The first iteration used “chemical json” with a version of

“0” before the decision was taken to switch to camelCase to simplify client code. The “atoms” object contains “elements” identifying the atoms by

their atomic number. The “coords” object contains a “3d” array that has 3N numbers representing the Cartesian coordinates in Angstroms. There

is also a “bonds” object containing connectivity of atoms (using a zero-based index) and the bond orders.

The equivalent molecule can be seen using the QC JSON Schema,[26] where the molecule geometry is expressed in Bohr, and the atom type

uses the string symbols rather than atomic numbers. The QC JSON Schema is at an earlier stage of development, with some pull requests under

review adding support for bonding, basis sets, and more. It also has a fairly comprehensive set of possibly calculated properties expressing the

numeric results of calculations such as the energy, number of iterations, etc. The authors have been collaborating with MolSSI developers to

develop the QC JSON Schema and help drive its standardization in the hopes of wider adoption in the community. Recent work has added sup-

port for basis sets into the standard.

The Chemical JSON schema has been in development and use since 2011, focusing on the needs of the Avogadro chemical editor[27] and the

associated Open Chemistry open-source projects. It has, as such, been developed to enable the visualization and analysis of chemical systems,

supporting elements such as the basis set, molecular orbitals, and other electronic structure calculation outputs of the system to offer a flexible format.

This has been extended[18] to support, for example, multiple steps in a reaction coordinate calculation (one basis set, multiple 3D geometries, and

molecular orbital matrices). There is also support for vibrational modes and 3D cubes representing calculated molecular orbitals. An extended example

for water, available in the Chemical JSON repository, shows a basis set, molecular orbitals, and related data from a Psi4[28] energy calculation.
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The layout is designed to be compact and follow the convention of using linear arrays, where feasible, to store sets of values. It also continues

the index-based extension of atom properties with the . Chemical JSON is not meant to be used directly but read into an

appropriate data structure in the programming language of choice; this means that simple index-based look ups can be performed, but it may not

be as human-readable as desired. It will map to more efficient use of binary analogs such as BSON, jsonb, and MessagePack and slightly less anal-

ogous HDF5 storage formats. The project has validated the approach and uses this format in C++, Python, and JavaScript using in-memory repre-

sentations, translation to other tools, and storage in MongoDB on the data server.

The data standards developed for the platform reuse community best practices, such as the work carried out when developing the IUPAC

International Chemical Identifier,[29] InChI key (a hashing standard built on InChI), and Simplified Molecular-Input Line-Entry System (SMILES).[30]

These standards provide simplified, unambiguous string representations of chemical structures (describing both elemental makeup and connectiv-

ity) that can be used as common identifiers. Generating these and augmenting other data enable simple linking of data to existing databases such

as PubChem,[31] ChemSpider,[32] Wikipedia, and more.

The Chemical JSON format forms the core of the data model in the platform described. It has an informal standardization process that would

benefit from more discipline in the future. The development team worked with MolSSI from an early point in their founding to encourage the

standardization of a flexible JSON-based format and has actively participated in discussions. The Chemical JSON format is a useful internal repre-

sentation, the documentation of which should be improved, but the ultimate goal is to offer seamless export to other formats such as those

supported by current libraries in existing formats and new ones such as QCSchema. It is clear that, for large data, binary formats will be essential,

and a number of them can be mapped from JSON, such as MessagePack and HDF5, as they offer a familiar container structure.

3 | FLEXIBLE DATA SERVER PLATFORM

At the core of the project sits a RESTful data server, with a well-defined set of programming language-agnostic interfaces. These endpoints take

the form of web URLs using the HTTP protocol underpinning the web. Simple queries are encoded in the address, with responses often returned

as JSON. The approach is standardized and widely used, with software that can automatically generate documentation of the interfaces. The data

server provides persistence of data, metadata, and workflow execution to clients, such as the Jupyter notebooks,[33,34] desktop tools, command

line clients, and other consumers of the platform.

The Girder project[35] was used as the central component because it already offered a large amount of the more general functionality, such as

user authentication, file/directory storage, upload, download, and access control. It also offers a structured way to augment its functionality using

plugins developed in Python. An early version of the data server was described in a previous publication along with the Python plugins devel-

oped.[18] This has since evolved into a more ambitious project, but the data server concept described there is still at the core of the design. Exis-

ting capabilities in the framework, such as authentication, access control, computational job control, and integration with high-performance

computing (HPC) queuing systems, offered clear advantages in this project.

The data server provides the central point of integration; it is data-centric and avoids direct generation of any HTML/visualization on the

server. The RESTful application programming interfaces (APIs) are consumed by different clients, principally the single-page web application,

JupyterLab[36] web widgets, and Python-based Jupyter kernels. The RESTful APIs are completely programming language-agnostic and can be con-

sumed by others in the community either directly or by adapting reference examples developed as part of the project. We have developed a

Python command-line client, Jupyter Python kernel extension, web widgets, and an Avogadro plugin to search and display data from the server.

The server platform forms the central component of the open software platform, providing persistence, authentication, metadata generation, coor-

dination with microservices, and generation of new data. It has been developed to use a plugin to extend the server component with specific functional-

ity, and critical services have been moved into specialized microservices such as an Open Babel microservice for file translation, 3D coordinate

generation, chemical utility functions, and an Avogadro microservice offering some file services and molecular orbital cube generation. They provide ref-

erence interfaces that can be improved or replaced as the need arises in future projects. In addition, the use of microservices enables the decoupling of

services so that more compute-intensive tasks can be scaled separately, for example, 3D coordinate generation or cube generation (Figure 1).

The high-level software architecture was developed to enable researchers to pick and choose the most appropriate components or to use the

entire platform as a turnkey solution. The complete solution requires administrative privileges in order to run JupyterHub, but it can be run in a

cutdown form where the Jupyter/JupyterHub integration is disabled, but prompts are offered so that users can run their own Jupyter notebook

and connect to the data server. This works for most things but removes the ability to store notebooks and to link from calculations to the note-

books that generated them.

As the project has evolved, it has become clear that, while a complete solution provides a broader overview of the data generation, analysis,

and publication process, it can be too onerous. It may also be preferable to export as much of the process as possible to services that are able to

provide greater guarantees of longevity, that is, months, years, decades, centuries depending upon need. This led to adapting the project to serve

in different roles where active data generation benefits greatly from a running data server. While it may not be feasible to keep a project server

up and running once projects are complete, there are a number of community services that can be employed to store static assets that clearly doc-

ument the path from data generation to final figures such as Zenodo,[37] Binder[38] coupled with GitHub,[39] and Figshare.[40] To this end, the data
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and metadata standards enable the export of individual calculations, and the notebooks can be archived. The Binder export discussed later shows

one example of moving to a static repository containing data and a notebook; the process is currently manual, and we are working on improved

automation (Figure 2).

The bulk of the code for the extensions developed for the Girder server are in the server repository,[41] with deployment code in a separate deploy-

ment repository.[42] They define the chemistry-specific endpoints and hook into the documentation capabilities provided by Girder and use MongoDB

to persist data/metadata. Much more time could be spent on other aspects of the project by using a framework developed for scientific data, which also

reuses many open-source projects to provide the RESTful server, database access, schema validation, etc. Figure 2 shows the containers that make up

the platform, as deployed using Ansible, with the “girder” container hosting the data server and providing integration of other components.

F IGURE 1 Overview of the platform's architecture, with the data server platform providing core services

F IGURE 2 The containers for the complete platform; the “girder” container is the data server
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The code snippet above is taken from “girder/molecules/molecules/molecule.py” in the server repository and shows an abbreviated version

of the Molecule endpoint. The server can be extended with new endpoints such as this, where routes are added, and the capabilities of the under-

lying model can be exposed. Decorators define the access level required, for example, “public” in this case for unauthenticated access or “user” to

indicate that a user must be logged in. The model interacts with the database to find, update, delete, and amend records, providing an object-

relational mapping (ORM) to map from the RESTful API to the underlying data representation.
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A truncated example of the corresponding model is shown above. The function is quite complex, supporting multiple fields,

pagination, etc. These are necessary to support larger result sets where returning all results would take too much space and would not be desir-

able. It enables clients to display pages and request offsets into the results returned by a search query. The is one of the sim-

plest functions where a query is created, and the query is executed with the result returned directly. There is much freedom within the model to

add chemistry-specific logic or perform very simple database queries depending on the need. This also introduces a separation of concerns where

the model code interacts with the database, whereas the endpoint code deals with issuing the correct response, documenting endpoints, and dis-

patching to the appropriate parts of the data model.

Having an open-source data server not only offers useful capabilities now, but through the use of Python and by documenting the code using

modern approaches, it offers a starting point for future projects that want to extend an already capable data server. The use of microservices

works towards making this even easier by providing containers that perform specific tasks that could be reused within other platforms or where

their capabilities can be extended and improved within this platform without the need to work within the data server itself. Both microservices

were migrated from the server component to simplify the data server and offer greater modularity. The Open Babel and Avogadro microservices

were able to separate out longer running tasks from the data server thread, ensuring that that the data server is less likely to stall, and the micro-

services can be scaled more easily.

4 | CONTAINERS FOR CHEMISTRY CODES

The use of software containers has revolutionized how services are deployed on the internet, and science is beginning to reap some of these

rewards. At their core, containers such as Docker,[43] Singularity,[44] and Shifter[45] are self-contained Linux-based binary environments that con-

tain everything from Linux system calls to the full call stack of software libraries. This enables the development of a complete build environment

from a known base image to packages that should be installed and software repositories to clone, build, and install.

The software images have an entry point that can be called from the host operating system and a flexible set of capabilities to mount file sys-

tems, get data in and out, etc. The use of a Dockerfile enables a full description of the base image, build steps, and configuration. The binary

images can be uploaded to DockerHub and similar services and downloaded using standard tools developed by the community. The container

specification developed for the project offers a standard method of invoking a code, with input directives delivered in a simple JSON format,

geometry using Chemical JSON input, and output translated to a simple JSON output format or Chemical JSON. All relevant files are in the

“docker” folder in the deployment repository,[42] with a folder for each of the containers.

Docker was the first widely adopted container standard, and it acts as a base for the images used in this project. It provides network isolation,

which is not necessary for most computational chemistry tasks or HPC tasks in general. The Singularity project was founded to address this issue,

concentrating more on the execution of binary programs without the need for privileged system access that is often not available on HPC clus-

ters/supercomputers. Shifter offers a solution developed at NERSC for executing containers within their supercomputing environment. If Singu-

larity was available on all environments, that would probably be the only container format used, but at the present time, this is not the case, and

so, multiple container types are supported depending upon deployment requirements. The Docker images are used to generate the Singularity

and Shifter containers so that it is only necessary to maintain a single image for each code.

The containers developed to support the project go beyond providing a useful delivery mechanism for executable code. They reduce the bar-

riers to collaboration and enable binary containers to be used as reference implementations that can easily move between host systems. Private

container registries can host images containing proprietary software, and automated builds can enable sharing codes that have complex depen-

dencies with build systems that can hamper seamless testing of changes. As supercomputers, HPC, and cloud environments evolve, the utility of

containers will only make these advantages clearer to the wider community.

4.1 | Quantum chemistry codes

Thanks to the container infrastructure described above, it is easy to extend the platform to perform calculations using new computational chemis-

try packages. Assuming the general flow follows that of an existing code, the Dockerfile and Python driver can be used as a starting basis. If the

code is packaged using a Linux distribution or a Python packaging repository, they can simply be installed as part of the image build process. The

Python driver script provides a basis for adapting input data and directives to input files for the code and translating output data to a suitable form

that can be consumed by the platform. Once these pieces have been implemented, the container can be tested on the command line before

attempting to use it on the server side.

The NWChem[46] and Psi4[28] packages were used as our first computational chemistry codes due to their popularity, open-source licensing,

and the fact that they offer similar features at a high level with very different implementations. These images serve as an example for others inter-

ested in adding new codes to the platform. The NWChem and Psi4 images support a similar set of features:
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• Single-point energy, geometry optimization, and frequency calculations

• Basis set selection

• Theory-level (Hartree Fock, DFT, MP2) and exchange-correlation functional selection

• Charge and multiplicity

This only represents a select subset of what these quantum chemistry codes are capable of. The features exposed by the images will be

extended in the future, prioritizing things that are relevant to the needs of our platform's users. The input mechanism through the notebooks and

API accepts arguments that are passed through to the driver script, making it easy to add custom arguments to new containers. Container names

consist of an organization, name, and version currently pulled from DockerHub, making it easy to add custom versions and fetch them.

The Psi4 container is one of the simplest; it uses the Python 3 Conda-based image as a base and then installs Psi4 from the Conda package

provided by the Psi4 project. The Python driver script is then set as the entry point and acts as the gatekeeper for getting data into and out of the

container. When new releases are made, updated images can be made. The NWChem container is a little more complex as it clones the git reposi-

tory of a fork of the NWChem codebase that supports JSON output; it then uses Avogadro to translate that output to Chemical JSON. An exam-

ple of running one of the containers is shown below.

The JSON used as input follows a simple format that is translated by the driver script into the appropriate input parameters. One of the sim-

plest examples is shown below, which can be used with an input geometry to drive the container on the command line for testing purposes

(or even use within other platforms).

These input parameters have been added to the output Chemical JSON in order to make it easier to see what calculation parameters were

used. The keys are common across the codes already present, but it is up to the driver script to decide how to interpret them. The “psi4” in the

image name can be substituted with “nwchem,” keeping all other arguments/JSON input the same, and an NWChem calculation will be executed.

Existing containers aim for consistency, but casting an eye to the future, the platform will support the development of new methods or the exten-

sion of existing containers beyond their current capabilities.

4.2 | Machine learning

From the point of view of the platform, there is no difference between running a quantum chemistry or a machine learning code. They both take

as input a molecule and some parameters and return a conforming output. The main difference is that machine learning codes may not require
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the existence of a 3D structure and can still operate when only string-based formats, such as InChI or SMILES, are available. The server was

extended to support the addition of molecules that have no 3D structure so that machine learning can be used more effectively within the plat-

form as 3D coordinate generation can be quite expensive when considering high-throughput models.

If many small calculations (especially machine learning calculations on line format structures) are to be performed on a large set of molecules,

it can be very inefficient to have a task monitor and a Docker container for each individual calculation. For this reason, the user is able to submit a

batch of calculations as a single task. In this task, there is only one task monitor and one Docker container used, and the Docker container is given

the freedom to choose how to run the calculations (one at a time, one per core, etc.). In addition, each calculation is checked to see if it has been

performed before. If so, it will skip that calculation and use the output already present in the database.

Images were developed for ChemML[47,48] and ANI.[49] These represent two very different classes of machine learning models. The illus-

trated model developed by the ChemML package takes in a SMILES string and predicts corresponding properties that are output as key-value

pairs. ANI behaves more like a typical quantum chemistry code that takes in the 3D chemical structure; can perform an energy calculation, geom-

etry optimization, or frequency calculation; and outputs (potentially updated) a 3D chemical structure. It does not require as much input as is

typical for other codes, and it does not output electronic structure. Both required further generalization of our treatment of tasks, in order to

adapt to their unique requirements, and added examples of quite distinct types of the model, paving the way to easily add more using similar

patterns.

ChemML is a general-purpose machine learning package developed in Python for the analysis and modeling of chemical and materials data.

Although ChemML provides essential tools to develop and train machine learning models in general, we aim to deploy trained models and

broaden their utilization in the chemistry community. Our long-term goal is to compile a collection of predictive models for certain properties that

can be used as alternatives to corresponding physics-based modeling or simulation approaches. To start, we developed a deep learning model for

prediction of the refractive index values of organic compounds and made it available as a Docker container.

The model takes as input the SMILES string of an organic molecule and returns as output a few quantities of interest on which the model has

been trained. The predictions are available almost instantaneously (unlike a physics-based model via the Lorentz-Lorenz equation parametrized by

inputs from quantum chemistry and molecular dynamics calculations). The results of the model are comparable with those of other data-derived

prediction models in terms of diversity of molecular candidates and the accuracy of predictions. The current implementation enables the user to

retrain each model for a better or more generalized prediction power. Moreover, a trained model can leverage other relevant ML models through

the concept of transfer learning design methodologies. Our near-term plans for future development include the addition of models trained on

other datasets and for other material properties.

The ANI image used the PyTorch[50] implementation of the ANI potentials—TorchANI.[51] We make use of the algorithms in atomic simulation

environment (ASE) to drive tasks such as geometry optimization and normal mode calculations. The TorchANI image features the ani-1x and ani-

1ccx optimized potentials that can be used to generate single-point energies, perform geometry optimizations, and compute Hessians for fre-

quency calculations. This makes the ANI image look quite similar to the quantum chemistry codes, but no basis set selection is necessary, and

there is only support for a limited set of chemical elements.

For the elements that are supported, ANI offers superior performance to geometry optimizations performed using conventional quantum

chemistry codes, often trained on a higher level of theory than would typically be used. It also offers performance comparable with molecular

mechanics codes without the need for atom typing and other parameterizations. This often makes a geometry optimization desirable before using

other codes assuming the chemical structure only uses the elemental set supported. It is also possible to use other techniques and compare the

output in order to validate its use for particular chemical systems.

5 | GENERATING AND ACCESSING DATA ON THE WEB

One of the primary goals of this project is to make computational chemistry tools more accessible and to enhance their use within a collabora-

tive online environment where data can be generated within the web browser. This does not preclude the use of existing tools, but it

provides an alternative way of accessing tools that have seen significant investment using one of the most pervasive mediums in the modern

world. The use of web-based tools makes the platform accessible on low-powered phones to the most powerful desktop workstations.

The platform itself can provide access to calculations already run almost instantaneously while enabling authenticated users to generate

new data.

The previous section describes the nongraphical server-side capabilities developed for the software platform. These are necessary tools, but

they do not offer an approachable user interface for generating, interacting with, analyzing, and visualizing data. This section discusses a number

of capabilities developed to offer web-based interfaces to look at data, search it, and categorize it, and in many cases, these components can be

used independent of the complete platform. The high-level web technologies used include JavaScript and TypeScript for code development,

WebGL for 3D visualization, and React as a framework for exposing elements in web applications.
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5.1 | Web widgets

A set of reusable widgets have been developed that can be embedded in any web environment, from a React-,[52] Angular-,[53] or Vue[54]-based

single-page web application to a JupyterLab extension or a static HTML page. They were developed in the TypeScript language using the Stencil

library.[55] Once they have been transpiled into JavaScript, they become standard web components that can be used just like any other HTML tag,

such as a or a .

The core widgets are exposed using the and tags. The widgets have a common inter-

face and can be used interchangeably. They take Chemical JSON as input, and a set of parameters can be used to tweak the visualization (such as

the isosurface value, the active normal mode, or the molecule representation type). They render a three-dimensional representation of the mole-

cule that the user can interact with using the mouse or touch-based interaction, such as the 3Dmol.js-based widget shown in Figure 3. The differ-

ence between them is that uses 3Dmol.js[56] to render the 3D scene, while uses

vtk.js.[57]

The major features of the widgets are the display of the molecular structure and connectivity, animation of normal modes, and the display of

isosurface data from a cube of data (typically molecular orbital data from a quantum chemical calculation). The vtk.js-based widget can display the

crystal unit cell and offers volume rendering of cube data, shown in Figure 4, in addition to isosurface rendering.

The tag wraps the core and and adds a menu so that the user

can easily change the visualization parameters. The menu (click on the three dots in the right top corner of the figure) offers:

• Structure representation (ball and stick, Van der Waals. or custom)

• Selection of the rendering library to use (3Dmol.js or vtk.js)

• Selection of the active normal mode for vibrational mode visualization

• Selection of the isosurface value for molecular orbital visualization

• Selection of the color map used by the volume renderer

• Modification of the opacity function used by the volume renderer

F IGURE 4 An interactively rendered benzene molecule saved in a Chemical JSON file with a
molecular orbital rendered using the vtk.js-based backend. JSON, JavaScript Object Notation

F IGURE 3 An interactively rendered caffeine molecule saved in a Chemical JSON file with a
molecular orbital rendered using the 3Dmol.js-based backend. JSON, JavaScript Object Notation
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5.2 | Jupyter extensions

JupyterLab is the new web frontend for the Jupyter project. It can be extended using a mime renderer extension; this has been used to serve two

purposes: displaying interactive visualizations of molecules in the output of a notebook cell and monitoring computational jobs being executed

through the platform. The decision was taken at an early point in the project to support JupyterLab extensions exclusively, although it would cer-

tainly be possible to add support for the older Jupyter web frontend if there was a big call for it.

The visualization of the molecular structure (see Figures 3 and 4) is accomplished by using the component described ear-

lier. The widget is displayed when the user opens a file in JupyterLab or when selecting the result of a calculation as the output of a note-

book cell. Because of some utility functions in the Python package, the molecular visualization can be used for arbitrary

Avogadro molecule objects. So, no matter the provenance of the molecular structure, if the user is able to convert it into an Avogadro molecule,

they will be able to take advantage of this JupyterLab extension to obtain interactive 3D visualizations in the notebook.

A JupyterLab notebook is the preferred environment to dispatch and analyze calculations performed through the platform. For this reason,

part of the extension offers a widget to monitor running jobs. The monitor widget (see Figure 5) displays a table with a row per job and informa-

tion such as the Docker image running the job, the version, and the current status. If a job is selected, it is possible to see log messages and error

messages in real time. The job-monitoring widget will also instruct the user to execute the cell again to see the result once the job has completed,

or it will display a failure condition if things did not go as planned.

In addition to the JupyterLab web extensions described, an openchemistry Python package was developed to extend the Jupyter kernel run-

ning on the server. It uses the same RESTful API endpoints that were described in the previous section to query the data server, initiate new cal-

culations, and monitor progress. The module also has the utility functions described so that it can work independently using local data or can take

environment variables to run the notebook kernel locally and communicate with a remote data server. This results in a flexible deployment strat-

egy where a fully integrated server can invoke a notebook with all the right environment variables set up, a local (or centralized) notebook server

can be invoked with the right environment variables set, or a static notebook/local notebook can avoid using the data server and refer to local

data files.

The execution of notebooks and the execution of containers are two of the most demanding aspects of the project in terms of infrastructure

and computational resources required. They can both be disabled, resulting in a data server that offers data query, retrieval, and visualization

capabilities. They both allow a great deal of freedom to execute code on a shared resource and so must be considered carefully in terms of offer-

ing access due to the security considerations and resource constraints.

There is a balance to strike between what is executed in the notebook's kernel, what is executed by the data server (including its micro-

services), and what is sent to the queuing system for batch execution. Some things may be duplicated, but we have tried to create a balance based

F IGURE 5 A walk-through of the Open Chemistry Jupyter interface generating data through remote calculation with job monitoring and
visualizing it. Video also available at https://youtu.be/7otfejlAoqg
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on the task. When things are executed in the Python kernel they tend to be relatively short-lived tasks, or calls to the data server. The data server

is able to cache results so that they can be retrieved in other notebooks, over the web interface, or using other methods without executing each

time, such as 3D coordinate generation using Open Babel or molecular orbital calculation. Longer-lived geometry optimizations, executing quan-

tum codes, and running machine learning kernels are usually performed using the queuing system so that they can use HPC resources and images.

5.3 | Export to binder

The Binder project has led to the development of reproducible Jupyter notebooks that can be executed, changed, and examined for free on the

web. A GitHub repository can be used to specify the environment used, including what Python modules are needed for the Jupyter kernel and

what extensions should be installed for JupyterLab before the notebook opens in the browser. A Docker container is generated on the fly in

response to the specification in the repository, and once ready, the repository is mounted inside the container and the notebook opened.

This is clearly a powerful tool that is ready for use by the wider community and offers a path to providing full access to the data and note-

books for anyone without the need to create accounts. The Python module that had been developed to extend the Jupyter kernel was extended

to support execution without a data server and packaged using pip so that it could be installed via the mechanism offered by the Binder project.

A blog post was written in December, 2018, describing the approach[58] and showing the Binder repository with example links to data for calcula-

tions[59] (Figure 6).

5.4 | HTML5 web application

The main entry point to the platform is a state-of-the-art web application developed. It offers a landing page, with anonymous access to public

data; authentication; and access to notebooks, molecules, calculations, and profile services once authenticated. Both the AWS instance using

Google's OAuth provider and the NERSC instance integrate with their authentication provider, negating the need to create new accounts. The

profile page can be used to associate Twitter and/or ORCID identifiers with an account and to access a summary of the notebooks, molecules,

and calculations authored/initiated by the account's owner.

F IGURE 6 The JupyterLab extension allows the visualization of molecular structures in a notebook, with Binder used here to offer a static
repository to offer a more interactive exploration of data
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Basic search is offered to filter structures and calculations based on the molecule name, InChI, or SMILES. Internal navigation is possible

through the cross linking of all calculations associated with a specific molecule and vice versa. In the detailed page of a structure or calculation,

there are links to download the data in various formats, such as Chemical JSON, XYZ, SDF, or the raw output of the simulation code.

The application is written using the React + Redux framework in a mixture of JavaScript and TypeScript. The server component is completely

decoupled from the application, and communication between the two only happens via the REST API. For the 3D visualization elements, we rely

on the reusable <oc-molecule/> component that was discussed earlier, with the same look and feel as in the Jupyter notebooks and the static

web page examples. They are coupled with the search, linking, and other facilities to provide an interactive view of the data present on the

instance being explored.

Figure 7 shows a demonstration of the main web application, demonstrating how anonymous users can access public data, and authenticated

users can do more once they supply their credentials. In both cases, it is possible to see the notebook that generated the data, but for anonymous

users, that is a read-only view, whereas authenticated users will be able to launch the notebook. The molecular data and calculation results can be

downloaded from the web application using buttons on the relevant pages, with permanent URLs identifying specific molecules, calculations, and

even the orbital/contour being visualized. These views of the data are designed to be simpler and more focused and use responsive elements so

that they can be viewed on mobile telephones up to full desktop systems.

5.5 | Extensions to Python and Avogadro

The server platform has an extensive RESTful API that is used by the web widgets, Jupyter components, and web application. These same inter-

faces have been reused in a Python client that can interact with the server using an API key, offering simple job monitoring, structure upload, etc.

This gives a simple path to upload a number of existing files from the command line in an automated fashion or to augment existing workflows

with upload to a data server in order to benefit from the capabilities provided by this platform.

The Avogadro application has made use of web databases for many years. These have been read-only and offered an intuitive way to search

and import existing structures. This includes searching the Protein Data Bank or the Cactus structure resolution services,[60] where users can sim-

ply type the name of a chemical to search for and retrieve a structure if found. These capabilities were very popular with users but offered no abil-

ity to share results or generate new data that were made available through a chemical data platform.

A plugin has been developed for the Avogadro application that can perform basic searches of the data available. Far more interesting is the

ability to use an API key for an authenticated user to upload chemical structures and request calculations. This makes a host of capabilities avail-

able to the desktop tool and readily enhances all data passing through the platform by adding additional metadata, search, and discoverability.

F IGURE 7 The main web application serving the platform showing access to molecule and calculation data generated by notebooks (with
links back to the notebooks). Video also available at https://youtu.be/5nUff6O_Gf0
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The Avogadro tool can be used to download a structure, or draw one freehand, with basic geometry optimization available locally using Open

Babel. The user can then upload the structure to the server, making it available on the web frontend, and they can request a calculation using the

plugin interface (Figure 8). The result can be downloaded and visualized when ready, or the user can share a link to the record created and share

it more widely on their local intranet or the wider internet if using a publicly hosted instance.

The plugin can switch between instances of the data server, with future enhancements planned to offer a selection of one or more servers,

and basic interaction capabilities. This could then search across accessible instances to find existing data and accelerate workflows by making data

more easily available. The addition of unique identifiers enables users to retrieve data based on an unambiguous identifier so that coordinates can

be edited efficiently, conformations examined, and more before uploading a performing calculation on the selected geometry. These can then be

linked to directly using identifiers or searched across sites using InChI, InChI key, SMILES, etc.

6 | INTEGRATION OF EXPERIMENTAL DATA

Over the last decade, the electronic structure community has refined its methods to make them more computationally efficient and accurate. As a

result, computational chemistry calculations are beginning to be on par with experimental results.[61,62] This revolution has opened the path for

experimentalists and theoreticians to integrate their data sources and establish more consistent experiments and theories. Providing a platform to

access scientific data from both worlds is therefore important and useful. Computational chemistry calculations can be used to examine a hypoth-

esis before carrying out the experiments, saving time and money, and they can serve to interpret the experimental observations. On the other

side, access to experimental results enables the improvement of theories and methods.[63]

The Open Chemistry platform allows the calculation of theoretical spectra using the provided quantum chemistry containers. For instance,

the prediction of theoretical infrared spectra (IR) can be routinely computed by quantum chemistry packages. Users can request the calculation of

a theoretical IR with a chosen level of theory and visualize it within the notebook. In addition, a keyword argument can be passed to overlap

experimental data queried from the NIST Chemistry WebBook database.[64] In Figure 9, we show a demonstrative example of an overlap between

theoretical and experimental IR within a Jupyter Notebook in Open Chemistry. When visually inspecting the spectra to carry out the vibrational

band assignment, we identify an intense IR active peak at about 750 cm−1, which corresponds to the characteristic absorption of C H bending in

aromatic compounds. A broad active IR peak is also present in the range of 2800 to 3200 cm−1, which corresponds to C H stretching. Finally,

the typical signals in the range 1500 to 1700 cm−1 are characteristic of the absorption of C C bending. Having the ability to create band assign-

ments together with experimental IR spectrum and theoretical animated vibrational modes is a feature that eases this task.

F IGURE 8 The Avogadro plugin showing basic search, along with a simple calculation dialog able to submit jobs to the server
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F IGURE 9 Overlap of experimental infrared spectrum of benzene over theoretical results

F IGURE 10 A batch of results may be obtained by running multiple calculations in one task, as is done here with ChemML. 3D coordinates
are not generated in this example
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7 | DATA ANALYTICS AND MINING

Coupling a data server to a computational notebook like Jupyter offers the possibility of performing analytics on the data generated and compiled

within the platform. The platform allows us to import classes of compound, run various tools in the batch queuing system, and parse out impor-

tant information from the outputs. Once a set of results is available, the notebook environment of the platform and its binding to ChemML allows

users to analyze and mine the data in its entirety, rather than only referring to individual results. This statistical workup allows for benchmarking

insights into the performance (accuracy and timing) of different simulation techniques, algorithms, and codes. More importantly, the datasets can

also be mined to generate data-derived machine learning prediction models that can serve as surrogates for the underlying physics-based models

as discussed above. The notebook platform also provides plotting functionality and access to other graphic representations. An example of this

strategy is shown in the Figure 10, where ChemML results for a list of SMILES are compared in a plot.

8 | REPRODUCIBILITY IN QUANTUM CHEMISTRY

Scientific teams and organizations should embrace reproducible workflows where all data can be exported, shared, and peer reviewed. For com-

putational chemistry, data should include the full flow of data from initial structures to final coordinates, energies, and software versions/binary

environments used. The Jupyter and JupyterLab projects have many of the components needed, such as an extensible programming interface,

visualization, and analysis of data in a common format, but it lacks specific workflows for quantum chemistry. This project adds those, and couples

notebooks with a data server, and uses an extensible data format definition for static export suitable for long-term archiving of results.

The target audience ranges from a quantum chemistry code developer publishing new methods, where this platform enables them to show

the input, execution, and output of a development snapshot, to end users running calculations on production code. The ability to specify the orga-

nization, container name, and version offers the ability to use known versions of codes and even rerun when fixes are made. It also enhances the

peer-review and publication process by offering a full record of what was done computationally, along with the results obtained and a recipe to

replicate. As a community, we must move toward the routine publication of all of these steps and consider data standards along with software

platforms to reduce the upfront costs of doing so.

The Space Telescope[65] selected Jupyter as the primary analysis platform for many of the same reasons it has been used in this project. Fields of

scientific research must converge on shared platforms where reproducibility is built in and share the cost of improving them, with customization for

each field where it makes sense. The platform described can interface with public databases such as PubChem and QCArchive[66] to import existing

data and produce new data with structures suitable for wider dissemination. The data and metadata standards discussed seek to embrace federated

storage of data, embracing the goals of FAIR data[67] to make all data produced more discoverable. The use of established open standards such as

InChI, InChI key, and SMILES link data produced in individual instances to the global data commons with minimal ambiguity.

One of the primary challenges in computational chemistry is to develop a software infrastructure capable of executing codes reproducibly

such that others can look at every aspect of what you did and build upon it. Even quite subtle details can hamper this, such as tolerances used in

convergence criterion or software library versions. The system described in this paper uses Docker, along with conversion to other software con-

tainers, to package a code along with all of its dependencies. The driver scripts within these containers use Python to drive the execution of the

code from JSON input and to convert the output. This is then layered within an execution framework, database, and user management/file man-

agement system. Together, they can be deployed from tagged container versions in order to reproducibly create the same environment.

All of this infrastructure is not without cost, and so, when considering the publication of data and its more permanent dissemination, it is

important to consider simpler approaches. This led to the development of integration with Binder and the use of static repositories with exported

data. The open specification of the formats and the open-source Python modules mean that anyone can access and process the data with a rather

minimal Jupyter deployment. Even without any of the software, the data specification coupled with input specification offers starting points to

manually run calculations with the Docker containers locally. Standalone web widgets enable viewing of processed molecular orbitals without any

processing component and could be extended further in the future to do more within the web browser's JavaScript environment.

9 | CONCLUSIONS AND OUTLOOK

The development of computational chemistry program packages, with its heavy reliance on legacy code, has so far rarely included the infrastruc-

ture to develop a data standard suitable for sharing data with the wider community, input specification, workflow transparency, and reproducibil-

ity, as well as analysis and visualization of the outputs. Such an infrastructure should generally be a shared resource, and one that is open, so that

it can live beyond a single project, company, or research group. It is necessary for the developers of the different parts of the solution to commu-

nicate more effectively and enhance the pathways for getting data in and out of each step. Ultimately, the entire workflow needs to use appropri-

ate data standards and feature validation/peer review to ensure that each code agrees on the form, units, and conventions used.
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In this paper, we have demonstrated the utility and potential of a web-based end-to-end software platform to enable automation, transpar-

ency, and data-centric research in quantum chemistry along these very lines. The software platform, data, and metadata described have been

developed, released, and disseminated under permissive OSI-approved open-source licenses. The embrace of open development practices allows

this work to be extended in future projects and use cases. The codes feature a modular design to optimize the ease with which its elements can

be reused. We have engaged the community—and will continue to do so—to help develop standards, workflows, and working solutions that show-

case what can be achieved by combining modern web browser and data server technology. This is at the core of the projects described and

underpins the necessary improvements to better disseminate research. The use of web standards and technologies makes the research more

accessible, moving beyond static images to interactive web visualization, web platforms, and snapshots of data that can be interactively queried,

built on community efforts such as Binder.

As a community, it is important to embrace open source, open data, open standards, and open access to reproducible research.
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