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Abstract Sparse representations of multidimensional data have received a
significant attention in the literature due to their applications in problems of
data restoration and feature extraction. In this paper, we consider an idealized
class C2(Z) ⊂ L2(R3) of 3-dimensional data dominated by surface singularities
that are orthogonal to the xy plane. To deal with this type of data, we in-
troduce a new multiscale directional representation called cylindrical shearlets
and prove that this new approach achieves superior approximation properties
not only with respect to conventional multiscale representations but also with
respect to 3-dimensional shearlets and curvelets. Specifically, the N -term ap-
proximation fSN obtained by selecting the N largest coefficients of the cylindri-
cal shearlet expansion of a function f ∈ C(Z) satisfies the asymptotic estimate

‖f − fSN‖22 ≤ cN−2 (lnN)3, as N →∞.

This is the optimal decay rate, up the logarithmic factor, outperforming 3d
wavelet and 3d shearlet approximations which only yield approximation rates
of order N−1/2 and N−1 (ignoring logarithmic factors), respectively, on the
same type of data.
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1 Introduction

Sparse multiscale representations of functions have a long and celebrated his-
tory in applied harmonic analysis [18]. Their significance goes beyond data
compression as discovering a sparse representation of signals in a certain class
entails a deeper understanding of the class structure and can be been exploited
for tasks including signal denoising, inpainting and classification [4].

Following the success of sparse wavelet approximations of piecewise regular
1d signals, several methods were later proposed to extend the same approach
to the multi-dimensional setting. The main challenge concerns the more com-
plex nature of singularities occurring in higher dimensions. In dimensions 2
and 3, data found in most applications are dominated by curvilinear edges
or surface discontinuities, and conventional wavelets are inefficient at repre-
senting such structures since it takes ‘many’ wavelet coefficients to achieve a
good approximation. To overcome this limitation, a more sophisticated class
of multiscale systems was introduced about 15 years ago, including most no-
tably curvelets [2] and shearlets [17]. The geometric intuition underlying their
construction is that, in order to provide more efficient representations of im-
ages with edges, the elements of the analyzing system should be defined not
only over a range of locations and scales, as traditional wavelets, but also at
multiple orientations and with highly anisotropic shapes. It was shown that
shearlets and curvelets provide optimally sparse approximations, in a precise
sense, of bivariate functions that are C2 regular away from C2 edges (the,
so-called, cartoon-like images), outperforming separable wavelet bases [2,8,
15,22]. The same idea was extended to the 3d setting, showing that also in
this case shearlet representations provide optimally sparse approximations of
functions of 3 variables that are C2 away from C2 boundaries [9,11,14].

However, while the cartoon-like data model adopted in the 3d setting cov-
ers a large number of problems found in applications, it is not very convenient
to handle a large class of 3d data dominated by surface singularities that are
perpendicularly to the xy plane. Examples of such data include, for instance,
hyperspectral images (HSI) from application in remote sensing and typical
movie sequences. We recall that HSI data form 3d cubes where 2 variables
encode the spatial information and the 3rd one is a spectral component; in
such data, discontinuities typically occur in the spatial plane corresponding
to physical structures such as roads and buildings [19,21]. Similarly, a movie
sequence forms a data cube where 2 variables are associated with the image
plane while the 3rd one is time; the dominant discontinuities here are edges in
the image plane. Motivated by these applications, we consider in this paper a
simplified solid model where discontinuities are independent of the z variables.
To represent such data we introduce a new multiscale representation of func-
tions of 3 variables, called cylindrical shearlets, especially designed to handle
the geometry of data containing surface singularities perpendicular to the xy
plane. This new construction follows the general philosophy of shearlets whose
analyzing elements consist of well-localized waveforms defined over a range of
scales, locations and orientations. However, unlike conventional 3d shearlets
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where orientations are controlled by two parameters and range over the en-
tire sphere, cylindrical shearlets only include one orientation parameter and
their directional sensitivity is limited to rotations on a circle. Our main result
is that cylindrical shearlets provide optimally sparse representations over a
class C2(Z) of bounded and compactly supported functions on R3 that are
C2 regular away from surface discontinuities orthogonal to the xy plane (as
defined in Sec. 3), significantly outperforming both conventional wavelets and
shearlets. We includes numerical experiments illustrating the computational
advantages of approximating data in the class C2(Z) using cylindrical shear-
lets, as compared with state-of-the-art multiscale representations. Remarkably,
our numerical results suggest that our approach conventional 3d shearlets not
only when discontinuities are independent of the z variable but also when their
dependence on z is mild.

The ideas presented in this work rely on the microlocal properties of shear-
lets that have been investigated in several papers [10,12,16]. We recall that,
in the 3d setting, different versions of shearlet transform have been already
proposed to deal with different singularity types [13].

The paper is organized as follows. We present the construction of the new
Parseval frame of cylindrical shearlets in Sec. 2. We report the main results
and their proofs in Sec. 3 and the supporting numerical experiments in Sec. 4.

2 Cylindrical shearlets

Cylindrical shearlets were originally introduced in [1] as a variant of 3d shear-
lets targeted to applications where the dominant discontinuities are perpen-
dicular to one of the coordinate axes. Unlike classical 3-dimensional shearlets
that require to partition R3 into 3 pyramidal regions, we associate cylindrical
shearlets to two cylindrical pyramids P1 and P2 in R3 defined as:

P1 = {(ξ1, ξ2, ξ3) ∈ R3 : | ξ2ξ1 | ≤ 1}, P2 = {(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ2 | ≤ 1}.

Definition 1 For d = 1, 2, a pyramid-based cylindrical shearlet system asso-
ciated with the pyramid Pd is a collection of functions

{ψ(d)
j,`,k : j ≥ 0, |`| ≤ 2j , k ∈ Z3}, (1)

where the elements of the system (1) are given in the Fourier domain as

ψ̂
(d)
j,`,k(ξ) = | detA(d)|−

j
2w(2−2jξ)V(d)(ξA

−j
(d)B

−`
(d))e

2πiξA−j
(d)
B−`

(d)
k

(2)

and the matrices A(d) and B(d) are given by

A(1) =

4 0 0
0 2 0
0 0 4

, B(1) =

1 1 0
0 1 0
0 0 1

, A(2) =

2 0 0
0 4 0
0 0 4

, B(2) =

1 0 0
1 1 0
0 0 1

.
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Fig. 1 Fourier support region Uj,` associated with a cylindrical shearlet system.

Similar to the standard shearlet construction [11,7], we can choose the func-
tions w and V and the elements in (1) to form a smooth Parseval frame of
L2(R3). The construction we adopt here is different from [1] since our sparse
approximation result requires the shearlet elements in (1) to be well localized.

We let φ ∈ L2(R3) be such that φ̂ ∈ C∞c with 0 ≤ φ̂ ≤ 1 and

φ̂(ξ) = 1 if ξ ∈ [− 1

16
,

1

16
]3, φ̂(ξ) = 0 if ξ ∈ R3 \ [−1

8
,

1

8
]3. (3)

Next we define

w(ξ) =

√
φ̂2(2−2ξ)− φ̂2(ξ). (4)

It follows that

φ̂2(ξ) +
∑
j≥0

w2(2−2jξ) = 1 for ξ ∈ R3. (5)

We notice that the functions w2
j = w2(2−2j ·) are supported on the sets Cj =

[−22j−1, 22j−1]3 \ [−22j−4, 22j−4]3 ⊂ R3. In addition, we let v ∈ C∞(R) be
such that supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u+ 1)|2 = 1 for |u| ≤ 1. (6)

For d = 1, since (ξ1, ξ2, ξ3)A−j(1)B
−`
(1) = (2−2jξ1,−2−2j`ξ1 + 2−jξ2, 2

−2jξ3)

and | detA(1)| = 25, an element of the system (2) can be written as

ψ̂
(1)
j,`,k(ξ) = 2−

5j
2 w(2−2jξ) v(2j

ξ2
ξ1
− `) e2πiξA

−j
(1)
B−`

(1)
k
,

showing that the Fourier support of ψ
(1)
j,`,k is contained inside the region

Uj,` = {ξ ∈ [−22j−1, 22j−1]3 \ [−22j−4, 22j−4]3 ⊂ R3 : | ξ2ξ1 − `2
−j | ≤ 2−j}.
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A graphical illustration of the region Uj,` is shown in Fig. 1
Similar to conventional 3d shearlets [7], we obtain a smooth Parseval frame

of cylindrical shearlets for L2(R3) by combining the pyramid-based systems (1)
with a coarse scale system. To ensure that all elements of this combined system
are C∞c in the frequency domain, we modify the elements of the shearlet system
overlapping the boundaries of the regions P1 and P2 in the frequency domain.
Hence, a cylindrical shearlet system for L2(R3) is given by{

ψ̃−1,k :k ∈ Z3
}⋃{

ψ̃j,`,k,d :j ≥ 0, |`| < 2j , k ∈ Z3, d = 1, 2
}

⋃{
ψ̃j,`,k :j ≥ 0, ` = ±2j , k ∈ Z3

}
, (7)

consisting of:

– the coarse-scale cylindrical shearlets {ψ̃−1,k = φ(· − k) : k ∈ Z3}, where φ
is given by (3);

– the interior cylindrical shearlets {ψ̃j,`,k,d = ψ
(d)
j,`,k : j ≥ 0, |`| < 2j , k ∈

Z3, d = 1, 2}, where the functions ψ
(d)
j,`,k, d = 1, 2 are given by (1) ;

– the boundary cylindrical shearlets {ψ̃j,`,k : j ≥ 0, ` = ±2j , k ∈ Z3}, ob-

tained by joining together slightly modified versions of ψ
(1)
j,`,k and ψ

(2)
j,`,k, for

` = ±2j . Namely, for j ≥ 1, ` = ±2j , k ∈ Z3, we define

(ψ̃j,`,k)∧(ξ) =

2−
5
2 j−

3
2 w(2−2jξ) v

(
2j ξ2ξ1 − `

)
e
2πiξ2−1A−j

(1)
B−`

(1)
k
, if ξ ∈ P1

2−
5
2 j−

3
2 w(2−2jξ) v

(
2j ξ1ξ2 − `

)
e
2πiξ2−1A−j

(1)
B−`

(1)
k
, if ξ ∈ P2

and, for j = 0, k ∈ Z3, ` = ±1, we define

(ψ̃0,`,k)∧(ξ) =

w(ξ) v
(
ξ2
ξ1
− `
)
e2πiξk, if ξ ∈ P1

w(ξ) v
(
ξ1
ξ2
− `
)
e2πiξk, if ξ ∈ P2.

We have now the following result that we report without proof as its argument
is very similar to Theorem 8 in [7].

Theorem 1 Let φ ∈ L2(R3), v ∈ C∞c (R) and w ∈ C∞c (R3) be defined as
above (cf. (3), (4), (6)). The cylindrical shearlet system (7) is a Parseval frame
for L2(R3). Furthermore, the elements of this system are C∞ and compactly
supported in the Fourier domain.

For brevity, in the following, we denote the system (7) as

{ψ̃µ : µ ∈M}, (8)

where M = MC∪MI∪MB are the indices associated with coarse-scale, interior
and boundary cylindrical shearlets, respectively, given by

- MC = {(j, k) : j = −1, k ∈ Z3};
- MI = {(j, `, k, d) : j ≥ 0, |`| < 2j , k ∈ Z3, d = 1, 2};



6

- MB = {(j, `, k) : j ≥ 0, ` = ±2j , k ∈ Z3}.

We also remark that, by direct computation, we can write the elements of
the cylindrical shearlet system (1) in the space domain as

ψ
(d)
j,`,k(x) = | detA(d)|j/2 ψ

(d)
j,`

(
B`(d)A

j
(d)x− k

)
,

where ψ̂
(d)
j,` (ξ) = w(22jξB`(d)A

j
(d))V(d)(ξ). Even though the system (1) is not

generated by a finite set of generators by the action of the affine group, however

the functions ψ
(d)
j,` depend very mildly on j, `. Using support and regularity

properties of w and V , we have that, for any γ = (γ1, γ2, γ3) ∈ (N∪ {0})3 and
any N > 0, there is a constant Cγ,N > 0 independent of j, `, d such that

∂γxψ
(d)
j,` (x) ≤ Cγ,N (1 + |x|)−N . (9)

3 Main results

Following [5], we consider STAR2(Z), a class of indicator functions of sets B
with C2 boundaries ∂B. In polar coordinates, let ρ(θ) : [0, 2π) → [0, 1]2 be a
radius function and define the set B = {x ∈ R2 : |x| ≤ ρ(θ)}. In particular,
the boundary ∂B is given by the curve in R2:

β(θ) =

(
ρ(θ) cos(θ)
ρ(θ) sin(θ)

)
, θ ∈ [0, 2π). (10)

Given a constant Z > 0, the class of boundaries of interest are defined by

sup |ρ
′′
(θ)| ≤ Z, ρ ≤ ρ0 < 1. (11)

We say that a set B ∈ STAR2(Z) if B ⊂ [0, 1]2 and B is a translate of
a set obeying (10) and (11). We let C2

0 ([0, 1]2) to be the collection of twice
differentiable functions supported inside [0, 1]2. Hence, the set of cartoon-like
images E2(Z) is the collection of functions of the form h = h0 χB where h0 ∈
C2

0 ([0, 1]2), B ∈ STAR2(Z) and
∑
|α|≤2‖Dαf‖∞ ≤ 1. We next define the set

of cylindrical cartoon-like functions C2(Z) of functions of the form

f(x, y, z) = h0(x, y) g0(z) + h1(x, y)χB(x, y) g1(z). (12)

where B ∈ STAR2(Z), h0, h1 ∈ C2
0 ([0, 1]2) g0, g1 ∈ C2

0 ([−1, 1]) .

3.1 Main theorems

Let {ψ̃µ}µ∈M be the Parseval frame of cylindrical shearlets given by (8). The
cylindrical shearlet coefficients of a function f ∈ L2(R3) are the elements of
the sequence {sµ(f) = 〈f, ψ̃µ〉 : µ ∈ M}. We denote by |s(f)|(N) the N -th
largest entry in this sequence. We have the following results.
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Theorem 2 Let f ∈ C2(Z) and {sµ(f) : µ ∈ M} be the sequence of the cor-
responding cylindrical shearlet coefficients. Then, for N ∈ N there is constant
c independent of µ and N such that

sup
f∈C2(Z)

|sµ(f)|(N) ≤ cN−
3
2 (ln(N))

3
2 .

Let fSN be the N -th term approximate of f ∈ C2(Z) obtained from the
N -th largest coefficients of its cylindrical shearlet expansion, namely

fSN =
∑
µ∈IN

〈f, ψµ〉ψµ

where IN ⊂ M is the set of indices corresponding to the N -th largest entries
of the sequence {|〈f, ψµ〉|2 : µ ∈M}. Then the approximate error satisfies

‖f − fSN‖2L2 ≤
∑
m>N

|s(f)|2(m).

Therefore from Theorem 2 we obtain the following result.

Theorem 3 Let f ∈ C2(Z) and fSN be the N -term approximation to f defined
above. Then, for N ∈ N there is constant c independent of µ and N such that

‖f − fSN‖2L2 ≤ cN−2(ln(N))
3
.

This decay rate is nearly optimal, in the sense that no other representation
system can achieve an asymptotic approximation rate faster than N−2 for
this class of functions. By contrast, separable 3d wavelets and conventional 3d
shearlets only achieve approximation rates that are O(N−1/2) [3] and O(N−1)
[11], respectively. The optimality argument is presented in Appendix A.

3.2 Arguments and constructions

The general organization of the proof follows the sparse shearlet approximation
proof in [8,11]. However, the arguments in the proof of Proposition 1 use a
new idea to deal with the geometry of cylindrical shearlets.

We will use the weak-`p quasi-norm ‖·‖w`p which is useful to measure the
sparsity of cylindrical shearlet coefficients for sequence sµ and is defined by

‖s‖w`p = sup
N>0

N
1
p |sµ|(N)

where |sµ|(N) is the N -th largest entry in the sequence s = (sµ). It is known
that the above quantity is equivalent to

‖s‖wlp =

(
sup
ε>0

#{µ : |sµ| > ε}εp
) 1

p

.
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According with the cylindrical cartoon-like model (12), we consider func-
tions of the form

f(x1, x2, x3) = h1(x1, x2)χB(x1, x2)g(x3),

where B ∈ STAR2(Z), h1 ∈ C2
0 ([0, 1]2) and g ∈ C2

0 ([−1, 1]).
We remark that discontinuities only occur in the the x1x2 plane. Hence,

to carry our our argument, we smoothly localize the function f near dyadic
squares in the x1x2 plane as follows. For a scale parameter j ≥ 0 fixed, let
Qj be the collections of dyadic squares of the form Q = [k12j ,

k1+1
2j ]× [k22j ,

k2+1
2j ]

with k1, k2 ∈ Z2. For a non-negative C∞ function w with support in [−1, 1]2

we define the smooth partition of unity∑
Q∈Qj

WQ(x1, x2) = 1, (x1, x2) ∈ R2,

where WQ(x1, x2) = W (2jx1 − k1, 2jx2 − k2).
Corresponding to each dyadic square Q, we will examine the cylindrical

shearlet coefficients of the localized functions fQ := f WQ, that is, the terms

{〈fQ, ψ̃µ〉 : µ ∈Mj}, where ψ̃µ is an element of the set (8) and Mj denotes the
collection of µ ∈ M such that j is fixed. As we show below, these coefficients
exhibit a different decay behaviour depending on whether ∂B, the boundary
of B, intersects the support of WQ or not. Hence, let Qj = Q0

j ∪ Q1
j , where

the union is disjoint and Q0
j is the collection of dyadic squares Q ∈ Qj such

that ∂B intersects the support of WQ. Since each Q has side length 2 · 2−j ,
then Q0

j has cardinality |Q0
j | ≤ c0 2j , where c0 is independent of j. Since f is

compactly supported in [0, 1]2, |Q1
j | ≤ c1 22j , where c1 is independent of j. We

can now state the following propositions that are needed to prove Theorem 2.

Proposition 1 For Q ∈ Q0
j with j ≥ 0 fixed, the sequence of cylindrical

shearlet coefficients {〈fQ, ψ̃µ〉 : µ ∈Mj} satisfy the estimate

‖〈fQ, ψ̃µ〉‖
wl

2
3
≤ c 2−

3
2 j

for some constant c independent of Q and j.

Proposition 2 For Q ∈ Q1
j with j ≥ 0 fixed, the cylindrical shearlet coeffi-

cients {〈fQ, ψ̃µ〉 : µ ∈Mj} satisfy the estimate

‖〈fQ, ψ̃µ〉‖
wl

2
3
≤ c 2−3j

for some constant c independent of Q and j.

Before proving Propositions 1 and 2, we show how these results are used
to prove Theorem 2. First, we have the following corollary.

Corollary 1 Let f ∈ C2(Z), and for j ≥ 0, consider the sequence of cylindri-
cal shearlet coefficients sj(f) = {〈f, ψ̃µ〉 : µ ∈Mj}. Then there is a constant c

independent of j such that ‖sj(f)‖
2
3

w`
2
3
≤ c.
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Proof. Using Propositions 1 and 2 and the estimates on the cardinality of the
sets Q0

j and Q1
j , we obtain

‖sj(f)‖
wl

2
3
≤
∑
Q∈Qj

‖〈fQ, ψ̃µ〉‖
wl

2
3

≤
∑
Q∈Q0

j

‖〈fQ, ψ̃µ〉‖
wl

2
3

+
∑
Q∈Q1

j

‖〈fQ, ψ̃µ〉‖
wl

2
3

≤ c |Q0
j | 2−

3
2 j + C|Q1

j | 2−3j ≤ c. ut

Now we can prove Theorem 2.
Proof of Theorem 2. By Corollary 1, we have that, for j ≥ 0,

R(j, ε) := #{µ ∈Mj : |〈f, ψ̃µ〉| > ε} ≤ c ε− 2
3 . (13)

Next observe that, for an interior cylindrical shearlet ψ̃j,k,`,d = ψ
(d)
j,k,` given by

(1), a direct calculation using (9) gives

|〈f, ψ(d)
j,k,`〉| =

∣∣∣ ∫
R3

f(x) 2
5j
2 ψ

(d)
j,` (B`(d)(A

j
(d)x− k) dx

∣∣∣
≤ 2

5j
2 ‖f‖∞

∫
R3

|ψ(d)
j,` (B`(d)(A

j
(d)x− k)| dx

≤ 2−
5j
2 ‖f‖∞

∫
R3

|ψ(d)
j,` (y)| dy

≤ c 2−
5j
2 . (14)

A very similar computation on the boundary shearlets gives the same estimate.
It follows that, given any ε > 0, there is scale index jε > 0 such that

|〈f, ψ̃µ〉| < ε for each j ≥ jε. Thus, it follows from (14) that R(j, ε) = 0 for
j > 2

5 log2(ε−1) + log2(c) > 2
5 log2(ε−1). Thus, using (13), we have that

#{µ ∈Mj : |〈f, ψ̃µ〉 > ε|} ≤
2
5 log2(ε

−1)∑
j=0

R(j, ε) ≤ c ε− 2
3 log2(ε−1). ut

3.3 Analysis of the edge fragments

Since the localization window WQ acts in the x1x2 plane, it is convenient to
analyze the localized discontinuity curve in this plane. For j ≥ j0 sufficiently
large, the scale 2−j is small enough so that over a square Q of side 2−j ,
the boundary curve ∂B can be parametrized as x1 = E(x2) or x2 = E(x1).
Without loss of generality, we may assume x1 = E(x2). Also, by a translation,
we may assume k = (0, 0) so that the function fQ is localized on Q = [0, 2−j ]2.
Correspondingly, using the notation from Sec. 3.2, we define the edge fragment:

hQ(x1, x2) = W (2j(x1, x2))h1(x1, x2)χ[x1>E(x2)](x1, x2), (15)
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where h1 ∈ C2
0 ([0, 1]2) and x1, x2 ∈ [0, 2−j ].

Next we derive an estimate for the elements of the Parseval frame of cylin-
drical shearlets against fQ(x1, x2, x3) = hQ(x1, x2)g(x3), where hQ is given
by (15) and g ∈ C2

0 ([0, 1]). We will only examine cylindrical shearlet coeffi-
cients associated with interior shearlets since boundary shearlets can be ana-
lyzed very similarly. In addition, since the behavior of cylindrical shearlets in
the pyramidal regions P1 and P2 is very similar, we only consider the cylin-
drical shearlets in P1. For ξ = (ξ1, ξ2, ξ3) ∈ P1, j ≥ 0 and |`| ≤ 2j , letting

Γj,`(ξ) = w(2−2jξ) v(2j
ξ2
ξ1
− `) (16)

we can write the interior cylindrical shearlets (2) associated with P1 as

ψ̂
(1)
j,k,` = 2−

5j
2 Γj,`(ξ) e

2πiξA−j
(1)
B−`

(1)
k
.

We need the following lemmata, where the first one is Corollary 2.4 in [8]
and the second one is a simple extension of Lemma 2.5 in [8].

Lemma 1 Let hQ be the edge fragment (15), j ≥ 1, and θ ∈ [0, 2π]. For
m = (m1,m2) ∈ ({0}

⋃
N)× ({0}

⋃
N), we have∫ 22j+2

22j−4

| ∂
m1

∂ξm1
1

[
∂m2

∂ξm2
2

ĥQ(λ cos θ, λ sin θ)]|2dλ

≤ cm 2−2j(m1+m2)
(

2−(4+2m1)j(1 + 2j | sin θ|)−5 + 2−10j
)
,

where the constant cm is independent of j, θ.

Lemma 2 Let Γ be given by (16), j ≥ 1, |`| ≤ 2j. For m = (m1,m2,m3) ∈
({0}

⋃
N)× ({0}

⋃
N× ({0}

⋃
N), we have

| ∂
m1

∂ξm1
1

∂m2

∂ξm2
2

∂m3

∂ξm3
3

[Γj,`]| ≤ cm 2−j(2m1+m2+2m3)(1 + |`|)m1

where the constant cm is independent of j, `.

Since g ∈ C2
0 ([0, 1]), Lemmata 1 and 2 imply the following key estimate.

Lemma 3 Let hQ be the edge fragment (15), Γ be given by (16), g ∈ C2
0 ([0, 1]),

j ≥ 0, |`| ≤ 2j, and L be the differential operator:

L =

(
I −

(
22j

2π(1 + |`|)

)2
∂2

∂ξ21

)(
I −

(
2j

2π

)2
∂2

∂ξ22

)(
I −

(
22j

2π

)2
∂2

∂ξ23

)
. (17)

Then there is constant c independent of j, ` such that∫
R̂3

|L
(
ĥQ(ξ1, ξ2) ĝ(ξ3)Γj,`(ξ)

)
|2 dξ ≤ c 2−3j(1 + |`|)−5.
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3.4 Proof of Proposition 1

With the notation above, we write fQ(x1, x2, x3) = hQ(x1, x2) g(x3) and

〈fQ, ψ(1)
j,k,`〉 = | detA(1)|

− j
2

∫
R̂3

ĥQ(ξ1, ξ2) ĝ(ξ3)Γj,`(ξ1, ξ2, ξ3)e
2πiξA−j

(1)
B−`

(1)
k
dξ,

where ξ = (ξ1, ξ2, ξ3), Γj,` is given by (16) and A(1), B(1) are defined in (1).
Observing that

2πiξA−j(1)B
−`
(1)k = 2πi

(
ξ1 ξ2 ξ3

)2−2j 0 0
0 2−j 0
0 0 2−2j

1 −` 0
0 1 0
0 0 1

k1k2
k3


= 2πi

(
(k1 − `k2)2−2jξ1 + 2−jk2ξ2 + 2−2jk2ξ3

)
,

a direct computation gives that( ∂

∂ξ1
(2πiξA−jB−`k)

)2
= −(2π)

2
2−4j(k1 − k2`)2

=

{
−(2π)

2
`22−4j(k1` − k2)

2
` 6= 0

−(2π)
2
2−4jk1

2 ` = 0( ∂

∂ξ2
(2πiξA−jB−`k)

)2
= −(2π)

2
2−2jk22( ∂

∂ξ3
(2πiξA−jB−`k)

)2
= −(2π)

2
2−4jk23

Let L be the second order partial differential operator in (17). Hence:

L
(
e
2πiξA−j

(1)
B−`

(1)
k)

=


(

1 +
(

`
(1+|`|)

)2(k1
` − k2)

2)
(1 + k22)(1 + k23)e

2πiξA−j
(1)
B−`

(1)
k

` 6= 0

(1 + k21)(1 + k22)(1 + k23)e
2πiξA−j

(1)
B−`

(1)
k

` = 0
(18)

Integrating by parts we get

〈fQ, ψ(1)
j,k,`〉 = | detA(1)|

− j
2

∫
R̂3

L
(
f̂Q(ξ1, ξ2, ξ3)Γj,`(ξ)

)
L−1

(
e
2πiξA−j

(1)
B−`

(1)
k
)
dξ.

Case 1: ` 6= 0. By (18) we have

L−1
(
e
2πiξA−j

(1)
B−`

(1)
k
)

= G(k, `)−1e
2πiξA−j

(1)
B−`

(1)
k
,

where G(k, `) =
(

1 +
(

`
(1+|`|)

)2(k1
` − k2)

2)
(1 + k22)(1 + k23). Thus,

〈fQ, ψ(1)
j,k,`〉 = | detA(1)|

− j
2G(k, `)−1

∫
R̂3

L
(
f̂Q(ξ)Γj,`(ξ)

)
e
2πiξA−j

(1)
B−`

(1)
k
dξ
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or, equivalently,

〈fQ, ψ(1)
j,k,`〉G(k, `) = | detA(1)|

− j
2

∫
R̂3

L
(
f̂Q(ξ)Γj,`(ξ)

)
e
2πiξA−j

(1)
B−`

(1)
k
dξ.

For K = (K1,K2,K3) ∈ Z3 define RK = {(k1, k2, k3) ∈ Z3 : k1
` ∈ [K1,K1 +

1], k2 = K2, k3 = K3}. For j, ` fixed, the set {| detA(1)|
− j

2 e
2πiξA−j

(1)
B−`

(1)
k

:
k ∈ Z3} is an orthonormal basis of the L2 functions supported on the set
[− 1

2 ,
1
2 ]3Aj(1)B

l
(1). Hence, observing that Γj,l(ξ) is supported on this set, by

Plancherel theorem we have∑
k∈RK

|〈fQ, ψ(1)
j,k,`〉G(k, `)|

2
≤
∫
R̂3

|L
(
f̂Q(ξ)Γj,`(ξ)

)
|
2

dξ.

By the definition of RK there is a constant c independent of j, ` such that∑
k∈RK

|〈fQ, ψ(1)
j,k,`〉|

2
≤ c L−2K

∫
R̂3

|L
(
f̂Q(ξ)Γj,`(ξ)

)
|
2

dξ,

where Lk =
(
1 + (K1 −K2)

2
)(1 +K2

2 )(1 +K2
3 ). By Lemma 3, it follows that∑

k∈RK

|〈fQ, ψ(1)
j,k,`〉|

2
≤ c L−2K 2−3j(1 + |`|)−5. (19)

Letting Nj,l,K(ε) = #{k ∈ RK : |〈fQ, ψ(1)
j,k,`〉| > ε}, we have that Nj,`,K(ε) ≤

c (1 + |`|) and, by (19), Nj,`,K(ε) ≤ c L−2K 2−3jε−2(1 + |`|)−5. Thus

Nj,`,K(ε) ≤ c min
(
(1 + |`|), L−2K 2−3j ε−2(1 + |`|)−5

)
. (20)

Using (20), we can show that

2j∑
`=−2j

Nj,`,K(ε) ≤ c L−
2
3

K 2−j ε−
2
3 . (21)

In fact, let `∗ be defined by (`∗ + 1) = L−2K 2−3j ε−2(1+`∗)−5. So we have that

(`∗ + 1)
2

= L
− 2

3

K 2−j ε−
2
3 . By direct calculation

2j∑
`=−2j

Nj,`,K(ε) ≤
∑

|`|≤(`∗+1)

Nj,`,K(ε) +
∑

|`|>(`∗+1)

Nj,`,K(ε)

≤
∑

|`|≤(`∗+1)

(1 + |`|) +
∑

|`|>(`∗+1)

L−2K 2−5j ε−2(1 + |`|)−5

≤ (1 + `∗)2 + c L−2K 2−3j ε−2(1 + `∗)−4

≤ c (`∗ + 1)2,
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which proves (21). Since
∑
k∈Z3 L

− 2
3

K <∞, using (21), we then have

#{µ ∈Mj : |〈fQ, ψ(1)
j,k,`〉| > ε} ≤

∑
K∈Z3

2j∑
`=−2j

Nj,`,K(ε)

≤ c 2−j ε−
2
3

∑
k∈Z3

L
− 2

3

K

≤ c 2−j ε−
2
3 .

Hence ‖〈fQ, ψ(1)
j,k,`〉‖w` 2

3
≤ c 2−

3
2 j and this complete the proof in the case ` 6= 0.

Case 2: ` = 0. In this case, using the operator L given by (18), we have

L−1
(
e
2πiξA−j

(1)
B−`

(1)
k)

= L−1k e
2πiξA−j

(1)
B−`

(1)
k

where Lk = (1 + k21)(1 + k22)(1 + k23). Then it is clear that
∑
k∈Z3 L

− 2
3

k < ∞.
An application of integration by parts similar to the one above gives that

〈fQ, ψ(1)
j,0,k〉 = | detA(1)|

− j
2L−1k

∫
R̂3

L
(
f̂(ξ)Γj,`(ξ)

)
e
2πiξA−j

(1)
B−`

(1)
k
dξ.

It follows that there is a constant c independent of j, ` such that∑
k∈Z3

|〈fQ, ψ(1)
j,0,k〉|

2
L2
k = | detA(1)|

−j
∫
R̂3

|L
(
f̂Q(ξ)Γj,`(ξ)

)
|2dξ ≤ c 2−5j .

In particular, for each k ∈ Z3, we have |〈fQ, ψ(1)
j,0,k〉| ≤ c L

−1
k 2−

5
2 j and, hence,∑

k∈Z3

|〈fQ, ψ(1)
j,0,k〉| ≤

∑
k∈Z3

CL−1k 2−
5
2 j ≤ c 2−

5
2 j
∑
k∈Z3

L−1k ≤ c 2−
5
2 j ≤ c 2−

3
2 j .

This completes the proof when j is large (j ≥ j0, as in the definition of the edge
fragment). For j < j0, the simpler argument is very similar to [11, Sec. 4.6].

3.5 Proof of Proposition 2

Similar to the proof of Proposition 1, using the notation from Sec. 3.2, we let
h̃Q(x1, x2) = h1(x1, x2)WQ(x1, x2), where now Q ∈ Q1

j . With this notation,

we write the localized function as fQ(x1, x2, x3) = h̃Q(x1, x2) g(x3).
To carry out this proof, we need the following lemma ([8], Lemma 2.8).

Lemma 4 Let h̃Q be given as above where Q ∈ Q1
j , let Γj,` be given by (16)

and set T = (1− 2j

(2π)2∆), where ∆ = ∂2

∂ξ21
+ ∂2

∂ξ22
. Then∫

R2

∑
|`|≤2j

|T 2(
ˆ̃
hQ Γj,`)(ξ)| dξ ≤ c 2−10j ,

where the constant c is independent of j, `.
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From Lemma 4 we directly derive the following estimate.

Lemma 5 Let fQ be given as above where Q ∈ Q1
j , Γj,` be given by (16), T

be as in Lemma 4 and set Λ = I − ( 22j

2π )2 ∂2

∂ξ23
. Then

∑
|`|≤2j

∫
R3

|T 2 Λ2(f̂Q Γj,`)(ξ)| dξ ≤ c 2−10j ,

where the constant c is independent of j, `.

As in the proof of Proposition 1, we only examine the interior cylindrical
shearlet (1) in the pyramidal region P1. A direct calculation shows that

(T 2Λ2)−1e2πiξA
−jB−`k= ((1+2−2j(k1−k2`))2 +k22))−2(1+k23)−1e

2πiξA−j
(1)
B−`

(1)
k
.

For a fixed j ≥ 0, using integration by parts we have

〈fQ, ψ(1)
j,k,`〉 = | detA(1)|−

j
2

(
(1 + 2−2j(k1 − k2`))2 + k22)

)−2
(1 + k23)−1 ×∫

R̂3

(
T 2Λ2

(
f̂Q(ξ)Γj,`

)
(ξ)
)
e
2πiξA−j

(1)
B−`

(1)
k
dξ.

Let K = (K1,K2,K3) ∈ Z3 and define the set RK = {(k1, k2, k3) ∈ Z3, such
that k2 = K2, k3 = K3 and k1 satisfies 2−j(k1−K2`) ∈ [K1,K1+1]}. For each
fixed K and `, there are about 22j choices for k1 in RK (since |`| ≤ 2j). Hence
the cardinality of RK is bounded by 22j . Similar to Proposition 1, for fixed j, `,

the set {| detA(1)|
− j

2 e
2πiξA−j

(1)
B−`

(1)
k

: k ∈ Z3} is an orthonormal basis for the L2

functions with support on [− 1
2 ,

1
2 ]3Aj(1)B

`
(1). Plancherel theorem implies that

there is a constant c independent of j, ` such that∑
k∈RK

|〈fQ, ψ(1)
j,k,`〉|

2 ≤ c (1+K2
1 +K2

2 )−4(1+K2
3 )−2

∫
R̂3

|T 2Λ2
(
f̂Q(ξ)Γj,`(ξ)

)
|2dξ.

From this inequality, using Lemma 5, we have

2j∑
`=−2j

∑
k∈RK

|〈fQ, ψ(1)
j,k,`〉|

2 ≤ c (1 + |K|2)
−4
∫
R̂3

2j∑
`=−2j

|T 2Λ2
(
f̂Q(ξ)Γj,`(ξ)

)
|2 dξ

≤ c (1 +K2
1 +K2

2 )−4(1 +K2
3 )−42−10j . (22)

For any N ∈ N, by the Hölder inequality

N∑
m=1

|am|
2
3 ≤

( N∑
m=1

|am|2
) 1

3

N
2
3 (23)

Since the cardinality of RK is 22j , it follows from (22) and (23) that

2j∑
`=−2j

∑
k∈RK

|〈fQ, ψ(1)
j,k,`〉|

2
3 ≤ c (22j)

2
3 (1 +K2

1 +K2
2 )−

4
3 (1 +K2

3 )−
2
3 2−

10
3‘ j .
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It follows that

‖〈fQ, ψ(1)
j,k,`〉‖

2
3

w`
2
3
≤ ‖〈fQ, ψ(1)

j,k,`〉‖
2
3

`
2
3

=
∑
K∈Z3

2j∑
`=−2j

∑
k∈RK

|〈fQ, ψ(1)
j,k,`〉|

2
3 ≤ c2−2j .

Thus ‖〈fQ, ψ(1)
j,k,`〉‖w` 2

3
≤ c 2−3j and this finishes the proof of Proposition 2.

Fig. 2 Reconstruction of a digitized cartoon-like cylindrical solid. (a) Original solid (size
128 × 128 × 128), (b) corresponding reconstruction using cylindrical shearlets and (c) the
difference of the reconstruction from the original solid. The reconstructed solid was gen-
erated by taking the N largest coefficients in magnitude with N = 4192256. The Relative
Mean Square Error of the reconstruction is 0.020.

4 Numerical implementation of cylindrical shearlet

In this section, we illustrate the numerical advantages of using cylindrical
shearlets rather than conventional 3d shearlets when processing data whose
geometry is consistent with the model of cylindrical cartoon-like functions.
For that, we developed a numerical implementation of the cylindrical shearlet
transform f 7→ 〈f, ψ̃µ〉, where {ψ̃µ : µ ∈M} is the system (8).

Our new numerical implementation adapts the algorithmic pipeline in [6,
20] which was originally introduced for conventional shearlets and includes the
following steps.

(1) Application of the 3d Laplacian pyramid transform to decompose the input
image f into a low-pass fd and a high-pass component fa.

(2) Computation of the Discrete Fourier Transform f̂a of the high-pass com-

ponent of the image on a pseudo-polar grid, obtaining P f̂a.
(3) Application of band pass filters to P f̂a in order to achieve the partition

into appropriate directional subbands.

The main difference with respect to the 3d discrete shearlet transform in [20]
is the selection of the directional subbands since the new transform applies
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Fig. 3 Reconstruction of a digitized solid. (a) Original solid (size 128 × 128 × 128) and
corresponding reconstructions using (b) cylindrical shearlets and (c) conventional 3d shear-
lets. The reconstructed solid was generated by taking the N largest coefficients in magnitude
with N = 1638400. The Relative Mean Square Error of the reconstructions in panels (b)
and (c) are 0.0032 and 0.058, respectively.

directional filtering with respect to one angular rotation only (as illustrated
in Fig. 1) unlike the former one where directional filtering is associated with
two cone regions and two orientations.

To test our code, we first considered a discrete cylindrical region with ver-
tical z axis as shown in Fig. 2. The figure displays the N -term reconstruction
of the digitized solid using our discrete cylindrical shearlet transform and the
corresponding error. To further illustrate the approximation properties of the
cylindrical shearlet transform, we also considered a more complex discrete solid
generated by taking a star-shape region in the horizontal plane and moving
it along a spiral path, as shown in Fig. 3. Even though the surface boundary
of this solid is not independent of z and, hence, the solid does not satisfy the
definition of a cylindrical cartoon-like function, yet the dependence on z is
mild (the solid can be locally approximated as a cylindrical cartoon-like func-
tion). Fig. 3 shows the N -term reconstruction of this digitized solid using our
discrete cylindrical shearlet transform and compares it to the corresponding
N -term reconstruction obtained using conventional 3d discrete shearlets for
which we used the implementation from [20]. The quality of reconstruction
using cylindrical shearlets is clearly superior to conventional 3d shearlets.

To illustrate the approximation properties of the discrete cylindrical shear-
let transform, we plotted in Fig. 4 the relative approximation error ‖f −
fN‖22/‖f‖22 where f is the solid in Fig. 2 or Fig. 3 and fN is the N -term
approximation of f obtained from the N largest expansion coefficients in mag-
nitude. Fig. 4 shows that, as compared with a similar N -term approximation
using conventional 3d shearlets, the decay rate of the error observed for cylin-
drical shearlets is significantly faster; this behavior is consistently with our
theoretical prediction.
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Fig. 4 Reconstruction relative error EN =
‖f−fN‖22
‖f‖22

of (a) the solid f in Fig. 2 and (b)

the solid f in Fig. 3, where fN is the N-term approximation of f obtained using discrete
cylindrical shearlets (solid line) or conventional 3d shearlets (dashed line). The plots are
displayed with logarithmic axes.

A Optimal Approximation Rates

Our analysis of the optimal sparsity rate adapts the method in [5] where, for functions f
in a function class F , one considers adaptive representations in an overcomplete dictionary
Φ = {φi : i ∈ I} ⊂ L2(R2) of the form

f =
∑
i∈If

ci(f)φi, (24)

and the selection of If in I is required to satisfy a polynomial depth search constraint to
avoid situations which are computationally unfeasible. The sparsity of the expansion (24)
is measured in terms of the quasi-norm ‖c(f)‖w`p , where c(f) = (ci(f)), with the optimal
degree of sparsity being defined as the smallest p such that ‖c(f)‖w`p is bounded. Hence,
denoting by |c(f)|m the m-th largest entry in the coefficient sequence (|c(f)|), there is a
constant C > 0 such that

sup
f∈F
|c(f)|m ≤ Cm−

1
p , (25)

and no decay rate faster than m
− 1

p is possible. It follows that, if Φ is also a Parseval frame,
then, from (25) we have

‖f − fN‖2 ≤
∑
m>N

|c(f)|2m ≤ C
∑
m>N

m−2/p ≤ C N−2/p+1

and O(N−2/p+1) is the optimal decay rate as no better approximation can be achieved
under the procedure described above.

The argument in [5] to determine the optimal p for which ‖c(f)‖w`p is bounded for
f ∈ F requires to assess the value p such that F contains a copy of `p. Recall that F
contains a copy of `p if it contains embedded orthogonal hypercubes of dimension M(∆)
and side ∆ such that, for some sequence (∆k)→ 0, there is a constant C > 0 such that

M(∆k) ≥ C ∆−pk , k = k0, k0 + 1, . . .

Theorem 4 The class C2(Z) ⊂ L2(R3) contains a copy of `p for p = 2
3

.
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Theorem 4 implies that no representation system satisfying polynomial depth search
constraint can provide approximations for C2(Z) with the coefficients ‖c(f)‖w`p < ∞, for
p < 2

3
, i.e., p = 2

3
is the optimal value. It follows that, if ‖c(f)‖

w`
2
3
< ∞, then there is a

constant C > 0 such that

sup
f∈C2

|c(f)|m ≤ Cm−
3
2 ,

and no decay rate faster than m−
3
2 is possible. As seen above, the last inequality implies

that, if fN is the best N term approximation to f ∈ C2(Z) using a Parseval frame, then

‖f − fN‖2 ≤ C
∑
m>N

m−3 ≤ C N−2.

Hence Theorem 3 shows that the approximation rate of cylindrical shearlets is nearly opti-
mal. Note the rate O(N−2) is also the optimal approximation rate for functions in the class
of 2d cartoon like images [5].

Proof of Theorem 4. Since our proof follows closely the proof of Thm. 3 in [5], we
will mainly emphasize the modifications needed for our case.

Let g be a smooth and nonnegative function with compact support in [0, 2π]. For scalars
A and m(A, δ) to be determined, let gi,m(t) = Am−2g(mt − 2πi) for i = 0, 1, . . . ,m −
1. Notice that ‖gi,m‖C2 = A ‖g‖C2 and ‖gi,m‖L1 = Am−3‖g‖L1 . We introduce polar

coordinates (ρ, θ) with origin in ( 1
2
, 1
2

). For ρ0 = 1
4

, using cylindrical coordinates in R3, we
set

ψi,m(ρ, θ, z) =
(
χ{ρ≤ρ0}(ρ, θ)− χ{ρ≤gi,m+ρ0}(ρ, θ)

)
w(z), i = 0, 1, . . . ,m− 1,

where w is a C2 function with compact support. Hence, we define the radius functions
rξ = 1

4
+
∑m
i=1 ξi gi,m, where ξi ∈ {0, 1} and the corresponding functions

fξ(ρ, θ, z) = χ{ρ≤ρ0}(ρ, θ)w(z) +
m∑
i=1

ξi ψi,m(ρ, θ, z), ξi ∈ {0, 1}.

The functions ψi,m are bulges around a cylinder of radius ρ0 and have disjoint support; each
fξ is the indicator function of the cylinder of radius ρ0 plus some addition bulges. Since g
is bounded and nonnegative, a direct calculation shows that

‖ψi,m‖2L2 ' ‖gi,m‖L1 = Am−3‖g‖L1 ,

and, for each radius function rξ, ‖rξ‖C2 ≤ ‖gi,m‖C2 = A ‖g‖C2 . Hence, the hypercube
embedding is achieved whenever A ≤ Z/‖g‖C2 .

Whenever A ≤ Z/‖g‖C2 , the sidelength ∆ = ‖ψi,m‖L2 of the hypercubes satisfies:

‖ψi,m‖2L2 = ∆2 ' ‖gi,m‖L1 = Am−3‖g‖L1 ≤ Zm−3 ‖g‖L1

‖g‖C2

.

Hence, setting

m(δ) = b
(
δ2

Z

‖g‖C2

‖g‖L1

)− 1
3

c, A(δ, Z) = δ2m3/‖g‖L1 ,

it follows that A ≤ Z/‖g‖C2 and ∆ ' δ, which shows that the hypercube embedding is sat-

isfied with sidelength ∆ ' δ and the dimension of the hypercube obeys m(δ) ≥ K Z
1
3 δ−

2
3 ,

for all 0 < δ < δ0, where δ0 is the solution of

2 =

(
δ20
Z

‖g‖C2

‖g‖L1

)−1/3

, K =
1

2

(
‖g‖C2

‖g‖L1

)−1/3

.
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