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Abstract We present a new method for the stable reconstruction of a class of
binary images from a small number of measurements. The images we consider
are characteristic functions of algebraic domains, that is, domains defined as zero
loci of bivariate polynomials, and we assume to know only a finite set of uniform
samples for each image. The solution to such a problem can be set up in terms
of linear equations associated to a set of image moments. However, the sensitivity
of the moments to noise makes the numerical solution highly unstable. To derive
a robust image recovery algorithm, we represent algebraic polynomials and the
corresponding image moments in terms of bivariate Bernstein polynomials and
apply polynomial-generating, refinable sampling kernels. This approach is robust
to noise, computationally fast and simple to implement. We illustrate the per-
formance of our reconstruction algorithm from noisy samples through extensive
numerical experiments. Our code is released open source and freely available.
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reconstruction - Refinable kernels
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1 Introduction

In this work, we present an improved method for the sampling and recovery of
a class of binary images of the form I = xp, where D C R? is a bounded open
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region whose boundary 9D is an algebraic curve of degree n, i.e., the zero locus of
a bivariate polynomial p of degree n:

0D = ( (z1,z2) € R?: p(z1,72) = Z a; j zh mJQ =03. (1)
0<4,5,i+j<n

We refer to such region D as an algebraic domain or algebraic shape and, without
loss of generality, we assume that it is contained inside the rectangular region
2 =1[0,L1] x [0, Lo] C R

By classical results [12], an algebraic curve of degree n as above can be uniquely
determined from its set of two-dimensional moments

M; ;= /Q xllm% I(x1,z2) dz1 dxa (2)

of order less than or equal to n. An algorithmic approach for the reconstruction of
bounded algebraic domains from their moments was first presented in [10,19] but
this approach is very sensitive to noise. Even though it was shown that one can
improve the stability of the reconstruction by increasing the number of moments
[15], the problem of recovering an algebraic domain remains unstable in the sense
that small errors in the computation of the image moments may have a significant
impact on the recovery algorithm.

In this work, we adopt the setting recently proposed in [9] where it is assumed
that we have access only to a discrete set of uniform samples of the binary image
I = xp, that is, input data are of the form

dp = % /Qf(x)¢v(% _k)de, ez (3)

where ¢ : R? — R is an appropriate sampling kernel and T > 1 is a parameter.
The problem we consider is whether we can recover the exact image I and, hence,
the corresponding algebraic curve dD from an adequate set of noiseless or noisy
samples {dj }, given the sampling kernel ¢ and the sampling rate 7', where 7" may be
large; that is, the image I may be heavily down-sampled. As in [9], we assume that
¢ is polynomial generating up to a certain degree m, that is, there exist coefficients
cka) such that

Z c,(ca)qﬁ(m—k) =2z, for |a| =0,...,m. (4)

kez?

Fatemi et al. [9] show that, under the assumption stated above, one can express
the image moments (2) as appropriate linear combinations of the image samples
(3), where the coefficients of the linear combinations depend on the sampling kernel
¢. Hence, they derive a system of linear equations for the recovery of the algebraic
shape of the form

Ma =0, (5)

where a is the vector of the unknown polynomial coefficients {a;;} in (1) and
the matrix M consists of the computed moments (2). It turns out that the direct
numerical solution of (5) recovers the polynomial coeflicients if the image moments
are computed from noiseless image samples. However, if the image samples are
corrupted by even a small additive noise, then the numerical reconstruction fails
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in general. To remedy the instability of the recovery, Fatemi et al. [9] introduced
a modified formulation based on ‘generalized moments’ leading to a constrained
optimization problem that is solved using an iterative regularized reconstruction
algorithm.

The instability of the solution of the system (5) can be explained by observing
that the process of converting image samples into image moments can be very
sensitive to noise. We contend that this sensitivity is highly dependent on the ba-
sis selected for the representation of the algebraic curve and so the impact of the
noise can be reduced by choosing alternative polynomial representations. Hence,
to derive a more robust method for the recovery of an algebraic curve from the
corresponding image samples, we introduce a novel approach that represents an
algebraic curve in terms of non-separable bivariate Bernstein polynomials. It is
already known that representations in terms of Bernstein polynomials can provide
enhanced stability in problems from numerical analysis (cf. [8,22]) and our results
are consistent with this general observations. Using our representation of algebraic
domains in terms of Bernstein polynomials, we derive a new formulation of the
image moment equation (5) that we can solve directly to recover an algebraic do-
main from noisy image samples. We show that the numerical reconstruction based
on our algorithm is robust to noise and, while its reconstruction performance is
comparable with the best regularized algorithm in [9], it is computationally much
faster and simpler to implement. This is particularly true in the situation where we
use refinable sampling kernels which are polynomial reproducing due to the costless
computation of the expansion coefficients in (4). In addition, our method is more
flexible as it applies to algebraic shapes of any degree and to image samples with
different noise levels without the need for noise-specific parameter tuning that is
required by a regularization approach.

To provide a broader context to this work, we recall that the problem of ac-
curately recovering image boundaries or edges from image samples has gained
renewed interest in recent years with the study of signals with finite rate of in-
novation (FRI). This area of investigation is concerned with signals that are not
band-limited, hence do not satisfy the assumptions of Shannon sampling theory;
however, they can be described with a finite number of parameters so that they can
still be recovered from their samples using appropriate alternative strategies [2,17,
27]. In an effort to apply the FRI framework to images, a number sampling schemes
with different sampling kernels were proposed to recover special classes of images
with edges [3,20,23,29]. While prior results were mostly focused on images with
polygonal shapes or edges associated with finite sums of complex exponentials, the
more recent work in [9] was the first to consider a rather general class of binary
images associated with algebraic domains. We also recall that the application of
image moments to signal processing and pattern recognition has a long history
with a number successful applications to problems including shape analysis for
aircraft identification, scene matching, character recognition, landmark detection
and image retrieval [11,21,24,26,30].

The rest of the paper is organized as follows. In Section 2, we recall some basic
properties of Bernstein polynomials and formulate the problem of the recovery of
an algebraic curve in Bernstein form from the solution a set of moment equations.
In Section 3 we formulate the computation of the Bernstein moments in terms
of image samples (3). Finally, in Section 4 we present numerical experiments to
illustrate the performance of our algorithm in reconstructing binary images of
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algebraic domains from noisy, including low to moderate noise levels, different
down-sampling rates and a range of sampling kernels. Numerical results show that
the reconstruction performance of our approach is very competitive with respect
to the regularized reconstruction in [9] at a much lower computational cost.

2 Reconstruction from Bernstein moments

In this section, we derive a Bernstein representation of a bounded open algebraic
domain D = {z = (z1,x2) € R* : p(z) < 0}, where p is a bivariate polynomial of
degree n > 1. For such a domain, the boundary 9D is the algebraic curve

8D={x€R2: p(w):O}.

It is known that there are many polynomials producing the same boundary. In
the following, we will show that it is possible to establish conditions so that the
moments of D can be used to derive a unique polynomial p associated with its
boundary

We assume that D is contained inside a rectangular region 2 = [0, L1] x [0, La].
Since non-separable Bernstein polynomials (see [8,14]) are defined on triangular
domains, rather than considering (2 as the union of two triangles sharing a common
edge (and thus considering a piecewise Bernstein representation of p), we adopt
here the simpler and less expensive solution of embedding {2 into a triangle T7,
with vertices (0,0), (L,0), (0,L), where L = L1 + Lo, as illustrated in Fig. 1.

L,

0 Ly L

Fig. 1 The domain D of our algebraic curves is contained inside the rectangle 2 = [0, L1] x
[0, L2], which we embed inside a triangle with vertices (0,0), (L,0), (0, L).

We then can write

n n—i
plar,x2) =) D bij Blj(e1,02), @1,02 €Ty, (6)
i=0 j=0
where
1 [n n—1\ ; 4 —i—j
Bzfj(xlﬂ):m(i)( J )”lej (L—a1—22)"", @,20€Ty. (7)

The (”'2"2) free parameters for the Bernstein representation of p in 2 C Tp can
be obtained by considering the binary image I = xp. To this purpose, we fol-
low the arguments from [15] in order to derive conditions for the boundary 8D
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represented in terms of Bernstein polynomials. We start by recalling the Stokes’
theorem according to the generalization due to Whitney [28].

Theorem 1 Let D C R? be bounded and open, with boundary 0D that is smooth up to
a set of measure zero in R. Let n(z) be the outward pointing normal to D at x € OD.
Then, given a vector field X on R? and a differentiable function f, we have

/V-Xf(ac)der/X-Vf(x)dm: X -n(z)f(z)ds.
D D

oD

We next take f(z) = z%p(z), where o € N? and p is a polynomial of degree
n > 1 vanishing on dD. Letting X = = = (x1,22) (vector field in R?), Stokes’
theorem gives the following:

2+ |af) /D x%p(x) dx + /D z% (z - Vp(z)) dz = 0. (8)

We now consider that p is given as in (6) and make use of some straightfor-
ward properties of the Bernstein polynomials (for details, see [14]) recalled in the
following propositions. The first property is related to the multiplication of a Bern-
stein polynomials with a monomial factor. The second result concerns the partial
derivatives of Bernstein polynomials.

Proposition 1 For a fized o € N2, |a| = a1 + a2, the following equality holds:
. +
x® B'j(z) = q:ja Bfﬂli‘jJraz (z), zeTyg (9)

where
o L|a\ n! (7' + 051)! (J + 052)!
4i.j 5 (n+ la])!

(10)

Proposition 2 The partial derivatives of the polynomial Bgfj with respect to the vari-
ables x1,x2 are respectively given by

()= 7 (B;L_—l{j(x) — BN @)) = n, =0,

d _n n

1 1 R . .
g B@ =7 (B;jj_l(m) - B (m)) i=0,....n, j=0,...,n—i,
with the convention that B;';(x) = 0 whenever i <0, i >n, j <0,j > n.

From the expressions above in particular we derive

0 . .
g Bi'j(x) =i Bjij(x) — (i + 1) B} 5(x)

0 . .
2 5s Bi'j(z) = j Bi'j(z) = (5 + 1) Bi’j11(x),

Hence

z- VB j(x) = (i+7) Bij(z) = (i + 1) Bi}1,;(z) = (G + 1) Bijj+1(2).
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We can then express (8) as

n n—i

ZZbJ/ (24 |e| +i+5)B};(x)

1=0 j=0
—(i+ )B4 j(z) = (j + 1)Bij11 ()] dz =0,

which, in virtue of (9), takes the form

n n— ’L
SN b [+ lal i+ e ml
i=0j=0 (11)

m el n+|al —
(Z + 1)q1+1 J Vi 14 ay,j4as (] + 1) 9; J+1ml+a1 J+ltaz | T 0,

where we have introduced the Bernstein moments (B-moments) to be computed:
£ _ v
mgj = / Bi,j(x)dm, ¢ € Np. (12)
D

Defining the matrix elements

N n+\a| n+\a|
g(e, (i,5)) = (2 +|al +i+3)q nT itartas — 0T DL M0 Yoy jras (13)
n—+ a
—(+ g 1Mo, 14z

fixing I € Np, from (11) and (13) we derive the homogeneous system of linear
equations

n n—i

Z Zg(a, (Z,])) bi,j =0, ae€ NlQ ={ac€ NQ, a1 +ag <1} (14)

i=0 j=0

Setting b = (1, b1,0, bo.1,.-- bn,o)” and s2(l) = (ZJQQ), the system (14) can then be
written as

GI'b =0, where GJ' e R*2Wxs2(W) 1 cRez(n)

By taking a particular value of I, that is, by specializing the variation of o € N7,
the non trivial solution to (11) yields the searched polynomial coefficients.

Existence and uniqueness of such polynomial as a solution of (14) is a direct
consequence of Theorem 2.2 in [15] combined with a change of basis argument.
We state below a version of the same theorem specialized to our setting.

Theorem 2 Let D C R? be a bounded open set with real algebraic boundary. Assume
that D = intD, the boundary 0D has total degree n and the point x = 0 does not
belong to the zero set of the ideal I(8D). Let GJ' € R*2%2(") be the matriz of
coefficients given by (14) and associated with the moments of D. Then the system of
linear equations

GI'b=0

admits a unique solution b = (1, b1,0, bo,1,. .. bn,o)T c Rs2(n)
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Remark 1 Under the assumptions of Theorem 2, there is a unique set of poly-
nomial coefficients solving the moment equation Gi'b = 0, where uniqueness is
up to normalization of the leading coefficient of the polynomial. The hypotheses
of Theorem 2 exclude images whose boundaries possess singular points such as
boundaries represented by the zeros of the polynomial p(z1,z2) = z122 q(z1,2).
In such situations, neither existence nor uniqueness of a polynomial as a solution
of (11) can be assured (see the proof of Theorem 2.2 in [15]).

We conclude the section by noticing that, re-arraging the terms in (11) and
using the equalities

(i+Dg5 ;= (+1+a)g ", (G+1Da s, =0+1+a2)q,

we can equivalently write (11) as

n n—i
s n,o n+|af n+|a|
> bigli+1+a1)a; (mz’+a1,j+a2 =M1 40t o
i=0 j=0
n n—1i
(i nyo (ntlal n+|al —
+D D bi(i+ 1+ az)g (mi+a1,j+ag ~Mitay,j+1tas) = 0-
i=0 j=0

Therefore, a solution of (11) can be found by searching for a common solution of
two systems

n n—i

7z n,a n+|af n+|af _
Do b+ 1+ a1)g) (mi+a17j+a2 =My tajtas ) =0
i=0j—=0
1
e ol ol .
. n,o n+|a n+|a _
Z Z bi,; (G+1+ aQ)qu (mi+a17j+012 - mi+a1,j+1+a2) =0
i=0j=0

We remark that [9] uses a less formal approach without invoking Stokes’ Theorem
to derive a system of linear equations similar to (15) in the simpler setting of a
standard power basis.

3 Computation of the Bernstein moments
In order to set up the equations (11), we need a tool for the computation of the

B-moments (12) from the image samples (3). First of all we observe that, from our
assumption on I, we have

mféj:/ Bf’j(x)dx:/ Bfﬁj(a;)[(m)dx, ¢ € Np.
D (0]

We assume that the kernel ¢ possesses the polynomial generation property up
to degree n+ |af, so that there exists a set of coefficients {C’,Z’M7 k € Z?} such that

Bfj(x) =Y CpM oz —k), €=0,....n+]al.
kez?
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Then the B-moments simplify as

mi; :/ Bfj(@)I(z)dw = C,i’j’e/ o(z — k) () d,
2 2

kez?

and, in virtue of (3), for T'= 1, they reduce to

.
mi; =Y Cyl'dy. (16)
kez?

Their computation then just requires the Bernstein polynomial expansion coeffi-
cients C;’J £OA strategy for determining them is reported in the following subsec-

tion.

3.1 Computation of the expansion coefficients

It is clear that the computation of the Bernstein moments strongly depends on
the selected kernel ¢. An appropriate choice for ¢ is a refinable function, satisfying
the refinement equation

d= > app(2-—k) (17)

kez?

for some mask a = {ag}rezz- Typically ¢ can be chosen as generating function
of a multiresolution analysis (if it has stable or orthonormal integer translates)
and can be seen as the limit function of a convergent subdivision scheme. Typical
examples include B-splines and Daubechies scaling functions (see for example [4]
for comprehensive references).

We recall that a bivariate (binary) subdivision scheme consists of the repeated
application of a linear subdivision operator Sq : £(Z?) — (Z?), associated with a
bivariate sequence mask a = {ay}rez2 transforming, at each step k, a sequence
p*) of points in R? into a refined sequence of points in R? as

pgﬁ_l) = (Sap)a = Z aa_zﬁpgk), a€Z? k=0,1,...,
Bez?

and starting from an initial sequence p(®) := {p&o)}aezz.

The scheme is called convergent if for any initial sequence p(o) there exists a
continuous function f,0) ( fpio # O for at least one initial sequence p[o] # 0) such
that

lim sup | fp(()) (’l/2k) 7p2(»k) | =0.
k—o0 1€72

The limit is often denoted by $°(p(®).

The connection with refinable functions in (17) is that the limit obtained start-
ing with the delta-sequence & = {80,a}icz2, Pa := S°(5), usually called the basic
limit function of the scheme, is indeed refinable with mask given by the subdivision
coefficients (see [7] for details about subdivision schemes or the recent paper [6]).

If we choose the kernel ¢ to be the basic limit function of a subdivision scheme
generating polynomials up to degree m, for example tensor product B-splines or
Box-splines, the determination of the coefficients of the expansion of any polyno-
mial p € IT,, in terms of translates of ¢ can be efficiently based on subdivision.



Stable recovery of planar regions with algebraic boundaries in Bernstein form 9

Note that, in the lucky case the coefficients (of the expansion of any polynomial
p € I, in terms of translates of ¢) are simply the values of the polynomial at
integers (possibly shifted), the kernel ¢ is said to be reproducing polynomials up
to degree m. In what follows, we illustrate the determination of the coefficients in
the fist situation, starting from the idea proposed in [16].

We make use of the symbol p referring both to the polynomial and the sequence
of integer samples of the polynomial p = {p(a), a € ZQ}. The difference will be
understood from the context.

For p € II,;, we consider its Taylor expansion

p(+8) =Y %Do‘p, p € m, (18)
laj<m

and recall that since a polynomial is uniquely defined by its values on the integer
grid and in consideration of the generation properties of ¢, we have

> p@é(-—a)= > p(B+)6(8), pE n. (19)

a€Z? pez?
Therefore, using (18) and setting Mo = 3,42 ¢(—£)¢* for a € 72, we obtain
(03
M,
SIS Dotp)em= Y Meprp pem

|
(e}
Bez? \|a|<m |a|<m

Now, if we search for the coefficients C%, a € Z2, of the expansion of any polynomial
p € IT;, in terms of translates of ¢, i.e.,

p(z) = Z Cho(z — ), p€ Im,

a€Z?

by identifying the right hand side of (19) as the action of the linear operator
S5°° (which, as denoted above, is associated to the repeated application of the
subdivision operator), on II,

0o _ Mo a
§%p= Y pl@)sz—a)= Y —FD%, pé€lln, (20)
a€Z? |a|<m
we can search for the “inverse” of S on II,,, i.e., the operator Q satisfying
S®Qp=p for p¢€Iln. (21)

Indeed, if p € IT,, we have

p=5%Qp=">Y (@Qp)(a)d(x—a),

a€Z?

so that the expansion coefficients are found as C% = (Qp)(a), a € Z2.
To identify @, we require that it can be written as:

A
Qp= ) D%, pelln,

la|<m
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where the coefficients Aa, |a| < m, are solution of the system of linear equations
obtained by imposing conditions (21), as shown below. That is, for p € I, we
have

p= Y %SW(DQ Z Z DB D p)

|a|<m \a|<m \ﬂ\<m
=y Y Hlepews

" p7

Oé
la|<m |B|<m

or, equivalently, after setting a 4+ 8 =  and denoting I, = {¢ € Z? : |¢| < m} and
Ih={telnm : L<A}),

p= Y X SEEED= Y Y S
_alal _a)lal )
a€ly, WEIera YEI2m o€,

Next, observing that if |y| > m then D¥p = 0 (since p € II,,) and writing 2, as
the union of I, and its complement, we have

A
— yoalta Y
=3 | X e o
YE€lm \a€l),

This is equivalent to the conditions

— M"Y*O‘AO‘ —
M(O,O)A(O,O) = 17 EZI’Y (’Y — a)'a' = O7 for vy e Im \ (07 0)
aclm

The resulting system of linear equations Na = e; where
a= (A(0,0)7 A1,0) A0 A0, A1,y 7A(o,n))T

is upper triangular with diagonal entries given by N, y = J‘{g,‘))? for ¢ =0,- -1,

where m = w Therefore, multiplication by the diagonal matrix

P =

diag(0!, 11, 2!,--- ,m!
M(o o g( )

yields to the equivalent system of linear equations (PA)a = e; with diagonal
entries equal to 1. As a consequence, there exists a norm || - || such that ||al| < 1.

In the case p = Bf Sl
will then be given by

the coefficients of the generation of Bernstein polynomials

oyt = (QBL))(k), keZ?

where the operator @ involves the derivatives Dan_’j. It is important to notice
that, since these coefficients can be expressed in terms of Bernstein polynomials
of lower degrees (see Proposition 2), then the amplitude of such coefficients does
not depend on the size of the domain. This is a very significant difference with the
respect to the situation where a power basis is used (see Section B in [9]).
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3.2 Explicit computation of the coefficients through the univariate case

An important advantage of embedding the image domain (2 in the larger triangle
Ty, is the possibility of writing the bivariate Bernstein basis in a separable way
as the product of two univariate Bernstein polynomials, as stated in the following
proposition.

Proposition 3 The following relation holds:

n n—i l
B;jj(xl,m):(%) Z(%) (Z)Bj;“(xl)B]W(m), (e1,22) € Tp, (22)

t=j
where Bilm, Bf;n are, respectively, the n-th degree univariate Bernstein polynomials

BY™(t) = % (’;) t(Le—t)""" i=0,...,n, tel0,L], ec{1,2}.
€
Proof The straightforward proof is based on the binomial expansion of (L1+ Lo —
x1 — 22)"" "I in the expression of B}'; and on simple manipulations of binomial
coefficients.

This result, together with the assumption of separability on the kernel ¢, gives
us the possibility of finding the coefficients of the generation of the Bernstein
polynomials required for computing (16) using just univariate techniques.

So, let us impose the following assumptions on the kernel ¢:

1. it is separable, i.e.

¢(z) = p(z1)p(x2); (23)
2. ¢ is a refinable function, satisfying the refinement equation
©= Z app(2-—k), for some mask {ay}trez; (24)

kEZ

3.  either generates or reproduces polynomials up to the degree m, that is there
exist sequences ¢’ := {¢} }rez such that

pe(t) = 3 chplt - ), (25)

keZ
for every univariate polynomial p, of degree ¢ ranging from 0 to m.

The number of coefficients involved in (25) depends on the support of the
function ¢ and on the interval where ¢ varies. Let supp¢ = [0, N] and ¢ € [a,b],
with a,b € Z. Then cf; is different from zero only for a4+ 1— N < k <b—1 so that
the total number of coefficients is b—a + N — 1. Clearly, such ¢ can also reproduce
or generate the Bernstein polynomials, up to the degree m. Using (22), we then
obtain the following useful simplification of (16) on the triangle T7,. Observing

that
I m m—t I ? m
sy = ()X (1) (£>Bi‘m‘5<m1>B§“<x2>
=3
I m m—i I l m L
_ 1 2 m—~Li 4,3
- (T) Z (E) (£> Z €1k, (o1 - k2)702;k2§0(m2 — k2),
(=j Er,ko=1—N
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it follows that we can express the coefficients in (16) as

Ci,j,f — Ll " L2 m £ e’j ki, ko =1 N L 1 26
= ()8 () it mm v oo
=

In conclusion, everything reduces to the computation of the coefficients in the
univariate case. Therefore, we continue by specialising the algorithm described in
the previous section to this situation. We have

p*ZZ ’L'] DlJrJv p € llm

1=0 j=0
where M; are the discrete moments of ¢:

0
Mj= " o(-0)¢.
{=—N
It is important to mention that such moments can be computed even if we do
not have the analytic expression of the kernel ¢. In fact, since ¢ is refinable, the
values at the integers can be found by solving an eigenvector problem obtained by
evaluating (24) at the integers. Setting ¢ + j = k, we write

m k 2m m
My_;A; k My_;A; k
= v D ———— | D 11,
Z(Z(k—i)!i!) Pt 72 Z G- | 2P PEHm

k=0 \i=0 k=m+1 \i=k—m
=o for perr,,
which is equivalent to imposing the condition
M,
040 B Z (k’ — 'L 'Z 7 ’ , M

The resulting system of linear equations N'a = e; is upper triangular with diagonal
entries given by Ny = % for £=0,---,m and can be easily solved by backward
substitution.

From the coefficients A;, ¢ = 0,--- ,m (that are dependent on the refinable

function ¢) we obtain the coeflicients of the expansion of any univariate polynomial
p of degree m in the generic interval [a, b] in terms of the refinable function ¢; that
is mo
:(Qp)(k)zzi—'lDZp(k), k=-N+a+1,....,b—1, (27)
i=0
showing that the coefficients ¢}’ depend on the derivatives of the polynomial p
evaluated at the integers. In the case of a Bernstein polynomial B}* on the interval

[a, ], the i-th derivative is given by:

min{j.i}

DlBJm(t):ﬁ("lL_'l)' Z (- 1)l+z<>BmZZ(t) j=0,-- . m.

l=max{0,j+i—m}
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Fig. 2 Behaviour of the coefficients generating the monomials z* (left) and the Bernstein
polynomials BZ (right), for 4 = 0,...,7, when the kernel ¢ is the B-spline of order 8 (top),
the Daubechies scaling function associated to 7 vanishing moments (middle) and the dual
pseudospline of order 8

A comparison with the derivatives of the monomials

Dt = L,t“, 0=0,--,m,i=0,...,0
(£ —q)!
allows us to conclude that a representation in terms of Bernstein polynomials
rather than a power basis is much more stable due to the limited growth of the
coefficients involved in (16).

Numerical evidence of such aspect is given in Fig. 2 where the Bernstein vs. the
monomial coefficients are plotted, with respect to the following kernels: Daubechies
7, B-spline of order 8 (both with polynomial generation order 8) and the ”dual”
pseudospline (see [5] ) possessing the polynomial reproduction property of the same
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order. The interval here is fixed to [—10, 10], even though the displayed coefficients
lay on a different range, which takes into account also the support of the kernels
as explained above.

Finally, we can summarize the steps of our image recovery approach as follows.
As above, we assume that we are given image samples (dj) computed according to
(3) using a bivariate kernel ¢ associated with a refinable function ¢ as in (23)-(24)
on a triangular domain T, with vertices (0, 0), (L,0), (0, L).

Algorithm 1 Bernstein-moments reconstruction

Input: polynomial degree n, image samples (dy), L
Output: Bernstein polynomial coefficients (b;_ ;)

Compute the numerical coefficients (qf‘la) from (10).

Compute the Bernstein polynomial expansion coefficients (Cz‘l’e) using (26) and (27).

Compute the Bernstein image moments (mf]) using (16)

B D

Solve the system of linear equations of image moments (15) for (b; ;).

4 Numerical validation

To validate our improved method for the recovery of a digital image I of an al-
gebraic shape from samples {dy} of the form (3), we ran extensive numerical
experiments where we considered different noise levels, sampling rates and sam-
pling kernels. To benchmark our results, we compared the performance of our
Bernstein-moments reconstruction (BMR) method against the conventional mo-
ment reconstruction (CMR) approach that uses a power basis in the formulation
of the moment equations and the regularized moment reconstruction (RMR) al-
gorithm that is proposed in [9].

In accord with our theoretical framework presented in Sec. 2, we selected
bounded algebraic shapes for our numerical experiments. In particular, similar
to [9], we restricted our examples to stably bounded polynomials, a subclass of bi-
variate polynomials with bounded level sets that are characterized in [13] and [25].
Even though our recovery algorithm applies to shapes associated with algebraic
curves of any degree, for simplicity we considered algebraic curves of degree 4 for
most of our examples.

To set up our numerical experiments, we partitioned the planar region [0, 20] x
[0,20] uniformly. Next, we randomly generated stably-bounded polynomials p :
R? — R such that their pre-image S, € R? of (—o0,0] is a subset of [0,20] x
[0,20] and, correspondingly, obtained images I, = Xxs, of size 512 x 512. Here,
there is no loss of generality about the parameters 20 and 512, and they can be
changed without affecting the algorithm. To generate the samples {d;} we used
B-spline sampling kernels as a default setting; we discuss the impact of changing
the sampling kernel below.

Our numerical code was implemented using MATLAB Release 2019a [18] and
is designed to recover the Bernstein polynomial coefficients of an algebraic curve
from a set of image samples following the steps summarized in our Algorithm 1.
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. E

input

CMR

BMR

RMR

Fig. 3 Image reconstruction from noisy samples. Top: algebraic shape of degree 4 (512 x 512
pixels). Second row: 39 x 39 noisy uniform samples with SNR = 100, 50, and 30 dB. Third-
fifth row: corresponding absolute values of reconstruction error using conventional moment
reconstruction (CNR), reconstruction using Bernstein moments (BMR) and regularized recon-
struction from [9] (RMR).

Our code uses the MATLAB function pinv to solve the system of linear equations
in Algorithm 1 as a Moore-Penrose pseudo-inverse and is available in GitHub®.
Our numerical experiments were run on a 64-bit Fedora 30 workstation with a
4xIntel®Core™i3-4130 CPU @ 3.40 GHz and 15.5 GiB of RAM.

! nttps://github.com/wjmolina/ShapeReconstruction
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CMR BMR RMR

0.95

0.5

BMR RMR

0.90

0

Fig. 4 Image reconstruction from noisy samples. Boxplots compare the reconstruction per-
formance of different reconstruction methods on 100 algebraic shapes of degree 4 from 47 x 47
noisy samples (SNR = 50 dB) using the Dice Similarity Coefficient as performance metric.

4.1 Tmage recovery experiments

In the absence of noise, our BMR algorithm recovers images of algebraic shapes
from their samples very accurately and there is no significant difference in using a
power basis or Bernstein polynomials for the formulation of the moment equations
(15). However, as observed above, the CMR algorithm that uses a power basis to
formulate the moment equations is very sensitive to noise and its performance de-
grades very sharply even for very low level of noise as we show below. As remarked
in [9] and in our discussion above, this instability is due to the behavior of the
polynomial reproducing coefficients c?c that exhibit the same growth rate as the
corresponding polynomial basis, i.e., they grow like |k|* when the polynomial is
represented as a power basis. To illustrate this behavior, we show in Fig. 2 the
polynomial reproducing coefficients cfc of a univariate 8th degree B-spline kernel
for i =0,...,8. It follows that the weight of samples that are away from the ori-
gin are considerably larger than the weight of the samples near the origin so that
samples near the image borders are dominated noise. In addition, the amplified
noise corrupts the numerical moments in a way that increases with the order of
the moments.

Fig. 3 illustrates the numerical reconstruction performance of a typical fourth
degree algebraic shape using our BMR algorithm. We compare our approach
against the CMR and RMR methods. In this experiment, white Gaussian noise
was added to the image samples with different noise levels using the MATLAB
function awgn. As shown in the figure, CMR is very unstable to noise. The compar-
ison shows that our method is significantly more stable than CMR and it performs
comparably with RMR.

We remark that, in Fig. 3 and similarly in Fig.s 5-7, our presentation of the
numerical results follows the convention typically adopted by other authors in
displaying the reconstruction error. If the panel appears (almost) entirely black,
this indicates that the reconstruction error is practically zero; this contrasts with
panels where there is a visible error.

To provide a more extensive quantitative comparison of our BMR algorithm
with respect to CMR and RMR, we randomly generated 100 bounded algebraic
shapes of degree four. Fig. 4 compares the reconstruction performance from 47 x 47
noisy samples with SNR= 50 dB. As a performance metric, we used the Dice
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Similarity Coefficient (DSC) that is commonly used to assess the performance in
binary segmentation (images considered here are also binary). This is defined as

2TP
2TP+ FP+ FN’

DSC =

where T'P = true positive pixel, F'P = false positive pixel and FN = false negative
pixel. DSC ranges between 0 and 1, with DSC=1 describing perfect reconstruction.
The figure shows that CMR is significantly more unstable than our BMR method,
while BMR and RMR performs comparably with BMR giving more consistent
results overall.

In Fig. 5, we illustrate the sensitivity of our reconstruction approach on the
downsampling rate of the original image. As expected, the reconstruction per-
formance tends to decrease for higher downsampling rate and this behavior is
especially pronounced for the reconstruction algorithm based on the power ba-
sis. By contrast, our BMR approach remains stable even for very high rates of
downsampling, similarly to RMR.

\
‘/

input BMR RMR

-

Fig. 5 Sensitivity of reconstruction to sampling rate. Absolute error of the reconstruction from
noisy samples with SNR = 50 db at different sampling rates (first column) using reconstruction
from conventional moments (CMR), Bernstein moments (BMR) and regularized reconstruction
from [9] (RMR).

We remark that, since the RMR algorithm applies an iterative regularized
reconstruction strategy, its computational cost is significantly higher than our
BMR algorithm. More precisely, it takes our algorithm 22.63s to process 100 images
of size 512 x 512 as compared to RMR that takes 359.60s (about 16 times more).
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Fig. 6 Reconstruction of non-algebraic shapes. Top: non-algebraic shapes. Bottom: Absolute
error of the reconstruction from a 47 x 47 downsampled version of the image. We assumed
polynomial approximations of degree 4, 6 and 6 respectively.

Unlike our approach, the computing time of the RMR algorithm may vary from
image to image. We also observe that the available numerical code of the RMR is
specifically developed to deal with algebraic polynomial of order 4 and is optimized
for a SNR = 50 dB. By contrast, our algorithm can be applied to algebraic curves
of any degree and with any noise level without any changes.

We also tested our algorithm on the reconstruction of simple shapes that were
hand-drawn hence they are not algebraic domains (even though some of them are
close to algebraic ones). Results in Fig. 6 show that our BMR algorithm performs
well also on these examples. We recall that our algorithm requires to set the
degree of algebraic shape to be recovered. Since this parameter is unknown in
this case, we set up a simple method to search for the degree of the algebraic
shape that best fits the samples as follows. To generate the reconstructions, we
ran our algorithm by sequentially choosing degrees = 2, 4, 6, 8 and 10; we next
selected the reconstruction with the highest DSC score. Results on the simple
shapes considered in Fig. 6 show that we obtain very satisfactory results using
algebraic shapes of relatively low degree. We could not compare our result with
RMR in this case since the available code is limited to algebraic curves of degree 4.

We finally examined the sensitivity of our algorithm to the choice of the sam-
pling kernel. Results in Fig. 7 show that, unlike the B-spline kernel, other choices
including the Daubechies and pseudo-spline kernels are significantly less stable.
We attribute this phenomenon to the larger support size of the latter kernels.

Conclusion

We have presented a new strategy for the reconstruction of binary images asso-
ciated with algebraic shapes using a small number of samples. The main novelty
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Fig. 7 Sensitivity of reconstruction to sampling kernel. Algebraic shapes of size of degree
four (column 1) were reconstructed using our BMR algorithm from 32 x 32 noisy samples
with SNR = 100 dB using different sampling kernels. Absolute error of reconstruction using
B-spline, Daubechies and pseudospline kernels is shown in columns 2, 3 an 4 respectively.

of our approach lies in the use of Bernstein polynomials to represent the image
moments. By combining this new representation with the sampling of images using
a polynomial-generating refinable kernel we derive a new reconstruction algorithm
that is robust to noise, simple to implement and very fast to compute. Future re-
search includes the investigation of alternative image representations such as the
Chebyshev basis which is also known to offer good stability properties.
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