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ABSTRACT

Chirality of nanomaterials is a rapidly evolving field, largely driven by the unique optical, elec-
tronic, magnetic or catalytic properties of plasmonic, magnetic and semiconductor nanomaterials
among others. Liquid crystals continue to play a major role in developing a better understand-
ing of their inherent chiroptical properties as well as serving as reporters to quantify and visualize
nanomaterial chirality. Furthermore, liquid crystal phases are increasingly explored as potentially
tuneable templates for the helical assembly of various types of nanomaterials. This review summa-
rizes recent progress in this area by describing representative examples and key strategies pursued
to interface nanomaterial and liquid crystal chirality. These studies focus on a range of organic and
inorganic nanomaterials varying in size, shape and composition as well as on both thermotropic
and lyotropic liquid crystal phases. Finally, the two materials concepts merge when liquid crystal
molecules self-assemble into distinct filamentous chiral nanoshapes capable of templating other
nanomaterials.

ARTICLE HISTORY
Received 29 March 2021
Accepted 12 May 2021

KEYWORDS

Chirality; nanomaterials;
liquid crystals; self-assembly;
templating

1. Introduction . e .
nanoclusters decorated with chiral bioorganic molecules

The research area of creating and exploring chiral nano-
materials has seen an almost exponential growth over
the past two decades [1]. Not long after the trailblazing
reports by Brust and Schiffrin in the mid-1990s [2, 3],
making the synthesis and functionalization of metal and
in particular gold nanoparticles (Au NPs) widely accessi-
ble to the global research community, reports emerged
that demonstrated immense optical activities of gold

[4, 5]. The field rapidly expanded to intrinsically chiral
gold nanoclusters [6-11] and their chiral assemblies and
further to increasingly sophisticated metal, semiconduc-
tor [12], carbon-based [13], ceramic [14], polymer [15,
16] as well as magnetic chiral nanostructures and assem-
blies [17] across many shapes and length scales [1, 18].
Mechanisms of chirality transfer and amplification have
become gradually better understood, propelling research
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Figure 1. Schematic illustration of the approaches discussed in this review: (a) quantifying nanoparticle chirality (here plasmonic
nanoparticles with a hydrophobic chiral ligand shell) using induced chiral liquid crystal phases as a reporter (for example by measur-
ing the helical pitch, p, and calculating the helical twisting power in an induced N*-phase) and (b) a similar approach using an induced
lyotropic N*-LC phase. (c) One of several approaches for the helical assembly of achiral nanoparticles (such as plasmonic nanoparti-
cles with an achiral ligand shell) using a chiral organic nanoscale template (here B4 helical nanofilaments, HNF, formed by bent-core
molecules). (d) Chiral assembly of emissive nanomaterials using chiral LC phases for circular polarized luminescence (CPL).

in this area to chiral nanoscale structures and assem-
blies that mimic, rival or interact with natural chiral
systems [19, 20]. Synthesis and nanofabrication as well
as chiral assembly strategies continue to bring potential
technological use of the resulting chiral nanostructures
into close reach. Currently, anticipated front runners
are photonic, sensing, catalytic, and medical applications
[21]. Considering the similarity in scale, both of the
underlying building blocks as well as the supramolecu-
lar structures formed by them, liquid crystals should be
considered an archetypical platform to detect, measure,
and visualize nanomaterial chirality and serve further as
highly tuneable hosts to assemble nanostructures in a
variety of chiral fashions (spiral, helical) [22-25].

Liquid crystal phases show extraordinary sensitivity to
either the introduction of chiral centres into the meso-
genic molecules or the admixing of chiral additives [26].
Chiral phase modifications can be induced into their
achiral counterparts — the prime pair most frequently
studied being the achiral nematic (N) and the induced
chiral nematic (N*) phase [27] — and some phase struc-
tures exist only when chirality is present (e.g. in the case
of blue phases [28]); yet others exist in the form of chiral
conglomerates even in the absence of molecular chiral-
ity as, for example, in the case of the B4 phase formed by
some bent-core molecules [29].

This review will attempt to highlight recent research
where chirality serves as the interface between nanoma-
terials and liquid crystals. The aim is not to provide an
all-inclusive listing of all the research in this area, but a
discussion of the most promising approaches to detect
and quantify nanomaterial chirality, attempts to elucidate
the role of chirality amplification at the nanoscale, and the
use of liquid crystal phases or crystalline modifications
formed by mesogenic molecules to template the chiral

assembly of functional nanostructures varying in shape
and core material (Figure 1).

2. Quantifying nanoparticle chirality

Understanding and controlling the chirality of molecules,
nanoparticles and -clusters as well as surfaces is a cen-
tral theme in various fields of science, from fundamen-
tal research on elucidating the origin of homochiral-
ity [30, 31] to understanding how chirality transfers
across distances and length scales [18]. Homochirality,
i.e. the single handedness of key biological molecules, is
ubiquitous in nature and a key signature of life. Living
organisms use virtually exclusively L-amino-acids and D-
sugars as building blocks for proteins and nucleic acids.
Researchers have invested a great deal of effort to eluci-
date the origin of homochirality, and chirality amplifi-
cation, or more accurately, amplified enantioselectivity,
emerged as one of several critical underlying concepts
[32].

How the sensitivity of LC phases to chiral pertur-
bations can potentially be used to visualize and mea-
sure chirality transfer and amplification is the focus of
the next section. Several experimental reports highlight
that LC phases allow for the visualization of the extent
of chirality transfer to a surrounding medium. Further-
more, induced N*-LC phases permit a ranking of the
chiral induction strength with respect to size, shape, and
aspect ratio. Such approaches were based on the experi-
mentally deduced amplification of chirality from chiral
nanoscale surfaces dispersed in an LC medium. Here,
the induced N*-LC phase turns out to be a suitable
reporter, presenting characteristic defect texture changes
after doping with a chiral nanoscale additives [33]. Ini-
tial focus will be on thermotropic LCs as reporters of



chiral induction and amplification, lyotropic LC systems
based on either surfactants or chromonic LCs will then
be discussed especially for more biological relevant chiral
nanomaterials.

2.1. Amplification of NP chirality - the thermotropic
N*-LC phase as reporter

2.1.1. Polyhedral gold nanopatrticles (Au NPs) with
chiral ligand shells

Origins of metal and semiconductor NP chirality can,
in principle, be divided into four classifications. For any
given chiral NP, more than one of them can be active.
In these classifications the chirality is associated with:
(1) an asymmetry in the core [6-8], (2) an asymmetry
of the NP core surface [34], (3) a chiral field effect [35,
36], and (4) an asymmetry of the chiral surface stabiliz-
ing molecules (ligand shell) [37]. Each of these have been
the subject of intense studies over the past two decades,
and for most chiral NP systems the extent and origin of
NP chirality in each experimental case is now reasonably
well understood. Circular dichroism (CD) spectroscopy
(both absorption-based [38] and vibrational CD [39]),
single crystal X-ray diffraction [6, 8] as well as theoretical
approaches based, for example, on the Hausdorff chiral-
ity measure (HCM) [40] are now well established, but do
leave open questions: How and how effective does the
chirality from chiral NPs transmit to their surrounding?
This is where LC phases can play and have played a dis-
tinctive role, and the following examples may highlight
this.

Figure 2 shows a series of three Au NPs that were used
to elucidate the role of NP size as well as the presence or
absence of a chiral bias during NP formation (i.e. dur-
ing the NP synthesis) on the chiroptical activity of these
chiral ligand capped Au NPs. Experimentally, only NP1
and NP2 visibly induced N*-LC phases. These two NPs
were prepared in the presence of a chiral bias (i.e. the
chiral cholesterol disulphide using during the NP syn-
thesis); NP3 was formed in the absence of a chiral bias
(prepared by conjugation of the cholesterol-siloxane to
the preformed 3-mercaptopropylsilane-capped Au NPs).
The resulting doped N-LC phase showed no or only
limited indication of chirality transfer. This result illus-
trates that interactions between N-LC phases and chiral
ligand-capped Au NPs can serve as a platform to sense
and quantify NP chirality. This can be accomplished by
using the well-established methods to quantify chirality
in induced N*-LCs such as measuring the helical pitch,
p» and calculating the helical twisting power (8.). Mea-
surements of p in different N-LC hosts underlined a clear
dependency on Au NP size and thereby the number of
chiral ligands on the NP surface. At a concentration of
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Figure 2. (A) Schematics of the Au NPs capped with cholesterol-
thiols (chiral bias during NP formation: NP1 and NP2) or capped
with a cholesterol-siloxane derivative in a subsequent step via
silane-conjugation (no chiral bias during NP formation). (B) High-
resolution TEM images of: (a) NP1 (1.8 & 0.1 nm), (b) NP2 (5.5 £1.2
nm), and (c) NP3 (10.1 &£ 2.7 nm). (d) Schematic introducing the
concept of using an N-LC phase to detect, visualize, and measure
the chirality of chiral ligand-capped Au NPs using measurements
of p. Reproduced with permission from reference [33]- Published
by American Chemical Society.

5 wt.%, NP1 and NP2 in 5CB showed characteristic N*-
LC fingerprint textures with values of p ranging from 5
to 6 um, however, NP3 showed textures similar to chiral
finger textures indicating a significantly larger p in com-
parison to NP1 or NP2 in 5CB. For comparison, the free
ligands (in the form of disulphides) at the same concen-
tration of 5 wt.% in 5CB induced N* phases with values
of p similar to NP1 or NP2 (about 4 ;um). These obser-
vations confirmed the speculation that Au NPs formed
in the presence of a chiral bias are more efficient chiral
inducers than NPs formed in absence of a chiral bias as
well as the free parent organic chiral additives in N-LC
hosts. By comparing the amount of chiral ligand present
(i.e. standardizing the B,y values based on the number of
chiral molecules in each mixture - thus introducing the
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molar helical twisting power B,01), NP1 and NP2 showed
significantly higher values of B,01 than NP3 or the free
cholesterol ligands. In fact, they showed similar values of
p despite two to three orders of magnitude fewer chiral
molecules.

This first small set of Au NPs taught us initially that
smaller NPs with an overall lower number of chiral lig-
ands attached to the NP surface in the N-LC mixture
outperformed larger ones and that the chemical origin
of chirality matters. The key finding, however, was that
Au NP chirality can be transmitted to and sensed by
N-LC phases, which, in turn, permitted imaging and
measurement of the extent of Au NP chirality transfer
[33].

Further extension of this work explored how chiral-
ity propagates from Au NPs similar in core diameter to
NP1 above and capped with enantiomeric pairs of axi-
ally chiral binaphthyl molecules [41]. Another problem
addressed in this work was how far chirality from a NP
surface reaches into the induced N*-LC bulk and how
molecular conformation of such chiral ligands is altered
in the condensed N-LC phase. Circular dichroism (CD)
spectra of the Au NPs decorated with these binaphthyl
thiols (only differing in the length of the non-tethered
aliphatic chain) confirmed that the binaphthyl moieties
form a cisoid conformation in isotropic organic solvents.
In the N*-LC phase, induced by dispersing the Au NPs,
the binaphthyl moieties on the NP surface form a tran-
soid conformation as determined by observations of the
helical twist direction of the induced N*-LC phase. This
suggests that ligand monolayers on nanoscale metal sur-
faces provide a dynamic space to alter and adjust the
helicity of binaphthyl derivatives in response to the order-
ing of the surrounding medium (Figure 3). Remarkably,
the By increased with increasing diameter of the Au NPs
from about 1.1-2.5 nm, that is, the efficiency of the chi-
rality transfer of the binaphthyl units bound to the NP
surface was diminished as the size of the NP was reduced.

The B values for the Au NPs assumed to be a sin-
gle molecule range from 68 to 376 um~!, with Au-R1
and Au-R2 showing the highest B, values of 376 and
371 um~! for this series (Au-R1 and Au-R2 featuring
the larger core diameter values of 2.5 and 2.1 nm for
the core diameter, respectively). These 8, values were
significantly higher than those calculated for the free lig-
ands and any of the binaphthyl precursors, ranging from
4.0-17 uwm~'. Therefore, all Au NPs were considered
more efficient chiral additives when compared to the free
organic ligands. For example, measured values of p val-
ues of the N*-LC phases induced by the R2 and Au-R2
pair at the same mole fraction of 1.4 x 1072 mol% in
5CB were 500 um for R2 and 19.6 um for Au-R2 — a
25-times tighter helical pitch induced by the Au NPs. The

Bw values for the Au NPs of course depend on the num-
ber of the binaphthyl units on the Au NP surface. Hence,
Bw values of a single binaphthyl unit on the Au-NP sur-
faces were calculated and varied from 7.0-14.5 um™};
values that are indeed similar to those for the free ligands
(9.8 um~!-16.1 um™1). Such comparison is of course
flawed: ligands on the NP surface are much less able to
fully interact with the surrounding 5CB host molecules.
In comparison to the free ligands, again normalized to the
number of chiral molecules, all tested Au NPs induced
helical distortions in a 10- (for the NPs with smaller
core diameter) to 50-fold (for the NPs with larger core
diameter) larger number of N-LC host molecules sur-
rounding each Au NP, indicating a significantly enhanced
chiral correlation length. Both the helicity and the chiral-
ity transfer efficiency of axially chiral binaphthyl deriva-
tives can therefore be controlled at metal NP/N-LC inter-
faces by adjusting the NP size and curvature as well as
the number and density of the chiral ligands to ulti-
mately measure and tune the chiral correlation length
(Figure 3c-d).

Opverall, this study seemed to suggest that for a given
NP shape (here quasi-spherical, polyhedral NPs), a ‘sweet
spot’ for the average NP core diameter exists, where
the amplification of chirality is maximized; potentially a
compromise between the miscibility of the NP in the N-
LC, an increasing density of the ligand shell as the core
diameter increases, and the collective action of a network
of chiral ligand molecules forming a monolayer on the
NP surface.

2.1.2. Gold nanorods (GNRs) with chiral ligand shells
To further assess the validity of these assumptions and
considering that an enhancement of through-space chi-
rality transfer finds support from examples of demon-
strated long-range, through-space interactions between
chiral molecules and plasmonic nanostructures [36, 42,
43], desymmetrization of quasi-spherical Au NPs to Au
nanorods (GNRs) coupled with shape complementarity
between the constituents (molecules of the surround-
ing medium and nanorods) should translates into fur-
ther increasing B, values (Figure 4a) [44]. If a cor-
relation between spectroscopic data and experimen-
tal By data from the induced N*-LC phases exists,
enhanced anisotropy or Kuhn’s dissymmetry factors
[45, 46] g for chiral GNRs (g = Ae¢/e, where Ae and
¢ are the molar circular dichroism and molar extinc-
tion coefficient, respectively) obtained from absorption
and CD measurements would further support such
assumption.

Asit turns out, the values for 8,,0] reported in this sub-
sequent study for two GNRs capped with the cholesterol-
silane shell (shown earlier in Figure 2A) are among the
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Figure 3. (a) Schematic structures of cisoid and transoid conformations (in solution and in the induced N*-LC phase, respectively) of
binaphthyl derivatives as ligand shells capping the surface of Au NPs and the Au NPs [Au-R1, -R2, and R3 as well as Au-51, 52, and 53]
with undecanoyl thiolate and an alkyloxy chain differing in length [ethyl, hexyl, and dodecyl] at the 2- and 2"-position of the binaphthyl,
respectively. (b) N*-LC phase induced by the addition of the Au-NPs functionalized with chiral binaphthyl moieties. Plots of: (c) F; (ratio
between the number of 5CB molecules near the Au NP surface/number of binaphthyl molecules on the Au NP surface) vs. HTP (8y) and
(b) F, ratio between the total number of 5CB molecules in a 3D voxel surrounding one Au NP surface/number of binaphthyl molecules
on the Au NP surface (cf. panel (d)) vs. HTP (By). (d) Schematic 2D representations of 5CB molecules surrounding the Au NP surfaces in
the 3D space (voxel) defined by the interparticle distance assuming reasonably well-dispersed Au NPs in the 5CB matrix (for simplicity,
the helical distortion of the 5CB molecules in the induced N*-LC phase is not shown). Reproduced with permission from reference [41] -

Published by the American Chemical Society.

highest values reported in the literature to date and the
values for By, are even higher by one, even two orders
of magnitude than any prior value reported for even the
most potent chiral inducers of N*-LC phases (Figure 4b)
[44].

To see if a cooperative effect is responsible for these
high Bmol values, i.e. if a potential helical distortion of the
chiral ligand shell-capped GNRs further enhances this
chirality transfer, freeze-fracture TEM (FF-TEM) images
of a N*-LC droplet on glass support were obtained. These
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imaging experiments confirmed that a GNR helical dis-
tortion is self-induced, and further permitted an assess-
ment of the average distance between adjacent GNRs
in the induced N*-LC matrix. This value, the particle-
particle distance (Dp_p), is then again used as the chiral
correlation length between neighbouring chiral induc-
ers and serves as a comparable quantity for chirality
amplification through space (Figure 4c).

This study further employed an absolute, rather than
relative to a reference, pseudoscalar indicator derived
from the molecule’s (or more generally an object’s)
geometry. This average chirality index |G%,|, validated
and employed for small molecules [47], proteins [48], and
cellulose nanocrystals [49], depends only on geometric
information, i.e. in this case the position and orientation

of the chiral cholesterol ligands with respect to the GNR
or NP frame, and thus indirectly on the shape and size of
the nanomaterial. As shown in Figure 4d, the trends of
the computed |G%,| is in very good agreement with the
experimental B,0] values considering the two GNRs and
the three cholesterol capped Au NPs shown in Figure 2.
The variation of chirality with size and shape is repro-
duced without any fitting parameter. Considering that no
specific materials’ parameters for the nature of the GNRs
or Au NPs was introduced, these results further strongly
suggest that the origin of the chiral amplification effect

is related to the chiral ligands attached to these nanos-

tructures forming a network (Figure 4e). In this way, the

chiral ligand shell acts as a network, thereby augmenting

the overall chirality.



The same approach was then used to demonstrate how
this amplification of chirality facilitated by the GNRs’
anisometric and commensurate shape can be used to
distinguish the chiral induction strength of a homolo-
gous series of the binaphthyl derivatives already shown in
Figure 3, differing only in the length of the nontethered
aliphatic hydrocarbon chain (Figure 5a). The combined
experimental and calculated |G%,| data show that the
chirality amplification effect is sufficiently sensitive to dif-
ferentiate even these subtle structural effects in the chiral
additives with respect to chirality transfer.

Elongation of the aliphatic chains at the 2’-positions
of these axially chiral binaphthyl derivatives should lead
to an increase in the dihedral angle of the transoid con-
formation when dispersed in the N-LC medium. For the
free organic binaphthyl derivatives (R)- or (S)-1 to (R)-
or (8)-3 this change in dihedral angle appears to be too
small to result in detectable changes in By, considering
experimental standard deviations. However, by amplify-
ing chirality transfer through fixation of these binaphthyl
derivatives onto GNRs such anticipated minor changes
in the dihedral angle can now be detected with great
precision and certainty (Figure 5b-d)[50].

A related strategy was then also pursued by Mehl
and co-workers, where the Au NPs were simultaneously
capped with aliphatic, mesogenic as well as axially chiral
binaphthyl thiol ligands. This combination contributes to
a ‘domino/sergeant-soldier effect’ effect, which is intro-
duced to explain the even higher By,,] values achieved for
these AuNPs in 5CB. Here, the additional introduction of
the mesogenic groups to the surface of the mixed ligand
shell Au NPs further enhances the miscibility and com-
patibility of the Au NPs with the N-LC host matrix best
supported by arguments of solute-solvent interactions
(Figure 6A)[51]. Furthermore, combinations of aliphatic
and chiral mesogenic ligands on Au NP surfaces can
lead to chiral (helical) NP superstructures (oblique 2D
lattices) as demonstrated using grazing incidence small-
angle X-ray scattering (GI-SAXS) as well as synchrotron
radiation-based CD experiments (Figure 6B)[52]. Sim-
ilar design strategies involving cholesterol functional-
ized arylamine-capped Au NPs have led to the discov-
ery of chiral (helically-twisted) lamellar superstructure
[53, 54].

To apply this amplification of chirality bestowed by the
immobilization of chiral molecules on Au NP surfaces,
a recent study demonstrated how chiral ligand-capped
Au NPs influence an N*-LC-based converging microlens
array [55]. Creating a microlens array commonly requires
often complex micro- or nanofabrication procedures.
Flat birefringent lenses such as Pancharatnam-Berry (PB)
phase microlenses can provide spatially varying opti-
cal axes in the plane normal to the light. Suspending
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an N*-LC mixture in micron-size TEM grids enables
the spontaneous formation of biconvex lenses when
immersed under water; the degenerate planar anchor-
ing created by the immersion under water rotates the
director radially as the thickness changes, similar to
Pancharatnam-Berry (PB) phase microlenses. Using this
rather simple method, the curvature radius of the N*-
LC lens is proportional to the helical pitch, which is now
favourably and predictably tuneable using chiral ligand-
capped Au NPs as strong inducers. Furthermore, the lens
architecture is suitable to measure p with suitable preci-
sion using only nanogram of strong chiral inducers such
as the Au NPs used in these experiments with a core
diameter of d = 3 nm capped with a cholesterol-thiol lig-
and shell (Figure 7). This rather tiny amount is about
three orders of magnitude less than the usual quantity
required by conventional techniques, and the NPs are
responsive to external stimuli such as electric or magnetic
fields as well as and lights (depending on the nature of
the core material), which bodes well for the development
of highly tuneable optical properties for such microlens
arrays [55].

2.2. Amplification of NP chirality - lyotropic LC
phases

Similar to the use of thermotropic N-LCs to ascertain chi-
rality amplification of nanomaterials with hydrophobic
chiral ligand shells, lyotropic LC phases (both chiral and
achiral lyotropic nematic phases) have served as matrices
to study nanomaterial chirality and helical assembly of
nanomaterials with more hydrophilic ligand shells. While
more relevant for a better understanding of the chirality
transfer and amplification of biologically relevant chi-
ral molecules, research on these systems is additionally
complicated by the fact that the extra component, i.e. the
use of a solvent (predominantly water), leads to ternary
mixtures, where both the solvent and the molecules (or
aggregates of molecules) forming the mesogenic struc-
ture compete in solubilizing the dispersed nanomate-
rial. Three particularly relevant systems will be discussed
in this section: cellulose nanocrystals (CNCs), lyotropic
chromonic LCs (LCLCs), and DNA nanostructures.

2.2.1. Cellulose nanocrystals - CNCs

Cellulose is the one of the most plentiful polymers and an
example of sophisticated hierarchical structure formation
in nature. Billions of tons of cellulose are produced every
year [56]. The main source of it is trees and plants, how-
ever, it can be obtained from different organisms such as
fungi or bacteria as well [57]. As a chiral pool material,
cellulose is a renewable, nontoxic and low-cost natural
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Society.

source and in increasingly demand as a functional mate-
rial. Used predominantly in the pulp and paper industry,
the reason for this is the discovery that when undergoing
mechanical and chemical treatments (such as hydroly-
sis with mineral acids) one obtains rod like nanocrystals
which (cellulose nanocrystals or CNCs) by breaking the
amorphous parts of cellulose and releasing individual
crystalline parts of it [58]. The source of cellulose, reac-
tion time, temperature, and the type of acid treatment
(such as sulfuric, hydrochloric or phosphoric acid) alter

the size of the CNCs, typically ranging from 50 to 1160
nm in length and 3-50 nm in diameter [59, 60]. The most
commonly used sulfuric acid treatment creates CNC col-
loidal dispersions with good colloidal stability due to the
negatively charged surface created by the conversion of
surface hydroxyl groups into sulphate ester groups that
stabilize the colloidal suspensions by electrostatic repul-
sion in aqueous dispersion [61, 62]. Figure 8 illustrates
this acid treatment of wood/tree pulp for the preparation
of CNCs.
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Figure 7. Converging microlens array: (A) an N-LC here (a) 5CB doped with cholesterol-thiol-capped Au NPs of ~ 3 nm core diameter
(see TEM image in (b). (B) Side and top views of the director configuration of the N*-LC in the lens shaped droplets (director rotates both
along the film thickness and radially away from the centre of the lens). (C) lllustration of the optics of Au NP-doped N*-LC lenses: (a) POM
images of lenses with concentrations ranging from 0.03 and 0.3 wt.% of the chiral Au NPs numbers at bottom-left and top-right show
the concentration and the number of fringes, respectively. (b) Optical ray tracing of the biconvex LC lens and the geometry of the lens.
(c) Images of the object (# ‘90°) and its inverted image at 0.2 wt.% Au NP N*-LC lens. Reproduced with permission from reference [55] -
Published by the American Chemical Society.

Since their discovery, CNCs are used as reinforcement
materials in food [63], polymer [64, 65], and pharmaceu-
tical industries [66]. However, more relevant for soft mat-
ter materials science has been the discovery that aqueous
dispersions of CNCs form a lyotropic N*-LC phases and
that the ensuing left-handed N* ordering is maintained in
solid films created by evaporation-induced self-assembly
(EISA) [67-70]. The helical pitch, p, of the dried films

ranges from microns down to submicrons, giving rise to
iridescence colour as a result of Bragg reflection of vis-
ible light due to the photonic band gap (PBG), which
is the most characteristic physical parameter for one-
dimensional photonic crystals and obeys Bragg’s law (Eq.
1): [71]

AppG = n p sinf (1)
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where 7 is the refractive index of CNC films, p is the heli-
cal pitch, and 6 the angle of incident light. These features
combined with the properties of a photonic crystal and
strong circular dichroism (CD), have made CNC films
attractive materials for applications in optical devices
and, particularly relevant in this review, as chiral tem-
plates [72-75]. Representative reports revealed that CNC
films are suitable chiral host for the chirality transfer or
helical assembly of GNRs, Au NPs as well as semiconduc-
tor quantum dots (QDs) resulting in chiral composites for
a variety of applications.

Kumacheva et al. reported several studies of the effects
of various NPs on the structure and optical properties
of CNC films: Querejeta-Ferndndez et al [76]. demon-
strated that composite films of GNRs and CNCs can
result to tuneable chiroptical properties introduced by
the plasmonic properties of the GNRs in the N* matrix
of the CNCs. The group created chiral plasmonic films
by admixing GNRs to an aqueous dispersion of 2.44 wt.%
CNGCs in water and casting films to study the plasmonic
chiroptical activity of the GNRs in the N*-LC structure
and the interaction between the negatively charged CNCs
and the positively charged GNRs as a result of the CTAB
stabilization of the GNRs assembly in the CNC-water
host. Figure 9 depicts the chiral co-assembly of the CNCs
and GNRs.

The aqueous suspension was comprised of CNCs with
dimensions of 100-200 nm in length and about 17 nm in
diameter as well as GNRs with an aspect ratio of ~ 3 (41
and 14 nm an average length and diameter, respectively).
Various CNC/GNR ratios (by weight) were prepared by
varying the GNR concentrations to create solid films;
the observed composite films changed colour to dark
red (plasmonic absorption band) with increasing GNR
content. Figure 10 shows a selection of cross-sectional
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Figure 9. Schematic illustration of the CNC/H,0 + GNRs prepa-
ration and the ensuing N* assembly of the GNR-CNC hybrid film.
Reprinted with permission from reference [76] - Copyright (2014)
American Chemical Society.
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SEM images of the different GNR concentrations in the
CNC films as well as extinction and corresponding CD
spectra. Increasing the concentration of GNRs decreased
the spacing in the pseudo-layer structure of the CNC
films corresponding to a decrease in p. Furthermore, the
extinction spectra of these hybrid films showed two plas-
monic bands that red-shifted in comparison to bands
observed for the GNRs in aqueous solution (512 and 714
nm) likely due to a change of the surrounding dielec-
tric from water to CNC/water; the intensity of these
bands also increased by elevating the concentration of the
GNRs. In the CD spectra, bands recorded for the com-
posite films showed a blue shift compared to neat CNC
films as a result of the decreasing p value with successively
elevated concentrations of the GNRs.

In the second part of this study, the authors report
on a red shift of the GNRs’ plasmonic resonance bands
when the aspect ratio of the GNRs was increased from
2.4-3 to 4. Similarly, the CD bands again displayed a blue
shift. Lastly, at a constant concentration of the suspended
GNRs, p could be tuned by adding NaCl as evidenced by
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Figure 10. (A) Cross-sectional SEM images of GNR/CNC films at GNR concentrations of (a) 0, (b) 0.12 (c) 3.39 wt.% (distances between
dashed lines represent p/2), (d) plot of p vs. GNR concentration, (e and f) cross-sectional SEM images of composite films with backscat-
tered electron detector to visualize the GNRs (scale bars: Tum) and (g and h) low- and high-magpnification polarization optical microscopy
images of the GNR/NC film at cgng = 0.47 wt.%. (B) Extinction and (C) CD spectra of hybrid films with different wt.% GNRs (see leg-
end); insert shows a rescaled plot of the CD spectrum of the highest concentration of the GNR (3.39 wt.%). Reprinted and adapted with
permission from reference [76]. Copyright (2014) American Chemical Society.

a blue shift of the CD band (increase in p) due to elec-
trostatic repulsion between the CNCs. A concentration
of NaCl of 2.13 wt.% finally gave rise to the disappear-
ance of the stop band due to the disruption of helical
structure.

In a follow up study, Kumacheva and co-workers [77]
studied the effects of surface charge, size, and concentra-
tion of Au NPs on the optical properties of CNC films.
The Au NP dimensions (diameters) were chosen to be
smaller or larger than average diameter of the CNCs
(~ 13 nm). Average diameters of 9 and 43 nm of pos-
itively charged and negatively surface ligand charged Au
NPs were used and their concentration varied from 10!
to 10'® Au NPs per cm? in a 2.67 wt.% aqueous sus-
pension of CNCs casted as composite films. The results
of their experiments showed that altering the size of the
Au NPs had less effect than altering the concentration.
Extinction spectra of neat CNC films showed a band
over a broad spectral range centred at 780 nm and a sur-
face plasmon bands originating from the 9 and 43 nm
diameter Au NPs centred at 532 and 545 nm, respec-
tively. Figure 11 shows both the extinction and the CD
spectra for the composite films containing the Au NPs
differing in size and their concentration. The lowest con-
centration of either size of Au NPs in the CNC com-
posites showed a peak only at the photonic band gap
of the CNC matrix around 713 and 711 nm for both
the 9 and 43 nm diameter Au NPs, respectively; simi-
larly, the highest concentration of Au NPs for either size
only showed SPR (surface plasmon resonance) bands of
the Au NPs.

However, the thin films CD spectra of the hybrid films
with lowest Au NP concentrations showed high intensity
peaks from 420 to 760 nm, i.e. at lower wavelength than
for the neat CNC films at 800 nm. Thus, increasing the
concentration decreased the intensity of the CD signal as

aresult of the interruption of the helical structure already
indicated by SEM and POM images. Repeating these
experiments for different concentrations of the 43 nm
in diameter Au NPs with negatively surface resulted in
similar extinction spectra; CD signals on the other hand
showed bands that shifted to lower wavelength compared
to the positively charged Au NPs.

This study elegantly showed that the concentration
of Au NPs affects the optical properties of CNC films.
The cholesteric order was influenced, causing a blue shift
due to changed ionic strength in the mixture, for both
negatively and positively surface charged Au NPs, and
at a certain concentration both the CNC films’ photonic
gap and the SPR band of the Au NPs can be detected
concurrently; likewise, a splitting of the CD signals was
discussed as a result of induced CD (ICD) activity of the
Au NPs.

In addition to plasmonic nanostructures, CNC films
have also been examined as a matrix to study excited state
chirality using circular polarized luminescence (CPL)
measurements. CNC films can serve as tuneable CPL
hosts because of their adjustable PBG when doped (or
used as a host) for luminescent nanostructures yielding
high values of the dissymmetry factor, g, (more details
in Section 3.1.1) [78, 79].

Li et al. [80], for example, studied combining
NaYF4:TmYb upconverting nanoparticles (UCNPs) (near
infrared, NIR, light conversion to UV-visible), which
emit at multiple wavelengths and allow for tuning of gj,,,
(or CPL) by altering the PBG of the CNC films by adding
glycerol. While other studies already reported that adding
an increasing amount of glycerol to aqueous CNC sus-
pensions and cast as films (by EISA) shifts the maximum
wavelength of the band in the reflection spectra from
400 nm (no glycerol) to 800 nm (50% glycerol ratio) due
to increase of p in the composite films [81], here, the
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Figure 11. Extinction and corresponding CD spectra of the composite films of CNCs with admixed Au NPs: (a and d) (+)AuNPs-9
[labelling: (surface charge)AuNP-core diameter in nm] at varying concentrations of the Au NPs of 103 (black traces), 10" (red traces),
and 106 (blue traces) Au NPs per cm?, (b and e) (+)AuNPs-43 at 10'2 (black traces), 10'3 (red traces), and 10" (blue traces) Au NPs per
cm?, and (c and f) (—)AuNP-43 at 10'2 (black traces), 103 (red traces), and 10'* (blue traces) Au NPs per cm?. Reprinted and adapted
with permission from [77] - Copyright (2015) American Chemical Society.

addition of UCNPs and glycerol made the CPL emission
susceptible to humidity, thereby enabling UC-CPL as a
sensor for changes in humidity Figure 12.

Thin film CD spectra of these films showed intense
positive signals, which arises from the left-handed chi-
rality of the CNC films, and the peak wavelength red-
shifted with increasing the amount of glycerol (from
410 nm for no glycerol to 638 nm at the highest glyc-
erol content). This further supports why all interrogated

photonic films selectively reflected left-handed CPL
(L-CPL). CPL measurements with the films excited at 974
nm in the NIR produced CPL transmission in the visible
(right-handed UC-CPL emission peaks) with gj,,,,values
at 450 nm ranging from 0.038-0.019 and at 620 nm
from 0.021-0.071 for CNC-U, G1-U and G2-U, respec-
tively. Hence, the three films showed different values for
each peak wavelength. To explain this, the authors argued
that the g, values at 450 nm were greater because
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Society.

selective chiral amplification via the PBG effect in these
photonic crystals did not allow L-CPL emission even
though the fluorescence emission was overlapped. At 620
nm, however, it was smaller because of the upconverted
fluorescence was far away from the PBG. The combined
data confirm that CPL emission and g, can be tai-
lored more so by the CNC host than the UCNP admixed
NPs [81].

In a related set of experiments, Xion et al. [82] demon-
strated the assembly of carbon QD (CQD) in CNC
suspensions as well as the effect of this assembly on their
chiroptical and fluorescence properties. Here, suspension
of PEG-stabilized CQDs and CNCs formed a core/shell
nanostructure. QCD/CNC film exhibited a higher pho-
toluminescence intensity (PL) compared to neat QCD
or CNC films, thereby validating that the helical assem-
bly in CNC films as a template enhances fluorescent
emission by further limiting QCD aggregation. Values
for gi, reached —0.2 (right-handed fluorescence of the
CNC/QCD films due to the left-handed chiral organiza-
tion of the CNC film). Similarly, Xu and co-workers [83]
reported that chiral photonic films composed of CNC,
poly(vinyl alcohol) (PVA) and carbon dots (CDs), exhib-
ited tuneable photonic band gaps and tuneable CPL with
inverted handedness as well as high g, values up to
(—0.27).

The reader is referred to a number of reviews on the
chemistry, self-assembly and on inorganic/CNC hybrid
systems [84, 85]. CNCs can be used to helically assem-
ble a wide range of NPs and chromophores in hybrid
films and allow the manipulation of CPL properties
by acting as a one-dimensional chiral photonic crys-
tal with a N* order. The combined photonic and chi-
ral properties of CNCs and the addition of nanostruc-
tures with chiroptical properties makes these compos-
ite material attractive candidates for biosensing [86],

photoelectronics [87], nonlinear optics [88], and even
asymmetric catalysis [89].

2.2.2. Lyotropic chromonic LCs - LCLCs
Lyotropic LCs (LLCs) are formed by assemblies or aggre-
gates of amphiphilic molecules in solution. Archetypal
LLCs are made from surfactants such as sodium dode-
cyl sulphate (SDS) or cetyltrimethylammonium bromide
(CTAB), which form aggregates such as micelles, vesi-
cles, bilayers, etc., which then form the building blocks
of the LC phases [90-92]. However, the building blocks
for lyotropic chromonic liquid crystals (LCLCs) are elon-
gated assemblies of plank-like molecules such as the
dye, sunset yellow FCF (SSY) or the antihistamine, dis-
odium cromoglycate (DSCG), among others [93-95].
Also included in the LCLC classification are nucleic
acids, where LC phases are formed by single- or double-
stranded oligomers [96, 97]. LLCs such as cellulose
nanocrystals (CNC) [67], described in the preceding
section, and other colloidal suspensions such as tobacco
mosaic virus (TMV) and inorganic LLCs [98-100] do not
fall neatly into the above two categories. While a vari-
ety of LC phases are possible (e.g. cubic, lamellar — L,
columnar - M, etc.), the lyotropic nematic (N) phase is
the most relevant for the purposes of chirality detection,
transfer, or amplification. As in thermotropic systems,
the chiral lyotropic nematic (N*) phase can be attained
either by using chiral molecules (e.g. chiral co-surfactants
for LLCs, or chiral ‘mesogens’ for LCLCs), or by admix-
ing small amounts of chiral guest molecules. This section
will focus only on LCLCs and how chirality transfer
and amplification have been characterized and quantified
upon addition of chiral plasmonic NPs or nanoclusters.
LLCs in general are notorious for their small twist elas-
tic constant, K7, (~ one order of magnitude smaller)
compared to the splay and bend elastic constants (Kj;
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Figure 13. POM images of samples at room temperature of DSCG (~ 15 wt.% in H,0) doped with: (a) AMP and (b) AMP-Au NCs at 7
wt.% each. Photomicrographs (c) and (d) represent tactoids at 37.5 °C for samples doped with 0.5 wt.% each of AMP and AMP-AuNC,
respectively (in the presence of 0.8 wt.% PEG) on cooling from the isotropic liquid phase. For AMP, the transmission through the centres
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doped tactoids, respectively — the data are fitted to Eq. 2, and the lines of fit are indicated by the solid lines. Reprinted with permission
from [109] - Copyright (2019) American Chemical Society; https://pubs.acs.org/doi/10.1021/acsomega.8b03335.

and K33, respectively) [101-105]. The reason for this
is, ostensibly, because of the flexibility of the polymer-
like assemblies which can tolerate fluctuations better
than molecules (as is the case in thermotropic N-LCs)
[101]. One of the implications of such low K3, is that
twist deformations are substantially more likely to occur
because they are energetically less costly than splay and
bend deformations [101]. So, when achiral N-phase LCs
are under confinement, spontaneous symmetry break-
ing may be observed [67, 93-96, 98-100, 106, 107].
Lavrentovich et al. demonstrated this phenomenon for
an LCLC - disodium cromoglycate (DSCG), to which
they added polyethylene glycol (PEG) as a crowding
agent, resulting in a racemic mixture of stable nematic
droplets (also known as tactoids) in coexistence with the
isotropic phase (the concentrations are 14.8 and 0.8 wt.%
for DSCG and PEG, respectively) [105].

Textures observed for the condensed phases of DSCG
in H,O (at ~ 15 wt.% and 20 °C; bulk phase) doped with
7 wt.% adenosine monophosphate (AMP, Figure 13a) - a
biologically relevant nucleotide - as well as with 7 wt.%
AMP-capped Au nanoclusters (AMP-Au NCs, Figure
13b) do not convey chirality transfer but show the induc-
tion of the columnar phase and aggregation of the NCs,
respectively. Figure 13c and d, however, show the appear-
ance of the tactoids (at 37.5 °C; biphasic regime) after
doping with 0.5 wt.% AMP and AMP-Au NCs observed
by polarized optical microscopy. The angle by which
the director is twisted, 7, is determined by measuring

the transmission of light (described by Eq. 2) through
the centre of the tactoid [105, 108, 109] - the magni-
tude of t is the same for identical tactoids of opposite
handedness. Typical transmission curves are shown in
Figure 13e and f.

T = cos’f — (%) sin 26 cos 28 [(g) tan§ + tan 2,8]

(2)

/ 2
where § = /12 + (”AT”d) , An is the birefringence, d

is the depth of the tactoid, 8 =y — t, y (is the angle
between the polarizer and analyser), and X is the wave-
length of the illuminating light. The optical activity, n, of
the tactoid is then approximated using 7: n ~ %, where
c is the concentration of the chiral additive [108, 109].
Further work from the same group shows that the tac-
toids can be biased towards one handedness using chiral
additives, providing a basis for distinguishing between
enantiomers; [19] the subsequent increase in the amount
of twist measured gives a way to quantify the chirality
amplification [108, 109].

Another consequence of the unusually low K3, in
LCLCs is that they are able to accommodate NPs [110]
without much elastic energy penalty, by adopting a
twisted deformation around the particles [111]. As dis-

cussed in Section 2.1 on chiral ligand-capped Au NPs in



thermotropic N-LCs, the efficiency of the transfer of chi-
rality from chiral NP guests to the N-LC medium is sig-
nificantly enhanced (by up to 50 times) if the molecules
are attached to the surface of Au NPs or GNRs. Using the
method described above for quantifying chirality ampli-
fication [108], a similar approach was pursued to explore
if the same observation holds for LCLCs [109]. Here,
the luminescent AMP-capped Au NCs were doped at 0.5
wt.% into DSCG/PEG (14.8 wt.%/0.8 wt.%), and the twist
of the resultant tactoids compared to the case when neat
AMP at the same low concentration was admixed into
the same system [109]. The data showed that the AMP-
Au NCs have 7 = 1.30° x 10%/(m x wt%) compared to
n = 1.15° x 10%/(m x wt%) for AMP. To appreciate the
impact of attaching the ligand to the surface of the Au
NCs, note that the total molar concentration of AMP in
AMP-Au NC sample is about a third of that in the neat
AMP sample [109]. The nematic tactoids, therefore, pro-
vide a way to measure the chirality transfer from a weak
inducer, for which other conventional POM methods (for
instance the Grandjean-Cano method, or the fingerprint
method) could not be used.

In the same study, a complementary technique, i.e.
induced circular dichroism (iCD) spectrophotometry
was employed to quantify the chirality transfer [109]. In
this method, the sample is rotated at regular intervals and
the CD spectrum is measured at each angle - the sum of
the spectra is the iCD spectrum [109, 112]. The CD signal
of interest is that of the helical supramolecular assembly
the N*-LCLC phase induced by the chiral NP additives
[109, 112]. Other peaks in the CD spectrum could arise
from absorption of the chiral ligands, electronic interac-
tions of the ligands and the NPs, and from the plasmonic
absorption of the NPs due to their periodic arrangement
in the helical assembly (plasmonic CD bands) [109, 112].

Using this iCD method, a previous study already
demonstrated the amplification of chirality by another
bioorganic chiral molecule-capped AuNP, i.e. L-cysteine-
capped AuNPs (L-cys AuNP), where the molar ellipticity
of the induced N*-LCLC phase was ~ four orders of
magnitude greater for the L-cys Au NP doped sample
compared to neat the one doped with L-cysteine itself
(OLcys—Aunp = 4.5 X 10" cmdmol ™" vs. OLgys = 1.5 x
101 cm?dmol™1) [112]. This is a remarkable increase
in chirality transfer, considering that the number of L-
cysteine molecules in the L-cys Au NP sample was as
much as five orders of magnitudes lower than in the neat
L-cysteine doped sample (Figure 14) [112].

To explain the higher efficiency of chirality transfer
from the chiral Au NPs and NCs, the following model was
proposed. The adsorption of chiral molecules onto the
surface of the NPs and NCs localizes the chiral inducers,
maximizing their chirality induction effect locally (acting
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observed for the samples doped with the L-cys-AuNPs. Image is
obtained with permission from reference [112] - Copyright 2017
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

as a network), which then translates to greater global chi-
rality transfer [109, 112]. Also, fixing the ligand on to the
plasmonic surface eliminates other interactions that may
be extraneous to the chirality transfer. For instance, in the
study comparing AMP-Au NCs to free AMP, at 7 wt.%
AMP in DSCG, POM images show textures indicative of
a columnar, M - phase or a coexistence between the N*
and M-phase (Figure 13a) [109]. For a comparable con-
centration of the AMP-Au NCs, evidence of an M-phase
is not as obvious from POM images (Figure 13b). A pos-
sible explanation for this is that AMP intercalates into
the DSCG assemblies or otherwise interacts with them,
e.g. via hydrogen bonding, facilitating the formation of
the M-phase [109]. When the ligand is affixed to the NC
surface, however, its conformational freedom is some-
what limited. It is also likely that the chiral Au NPs or
Au NCs coordinate to multiple DSCG assemblies, further
enhancing the chirality transfer.

Even when they are hydrophilic and soluble in the
isotropic liquid phase, NPs tend to have reduced solubil-
ity in N-LCLCs. This limits the concentration that can be
doped into an LCLC before agglomeration to less than 1
wt.% [109, 110, 112]. The immiscibility of NPs in LCLCs
is explained by the fact that the NPs introduce distor-
tions to the alignment of the LCLC assemblies, resulting
in an increase in the elastic free energy, which can be
avoided by expelling the particles from the N-phase [110,
113]. This restriction to low NP concentrations poses a
challenge in trying to quantify chirality induction by con-
ventional POM techniques, where strong chirality induc-
tion would be required. The methods described above
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overcome this problem. Using iCD makes it possible to
quantify chirality transfer, while using tactoids enables
the amplification of chirality of weak chiral inducers that
could not be studied otherwise.

Though the studies surveyed in this section high-
light the lack of insight into the precise mechanisms
of chirality induction from nanomaterials in lyotropic
LCs compared to their thermotropic counterparts, they
also show their promise for several applications. Because
lyotropic LCs are commonly aqueous systems, they are
perfectly suited for applications in biosensing, among
other technological applications. It is certain that more
work still has to be done on understanding the interac-
tions of chiral nanomaterials in lyotropic LCs, but the
overall outlook is promising and exciting.

3. Chiral assembly of nanostructures

Nanostructure chiral assembly has been one of the most
significant topics in the last decades combining nanoma-
terial chirality with the structural variety imparted by the
various templating methodologies. [16, 114]. Here espe-
cially NP assemblies with helical topology are thought to
provide access to unique applications in chiral plasmon-
ics [115], biosensing [116], optomechanics [117], and
metamaterials [118]. The quest for robust and efficient
methods to precisely design chiral nanomaterial assem-
blies rapidly led to the use of LC phases and LC nanos-
tructures as suitable templating motifs. In this section,
we will begin with the chiral assembly of nanomaterials
giving rise to CPL and then describe approaches to use
B4-phase HNFs formed by select bent-core LCs [29].

3.1. Chiral assembly using self-assembled organic
as templates

3.1.1. Strategies for circularly polarized luminescence
(CPL)
CPL-active materials have attracted attention in particu-
lar in the fabrication of circularly polarized organic light-
emitting diodes (CP-OLEDs) for numerous applications
in 3D displays, optical data storage, and optical spin-
tronic [119-123]. Compared to classical OLED displays
where antiglare filters eliminate 50% of the nonpolarized
light emitted from the pixel, CP-OLEDs exhibit high con-
trast and electroluminescence efficiency [124]. Enantios-
elective CPL sensors and probes for biological analytes
and processes also emerged with the potential practical
implementation of a CPL-based microscopy [125-129].
The degree of chirality in the CPL response is quanti-
fied by the luminescence dissymmetry factor [130], grm>
that represents the difference emission intensity (AI) of
left- (I1) and right-handed circularly polarized light (Ir)

divided by an averaged total luminescence intensity (I) at
a given frequency, v, by Eq. 3:

Al I —Ip 3)
1 = — = —
B = T T+ 1o
Therefore, the highest absolute value of |gy,| is 2 and
corresponds to complete left- or right-handed circularly
polarized emission.
Theoretically, the gj,,,, value is related to the photo-
physical parameters of the chiral emitters:

8" men
|ug"|? + |msn|?

Zlum (L) =4Re |: 4)
where 8" and mé" refer to the electric and the mag-
netic transition dipole moments, respectively. Since the
magnetic dipole transition moments are typically much
smaller than the electric dipole terms, the denominator
relates to the first term |u8"|?.

Eq. 4 indicates that a large g,,,, factor can be reached
in CPL-active materials when the transition consid-
ered is electric dipole forbidden, but magnetic dipole
allowed. Chiral lanthanide(III) complexes possess intra-
shell parity-forbidden electric but allowed magnetic
dipole transitions and generally show large dissymme-
try factors between 0.1 and 1 [131]. For example, Eu(III)
complexes have yielded up to 1.38 [132]. Nevertheless,
the emission efficiencies of these complexes are typically
small due to the nature of the involved metal-centred
electronic transitions. In contrast, organic molecules
exhibit higher emission yields and in addition present a
wide-band emission that can be easily modulated as well
as tuned. However, they usually display smaller gy, fac-
tors typically within the range of 107>~1072 due to the
electric dipole-allowed transitions [133]. Hence, besides
optimizing the molecular design of CPL-active materials
[131, 133], it is crucial to develop new strategies to over-
come their spectral instability and their emission effi-
ciency to create high performance CPL systems. As poly-
mers and supramolecules possess strong intramolecular
and intermolecular interactions, optical activity within
these architectures shows cooperative phenomena [134].
If the components are chiral, the transfer of their absolute
configuration to the assembly leads to supramolecular
chirality which constitutes an attractive way to provide
CPL amplification [135, 136]. As such, studies on poly-
mers and supramolecular structures are relevant to soft
matter, as intramolecular and intermolecular chirality
transfers can be induced in LCs. LCs can act as a host
matrix for guest emitters. Thus, the long-range orienta-
tion of molecules in LCs has been utilized to fabricate
helical stacks where the helical pitch can be temperature-
dependent (in thermotropic liquid crystal) and the CPL
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signal can be switched by an electric field generating
the amplification of gj,,,, values, for example, through a
phase transition of a thermotropic N*-LC. Here, some
examples of recent progress for the generation towards
amplification of the CPL activity will be described. We
focus on self-assembly approaches that serve to mod-
ulate the conformation as well as the spatial ordered
arrangement of chiral emitters. Nevertheless, it has been
proven that from solution to condensed phase the aggre-
gation of chiral luminophores generally involves non-
radiative pathways implying the quenching of the lumi-
nescence, called aggregation-caused quenching (ACQ)
[133]. Therefore, beyond geometry, we also introduce
some of the novel photophysical strategies that have been
developed to manipulate and regulate the excited state of
the chiral emitters and help build high dissymmetry fac-
tors. These recent advances have led to the production of
CPL switching materials and the creation of CPL devices
that will be considered at the end of this section.

As a first case, we analyse of the supramolecular self-
assembly-enhanced CPL tactic applied by Kawai and
co-workers to chiral perylenebisimide (PBI) systems in
solution [137]. In the monomeric state of the molecule,
a dissymmetry factor of 107> has been observed. To
stimulate high luminescence dissymmetry in the system,
the excitonic coupling between PBI units observed in
aggregated systems has been employed (Figure 15). The
self-assembly of PBI into both spherical particles and
helicoidal nanostructures enables the dissymmetry factor
to be amplified and the gj,,,, values of a helical fibre assem-
bly finally increased by one order of magnitude. This
study as well as the recent work of Duan and co-workers
on (11aS) and (11ab)-3,7-di-9-anthracenyl-10,11,12,13-
tetrahydro-5-hydroxy-5-oxidediindeno([7,1de:10,70-fg]

[1,3,2] dioxaphosphocin ((S)-SPAn and (R)-SPAn) in
assembled nanoparticles and 2D as well as 3D nanoflakes
confirmed the multi-dimensional morphology control
of the CPL (Figure 15b) [138]. These results demon-
strate that regulation of the self-assembly, namely the
molecular interactions within the assemblies, allows the
modulation and the control of the chiroptical properties
for the enhancement of the CPL.

Next, we will describe how the concept of aggregation-
induced emission (AIE) associated with the geometry
of the self-assembly can boost the chiroptical proper-
ties of a CPL-active material. In a condensed phase,
the AIE mechanism takes advantage of a cooperative
accumulation of dyes and counteracts the ACQ effect
(Figure 16a). Indeed, in the aggregate state, the restriction
of intramolecular motions enables generation of radiative
decay and the molecule becomes a CPL-active material
[139, 140]. Tang and team designed a propeller-shape
m-conjugated molecule containing both an AIE-active
silole core and chiral sugar pendants possessing extended
electron delocalization involving the 7 -cloud [141]. This
molecule shows no CD as well as no emission in solu-
tion but can assemble into hierarchical helical structures
upon aggregation. Subsequently, chirality transfer occurs
where the chiral sugar pendant together with the tria-
zolylphenyl group induces the silole core to be helically
arranged with a preferred screw sense. The CPL activity
has been reported with two orders of magnitude increase
in comparison with common organics material (gj,,,, val-
ues from —0.08 to —0.13 reported in Figure 16b). Beyond
its geometry, the packing order of the assembly plays a
critical role in CPL response. To reach an even higher gj,,,
value (—0.32), the authors confined the helical pattern
into a microchannel environment using a Teflon-based
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microfluidic technique. More recently, a similar AIE
strategy has been adopted by Deng et al. in chiral heli-
cal substituted polyacetylene supramolecular assemblies
with nonetheless a specificity in the chirality transfer
mechanism, the ‘matching rule’ between fluorescent moi-
eties and chiral helical polyacetylene [142]. It consists of
the overlap of the chiral component’s CD and the fluo-
rescent component’s photoluminescence spectra without
any type of covalent or noncovalent interactions specifi-
cation needed between the two species.

Furthermore, materials that exhibit plasmon reso-
nance enhancement have been exploited as novel CPL-
active materials. Such materials exhibit electromagnetic
field enhancement induced by localized surface plasmon
resonance (LSPR) that can lead to plasmonic circular
dichroism (PCD) as well as surface-enhanced fluores-
cence (SEF) [143]. Zhang and co-workers reported on
achiral Eu-containing polyoxometalates NagEuW 0036
(EuWyg) that covered Ag NPs and electrostatically
that interacted with co-assembled chiral poly(ethylene
oxide);14-b-poly(L-lysine),, (PEO114-b-PLL,) to form
coacervate core micelles with diameters of 50 nm (Figure
17) [144]. The Ag NPs, EuW o, and PLL blocks of the
polymer fashioned the core of the assemblies while the
PEO blocks the outer shell. The CPL remained silent
in the absence of the Ag NPs signifying non-effective
dipole interaction between the chiral groups and the

emission species (Figure 17e) The CPL of EuW g in Ag
NPs/PEOj14-b-PLL1o9/EuW resulted from the surface-
enhanced optical phenomena generated by the SPR effect
of the Ag NPs near EuW;o which would significantly
enhance the surrounding chiral electromagnetic field.
Other photophysical strategies have been introduced in
various self-assembled systems for energy and chiral-
ity transfers, such as Forster Resonance Energy Transfer
[145] and Photon Upconversion based on Triplet-Triplet
Annihilation [146]. For example, Liu et al. reported
a chiral donor m-gelator that self-assembled into a
helix with an achiral w-acceptor forming a composite
donor-acceptor system in which the achiral acceptor
generate both the supramolecular chirality and the cir-
cular polarized energy transfer from the chiral donor
[145].

Doped chiral LCs have been widely used to achieve
a high degree of CPL activity due to the unique optical
property of reflection of circular polarized light. N*-
LCs allow to easily regulate the ordered arrangement
of chiral emitters, to control the pitch of the assem-
bly, and the stopband of the matrix. Furthermore, chi-
ral LCs give access to chiroptical switches by using an
external stimulus such as temperature, solvent, or an
applied electric field for the dynamic modulation of
CPL properties. Akagi et al. created a CPL-switchable
cell containing the chiral disubstituted LC polyacetylene
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spectra of the (R)-PA1/(S)-N*-LC CPL-switchable cell at 25 °C (red) and 40 °C (blue). Reproduced with permission from reference [147] -
Copyright ©, Wiley-VCH.

(di-LCPA) film combined with a thermo-responsive N*-
LC (Figure 18) [147]. First, a CPL-switchable cell was
prepared consisting of an (S)-N*-LC cell with an (R)-PA1
CPL-emitting layer (Figure 18b). The helical pitch of the
N*-LC layer was tuned and adjusted by addition of chiral
dopant so that the selective reflection range was: (1) in
the visible range and (2) coincided with the CPL wave-
length of the di-LCPA film. The disubstituted LC poly-
acetylenes (R)-PA1 CPL-emitting film produced both
left- and right-handed CPL with predominance of left-
handed CPL (Figure 18c). The (S)-N*-LC cell enabled

the CPL to be dynamically switched through the phase
change of the thermotropic N*-LC cell and amplified
from left- to right-handed CPL and vice versa. At room
temperature, the (S)-N*-LC cell selectively reflected left-
handed CPL and consequently only right-handed CPL
was transmitted, leading to right-handed CPL amplifica-
tion with a gy, value of —1.79. In the isotropic liquid
phase (at 40 °C), the helicoidal arrangement of the N*-LC
phase was absent and thus no selective reflection of left-
handed CPL occurred. The predominantly left-handed
CPL from the (R)-PA1 CPL-emitting layer was then
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transmitted with a gj,,,,, value of +0.125. Similarly, a CPL-
switchable cell with opposite handedness (R)-N*-LC was
also prepared with an (S)-PA1 CPL-emitting layer show-
ing gim values of respectively +1.77 at room temperature
and —0.146 in the isotropic liquid state.

Likewise, these LC materials can be controlled exter-
nally using electric fields, allowing the manipulation
of polarization properties in situ. Morris et al. pre-
sented an electrically switchable CPL device using tran-
sition metal clustomesogen luminophores dispersed in
an N*-LC matrix [148]. These emitters known to com-
bine the specific properties of nanoclusters (magnetic,
electronic, luminescence) with the anisotropy-related
properties of LCs present the advantages of being pho-
tostable, exhibiting high quantum yields (up to 1), and
an ability to be dispersed at high concentrations into
LC materials. The investigated mixture consisted of a
[MogIs(OCOC;F5)e] cluster-based clustomesogen with
a tris(w-[4-(4’-cyanobiphenylyl)oxy]decylJmethylammo
nium cation (Trisely[Moglg(OCOC,Fs5)6]), the achiral
nematic LC ZLI-1840, and the chiral additive BDH1281.
As in previously reported studies, the N*-LC photonic
band gap overlapped with the clustomesogen phos-
phorescence (with 2.2 wt.% BDHI1281 and 20 wt.%
clustomesogen in ZLI-1840), resulting in strong CP emis-
sion with a dissymmetry factor of 1.6. Under an applied
external electric field (E =13 V um™!), the N-LC
homeotropic alignment, the helicoidal structure was lost
and g, reached 0, enabling the switch-off of the struc-
ture. Recently, Duan and co-workers tested a similar
approach by incorporating upconversion nanoparticles

(UCNPs) and CsPbBrj3 perovskite nanocrystals (PKNCs)
into an N*LC (Figure 19) [149]. The UC-CPL phe-
nomenon induced in the achiral CsPbBrz PKNCs derived
from the radiative energy transfer process from UCNPs
(energy donor) to CsPbBr3 PKNCs (energy acceptor).
By locating the emission peaks of CsPbBr3 PKNCs and
UCNPs at the centre and edge of the photonic bandgap
of the N*-LC respectively, the maximum gj,,,, value of
UC-CPL can be amplified to a large value of 1.1. Addi-
tionally, the enhanced emission of UCNPs could be
reabsorbed by the CsPbBrs PKNCs, further enhancing
the emission of CsPbBrs; PKNCs. This UC emission
and the radiative energy transfer can be electric field
controlled.

By the further addition of a chiral fluorescent dopant
capable of photoswitching as well as photodissocia-
tion to an N-LC already doped with UCNPs, Juan and
co-workers were able to demonstrate an upconversion-
luminescence-induced nanocomposite photoswitch that
could additionally be patterned [150].

Finally, we will consider how multidomain cholesteric
emitting layers can combine semiconducting and pho-
tonic functionalities to make OLEDs emitting CP elec-
troluminescence (CPE). OLEDs can emit circularly
polarized electroluminescence (CPEL) when the emit-
ting organic material is chiral and of one handed-
ness only. Friend and team exploited a chiral and
enantiomerically pure substituted polyfluorene copoly-
mer poly(fluorene-alt-benzothiadiazole) (c-PFBT) used
as emitting layer in the OLEDs (Figure 20) [151].
The polymer contained a fluorene-benzothiadiazole
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Figure 20. Schematic representation of: (a) the CP-OLED developed by Friend et al. [151] consisting of the hole injection layer
(PEDOT:PSS:PFI) deposited on top of ITO, the emitting layer (cPFBT) and the electron injection layers (calcium and silver). gg of —0.8
was reached under pulsed voltage; (b) (i) the polycrystalline N*-LC film in the OLED stack. The N*-LC domains are represented by groups
of black lines (z being the direction of the cholesteric helical axis). The direction of detection of electroluminescence (EL) with respect to
the substrate is also shown; (i) calculated gg; for different values of T and h; (iii) and (iv) evolution of g with the parameters h and 6,
respectively, for T = 400 nm. Reproduced with permission from reference [151] - Published by the American Chemical Society.

donor-acceptor repeat unit forming the conjugated back-
bone, with chiral centres attached to the fluorene moi-
ety. Thermal annealing led to the self-assembly of the
polymer into a multidomain N*-LC film. CPEL with up
to 40% excess of right-handed polarization was reached
under pulsed voltage bias operation (gg;, = — 0.8) and
30% (grr = — 0.6) under constant voltage bias. CPEL
originated from circular selective scattering and birefrin-
gence in such multidomain films (Figure 20b).

In this subsection, we have shown that the CPL-
activity can be built, manipulated, and controlled using
specific strategies based on photophysical regulation of
the excited state of the chiral emitters as well as their con-
formation and spatial ordered arrangement. The amplifi-
cation of the CPL-response in active LC-based material
paves the way for the design of efficient CPL devices
for a wide range of technologically oriented applica-
tions. However, aside from the N*-LC matrices, other LC
phases are suitable for the helical assembly of nanostruc-
tures as well, and emissive NP-LC mixtures will continue
to be an active segment of research considering a wealth
of opportunities for optical and photonic applications
[152].

3.1.2. Chiral organic nanostructures - helical nano-
and microfilaments

One such highly interesting phase formed by bent-core
liquid crystal molecules is the B4-phase, frequently also
referred to as the helical nanofilaments phase [29], in
which twisted bundles of smectic layers form, chiral-
ity preserving [153] with self-limiting width but not in
the length [154]. HNFs are characterized by a constant
width of ~ 40 nm and a helical pitch of ~ 200 nm [29].

The width and the pitch, ie. the morphology, depend
on the chemical structure, and recent work has shown
that by strategically introducing chiral centres into the
side chains they can form helical microfilaments [155],
heliconical-layered nanocylinders [156], a variety of dual
modulated HNFs [157-159], and even twisted or flat
nanoribbons (Figure 21) [160]. These morphologies are
considered to be semi-crystalline [161], i.e. hence robust,
which makes them most suitable as templates for the
non-solvated assembly of plasmonic and other nanoma-
terials. The orientation of these nano- or micrometre-
scale twisted bundles can be controlled in various ways
including conventional treatment methods such as the
rubbed polymer alignment using a nematic LC [162,
163], photoalignment [164], microchannels [165], and
cylindrical nanoconfinement [166]. The control of each
alignment and nanometre helical twist has already led to
studies seeking applications such as chiral sensing of opti-
cal activity [167], and use as templates for nanomaterial
assemblies as outlined here.

Lewandowski and co-workers used this inherently
robust HNF template to helically assemble Au NPs and
GNRs (Figure 22a) [168]. While HNFs tend to expel
guest molecules [169, 170], recent research also showed
that admixing (pro)mesogenic molecules can alter the
B4 morphology [171-173]. However, by decorating plas-
monic nanomaterials (polyhedra and rods) with a struc-
turally closely related ligands, thereby enhancing the
compatibility between the nanomaterial additive and
HNF host, previously used to achieve magnetically
reconfigurable nematic-like [174] or columnar assembly
of GNRs [175], the group was able to assemble both Au
NPsand GNRsin a double-helical fashion at the two sides
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Figure 21. B4 morphologies: (a) chemical structure and basic model of a tris-biphenyl diester bent-core LC molecule, (b) illustration of
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helical nanofilaments (HNF morphology). (d) Depiction of the different B4-phase morphologies (with representative electron microscopy
images) formed by tris-biphenyl diesters with strategically introduced chiral centres in the aliphatic side chains: | [158], Il [158], Il [155],

IV [156], V[159], and VI [160].

of layer edges of the HNF facilitated by core-core interac-
tions between HNF host and structurally related ligand
molecules. Furthermore, using an approach dubbed chi-
rality synchronization, these co-assemblies of HNFs and
plasmonic nanomaterials were interrogated by micro-CD
experiments (Figure 22b) [176]. A related approach, lead-
ing to a helical assembly of GNRs, used human islet
amyloid polypeptides (hIAPPs) and a transition from
randomly coiled hIAPPs into twisted fibrils with §-sheet
structures [177].

HNFs, however, can also be utilized as inverse tem-
plates [178]. Bent-core molecules thoroughly mixed with
rod-like, photopolymerizable N-LC monomers initially
form the expected nano-segregated mixture following
the earlier-mentioned concept of HNFs expelling guest
molecules. After UV-irradiation (i.e. polymerization)
and washing out the bent-core HNF host, the resulting
polymer network now mimics the nanoporous structure
of the washed out HNFs, which is then back-filled with an
achiral N-LC (here 5CB). CD data taken along the entire
process demonstrate that the nanoporous inverse HNF
template can memorized and efficiently transfer chiral-
ity (Figure 23). The induced chirality (racemic overall
but opposite in adjacent domains, which is due to the
chiral conglomerate of HNFs formed by the achiral bent-
core molecules) can further be controlled (or turned On

and OFF) by changes in temperature (i.e. going through
the phase transition to the isotropic liquid phase) and
an applied electric field. This approach in combination
with the afore-mentioned concepts of CPL and AIE is
certainly feasible if emissive nanomaterials or appropri-
ate fluorescents dyes are introduced into these inverse
templates.

Related and highly fascinating structures can also be
realized by Au nanoplates (with an average size of 5
nm) functionalized with L-, D- or DL-cysteine [179].
Cations adsorbed on the surface of these Au nanoplates
cause increased electrostatic repulsion, which prevents
stochastic agglomeration when the repulsion is suffi-
ciently, leading to hierarchical organized particle assem-
blies with twisted nanoribbon shapes, self-limiting in
lateral dimensions, as reviewed recently by Grason [154],
when nonracemic L- and D-cysteine ligands are used,
and non-twisted with racemic DL-cysteine (Figure 24)
[178]. Similar self-limiting and self-assembled supra-
particles were previously reported by Glotzer and Kotov
et al. using citrate-capped semiconductor NPs [180].

With increasing zeta potential, ¢, achieved by the
addition of surfactant cations, i.e. cetyltrimethylammo-
nium (CTA™), these Au nanoplates tended to assem-
ble edge-to-edge rather than face-to-face forming the
afore-mentioned twisted nanoribbon, which closely
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with permission from reference [168] - Copyright ©, Wiley-VCH. (b) Chiral synchronization and micro-CD: (i) graphical depiction of the
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resemble the twisted smectic layers of B4-phase HNFs.
These nanoribbons ultimately assemble as spikes radi-
ally around an axis according to their ligand configu-
ration (D- or L-cysteine), giving rise to micron-scale
coccolith-like supraparticles with distinctive CD spec-
tra. However, flat kayak-shaped supraparticles with a

layered architecture were observed when the nanoplates
were capped with racemic DL-cysteine at the Au
nanoplate surface [178], in analogy to the FNRs formed
by some of the afore-listed bent-core molecules with
diminished chirality such as compound VI [160] in
Figure 21d.
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Similar effects on shape selection for supramolecu-
lar architectures with increasing or decreasing chirality,
have also been reported for other, structurally diverse
systems such as Gemini surfactants [181] or bile acid
end-modified p-phenylene ethynylene oligomers [182]
among others [183], thereby underlining the general
applicability of chirality, or better, enantiomeric enrich-
ment controlled self-assembly into supramolecular and
supraparticular architectures.

3.2. Chiral assemblies of DNA nanostructures

In this section we will focus on the formation of lyotropic
N*-LC phases that occur in DNA supramolecular assem-
blies. Double stranded (ds) DNA adopts a right-handed
double helix (B-form DNA). This is the common form
of DNA that exists under normal physiological condi-
tions, and in the context of the origins of life, the spon-
taneous LC self-assembly of DNA has been proposed
as a route in the evolution of primordial nucleic acids
[184]. Thus, the molecular ordering within LC domains
in which the ends of particular oligomers are held in
close vicinity by packing and stacking forces, could have
operated as a template for the formation and ligation of
extended DNA chains under favourable chemical condi-
tions [185]. This potential relevance, motivated Bellini
et al. to investigate the formation of N*-LC phases by
ultra-short double helix oligonucleotides (nDNA) dis-
persed at high concentrations in water (Figure 25) [186],
which contradicted Onsager theory [187]. Different sets
of single stranded (ss) DNA sequences exhibiting several
lengths, abilities to engage in end-to-end aggregation,

and with mutual or self-complementarity, were used.
Interestingly, small changes in oligomer length/sequence,
or alterations in the mode of end-to-end aggregation,
significantly affected the hierarchical supramolecular LC
order of nDNA, i.e. right-handed phases were only found
for oligomers shorter than 14 base pairs (bp), and for
DNA sequences that exhibited transitions to the N*-
LC phase at concentrations higher than 620 mg mL™;
N*-LC handedness inversion from left- to right-handed
occurred at higher concentrations of nDNA, and the
observed p matched the p of ds B-DNA; shorter oligomers
tended to show shorter N*-LC p values well within the
visible range, while sequences with more than 12 bp
showed p values of 1 pm or higher.

The same group, proceeded to investigate the mini-
mal oligomer length required for DNA N*-LC formation
[188]. Thus, an extremely short DNA sequence con-
taining only four-base-long oligomers (5-GCTA-3’) was
designed to simultaneously interact by Watson-Crick
pairing on either the 5-end, GC/CG, or the 3’-end,
TA/AT. The aggregates originated by base pairing, led to
the formation of oligomers assembled in running-bond
type chains of multiple DNA strands. In addition to Wat-
son-Crick base pairing, coaxial stacking, which is the
stacking interaction between the terminal bases of two
nicked strands, and dangling ends stacking, i.e. the stack-
ing of the first unpaired nucleobase in the overhang with
the adjacent paired ones, were proposed as interactions
that contributed for the stability of the formed double
helix. Moreover, thermal stability of the assembled DNA
duplexes N*-LC phase increased with DNA concentra-
tion, as expected for lyotropic LCs. In addition, the twist
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Figure 25. Examples of N*-LC textures of ds nDNA, observed between crossed polarizers: (a) oily streaks texture. (b and ¢) Dependence of
the N*-LC pitch on the concentration in cells with a concentration gradient: (b) under left-handed helix forming conditions and (c) under
right-handed inducing conditions. (d) Fingerprint texture. Scale bars in all images: 30 um. Reproduced with permission from reference

[185] - Copyright © 2010 National Academy of Sciences.

of the nematic director was found to be left-handed, with
p at values in the visible spectral range. Interestingly, an
increase of temperature caused p to decrease, which was
reflected in a significant colour change in the selective
reflection wavelength, as seen in Figure 26.

Fraccia and co-workers have also investigated the LC
behaviour of short DNA oligomers, and focused their
studies on blunt-ended 12bp dsDNA oligomers derived
from the Dickerson Dodecamer [189]. These oligomers
had three different types of 5’-termini chemistry: 5-OH,

5-phosphate (P), and 5-PPP [190], which were con-
ceived for the discernment of the way different P termini
disturb the stacking of DNA duplexes. Surprisingly, all
three types of dsDNA oligomers were able to form N*-
LC phases (Figure 27), and the one with 5°-PPP termini
could also form columnar textures.

In addition, it was observed that p of the N*-LC phases
was on the micrometre range and slightly increasing with
temperature. Moreover, the N*-LC phases showed left-
handedness as a result of the combination of the steric

Figure 26. Photomicrographs depicting a N*-LC domain with increasing temperature; changes in colour are due to alterations of the
selective refraction wavelength, which correlates to variations of p. Reproduced with permission from reference [187] - MDPI.
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Figure 27. Photomicrographs of the fingerprint textures formed
by 5’-PPP ds DNA oligomers, where p increases with increasing
temperature. Reproduced with permission from reference [189] -
Published by Taylor & Francis.

interactions between dsDNA oligomers, which favour the
propagation of the right-handedness of the DNA helix,
and the electrostatic repulsion, which instead favours
left-handed chirality. The occurrence of the LC phases
in the 5’-PPP dsDNA oligomers indicates that attractive
stacking interactions still prevail and are able to induce
linear aggregation.

The formation of LC coacervates in systems composed
of short dsDNA of 12bp and poly-L-lysine (PLL), was
investigated by Fraccia and Jia. In this system, four dif-
ferent types of LC phases were reported: isotropic, N*,
axial columnar and high order columnar [191]. LC self-
assembly was proposed to be due to the reversible linear
aggregation of dsDNA into supramolecular structures
within the dense coacervate phase, and all LC phases
could be accessed with continuity through different con-
centrations of DNA and PLL as well as variations in ionic
strength and temperature. Moreover, the N*-LC phase
exhibited right-handed chirality, with p longer than 5 pum
within the LC-coacervate droplets (Figure 28). The right-
handed chirality was due to the high salt concentrations,
[NaCl] = 800 mM, which allowed steric side-side inter-
actions between dsDNA. In addition, the LC-coacervate
phases retained fluidity, and their assembly was proven to
be dynamic and reversible.

Another interesting example arises from the DNA
nanotechnology field, which uses the programmability of
DNA for the construction of very precise supramolecular
DNA nanoarchitectures of arbitrary structural complex-
ity, such as DNA origami [192-194]. Dogi¢ et al. have
recently shown that monodispersed DNA origami-based
architectures that mimicked the geometry of filamen-
tous phages, formed a N*-LC phase at concentrations
above 37 mg mL ™! [195]. The filamentous phages DNA
origami analogues were prepared in four variants exhibit-
ing different degrees of twist along the filament’s axis, and
consisted of 6-helix origami filaments with a diameter of
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Figure 28. Characterization of the cholesteric p in short 12bp dsDNA LC-coacervate droplets: (a) fingerprint texture, top polarized optical
microscopy (crossed polarizers), and bottom bright field microscopy. (b) Intensity profile measured on the red line, which crosses the
N*-LC droplet in (a) allows the measurement of p = 7.4 0.5 um. (c) N*-LC phase of a droplet from an aged sample that shows a p
that exceeds the micrometre range; scale bars: 25 pm. Reproduced with permission from reference [190] - Published by the American

Chemical Society.
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Figure 29. DNA origami-based N*-LCs. (a) Structure of different DNA origami filaments with varying twists along the filament’s long
axis that were used for the assembly of bulk LC phases. The filaments consisted of 2x-left-handed six-helix (2x-Ih-6h), left-handed (lh-6h),
straight (s-6h), and right-handed (rh-6h) filaments. (b) Schematic representation of the N*-LC helix. (c) Polarized optical photomicrograph
of the samples. The concentration of all N*-LC samples is 37 mg mL~", and the ionic strength is 260 mM. Dark lines represent the regions
where the rods are perpendicular to the image, and the bright lines correspond to regions where rods are in the image plane; scale bars:
20 pm. Reprinted with permission from reference [194] — Published by Nature/Springer/Palgrave, Copyright © 2017.
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Figure 30. Cholesteric assembly of ground-state and thermalized DNA origamis: (a) inverse equilibrium of pitch as a function of parti-
cle concentration for ground-state filament conformations. Dashed lines denote values obtained by assuming pure steric interactions
and solid lines by accounting for both steric and Debye-Hiickel repulsion. Positive (resp. negative) values of p correspond to lyotropic
N*-LC phases bearing right (resp. left) handedness, as illustrated at right. (b) Close-approach configuration of idealized, weakly twisted
right-handed filaments displaying a left-handed arrangement. (c) Same as (b) for the case of strongly twisted right-handed filaments,
illustrating their entropic preferences for right-handed arrangements. (d) Same as (a) for the case of thermalized filaments. Markers
denote experimental measurements (i.e. from [194]). (e) Angular configuration minimizing the chiral two-body potential of mean force
for thermalized 1x-lh origamis, illustrating the predominance of long-wavelength backbone fluctuations over local axial twist in their
lyotropic N*-LC assembly. Reproduced with permission from reference [195] — Copyright © AAAS.

9,420 nm contour length, 2.4 um persistence length, and ~ while filaments with a 360° inscribed right-handed twist
polydispersity below 3% (Figure 29a). showed smaller values of p. Contrary, filaments with

It was observed that the twist inscribed along the  360° of left-handed twist produced larger p (Figures 29b
origami filament’s long axis exerted great influence on p and c). Interestingly, filaments with a further increased
of the bulk cholesteric phases, i.e. straight 6-helix DNA  left-handed twist yielded a very tightly twisted N*-LC
origami filaments formed a right-handed N*-LC phase,  phase.
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On a theoretical note, Doye and co-workers adopted
similar DNA origami models to the ones presented
by Dogi¢ et al. to provide theoretical evidence of the
mechanism of chirality amplification of rod-shaped soft
matter in lyotropic N*-LCs (Figure 30) [196].

Their calculations indicated that phase chirality in
those systems arises from weak fluctuation-stabilized
solenoidal writhing of the DNA origami backbones,
and thus largely dictated by intramolecular mechanics.
Moreover, the net helicity of the backbone fluctuations
was found to originate from the weak over- or under-
winding of the constituent DNA double strands in the
origami ground states. Thus, subtle long-ranged confor-
mational features were proposed to govern macroscopic
chiral organization, rather than local chemical structure.

Finally, it is important to highlight that DNA-origami
nanostructures have been extensively used for the chi-
ral and helical assembly of plasmonic and semiconductor
nanomaterials [193, 197-203], though much less fre-
quently in combination with liquid crystalline DNA
nanostructures [204]. Considering the aforementioned
strategies of tuneable pitch and handedness, this research
domain will surely see more emphasis in the near future
[205].

4. Summary and outlook

The combination of nanomaterials and liquid crystals to
better understand chirality transfer across length scales
and assemble nanomaterials in chiral (helical) fashion
has seen significant advances over the past several years.
Liquid crystal phases should see a growing use as an
experimental measure for chirality transfer efficiency,
supporting data from spectroscopic and geometrical
approaches to quantify chirality itself, since the ability of
a material to transfer chirality to its surrounding medium
is a significantly more critical measure for most appli-
cations of chiral nanomaterials in sensing [206], optics
[207], and photonics [208]. Thus far, most experimental
systems relied on the induced N* and SmC* phase [41,
44, 50, 209], but other chiral LC phases will surely follow
suit. Here, blue (BP*) [210], twist-bend nematic (Ng)
[211], TGB* [212], or Bx (B2 [213], B4 [168], etc.) phases
among others will likely see increased research activ-
ities in the coming years. Furthermore, realizing heli-
cal assemblies of nanomaterials using both thermotropic
as well as lyotropic LC structures has been in increas-
ing demand for nanomaterials exhibiting CPL properties
with high and most importantly tuneable gy, values.
Suitably functionalized nanomaterials such as metallic
(plasmonic), semiconducting, (emissive) carbon-based,
polymeric and magnetic nanomaterials varying in size,

shape and aspect ratio can now be positioned with rea-
sonably good control in the phase structures formed by
LC molecules (self-assembly approach). With the preci-
sion of such processes further improving, the resulting
dynamic assemblies will potentially rival and even out-
perform chiral nanostructures created by micro- and
nanofabrication (e.g. lithographic, etching, deposition)
techniques [214].

The all-pervasive presence of homochirality in nature
still demands answers about the efficiency and pathways
of chirality transfer as well as new innovative tools and
methods to measure this [215]. A combination of the
liquid crystalline state and materials at the nanoscale
will continue to provide a rich playing field for discov-
ery and innovation. Nevertheless, this field, while young,
also needs to experience an evolution from fundamental
research curiosity to devices and processes available or
applied in commercial applications. Thus far, CPL mate-
rials based on the nano/LC chiral combination appear to
be best positioned for this transition.
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