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The discovery of new compounds and materials has a fundamental
impact on industrial and economic development. The discovery process
is increasingly supported by computational approaches as they provide
efficient means to uncover promising targets. In the past two decades, we
have witnessed tremendous growth in the drug discovery field due to the
implementation of virtual high-throughput screening (HTPS) techniques.
Recently, these techniques have been embraced in various materials appli-
cations, such as catalysis, energy materials, optoelectronics, photovoltaics,
etc., thereby developing into a promising tool for the discovery of next-
generation materials. In addition to the discovery of new materials, these
HTPS studies provide a solid data foundation for rational design approaches
as well as guidance for experimental partners. In this chapter, we review
recent HTPS efforts undertaken for new materials for photovoltaics, gas
separation, optical devices, and OLEDs. We also review HTPS projects
for catalyst materials for various important reactions, such as the oxygen
reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen
evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR).
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1. Introduction

In the 21st century, many technological fields have become reliant on
advancements in process automation. We have witnessed dramatic growth in
both research and industries that have successfully implemented a high level
of automation. In drug discovery, for example, it has alleviated an otherwise
extremely complex and tedious process and has resulted in the development
of several new drugs. Over the last decade, these automation techniques
have been adapted in the chemical and materials community as well with
the goal of exploring chemical space and pursuing the discovery and design
of novel compounds for various applications. As every technology/device
is connected to the performance of the materials that constitute it, the
choice of materials is crucial. This is especially true considering the high
investment costs associated with setting up mass production of a particular
material. If the choice of a material is flawed, then the technology/device
that builds on it may fail as well and result in dramatic losses. The
impact of new materials on industrial and economic development has been
stimulating tremendous research efforts by the materials community, and
embracing automation as well as tools from computational and data science
have led to an acceleration and streamlining of the discovery process. In
particular, virtual HTPS is now becoming a mainstream technique to search
for materials with properties that are tailored for specific applications. Its
efficiency combined with the increasing availability of codes, both open-
source and scalable commercial software, and large computational resources
make it a powerful and attractive tool in materials research.

HTPS is the process by which large numbers of compounds are charac-
terized and assessed in an automated fashion (e.g., in the drug discovery
context for activity as inhibitors or activators of a particular biological
target, such as a cell-surface receptor or a metabolic enzyme). In addition
to experimental screening studies, in which the enumeration of candidate
compounds and their characterization are performed by experimental means,
the field of virtual HTPS has seen tremendous growth. A number of large-
scale in silico screening projects have been conducted in the materials field
over the past few years. The key challenge in discovering new materials is that
their behavior is governed by complicated structure–property and structure–
activity relationships1–3 and that chemical space is practically infinite.4–6

Traditional research approaches alone are increasingly ill-equipped to meet
these challenges, in particular since advanced material systems require more
and more intricate property profiles.7–9 Recent efforts have demonstrated
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that the combination of HTPS and modern data-science techniques allows
us to pursue a rational design and inverse engineering paradigm that
promises to mitigate many of the prevalent inefficiencies, shortcomings, and
limitations of traditional approaches.10

A typical computational materials discovery effort includes four key
stages (see Figure 1): (i) model development, (ii) candidate library
generation, (iii) high-throughput screening, followed by (iv) data mining and
informatics analyses.

Model development: The first step in the virtual HTPS process is the
development of computational models or modeling protocols that allow us to
predict the relevant properties of material classes of interest. Computational
models can rapidly and efficiently characterize compounds, obtain key prop-
erties, and assess the performance potential of candidate compounds. These
models can be developed using first-principles quantum chemical modeling,
classical molecular mechanics and dynamics simulations, thermodynamic
models, as well as cheminformatics-type quantitative structure–property
relationship (QSPR) models. A key aspect in the model development
is the benchmarking and validation of the proposed protocols to assess
their predictive performance. Access to experimental data is not strictly
necessarily, but highly beneficial in this context. Cost-accuracy analysis is
another important issue. Once a sufficiently accurate and fast model for
the assessment and scoring of candidate compounds is established, it can
be employed to explore materials space to identify promising targets with
desirable properties/performance for the targeted application.

Candidate library generation: A prerequisite for the high-throughput
survey of materials space is access to suitable, large-scale screening libraries.
These can be created based on a set of rules using a corresponding generator
code for material candidate libraries. Other applications may require the
enumeration of molecules or chemical reaction networks. A successful

Figure 1: Key steps involved in a typical virtual HTPS project.
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approach has to balance the ambition for a systematic and exhaustive
enumeration of the combinatorial search space (which grows exponentially),
with the need for a smart, responsive, and thus efficient scheme that
focusses on the important regions of chemical space without wasting time
on irrelevant candidates.

High-throughput in silico screening: For a very long time, the
bottleneck in the overall HTPS process was the execution of large-scale
computational studies. However, more recently, an unprecedented amount
of computational resources as well as efficient codes have become available
that render in silico HTPS studies a viable proposition. HTPS codes
provide an infrastructure that can automatize the setup and execution of
thousands or even millions of calculations. They also have to be flexible
enough to accommodate a variety of research fields, modeling and simulation
engines, as well as hardware environments. A successful HTPS infrastructure
implements automation at all available levels, including handling, parsing,
and bookkeeping of the generated data, to make it as autonomous as possible.

Data mining and informatics analyses: HTPS studies result in vast
amounts of data. In addition to the immediate information obtained from
the screening studies (i.e., the identification of lead compounds that exhibit
the desired property profiles), the generated data can be mined in its entirety
using materials informatics and machine learning in order to facilitate a
deeper understanding of the underlying structure–property relationships.

A general strategy to screening material candidates is based on a divide-
and-conquer hierarchy, in which a given candidate library is filtered in a
sequential process. This process employs a series of modeling protocols
to evaluate different properties of interest and is typically sorted by
computational cost or importance. As shown in Figure 2, the candidates
are characterized, assessed, and screened at each level with respect to a
different target property. The candidates are triaged and hopeless candidates
discarded along the way, eventually resulting in a pool of candidates that
fulfill all required characteristics within a predefined set of limits. Typically,
the most computationally demanding properties are evaluated toward the
end of this process where the number of candidates has already decreased
significantly. Instead of filtering by different properties, a similar sequential
process can be used to apply modeling protocols of increasing sophistication
for the same property as the candidate pool is narrowed. This step-by-step
process helps to zoom into the target region in materials space. More
advanced and smart techniques, such as genetic algorithms (GAs) and
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Figure 2: Schematic diagram for the screening of a library of molecules to identify
promising candidates. At every level of screening, a higher level of theory (or a different
property) is applied while narrowing down the chemical space.

machine learning, provide a path to further accelerate this process. We will
discuss these techniques in detail in Section 4.

Computational HTPS has thus emerged as a promising approach
to achieving the accelerated discovery of next-generation materials for
various applications. Examples in which this paradigm was successfully
implemented and utilized include the discovery of catalytic materials for
various reactions,11 materials for energy storage,12 gas storage/separation,13

photovoltaics,14,15 thermoelectrics,16 and OLEDs.17 Some of the pioneering
work in this field was performed by Nørskov, Persson, Ceder, Aspuru-Guzik,
Snurr, Curtoralo, and others. In addition to the discovery of new materials,
these virtual HTPS efforts provide a solid data foundation for rational design
approaches as well as guidance for experimental collaborators.

In the following sections, we will review a selection of recent, high-profile
HTPS projects for new materials and catalysts. In the case of catalysts, we
focus on the HTPS studies for ORR, oxygen evolution reaction, hydrogen
evolution reaction, and carbon dioxide reduction reaction. Whereas, for other
materials applications, we emphasize on the HTPS studies for photovoltaics,
gas separation, high refractive index materials, and OLEDs.

2. Catalytic Materials

One of the key challenges for the materials community is to design new
catalysts and explore novel catalytic reactions.18,19 The area of catalysis has
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undergone considerable development, from discovery to automation, espe-
cially in high-throughput experimentation (HTE).20,21 Even though these
HTE approaches have been successful, they are limited by the exploration
space. In these techniques, robots are capable of performing thousands of
experiments; however, the outcome does not reflect the investments. This
could be explained by the fact that robots are only capable of exploring
limited grid search space, whereas the chemical space for designing catalysts
is much larger.22 Furthermore, the structure–property relationship for the
catalysts is nonlinear, which cannot be captured by grid search techniques.22

Therefore, virtual screening techniques in the catalyst design space have
received significant attention in the past decade.

The challenge in search of catalysts arises from the complexity involved
in the chemical reaction pathways. Catalysis is a multi-dimensional problem
where the process is affected by numerous variables, such as reactant’s
energies, configurations, and various transition states within each reaction
step. The complexity of this process makes large-scale HTPS studies in
catalyst design very challenging. To date, only medium-scale throughput
studies have been reported in the literature. The challenge lies in a
clear understanding of the reaction mechanism and establishing chemical
descriptors to evaluate the catalytic efficiency. Thus, a prerequisite to
performing HTPS studies for catalysts is a thorough preliminary study on
the reaction of interest.23 Advances in density functional theory (DFT)
and other computational methods evolved so many modeling techniques
that can discover descriptors of catalytic activity and other structure–
property relationships. These can be extended over a library of candidate
catalysts for their evaluation, thus leading to a form of high-throughput
computational screening. Several research groups have applied this approach
to model chemical reactions, e.g., hydrogen evolution reaction (HER) and
oxygen evolution reaction (OER) over metal surfaces.11,24–30 The aim of
these studies was to map the catalytic activity to a single descriptor,
for example, the adsorption energies of key reaction intermediates to the
catalyst surface. The agreement between these modeling studies and the
experimental data was striking, as was the mapping, which confirmed that
the most active catalysts had favorable values of the descriptors. It is,
therefore, necessary to find useful structure–property relations that will
serve as sufficient descriptors of catalytic activity for the discovery of new
catalysts.

Identifying descriptors of catalytic activity involves three major steps.
The first step is discerning the elementary steps involved in the reaction
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mechanism. The second step includes evaluation of the energetics of the
individual steps involved in the reaction mechanism. For example, in
heterogeneous catalysis, this would include the dissociation and adsorption
energies and reaction barriers for all the transition metal surfaces via ab initio
calculations. This is followed by the identification of active sites, the sites
with the lowest energy barrier. The third step is identifying the scaling
correlations between adsorption energies and the corresponding activation
energies of the transition states.31,32 These scaling relationships serve as
descriptors and can be used to quantify catalytic activity without having to
evaluate all thermodynamic parameters involved in the complete mechanism.
Once the reaction steps are understood and the descriptors are identified,
the next step involves evaluating the activities for a library of promising
candidates.

The activity of a catalyst is based on its electronic structure, and
therefore, the catalytic performance can be improved by tailoring its chemical
structure. By taking the HTPS approach, it is possible to tailor the structure
of a catalyst in a large-scale fashion. Several HTPS efforts have been
undertaken in the last decade in search of new high-efficient, low-cost, and
environmentally friendly catalytic systems for various applications.

2.1. Oxygen reduction reaction

The ORR plays an important role in energy conversion, biological respi-
ration, and material dissolution.33 Example processes include lithium-air
batteries and fuel cells,34,35 as well as polymer electrolyte membrane fuel cells
(PEMFCs).36 PEMFCs are characterized by a high-energy conversion rate,
power density, and are environmentally friendly. Performance of PEMFCs is
primarily dependent on the catalyst, a critical component in the membrane
electrode assembly. It has been shown that Pt catalysts are the most
effective for ORR.37 However, the high raw material cost currently prevents
the commercialization of this technology. Therefore, the development of
active and stable low-cost materials to replace Pt catalysts has become
the main challenge in creating viable PEMFCs. Initial attempts to replace
Pt evaluated the use of Au, Ag, and Pd-based alloys,38,39 2D materials
such as graphene sheets and dichalcogenides,23,40–44 and nanoscale alloy
particles.45,46

There are primarily two pathways for ORR: the two-electron pathway
to form hydrogen peroxide and the four-electron pathway to form water.47

The latter pathway is the most commonly observed and has been extensively
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studied in surface electrocatalysis. This pathway consists of four intermediate
steps:

(1) Reduction of O2 to form HOO∗ (O2 +∗ +H+ + e− → HOO∗).
(2) Reduction of HOO∗ to form O∗ and release of a water molecule (HOO∗+

H+ + e− → H2O + O∗).
(3) Reduction of O∗ to form HO∗ (O∗ + H+ + e− → HO∗).
(4) Further reduction of HO* to release a second water molecule (HO∗ +

H+ + e− → H2O+∗).

Among these four steps, the potential determining steps are the first
and fourth. There exists a scaling relationship between the free energy of
HO∗ and HOO∗; therefore, either of these reactions could be considered to
define an ORR descriptor. In the past, different screening studies have used
different descriptors to quantify the ORR catalytic activity. For example, one
study implemented the free energy of adsorption of oxygen as a descriptor,28

whereas another used the free energy of HO∗.48

Thorough preliminary studies on ORR reaction and the discovery of
descriptors allowed for several screening efforts for the ORR catalyst design.
It should be noted that, due to the complexity of the ORR reactions, the
scale of many of the screening efforts is low to mid-throughput.

One of the first computational screening studies for the identification
of heterogeneous metal alloy catalyst for ORR was performed by Nørskov
and co-workers.28 They performed DFT calculations on 750 binary alloys of
transition metals to compute their activity and identified several promising
candidates. However, these promising candidates were observed to be
thermodynamically unstable, using rigorous, potential-dependent stability
tests. Even though their work did not result in viable candidates, they found
an efficient screening formalism for evaluating the catalytic activity and
further established stability criteria. Their screening approach can be applied
to several other systems in a systematic manner to identify candidates that
are both highly active and stable for practical fuel cell applications. In a
recent study, a similar approach of activity and stability-based screening
was performed on Pd-based catalysts.49 They reported that Pd–V, Pd–Fe,
Pd–Zn, Pd–Nb, and Pd–Ta alloys have high stability and improved ORR
activity.

There has been growing interest in the use of carbon-based materials
(e.g., graphene sheets and carbon nanotubes42,50,51) as catalysts for ORR.
Notably, such materials are being extensively used as interfaces for creating
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metal-embedded semiconductor composites. These materials possess a large
electron-storage capacity, good electron conductivity, stability, and chemical
and mechanical strength. Favorable charge-transfer properties accelerate
charge carrier separation at the semiconductor and transfer to the catalytic
reaction sites. Graphene sheets doped with heteroatoms, such as N, B, S, and
P atoms, have demonstrated enhanced catalytic activity.50,52 Additionally,
these doped graphene sheets are highly stable and inexpensive compared to
the Pt-based catalysts.50 The reason for enhanced catalytic activity of these
2D materials is the spin density and charge density redistribution around the
heteroatoms, which arises due to the electronegativity differences between
heteroatoms and carbon.44 The redistribution of spin density and charge
density allows for the chemisorption of O2 molecules, thus aiding in the
breakage of the O–O bond.

Doping of graphene with other elements results in the generation of more
charge carriers in the system, which helps carry out the reactions and further
increases the activity. Recently, Jiao et al. studied a series of graphenes
doped with non-metal elements and evaluated their performance based on
four descriptors: exchange current density, on-set potential, reaction pathway
selectivity, and kinetic current density.43 Based on the DFT calculations,
they derived a volcano plot, similar to the plots observed in the case of
metal catalysts, between the ORR performance and the free energy of OOH∗

adsorption. The screening studies suggested that graphene-based metal-
free catalysts are highly promising for ORR and have the capability to
surpass the catalytic activity of Pt catalysts. In another recent study, van
der Waals-corrected DFT was used to screen metal-decorated graphenes for
improving the ORR activity.41 The free energy of monoatomic oxygen was
used to rank the activity of the catalysts. In their work too, they showed a
volcano plot trend, which indicates their Au-dominant Pd intermetallics have
the most catalytic efficiency, i.e., more than Pt–Pd intermetallics. In addition
to the chemical composition, they found that the size of the nanoparticles
also plays a role — an order of magnitude change in particle size resulted in
a significant improvement in the catalytic activity.

Another category of 2D layered materials, transition metal dichalco-
genides (TMDs), are also inexpensive electrocatalysts with promising
physical and chemical properties.44 Wang et al. performed computational
screening studies on TMDs, particularly on 2D MoS2 monolayers, to identify
the best catalytic activity for the ORR.44 They systematically evaluated the
catalytic activity of MoS2 monolayers doped with a series of transition metals
(TM, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Ta, W, Re, Os, Ir, Pt,
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Figure 3: Scaling relations between ΔGOOH∗ and ΔGOH∗ at the surface sites of transition
metal-embedded MoS2 surfaces.

Source: Reproduced from Ref. [44].

and Au). The results show a linear relationship between the calculated ΔG

of OOH∗ and OH∗ on various MoS2-based catalysts (see Figure 3). The DFT
results further demonstrate that the transition metal atoms strongly interact
with the S-vacancy, which modifies the electronic and magnetic properties of
the MoS2 monolayer surface. These small-scale DFT-based screening studies
revealed that the MoS2 monolayer embedded with Cu, which shows optimal
binding strength with the ORR intermediates, has the best catalytic activity
due to its minimum overpotential of 0.63 eV.

Nanoscale alloy catalysts have also been explored for ORR catalytic
activity.51 These systems are attractive since they require low Pt loading
and are shown to have efficient catalytic activity due to enhanced active
surface sites.53 Nanoscale catalysts consist of a core–shell-like structure
with the core consisting of transition metals and the shell consisting of
Pt. It was shown that ternary alloy core–shell catalysts, such as PtNiCu
and PtCuCo, have long-term stability and catalytic activity in comparison
to binary alloys.54 Furthermore, these ternary alloys have features suitable
for commercialization. An effective approach to design ternary alloys with
superior catalytic properties is to computationally screen catalysts with
varying alloying metals in the core. This will provide a better understating
of interactions between different shells, thus allowing rational design of
highly stable and durable catalysts. In a recent study, Noh et al. performed
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(a) (b)
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Figure 4: (a) Illustration of Pt skin nanoparticles. The nanoparticles consist of Pt skin,
first layer, second layer, third layer, and core atom. (b) Dissolution potentials as a function
of the size of nanoparticle of Pt, PtCu, and PtCuNi and their extrapolations into larger
particles.

Source: Reproduced from Ref. [51].

DFT calculations on 158 different nanoscale catalysts with varying binary
alloy core, using Fe, Ni, Cr, Cu, and Pt on the surface (see Figure 4(a)).51

Their results indicated that PtskinCu0.76Ni0.24 nanoparticle of 3 nm size had
better electrochemical stability than pure Pt catalyst (see Figure 4(b)). It
was proposed that the enhanced catalytic activity is associated with the
compressive strain on Pt surface and the increased electrochemical stability
of the catalyst is due to the interactions among the nanoparticle shells. The
screening approach in their study can aid in the design of high-performance
catalysts for PEMFCs and can also be applied for other kinds of catalytic
materials in a similar electrochemical environment.

2.2. Oxygen evolution reaction

OER is an important reaction in the process of water splitting. The splitting
of water molecules via the photocatalytic reaction gained momentum as a
complementary approach to photovoltaic, photothermal, and photosynthetic
production of electricity, heat, and biomass, respectively. The direct produc-
tion of fuel (i.e., chemical energy) avoids the storage and transport issue
of electrical or thermal energy and can be used in fuel cells or exhaust-free
combustion replacing non-renewable energy carriers.

In principle, the process of splitting water can be divided into two reac-
tions, namely OER (water oxidation) reaction at the anode and HER (water
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reduction) at the cathode. Of these reactions, OER is thermodynamically
unfavorable, making this reaction highly critical from the kinetics point
of view. Formation of the oxygen–oxygen bond involves the removal of
four protons and four electrons from the water molecule, and the whole
process comprises four intermediate steps. The process is a reverse reaction
of the aforementioned ORR reaction. In the first step, water is oxidized
on one of the active sites releasing one proton and one electron, resulting
in the formation of a HO∗ intermediate on the surface. This intermediate
is subsequently oxidized to form O∗. A second water molecule then reacts
with O∗ to form a superoxide intermediate, HOO∗. This new intermediate
is further oxidized to form O2. Similar to the ORR reaction, there exists a
linear relationship between the free energy levels of HO∗ and HOO∗.55 This
allows for the selection of a single descriptor for OER catalytic activity. This
descriptor, overpotential, is used as the ranking criterion in the screening of
new catalytic materials for OER.

The idea to chemically capture solar energy is inspired by natural
photosynthesis in green plants and cyanobacteria.56,57 In the natural
photosynthetic process, OER reaction is catalyzed by Mn4Ca clusters.
Therefore, it was earlier believed that the catalysts with multi-nuclear metal
centers were required to catalyze OER. As a result, a large number of
multi-metal complexes, such as tetra/di-manganese,58 tetra-cobalt,59 and
tetra/di-ruthenium,60 were extensively studied. However, a computational
screening method for the discovery of catalysts with two or more different
metal centers is not possible via a single descriptor approach. In the case
of homobimetallic species, a Sabatier analysis allows a single descriptor
for predicting the catalytic activities and realizing trends expected for the
first-row transition metal elements. However, in the case of heterometallic
systems where two different metals act as active centers, the Sabatier analysis
cannot be applied. Based on the DFT calculations of various heterobimetallic
catalysts, it was confirmed that a single chemical descriptor is not sufficient
to describe overpotential trends and the mixed-metal overpotentials cannot
be predicted based on the pure-metal redox potentials.61 The inability
to find a single descriptor makes it difficult to perform HTPS studies
on heterometallic catalysts. Therefore, in such cases, we have to expand
beyond the single descriptor analysis and further develop accurate models
to compute the redox potentials of these complex heterometallic catalytic
reactions.

Interestingly, it was later shown that it is possible to catalyze OER
using mononuclear catalysts.62 These catalysts have a similar catalytic
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efficiency as the multi-metal complexes and are significantly easier to
design, synthesize, and characterize. Additionally, single-metal sites are easy
to evaluate computationally, making them interesting targets for HTPS.
Furthermore, the relationship between the electronic structures and the
molecular geometries can be systematically studied and the effect of a
ligand on the efficiency of catalysts can be easily tailored. These remarkable
attributes of mononuclear catalysts motivated researchers to perform HTPS
studies.

Manganese-based compounds have been extensively studied for OER
due to their relevance in photosystem II, which is the active center of the
photosynthesis process. Photosystem II consists of Mn4O4Ca cubane-like
structures that are enveloped by large protein chains. Additionally, Mn is
non-toxic, abundant, and has the ability to form mixed oxides due to its
multiple valences. Mn provides optimal binding energies for various OER
intermediate reactions, thus lowering the reaction overpotential. In a recent
study, α-MnO2 doped with several transition metals were computationally
screened.63 The preferred valence at each site in that study was enforced
by addition/removal of hydrogen and hydroxyl groups. In most cases, lower
overpotentials were observed on a closely packed (110) surface. Furthermore,
they identified three different active sites (cus, bridge, and bulk) and
demonstrated that the dopants prefer the surface over the bulk sites. α-MnO2

doped with Pd exhibited the best catalytic efficiency for OER.
Nickel hydroxide-based materials have also been shown to have a good

catalytic activity for OER.64–66 Additionally, the activity of Ni hydroxide
was shown to improve when combined with other transition metals.67 This
inspired a systematic study to understand the effect of various transition
metals on the catalytic activity of Ni-based materials for OER.68 This
low-throughput screening study defined simple guidelines for the rational
design of Ni-based catalysts for OER. It was shown that Cr, Mn, and Fe
improve the catalytic activity of the Ni-based double hydroxides, whereas
Ni hydroxides with Co, Cu, and Zn have a poor catalytic activity. Ni-doped
with Mn, Fe, Co, Cu, and Zn resulted in a slight increase in the OER
overpotential of Ni sites, while Ni-doped with Cr showed a decrease in the
OER overpotential (see Figure 5). Among Fe, Mn, and Cr, the active sites
in NiFeOOH and NiMnOOH were Fe and Mn, respectively, and Ni was the
active site in NiCrOOH. In addition to theoretical studies, they synthesized
these catalysts and confirmed their catalytic activities experimentally.

Most of the earlier research in catalysis has focused on metals or metallic
oxides and their derivatives.69 However, recent attention has shifted toward
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(a) (b)

Figure 5: Sabatier-type volcano plots for Ni-based oxyhydroxide sites doped with
transition metals. The vertical differences between the dashed line and the solid lines
and/or the points provide an estimation of the oxygen evolution overpotential on the
oxides (ηOER). (a) Effect of doping on Ni sites. (b) Activity of dopants in a NiOOH lattice.

Source: Reproduced from Ref. [68].

Figure 6: Some examples of metal–organic complexes as catalyst systems.70

the vast chemical space of organic electronic compounds and metal–organic
complexes such as corroles, porphyrins, aromatic diimides, bisimides etc.
(see Figure 6).70 These compounds are particularly interesting because they
can be manipulated at the molecular level to tailor their properties. These
compounds have also shown the propensity to catalyze OER reactions, albeit
with different functional groups. This indicates a potential trend where
we might hypothesize that corrole and porphyrins with electron-donating
groups favor the reduction reactions and systems with electron-withdrawing
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groups favor the oxidation reactions. In addition to metal–organic com-
plexes, several 2D materials have also been studied for OER.71–75 The
2D network formed by benzene rings give these materials properties sim-
ilar to corroles and porphyrins, which constitute the prevalent cofactors
used in natural photosynthesis. Thus, favorable electronic properties are
combined with a superior surface morphology to give improved catalytic
activity. As mentioned before, they have shown huge improvements over
expensive Pt catalysts in the case of ORR in fuel cell systems.76 The
enhancement in OER activity is also promising when such catalysts are
used.77–79

A distinctive feature of these materials is the ability to tailor their
properties by enabling minute changes to the structure using ion doping/
intercalation, mechanical straining, and edge/defect engineering.80 Tailor-
ing such doped graphene-like structures, along with the porphyrin and
corrole-based macrocyclic compounds, could potentially lead to a large
number of potential candidates. Recently, some of these 2D materials have
been explored for OER potential, but to the best of our knowledge no
large-scale screening studies have been implemented yet. Therefore, based
on the establishment of a single descriptor, there is a huge potential for
performing HTPS studies to explore new 2D materials for efficient catalysis
in OER.

2.3. Hydrogen evolution reaction

HER is an important electrochemical reaction for various applications
including hydrogen fuel cells, electrodeposition, corrosion of metals in acids,
and energy storage by the generation of H2 from water splitting. HER
had been thoroughly investigated in the past and well-defined atomic-scale
descriptors have also been identified. Following the Sabatier principle, a
volcano shape is observed when the catalytic activity of a material for HER
is plotted against the hydrogen–metal bond strength (see Figure 7).27 This
plot shows that the free energy of adsorption of hydrogen on the surface is
a good descriptor to quantify the catalytic efficiency. High binding energy
results in strong surface adherence, whereas low binding energy results in
less hydrogen availability — both of the cases leading to a poor catalytic
efficiency. Thus, optimal hydrogen binding energy is required to achieve a
high catalytic efficiency.

Greely and co-workers pioneered the above-mentioned descriptor to
perform HTPS for HER catalysts, which included the screening of 736
distinct binary transition-metal surface alloys.81 The catalysts were ranked
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Figure 7: Free energy of adsorption of H versus the catalytic activity. Maximum activity
is observed when the adsorption energy is close to 0 eV.

Source: Reproduced from Ref. [81].

(a) (b)

Figure 8: (a) Calculated free energies of hydrogen adsorption on surface alloys and (b)
free-energy transformation values determined for each alloy against the absolute magnitude
of free energy of hydrogen adsorption.

Source: Reproduced from Ref. [81].

based on the free energy of adsorption, i.e., the closer the free energy to zero,
the better the catalytic efficiency, as demonstrated in Figure 7. A comparison
of the activity of 256 binary surface alloys, as schematically plotted in
Figure 8(a), shows that numerous binary alloys have high predicted HER
catalytic activity. In addition to the activity, they computed the stability of
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Figure 9: Negative overpotential of carbide and nitride MXenes (left and right panels,
respectively) plotted versus the free energy of hydrogen adsorption (ΔGH).

Source: Reproduced from Ref. [87].

the alloys based on four tests: estimation of the free-energy change associated
with surface segregation events, island formation and surface de-alloying,
oxygen adsorption, and the likelihood of dissolution of the alloy in acidic
environments. Based on these tests, they identified several candidates that
are both stable and active (see Figure 8(b)). Some of the top surface alloys
identified are BiPt, PtRu, AsPt, SbPt, BiRh, RhRe, PtRe, AsRu, IrRu,
RhRu, IrRe, and PtRh. This work demonstrated that stability considerations
are essential for finding candidate catalysts that are synthetically feasible.
Since this work by Greely, there have been several high-throughput efforts
that apply a similar approach to identify HER catalysts.75,82–84

Similar to the ORR and OER reactions, 2D materials have also shown
a promise for HER catalysis.85,86 A new type of 2D material, MXenes,
which comprises carbides and nitrides of transition metals, has shown huge
potential in HER catalysis. The ability to control the thickness of these 2D
systems enabled exploration of a large design space. Pandey et al. performed
screening studies on the HER catalytic activity and the stability of MXenes
of the type M2X, M3X2, and M4X3, where M is a transition metal and
X is either N or C.87 The catalytic activity was evaluated using the same
descriptor as mentioned in the previous study, i.e., using the free energy of
hydrogen adsorption (see Figure 9), and the stability is evaluated by calculat-
ing the heat of formation of MXenes. Their screening results confirmed that
the thickness of MXene is an important parameter, which could be tailored
to maximize the catalytic efficiency. Furthermore, stability studies revealed
the importance of functionalizing agents in synthesizing thermodynamically
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stable MXenes. Several MXenes with both high activity and stability were
identified using these screening studies. MXenes terminated with oxygen
were shown to have the best catalytic activity, which was further confirmed
by a screening study performed by Ling and co-workers.82 Tailoring the
surface functional groups and the transition metals of MXenes could yield
enhanced catalytic activity. Using this approach, a recent screening study
found that Mo2C-based MXenes exhibit far better catalytic activity than
Ti-based MXenes, which was further confirmed via experiments.88

Inexpensive pyrites, which are composed of the first-row transition
metals and dichalcogenide ligands (MX2, where M = Fe, Co, or Ni and
X = S or Se), have also showed good catalytic activity for HER.89 Even
for MS2- and MSe2-type pyrites, the free energy of hydrogen adsorption
is a good descriptor.89 Screening studies demonstrated that the catalytic
activity in pyrites is based on the location of d-band center energy of the
transition metal, the orbital energy split by the ligand field, and the electron
pairing penalty in the d-orbital at the same energy level. Furthermore,
the stability analyses confirmed that the transition metals in pyrites are
thermodynamically stable against electrochemical degradation, thus making
them highly promising for HER catalysis. All the above-mentioned screening
efforts exploring pyrites and MXenes for HER catalysis have paved a way
for such materials in other clean energy reactions as well.

The wide variety of systems subjected to prior research for ORR, OER,
and HER and the broad description of catalysis available through the
use of theoretical descriptors open up a world of possibilities of further
investigation in this field. Using these established reaction mechanisms and
scaling relations, one can explore the chemical space with efficient high-
throughput algorithms and locate more candidates that are interesting.

2.4. Carbon dioxide reduction reaction

One of the critical problems affecting climate change is the increase in
the CO2 levels in the atmosphere. To mitigate the issue of anthropogenic
climate change, the emerging technology of electrocatalytic reduction of
CO2 has shown immense potential. However, efficient catalysts are required
to make this technology feasible. A large number of metal catalysts have
been investigated as catalytic materials for the reduction of CO2. So far, the
catalytic activity of these metal-based catalysts is inefficient for practical
applications, and therefore, numerous non-metal-based catalysts have also
been investigated. The reduction of CO2 to CO is a two-electron step
which includes the formation of two intermediates, COOH∗ and CO∗.
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Figure 10: (a) Relationship between the binding energies of COOH and H on the catalyst.
(b) Enlarged plot to emphasize the deviations from the linear relationship.

Source: Reproduced from Ref. [90].

A strong positive correlation exists between the adsorption energies of these
two intermediates, which makes it difficult to modulate individual binding
energies. However, modification of the surface to include a covalent character
can break this scaling relation, stabilize COOH∗, and in turn lower the
reduction overpotential. Layered materials, such as graphene/graphite and
dichalcogenides, perform better than conventional metallic catalysts as they
are able to conduct electrons despite the covalent bond network. A recent
DFT-based screening study of 61 2D covalent metals showed that the scaling
relation can be entirely broken (see Figure 10).90 The screening results
demonstrated that IrTe2, RhTe2, PFeLi, and TiS2 are better catalysts than
Au for CO production, whereas LiFeAs and ScS2 show better catalytic
activity than Cu for CH4 production. Other recent screening studies for
electrocatalytic reduction of CO2 include those concerning metal-based
catalysts, bimetallic catalysts, and zeolites.91–94

Other notable reactions where HTPS is applied successfully are ammonia
production,95,96 methane activation,97,98 desulfurization,99 and acetylene
hydrogenation.100 In all these screening studies for catalysts, the level of
screening is limited to medium scale due to the complexity and high cost of
the computational methods. However, computational resources are becoming
cheaper and faster. Additionally, new developments in computational meth-
ods to study reactions allow for more accurate prediction of catalytic activity.
These developments in computational availability and method accuracy
could enable the promising avenue of performing large-scale HTPS for the
discovery and development of efficient catalysts.
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3. Other Materials

3.1. Solar materials

The increased use of photovoltaics has stimulated tremendous research
in the materials community in the last decade due to their promise in
dramatically reducing the electricity generation cost.101 Many countries
are using photovoltaics technology as an electricity source to reduce their
carbon footprint. However, it is still an expensive process when compared
with the conventional energy sources. Photovoltaics are still far away from
reaching the current energy demand. To make this technology mainstream,
we have to improve the efficiency, cost of synthesis, and the durability of
the new photovoltaic materials.102 To that end, recent research initiatives
have focused on new breakthroughs which go much beyond the existing
Si technology.103 Rather than focusing on incremental improvements in
power conversion, these novel concepts are targeting new breakthroughs by
designing novel materials with power conversion efficiencies (PCEs) that
go beyond the Shockley–Queisser limit and have improved recyclability
and resistance to degradation under extreme conditions. The key challenge
in designing such materials is understanding the complex relationship
between PCE and the structure of both the active materials as well as the
supportive materials in photovoltaic devices. HTPS approaches have shown
to uncover these relationships and aid in the discovery of novel materials for
photovoltaics.15,104–109 The two primary technologies where HTPS is being
applied are the solution-processed technologies, such as organometal halide
perovskites106,107 and organic photovoltaics.14,15,110,111 These technologies
are highly promising due to their low cost of manufacturing and good power
conversion efficiency.

Carbon-based materials have attracted significant attention as an alter-
native to conventional Si-based technology due to their low-cost, easy
processability, flexibility, and lightweight nature. However, there are still
several issues that are limiting their use in solar cells, like their relatively
low efficiency and limited lifetime.112 For such organic materials to be
accessible in practical photovoltaic devices, their efficiency needs to be
increased by 10–15% with a lifetime of greater than 10 years. The Harvard
Clean Energy Project (CEP) was established to search for such organic
materials by combining conventional modeling with strategies from modern
drug discovery.14,15 This includes a systematic HTPS of millions of organic
candidates for donor molecules at the DFT level and further applies tech-
niques from cheminformatics and data mining to uncover structure–property
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(a) (b) (c)

Figure 11: Screening results from the CEP project. HOMO and LUMO mapping of the
2.3 million molecular motifs on a (a) linear and (b) logarithmic scale. Panel (c) shows the
resulting PCE histogram according to the Scharber model with respect to a phenyl-C61-
butyric acid methyl ester acceptor.

Source: Reproduced from Ref. [15].

relationships. The ranking of the candidates is performed by employing the
Scharber model,113 which is a specialized version of the Shockley–Queisser
model for organic photovoltaics.114 The inputs for this model are the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO). Even though the Scharber model is too simple to account
for the complex underlying physics, it provides a metric to identify promising
candidates from the initial screening of a large candidate library. Within
the Scharber model with a standard phenyl-C61-butyric acid methyl ester
acceptor, the theoretical limit was calculated as 11.1%. The optimum HOMO
and LUMO parameters required for this limit are −5.41 and −4.00 eV,
respectively. HOMO and LUMO values of 2.3 million candidates screened in
the CEP project are shown in Figure 11. The range of HOMO and LUMO
values for this library is quite broad, as is apparent in Figure 11(b). However,
very few candidates are confined in the parameter space for high-performance
materials (marked by the white circle). Among the 2.3 million compounds,
about 1,000 candidates exhibit a PCE of 11% and higher, while the majority
of the candidates demonstrate a PCE of less than 4% (see Figure 11(c)).
Using cheminformatics and data mining techniques, building blocks such as
thiadiazoles and silaindenes were shown to have ideal energy-level alignment
for the most promising organic photovoltaics donor materials. Thus, this
unprecedented screening study for organic photovoltaics not only identified
the top candidates but also demonstrated design rules that are required
to discover next generation of high-performance photovoltaic materials.
Furthermore, the techniques built in this work have laid a foundation for
the active design and engineering of new molecular materials using HTPS
for various applications.
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Another key challenge in the development of organic photovoltaics is
the design of a suitable acceptor material.110,115 Fullerenes are the most
commonly found acceptors in high-efficiency solar cells. However, very few
donor materials energetically match with fullerenes, thus limiting the search
space of donor molecules. One remedy is to develop alternative acceptor
molecules which allow us to tailor the maximum LUMO energy offset. One
of the alternatives is Acenes, widely studied for organic semiconductors,
whose LUMO can be easily tailored by the addition of electron-withdrawing
substituents such as nitro, cyano, and halide groups, or by substituting
CH with nitrogen into the molecular framework.116,117 Halls et al. applied
the latter approach to investigate the effect of nitrogen-substituted pen-
tacenes for potential electron acceptor materials.110 The candidate library
was developed using the MS Combi structure enumeration module118

of Schrödinger Materials Science Suite.119 The electronic properties were
evaluated in an automated fashion using the Jaguar DFT package.120 The
results from their screening study yielded few exemplary pentacene acceptor
candidates, which were further evaluated with respect to their electron
reorganization energies. The automated workflows, to explore the molecular
design space, implemented in their work demonstrate their potential to
efficiently accelerate the materials discovery process. Schrödinger’s structure
enumeration tool as well as the automated Jaguar workflow are extremely
powerful, proving to be highly promising for the discovery of materials in
other applications.110,121–126

The organic–inorganic hybrid perovskites are another class of materials
that have emerged as promising next-generation solar cells.127 A recent spike
in the interest of perovskite materials is due to their rapidly increasing
PCE (4–22% PCE in less than a decade).128 This performance enhancement
is due to the intrinsic properties of halide perovskites whose monovalent
cations are contained inside the cuboctahedral cell of metal halides (MX6).
Due to this structural symmetry and the direct band gap p–p transi-
tions, halide perovskites exhibit excellent charge-transfer properties, large
absorption coefficient, and long electron–hole diffusion lengths. But, their
short durability along with toxicity concerns is limiting their marketability.
Fortunately, the crystal configuration of perovskites can be controlled to
create new structures that are more durable and non-toxic along with
enhanced optoelectronic properties. Depending on the cationic valence states
and volume ratios, the number of possible combinations is in the order of
tens of thousands. For example, the number of combinations for (i) AMX3
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is greater than 24,000, (ii) A3M2X9 is greater than 31,000, (iii) A2MX6

is greater than 22,000, and (iv) A2MM′X6 is greater than 9,000, where
A is the organic/inorganic component, M is the metal, and X is a halogen
element.107 Thus, with a multitude of possible configurations, perovskites
are attractive materials space for HTPS. Consequently, several HTPS efforts
have been undertaken which include the screening of perovskites candidates
in order of hundreds.111,129–133 A typical down-select recipe for the HTPS of
perovskites includes the selection of perovskite structure (≈105 structures),
creating a library of possible configurations (≈104 structures), stability
screening (≈103 structures), optical response calculations (≈102 structures),
charge mobility calculations (<100 structures), and excited state calculations
(<40 structures), followed by experimental testing (<10 structures). In
a very recent study, Nakajima et al. screened 11,025 configurations of
AMX3- and A2MM′X6-type perovskites.106 Based on their screening studies,
they identified 51 of the most promising halide single and double perovskites
that are also environmentally friendly.

Another recent HTPS study by Korbel et al.134 involved screening
of more than 32,000 cubic perovskite combinations (ABX3 type) to find
thermodynamically stable compounds. They filtered the compounds down
to 199 based on their photovoltaic, piezoelectric, and magnetic properties,
of which 128 were contained in current experimental databases and 71 were
entirely new combinations with a very high performance potential. This
screening study further confirmed the promise of perovskite materials for
solar applications.

Hautier et al. studied transparent conducting oxides (ternary and binary)
to establish design rules on a much broader scale incorporating the
influence of chemistry on overall conductivity, considering several atomic
descriptors.135–137 One of the major descriptors is effective mass, which is a
cautious approximation for describing the mobility as noted by the authors
themselves.138 Furthermore, the localizing nature of electrons and holes in
transition metal oxides is computationally inhibitive for the HTPS study.
A major area of research currently accounts for charge localization in such
transition metal oxides instead of applying band transport approximation,
so that screening studies generate efficient compounds.

Despite these large-scale HTPS efforts, the screening strategies for the
discovery of new solar cell materials are still in their infancy. Nevertheless,
these studies have established efficient protocols to screen for promising
candidates and therefore can be extended to other perovskites as well as
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other class of materials.139–141 Future HTPS studies can incorporate other
properties (in addition to band gap and stability), such as band alignments,
dielectric constants, and optical properties, in the rational design scheme to
discover new-generation high-performance perovskites.

3.2. Gas separation materials

As a result of burning fuels, there is a massive amount of CO2 being released
into the atmosphere. As it is difficult to cut the emissions, an easy and
efficient approach to reduce CO2 release is to separate and capture it from
the mixture of gases like the flue gas from power plants. Several tech-
niques including adsorption, absorption, distillation, and membrane-based
separations have been used for gas separation. Recently, membrane-based
technique attracted attention as it offers high efficiency, easy scale-up and is
environmentally friendly. Metal–organic frameworks (MOFs) — crystalline
porous materials composed of metal atoms and organic linkers — have
interesting physical and chemical properties such as high porosities, large
variation in pore size, and large surface area, which make them greatly
promising for gas separation. MOFs with different pore sizes and shapes
can be synthesized by controlling the combination of metal clusters and
the organic blocks. Thus, HTPS approach is a systematic way to discover
MOFs with high efficiency in CO2 separation. Some of the HTPS studies
undertaken in the past for the separation of CO2 from other gas mixtures
are listed in Table 1. In addition to CO2 separation, HTPS techniques are

Table 1: HTPS efforts in the past to discover MOFs and zeolites for gas separation.

Number of structures screened Gas separation Reference

130,000 MOFs CO2/CH4 143
>10,000 zeolites CO2/CH4 149
199 zeolites CO2/CH4 150
≈500 MOFs CO2/N2 151
≈300,000 zeolites CO2/N2 152
1,800 zeolites library, 225 screened CO2/N2 153
3,806 MOFs CO2/N2/H2O 154
4,764 MOFs CO2/N2/CH4 147
137,953 MOFs library, 17,257 screened CO2/N2/CH4 155
3,816 MOFs CO2/N2/CH4 156
5,109 MOFs library, 531 screened CO2/H2 157
3,857 MOFs CO2/H2 148
4,350 OFs CH4/H2 142
137,953 MOFs library, 2,777 screened NH3 capture 158
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also being adapted to design materials for the separation of other gases such
as H2, CH4, NH3, and I2.

Numerous computational models have been developed to evaluate gas
separation/capture. The most commonly used metric to evaluate adsorbents
is adsorption selectivity, the ratio of the content of the adsorbed gas in
the adsorbent normalized by the ratio of the bulk phase content of compo-
nents.142,143 Other metrics that are also used for adsorption quantification
are working capacity,144 adsorbent performance score,145 sorbent selection
parameter,146 and regenerability. Working capacity, a typical metric for
strong adsorbents, is the difference between the loading at the adsorption and
desorption pressures. The adsorbent performance score is simply the product
of the adsorption selectivity and working capacity. The sorbent selection
parameter consists of two parts: ratio of the working capacity and the
ratio of selectivity of the sorbent (for the strongly adsorbed species) at the
equilibrium. Regenerability metric identifies the adsorption site regeneration
when the desorption step is ongoing. These metrics have been used to
rank the materials for gas adsorption. As these metrics are well defined,
they have been implemented to select lead candidates in HTPS studies.
Grand canonical Monte Carlo (GCMC), a combination of Monte Carlo and
molecular dynamics method, is a typical computational approach to study
the adsorption, diffusion, and permeation of gases into bulk materials. All
the above-defined metrics can be calculated using this method.

One of the first HTPS studies on MOFs was performed by Wilmer
and Snurr, in which they screened 130,000 MOFs for CO2 separation.143

This work established the evaluation criteria for gas separation, while also
presenting structure–property relations to guide the experimental synthesis
of promising MOF candidates. In another study, 4,764 MOFs were screened
for membrane separation of a CO2/N2/CH4 gas mixture using the GCMC
method.147 Their work introduced a decision tree modeling technique to
guide the screening, while principal component analysis and multiple linear
regression methods were implemented to identify the structure–property
relationships. They identified seven MOFs which demonstrated efficient
separation of both CO2 and N2 from CH4, and therefore, are the most
promising materials for upgrading natural gas. Another recent study applied
GCMC to screen 3,857 MOFs to identify top candidates for the separation
of CO2/H2 mixtures.148 The structure–property relations from their study
demonstrated that the best separation of CO2 occurs for MOFs with low
porosities and narrow pore sizes and the H2 separation is dominant in
membranes with high porosities and large pores.
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A recent work by Altintas and co-workers included HTPS studies on
MOFs for the separation of methane and hydrogen gas mixture.142 They
performed GCMC calculations on 4,350 MOFs, which were extracted from
the Cambridge Structural Database and ranked them for their performance
on CH4/H2 separation. Several MOFs were shown to exhibit very high
CH4/H2 selectivities in comparison to the conventional adsorbents including
zeolites and activated carbons. In addition to identifying the top candidates,
they also identified the structure–property relationships such as the relations
between pore sizes, surface areas, heat of adsorption, adsorbility, and type
of metal in MOF and their selectivities.

Zeolites have also been extensively studied for gas separations, and several
HTPS studies are reported in the literature, especially for CO2 separation
(see Table 1). In addition to MOFs and zeolites, Lin et al. performed HTPS
to quantify the selectivity and capacity of CO2 absorption in ionic liquids.159

They used Henry’s law constant, the product of infinite dilution activity
coefficient of CO2 molecule in the ionic liquid, and the gas fugacity as the
ranking metric for the screening. They screened 2,080 ionic liquids that were
made by the combination of 65 cations and 32 anions using this simple
method. Their model is shown to be highly powerful and less computationally
demanding, which could be used to study new ionic liquids for efficient CO2

capture.

3.3. Optical materials

Organic small molecules, oligomers, and polymers are emerging materials
that feature many attractive properties in comparison to the conventional
inorganic materials. Optical devices made from organic polymers are gener-
ally flexible, mechanically stable on impact, light-weight, and inexpensive to
produce. This has resulted in increased efforts to utilize these compounds
in many different application domains, including optic and optoelectronic
devices in which they can be introduced in situ as microlenses, waveguides,
micro-resonators, interferometers, anti-reflective coatings, optical adhesives,
and substrates. However, most of these devices require materials with a
refractive index (RI) greater than 1.7, while typical carbon-based polymers
only exhibit values in the range of 1.3–1.5. This provides an incentive
to discover or design new high-refractive index polymers (HRIPs) for the
aforementioned applications. Since the properties of organic polymers can be
tailored by controlling their molecular structure, they are prime candidates
for a rational design target.
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One of the prominent examples in the context of polymers for optoelec-
tronic applications is the work by Ramprasad and co-workers.160,161 Their
work included a screening of 1,073 polymers, which were collected from
other existing sources, using first-principles DFT computations. From the
screening studies, they computed the dielectric constant, atomization energy,
and the energy band gap of these polymers. The primary goal of these
screening studies was to generate sufficient data from the DFT calculations
to be used to develop machine learning models.162 These models were then
used to evaluate the optical properties of thousands of new polymers. The
methodology applied in this work can be extended to a different class of
material, given there is enough data to train the model and easily extractable
fingerprints that can be formulated.

In recent years, polyimides (PIs) have been shown to have favor-
able electronic and mechanical properties that could form potential
HRIP candidates. Despite showing inherently low RI values leading to a
lack of present applicability, PIs have other attractive properties.163,164

PIs exhibit exceptional thermal stability and ease of processability.165,166

These properties are complemented by their favorable mechanical stability,
flexibility, flame resistance, radiation resistance, and their sufficiently high
molecular polarizability — properties which would allow for potential use
in optoelectronics.167,168 The optical properties of PIs can be improved by
several methods.169 One such technique is to control the chemical structure
of PIs to allow for a precise tuning of optical properties, in particular
by increasing their RI values.170 In a very recent study, we applied the
computational approach to study the RI of PIs and explore techniques
that introduce highly polarizable moieties into the polyimides framework
to create a new class of high-RI PIs. To facilitate RI evaluation of our large
pool of candidates in a timely manner, we used our virtual high-throughput
screening framework, ChemHTPS.171 ChemHTPS creates inputs, executes
and monitors the calculations, parses and assesses the results, extracts and
post-processes the information of interest, inserts the key outcomes into the
project database, and archives all other data. This in silico methodology was
implemented to create and characterize a large number of PI candidates at
a fraction of the time and cost of traditional studies.

The RI prediction model, used to characterize PI candidates, was based
on a synergistic combination of first-principles calculations and machine
learning.172,173 The model was validated using experimental RI values of
112 polymers, which show that it is in excellent agreement (R2 = 0.94) with
the experimental results. Figure 12(a) elucidates the relationship between
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polarizability and number density of these 112 polymers. The contours
(for constant RI values) in this plot demonstrate an inverse proportionality
relationship between the number density and the polarizability. Preferable
high-RI region happens when both the polarizability and number density
are sufficiently high, i.e., toward the contour line (arrows) as shown in
Figure 12(a). In our approach, we selected the structure of PIs such that the
density is fairly constant, and increased the polarizability values by including
highly polarizable aromatic structures.

Using the building blocks shown in Figure 12(b), we created a library
of R1 and R2 candidates and evaluated the RI values of these candidates
by casting into ChemHTPS. We picked the top candidates of R1 and R2

and created a library of 100,000 PI candidates.171,173,174 Most of the PI
candidates exhibited RI values between 1.5 and 1.7, which means that
there is a strong possibility of obtaining molecules with such RI values
using empirical approaches. However, this screening study demonstrated
that we can use computational techniques to identify candidates that
possess RI values greater than 1.8. Other than identifying HRIP candidates,
understanding the underlying structure–property relationships would enable
us to discern candidates with optimal RI values. This would help us create
a special subset of candidates for experimental testing. To that end, we
evaluated the contribution of each building block toward a targeted property
to identify a favorable building block. The results indicated that certain
building block combinations are highly promising in the design of HRIPs.
These design guidelines allowed us to target specific molecular motifs and
create next-generation polymers with exceptional optical properties.

3.4. Organic light-emitting diodes

Organic light-emitting diode (OLED) technology is becoming highly attrac-
tive for lighting devices and display devices due to their superior color
properties and efficiency. The light from OLEDs is emitted due to the
relaxation of singlet excitons in the electroluminescent molecules that are
present in the emissive layers. Current devices based on OLED technology
use high-cost iridium-based metal complexes in these emissive layers. This
is because iridium induces high spin–orbit coupling, which is vital for
capturing all the singlet and triplet excitons, allowing for 100% energy
transformation to light. However, there are two critical issues with the
iridium complexes: the high cost of iridium and stability issue of these
complexes for blue light emission, which limits their mass production.
Therefore, an alternative OLED mechanism, thermally activated delayed
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Figure 12: (a) Relationship between polarizability and number density along with the
projection of 112 polymer values. (b) Building blocks used to create the library of PIs.

Source: Adapted from Refs. [171,172].
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fluorescence (TADF)175 was proposed that allows for harvesting all singlet
and triplet excitons in the lowest emitting singlet state.176 The primary
advantage of this mechanism is that high efficiency can be achieved by the
use of purely organic molecules, thus making such devices significantly low
cost compared to Ir-based OLEDs.

For an organic molecule to be used as a successful TADF material,
it should meet certain criteria.177 These criteria include small separation
between the triplet state and the singlet state, maintain a weak HOMO–
LUMO overlap, homogenous HOMO–LUMO overlap over the TADF
molecules, and fast TADF decay, which require both fast down-intersystem
crossing and fast up-intersystem crossing. The above properties for potential
organic molecules can be evaluated using DFT calculations, thus allowing
for computational screening of candidates. Furthermore, the ability to
tailor the structure of organic molecules makes this highly attractive for
HTPS. Consequently, several large-scale HTPS studies were undertaken
in the past few years to identify promising organic candidates for TADF
technology.126,178–184

One of the first HTPS efforts of organic molecules for OLEDs consisted
of oligothiophene derivatives capped with different end groups.184 The
authors of this work used a semi-empirical method, PM6, to evaluate the
HOMO, LUMO, and the band gap of the library of molecules. Semi-empirical
methods are less computationally demanding, thus allowing large-scale
screening. Although the accuracy of these methods is poor, they can provide
quick insights into the structure–property relationships and aid in reducing
the chemical search space. This initial screening study suggests that the
end-capped groups can be tailored to obtain targeted properties.

The molecules with TADF character consist of a donor block and an
acceptor block, which are required for efficient thermal reverse intersystem
crossing, i.e., for efficient thermal repopulation of emissive singlet state.
The high efficiency is due to the low difference in the singlet–triplet gap
caused by charge-transfer excitation. Thus, a simple recipe of donor–bridge–
acceptor can be used to design new TADF molecules. This recipe was
implemented by Aspuru-Guzik’s group to create a library of 1.6 million
organic molecules and was used to perform one of the largest screening
studies for OLEDs. As 1.6 million molecules are large for performing time-
dependent density functional theory (TD-DFT) calculations, they use a
machine learning approach to narrow the screening space. Initially, 40,000
randomly chosen molecules were screened and the resultant data were used
to develop a neural network model. This model was subsequently applied
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to the complete library, and the top candidates were subsequently validated
using TD-DFT calculations. The new TD-DFT data were then included
in the training set to develop new and efficient neural network models.
In total, 400,000 TD-DFT computations were performed in this screening
study. A single target property, upper bound on the delayed fluorescence
rate constant, was used to rank the molecules. More than 1,000 candidates
were identified whose performance exceed 22% external quantum efficiency.
Such a large-scale screening not only identified promising candidates but also
provided chemical insight into the intrinsic limitations of TADF molecules.

Other areas where HTPS has been successfully applied include battery
materials,185–189 photoabsorbers in water splitting,190,191 scintillators and
nuclear detection,192,193 topological insulators,194,195 piezoelectric mate-
rials,196,197 viscoelastic materials,198 thermoelectric materials,199,200 and
magnetic materials.201

4. Smart Screening Techniques

The down-select strategy, as shown in Figure 2, requires a large initial
library of candidates. Instead of exploring a large chemical domain in
its entirety, it is useful to narrow the search space to a region where
candidates are most promising and synthetically viable. This can be achieved
by augmenting the combinatorial schemes by a number of modules that
make use of additional input. One approach is introducing constrained
growth schemes that continually prune the generation process to create more
accessible or desirable candidates. In this scheme, molecules are rejected
at every generation to limit the growth of molecules. The rejection could
be based on constraints like the exclusion of certain structural patterns
or substructures, fingerprint matching, building block combinations, or
sequences. This approach can be seen in the several HTPS efforts that are
reviewed in this chapter.

In many applications, due to enormous chemical space, applying above-
mentioned generation constraints might still lead to a large number of
unwanted molecules in the library. Applying smart algorithms, such as
evolutionary algorithms, can narrow down the chemical space to a more
targeted region. A schematic representation for the pruning of molecular
libraries is shown in Figure 13. Genetic algorithm (GA) approach is one
of the most commonly used algorithm for smart screening. GA employs an
on-the-fly prescreening through rapid candidate assessment via DFT, MD,
or data-derived prediction models. GA starts with an initial set of candidates
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Figure 13: Schematic representation for the pruning of molecular library at every
generation by use of smart algorithms.

and creates better candidates in every successive generation. Continuing the
process for several generations results in a library that is tailored for the
targeted application. Due to its efficiency in accelerating the process of mate-
rials discovery, the GA approach gained significant attention in recent HTPS
efforts.141,202–210

In the context of finding ideal p- and n-type materials for organic
photovoltaics, the challenge arises due to the enormous molecular space,
estimated to be more than 1060 molecules. As it is not feasible to enumerate
such a huge library, an efficient way is to reduce the space by applying GA.
Hutchinson and co-workers applied GA to design and discover promising
candidates for organic photovoltaics.205 They further accelerated the process
of screening by using fast computational methods in the initial steps of GA.
Among the 2 million molecular combinations considered in their work, only
4% of the molecules were eventually sampled by GA. But, ≈ 70% of those
candidates were shown to have optimal properties, exhibiting a dramatic
improvement over brute force methods.

In the case of MOFs, the key challenge lies in the selection of the optimal
groups to functionalize for a particular application. The difficulty in the
selection is due to the huge molecular space, e.g., the number of possible
combinations could easily reach over 2 million when 40 functional groups
are considered. Collins et al. applied the GA approach to screen 1.65 trillion
MOF structures for designing candidates with efficient CO2 uptake.203 The
total number of structures that were finally selected by GA were about
500,000. Their study yielded more than a thousand structures that have
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exceptional CO2 uptake (> 3.0 mmol/g). In addition to the above two
examples, smart algorithms have been successfully applied in the screening
of materials for other applications, e.g., catalysis,207–209 conductors,211 and
water splitting.141

5. Conclusion and Outlook

While conventional material modeling and simulations are by now well-
established elements in the toolbox of the materials research community, we
can still consider virtual HTPS approaches an emerging technique. The for-
mer offer an efficient means to characterize material candidates and uncover
promising targets for the more time-, labor-, and resource-intensive work in
the laboratory. They can further provide a fundamental understanding of
new findings that is outside the purview of empirical studies. Their focus
on individual material candidate has, however, been limiting the utility of
computational research. With the pursuit of virtual HTPS approaches, the
community seeks to overcome some of these limitations.

The HTPS studies reviewed in this chapter demonstrate how new mate-
rials and catalysts with tailored property combinations can be discovered by
this data-driven approach and how these new materials can facilitate a range
of target applications. They also yield novel insights and provide systematic
guidance to support the study and selection of highly promising domains in
materials space.

The next frontier is to further develop the field of machine learning and
data mining that is ideally suited to harness the large-scale datasets that
result from computational HTPS studies. Despite some impressive pioneering
work in this very young field, there is still a distinct disconnect between the
promise of using modern data science in materials research and the realities
of everyday research in the community, where data-driven work does not play
a significant role yet. Advances in both HTPS and machine learning and the
tight integration of these fields promises to have a considerable impact for
the future of materials research.
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