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Abstract— This contribution is concerned with the topic of
using simulation to understand the behavior of groups of mu-
tually interacting autonomous vehicles (AVs) or robots engaged
in traffic/maneuvers that involve coordinated operation. We
outline the structure of a multi-agent simulator called SYN-
CHRONO and provide results pertaining to its scalability and
ability to run real-time scenarios with humans in the loop. SYN-
CHRONO is a scalable multi-agent, high-fidelity environment
whose purpose is that of testing AV and robot control strategies.
Four main components make up the core of the simulation plat-
form: a physics-based dynamics engine that can simulate rigid
and compliant systems, fluid-solid interactions, and deformable
terrains; a module that provides sensing simulation; an agent-
to-agent communication server; dynamic virtual worlds, which
host the interacting agents operating in a coordinated scenario.
The platform provides a virtual proving ground that can be
used to answer questions such as “what will an AV do when
it skids on a patch of ice and moves one way while facing the
other way?”’; “is a new agent-control strategy robust enough
to handle unforeseen circumstances?’’; and “what is the effect
of a loss of communication between agents engaged in a coor-
dinated maneuver?”. Full videos based on work in the paper
are available at https://tinyurl.com/ChronoIR0S2020
and additional descriptions on the particular version of soft-
ware used is available at https://github.com/uwsbel/
publications—-data/tree/master/2020/IROS.

I. INTRODUCTION AND RELATED WORK

Given the recent surge of interest in autonomous vehicles
(AVs) and robotics, the tasks of testing and proving these
agents are both important and daunting. Sending out un-
proven agents in the real-world can lead to deaths, injury,
or destruction of property [1]. However, comprehensive
physical testing is an expensive and time consuming process.
Against this backdrop, being able to carry out testing of
agent-control strategies in simulation before moving to real
world testing is very desirable. SYNCHRONO is one of
several platforms that seek to address this issue, two promi-
nent examples being Carla and Gazebo [2], [3]. What sets
SYNCHRONO apart are its physics-based dynamics engine
and sensing simulation support. Specifically, it draws on a
multi-physics simulation engine with support for rigid and
flexible bodies, fluid-solid interaction, deformable terrains,
etc.; it is scalable via distributed-memory parallel computing
as enabled by the Message Passing Interface; it is faster
than real time for multi-agent scenarios; can tap into a
sensor simulation capability; and, it is open source. SYN-
CHRONO has a modular design built off the infrastructure
provided by the CHRONO open-source simulation platform
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[4], [5]. Specifically, it uses the CHRONO::Vehicle [6] and
CHRONO::Sensor modules, which provide the ability to test
scenarios that: are highly transient; include multiple agents
that share a dynamic environment; and could embed the hu-
man in the loop. The contribution is organized as follows. In
the remainder of this section we outline earlier contributions
in the field and comment on their scaling attributes. We then
present an overview of the technologies that come together
to make SYNCHRONO. Finally, we present two case studies
that analyze the scaling performance of SYNCHRONO in
representative scenarios.

A. Related Work

While there are several vehicle and robotics simulation
platforms, SYNCHRONO occupies a niche in terms of realis-
tic physics, scalability, sensing simulation, and the fact that
it is open-source. Carla and USARSim [7], compromise on
physics accuracy by using video game engines [8] to drive
their simulations. While this may certainly be a reasonable
and effective compromise for many scenarios of interest,
SYNCHRONO has focused on fidelity in physics, driven by
CHRONO:: Vehicle, allowing it to be applicable to scenarios
such as off-road mobility and limiting conditions where
accurate physics are crucial [9]. An additional compromise
in the simulation physics is found in the choices made by
swarm-simulation platforms such as Stage [10]. In order
to scale up to the massive amount of robots needed in
a swarm scenario, platforms tailored towards supporting
swarms often go the route of either 2D simulations, or 3D
simulations with very simple robotics that can be scaled up
to large numbers of agents. This is the case for the recently
detailed Titan simulation library, where the GPU was used to
simulate 100s of relatively simple soft robots [11]; Titan is
physics-based and scalable, but it compromises by focusing
in a relatively simple physics-subset. Finally, the simulation
platforms that do provide realistic physics simulation fail to
scale. In [12], it is shown that Gazebo displays quadratic
scalability beyond a handful of robots. Additionally, the
Gazebo-based simulator ParaGazebo showed good scaling
results in up to a point, after which the simulator slowed
down when the number of agents was increased as the cost
of spawning additional threads got very high. The authors of
ARGoS confirm this finding, stating that both Webots and
Gazebo fail to scale meaningfully beyond a small number of
robots [13]. ARGoS itself presents impressive scalability as
a simulation management framework (not physics engine). It
uses multiple threads to manage various simulation engines
in parallel, showing scaling of up to 10* swarm robots.
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Fig. 1. CHRONO:: Vehicle is used to create a vehicle model via subsystems
rather than requiring construction of each body and constraint.

II. SOLUTION OVERVIEW
A. Multi-physics support

The vast majority of the robot/autonomous vehicle simula-
tion platforms are built off video gaming environments, e.g.,
Unity, Unreal Engine, PhysX [14], [8], [15], thus empha-
sizing photorealism and benefiting from simplified creation
of virtual worlds. While eye-pleasing, these platforms rely
on simplified physics that can compromise the simulation-
to-real-world transferability of any candidate design.

For SYNCHRONO, accurately simulating the agent dynam-
ics represents a priority; i.e., capturing the effect of vehicle
suspension, the interaction between the tires and the road, or
tracks and deformable terrain, etc. The dynamics simulation
engine builds on the CHRONO infrastructure, particularly
on the CHRONO::Vehicle submodule, to accurately simulate
agent dynamics and vehicle-ground interaction [6]. CHRONO
allows the user to construct vehicle models from subsystem
templates such as suspension type, tire model, drive line,
power train and steering mechanism. An illustration of a
vehicle generated with these subsystems is shown in Fig. 1.

The simulation platform captures the motion of multibody
systems, when the time evolution (dynamics) of the systems
is governed by a set of differential algebraic equations [16]

4 =L(q)v (1a)
M(q)v = f (t,q,v) — g} (a,t)A (1b)
0 =g(q,t). (lc)

Above, Eq. (1b) simply states Newton’s second law, with
f the set of applied forces; M(q) the generalized mass; q
the set of generalized positions; v the set of generalized
positions, related to q as in Eq. (1a); ¢ is time; A is the set of
Lagrange multipliers associated with the kinematic constraint
equations formulated in Eq. (1c). In the case of fluid-solid
interaction problems, this set of equations is augmented with
the momentum (Navier-Stokes) and mass balance equations,
which are solved in a coupled fashion with the Newton-Euler
equations of motion in Eq. (1) [17]. CHRONO is able to
capture deformable terrain either by modeling it as a granular
bed [18] or through the soil-contact model (SCM) [19].

B. Sensing support via Chrono::Sensor

For simulating perception, SYNCHRONO relies on the
CHRONO::Sensor submodule which provides simulation of
camera, lidar, GPS and IMU. The driving goal is to decrease
the gap between what is sensed in the real world and what we
can generate through sensor simulation. When vehicle sen-
sors are noisy and distorting, the digital twin should recreate
these same distortions and noise. As an example, GPS data
is hindered by buildings and environmental factors, causing
imperfect data in high density urban areas. The simulation
should take into account these factors and geometries so that
an algorithm that is dependent on GPS data is evaluated in a
realistic manner [20]. The simulated sensor data can provide
training data for machine learned object and lane recognition
algorithms, and allow them to be tested in a reproducible
virtual environment.

C. Synchronized multi-agent environments

A simulation platform is multi-agent if it enables a time
and space coherent simulation of groups of AVs operating at
the same time in a shared physical space. A common feature
of multi-agent problems is that the dynamics of the agents are
not strongly coupled. Indeed, the agents operate in a shared
environment, but their evolution is coupled only through
sensing (unless the agents collide). An example of strongly
coupled dynamics is a fording operation, when the fluid
changes the dynamics of the agent while the agent influences
the dynamics of the fluid [17]. Although CHRONO handles
strongly coupled dynamics, the interest in SYNCHRONO is
in loosely coupled dynamics. Then, it is possible to run each
agent’s dynamics separately as one standalone process that
advances its dynamics at a small time step At, and update
other agents as to what has happened at a much slower
N : At rate, where, for instance, N = 10. Indeed, given that
the only way agent B impacts agent A is through sensing,
agent A does need to have some knowledge of agent B,
but this knowledge can be updated at a slower frequency
compared to the frequency at which the dynamics solution
updates the state of agent A. This is the origin of the name
SYNCHRONO: multiple CHRONO systems are run in parallel
and only occasionally (relative to the CHRONO integration
step) synchronized and updated as to what has happened in
the separate CHRONO worlds. This allows the simulation as
a whole to run more quickly and for each CHRONO system
to be computationally separated, potentially spread across
many nodes of a supercomputer.

SYNCHRONO uses the MPI framework [21] to achieve
inter-agent synchronization. Each MPI rank manages a partic-
ular agent, that we refer to as the ego agent for that rank. The
other agents in simulation (ego agents for a different rank)
exist as “zombie agents” within the ego agent’s simulation.
Each MPI rank runs CHRONO dynamics for the ego agent
every CHRONO timestep and receives information about the
zombie agents at a slower frequency called the heartbeat.
Rather than re-create the zombie agents as fully-fledged
agents, the rank places them in the environment of the ego
agent based on information communicated via MPI from the
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Fig. 2. Schematic of SYNCHRONO Inter-rank Synchronization. Each rank’s
CHRONO system only simulates one agent, all other agents are represented
as static entities based on communicated state data.

rank that had that zombie agent as its ego agent. A schematic
of this arrangement is shown in Fig. 2.

As an example, a sedan agent is fully-defined by the
fact that it is a sedan agent, and by the states of its four
wheels (their positions and rotation angles). When a sedan
agent is implemented in SYNCHRONO code, it requires
the specification of how to generate state data and how
to re-create a zombie sedan from a set of state data. To
generate state data, the sedan agent just has to query the
underlying CHRONO system for the position and angle values
that it requires. SYNCHRONO uses the Google Flatbuffers
serialization library to communicate MPI state data between
ranks. The main benefit of Flatbuffers is that it does not
require any additional memory allocation, and access to the
buffer doesn’t require parsing a complicated schema.

Currently, SYNCHRONO uses a single centralized hub
to synchronize all agent states. Rank 0, which runs the
simulation manager, collects messages with state data from
each agent and then broadcasts the state messages to all
other agents. The simulation manager knows the type of
each agent so that it knows what length of state message
to expect from each agent. Knowledge of the length of state
is the only necessary component for MPI message-passing,
and the length of state is constant for a particular type of
agent. Articulated buses, for instance, may have twice as
much state data to communicate as a regular vehicle. This
is all handled by the definition of the articulated bus agent,
which specifies the length that its state messages will be.

Having received state messages from every agent, the
central hub then broadcasts these state messages out to
every other rank. Again, upon receiving state messages, each
rank must know what type of agent the message was from,
so that it can be properly de-serialized. So in addition to
defining what state data must be passed via message, the
definition of an agent also requires the definition of how
a zombie agent should be constructed. For a vehicle this
is as simple as placing static mesh elements in the world
at the locations specified for the wheels and the chassis as
dictated by the state message. A schematic of the MPI-based
software architecture is shown in Fig. 3. The lowest level
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Fig. 3. Overview of SYNCHRONO MPI framework, each agent has a “brain”
responsible for making decision and a connection to the MPI layer, for
communicating its state to other agents.

of the simulation is the control algorithm or brain of the
agent which tells the agent what to do at each CHRONO
timestep. This decision is fed into CHRONO::Vehicle and
CHRONO::Sensor to determine what actually happens based
on the agent’s decision. The resulting state is passed to the
MPI synchronization layer which propagates this updated
state to all other ranks at the heartbeat frequency.

An additional concern for this synchronization is the
tuning of the “heartbeat” parameter; the frequency at which
each agent receives updates about the agents run by other
MPI ranks. It is similar to the timestep chosen for physics
simulation in that the shorter it is set to, the greater the
realism of the simulation, which comes at a higher com-
munication overhead. Since the heartbeat frequency is the
rate at which messages are passed between ranks, it also
determines the overhead incurred from using MPI. If the
heartbeat step were incredibly large and agents never passed
messages between each other, there would be no performance
hit to the system and no matter how many agents were in
the system, it would only take as long to compute as the
time to compute the dynamics for a single CHRONO system.
However, in this case agents would not be synchronized (time
and space coherency would be lost) and they wouldn’t sense
each other. On the other hand, as the heartbeat step drops
lower and lower, proportionally more time is spent passing
state messages between the agents compared to the amount
of time each node spends computing dynamics.

D. Generic interface control

SYNCHRONO’s goal is to provide a testing environment
for AV control policies, from car-following schemes to com-
plete control pipelines. Each control algorithm is independent
of SYNCHRONO, allowing the programmer to determine the
action of the agent. SYNCHRONO has been developed with
the goal of creating a flexible framework that will allow for
users to easily test their own algorithms.

A possible use case for SYNCHRONO is to study highway
dynamics, where flow rates and/or traffic shock waves are
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analyzed. In this scenario, the control algorithm is not
necessarily being studied, so the processing of sophisticated
sensor data is not important. Instead, exact positions and
velocities based on empirical models can be given directly
to the agent. Such an approach is realistic when the behavior
of a group of agents is of interest instead of that of a
single vehicle. In the platoon example, the repercussions of
a single vehicle lane change in a crowded highway scenario
of multiple autonomous vehicles can be analyzed.

SYNCHRONO has been designed to enable human-in-the-
loop (HIL) simulation. The most rudimentary form of human
interaction is enabled via a keyboard or a simple steering
wheel and pedals; the most sophisticated form is full-sized
driving simulators such as at the National Advanced Driving
Simulator [22]. With HIL, SYNCHRONO has to run in real-
time to provide a realistic experience for the human doing
the driving.

For SYNCHRONO to be a viable simulation framework
for testing AV control policies, it is important that going
from simulation to reality is seamless. For situations where
the developed pipeline is meant to be retrofitted on a real-
life vehicle, this feature is imperative. To this end, an inter-
face has been developed which promotes a “drag-and-drop”
style transition. Using TCP as the means of communication,
SYNCHRONO can send information about the simulated
environment to a receiver outside of the MPI network. In this
case, a controller can be used in a framework like Robot
Operating System (ROS). With the use of this interface, a
complete control pipeline independent of the SYNCHRONO
structure can be run with inputs replicating those from reality,
such as sensor data or V2X communication.

III. DEMONSTRATION OF TECHNOLOGY
A. Multi-agent scenarios

As discussed in section II-C, a distributed simulation
framework has the potential to reduce computation time since
each computing node or core only has a single CHRONO
vehicle that it simulates. If agents are added at the same rate
as computational resources, then the only increase in runtime
should be due to message-passing overhead as more mes-
sages move via MPI through the system. The scalability of
SYNCHRONO is a main distinguishing factor, as it is capable
of running multiple agents in parallel with little additional
overhead. To quantify this, we compared the performance of
a simulation of many vehicles in a single CHRONO system
with the same simulation within SYNCHRONO using as many
ranks as there were agents in the simulation.

While scenarios where agents are aggregating and acting
upon large amounts of sensor data each time-step before
making a decision are certainly important, our focus was on
the computational overhead of the actual dynamics simula-
tion itself in comparison with the MPI synchronization costs.
We did not give the vehicles in either scenario any algorithm
to run or sensor data to process, rather the simulation was
simply tasked with simulating their agent’s dynamics, and in
the case of SYNCHRONO, synchronizing these states across
ranks.
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Fig. 4. Comparison between scalability of CHRONO and SYNCHRONO.

For systems whose dynamics are not coupled, SYNCHRONO shows very
low overhead for adding additional vehicles.

The scaling comparison is shown in Fig. 4 with the
fraction of real time (—~eavorldruntime ) pogted against the
number of vehicles in simulation. While SYNCHRONO and
CHRONO took the same amount of time to run a system
with a single vehicle (as is expected since the system and
resources are equal in both cases), SYNCHRONO scales much
more efficiently given the task is a large decoupled system.

Also shown is a trend line that plots the expected time
taken for a CHRONO system if its scaling were purely pro-
portional to the number of vehicles. Note that the CHRONO
simulation deviates from this line, indicating that its scaling
performance is close, but slightly worse than O (n); i.e.,
linear increase in time relative to the number of vehicles
in the experiment. While the SYNCHRONO simulation time
does increase with the number of vehicles, this is due to
the message passing overhead rather than the increase in
system size. This resulted in only a small decrease in perfor-
mance, remaining close to real time even for 50 vehicles.
Also of note is that these simulations were not strictly
equivalent comparisons: the CHRONO system ran on a box
mesh whereas the SYNCHRONO version ran on the large
Park St. mesh, a difference that handicaps the SYNCHRONO
version, but will not affect the order of scaling analysis for
SYNCHRONO.

B. Urban vs. Highway Scenarios

To both demonstrate the capabilities of SYNCHRONO and
to quantify its performance characteristics, we focused on
two main scenarios that we considered representative of
the type of problems likely to be investigated with SYN-
CHRONO. The first was a highway platoon scenario, which
is representative of simulations where group dynamics are
of interest and the sensors and algorithms for any particular
vehicle can be simple. The second is a more complex urban
scenario, shown in Fig. 5, representative of simulations
where individual dynamics are of interest and the sensors,
algorithms and environment are more complex.
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Fig. 5. Second scenario; Vehicles navigating the Park St. intersection
by communicating with a traffic light agent that controls the state of the
intersection. This represents an urban environment where individual vehicle
dynamics are more important.

The platoon simulation was run on a uniform flat plane,
with no texture or variation of any sort in the surface.
Vehicles start in rows, three vehicles per row, meant to mimic
a three-lane highway where the length is much longer than
the width and variation in the surface is not the primary
interest.

The second simulation was run on a mesh of an inter-
section near the UW-Madison campus, called the Park St.
mesh. The mesh itself is rather large, taking up over 2GB of
memory on the GPU. Vehicles start in one of five different
lanes around the intersection and follow curves of GPS points
through the city. They communicate with a single traffic light
agent to determine the color of the light and if they are in a
position to stop. Such a scenario represents a starting point
for research into more sophisticated algorithms for a single
ego agent in a world of well-behaved vehicles.

Both of these scenarios are much more scalable than their
purely CHRONO counterparts, but the Park St. scenario in
general takes longer to run than the platoon scenario due
to the complexity of the mesh and the more sophisticated
controls algorithms that the vehicles run, see Fig. 6. While
the timing difference is not large, this gap will only widen for
scenarios involving more complex sensors and more complex
control algorithms.

C. Synchronization parameters

The heartbeat of the simulation’s synchronization is a
key parameter that can have a large impact on both the
accuracy and speed of the simulation. First we’ll focus on
the sensing error introduced by choosing a heartbeat size that
is too large. In the current implementation of SYNCHRONO,
zombie vehicles remain stationary in the ego agent’s world
during the time between consecutive heartbeats. This will
cause lag in the sensed data each time the simulation collects
sensor data between heartbeats which will almost certainly
happen since sensors will collect data at relatively arbitrary
frequencies.

In general over a period between heartbeats, H, a vehicle
will travel a distance of no more than Dy = |amax| HZ /2 +
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Fig. 6. Scaling Comparison Between Platoon and Park St. Scenarios.
Both had one camera but the larger mesh in the Park St. scenario made it
somewhat slower.

|Umax| Hy Where |amax| and |vnax| are respectively the maxi-
mum accelerations and velocities of the vehicle. Dy is also
the maximum positional error of sensed data over the time
period, if the sensor collects data immediately before the
heartbeat updates. In “normal” operation, vehicles tend to
travel at a constant velocity so the acceleration term can
be neglected. This leads to a typical error that is directly
proportional to the heartbeat frequency of the simulation,
for vehicles traveling around 30m/s, with a heartbeat step
of 0.01s, the error will be around 0.3 m, which may or may
not be acceptable, depending on the particular sensors that
are included in the simulation and the particular scenario
under study.

While having too infrequent a heartbeat frequency will
introduce sensing error as zombie agents lag within the
ego agent’s world, the concern with having the heartbeat
too frequently is that it could cause unnecessary overhead,
decreasing performance. While this concern is relevant, pre-
liminary tests have shown that a heartbeat frequency near the
frequency of the simulation is still negligible compared to the
CHRONO computation step for the simulations demonstrated
in this paper. Further work will be done to explore this
heartbeat frequency trade-off.

D. Real-Time performance

As a whole, CHRONO focuses on high-fidelity models for
off-line simulation. For this reason, while performance is
an important factor, accuracy of results trumps it. In SYN-
CHRONO on the other hand, running a simulation at real time
is important as it allows for human-in-the-loop simulations
where a human controls a conventional vehicle within a
world of autonomous vehicles. Throttling a simulation that
runs faster than real time is not a challenge, but speeding
up simulations certainly is and it is critical to understand
which types of simulations can be run in real-time and which
cannot. In doing so, the answer is heavily dependent on the
hardware running the SYNCHRONO simulations. While one
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vehicle running on undeformable terrain is very likely to
run in real-time in CHRONO, in SYNCHRONO the quality
of the interconnect between the nodes running the CHRONO
instance is paramount. The amount of data moved from the
daemon to the vehicles is actually very low (hundreds of
bytes, for undeformable terrain). Therefore, the latency of the
interconnect is crucial in determining what can and cannot
run in real time.

Currently, the real-time barrier lies around 10 vehicles (see
Fig. 6), with the specific number depending on the hardware
and configuration used. For some scenarios, such as those
with a simple terrain and no sensors, tens of vehicles may
co-exist in a simulation running in real-time, but simulations
with more complex terrain/world and numerous sensors will
need to be run slower than real-time and cannot have a
human in the loop with more than a couple vehicles. In
this context, SYNCHRONO experiments that use deformable
terrain run at a real-time factor of approximately 100, see
[9]. Future work will aim to increase the number of vehicles
that can be run in simulation in real-time.

IV. CONCLUSIONS AND FUTURE WORK

This contribution introduced the multi-agent simulation
framework SYNCHRONO, highlighted the features that dis-
tinguish it from other existing simulation solutions, and
outlined preliminary scaling results that quantify its perfor-
mance. SYNCHRONO builds off accurate physics-based mod-
eling of vehicle dynamics and sensor data simulation through
the CHRONO::Vehicle and CHRONO::Sensor modules, re-
spectively. SYNCHRONO uses MPI to synchronize state data
between various vehicle ranks, allowing the simulation to
leverage multiple compute nodes. The additional overhead of
message passing is relatively low with the overall simulation
significantly more efficient than monolithic scaling in a
shared CHRONO system.

There are several directions for future investigation. First,
there are many enhancements that can be made to SYN-
CHRONO as a software platform, to make it more accessible
to the user and more flexible in its configuration. Second,
since the ultimate goal is to position SYNCHRONO as a
control policy testing environment for multi-agent scenarios,
we hope to validate the transferability of solutions developed
and tested in SYNCHRONO to real-world scenarios; i.e.,
address the so-called sim-to-real gap.
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