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Patients with obstructive sleep apnea have suppressed levels
of soluble cytokine receptors involved in neurodegenerative disease,
but normal levels with airways therapy
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Abstract
Purpose Obstructive sleep apnea (OSA) results in systemic intermittent hypoxia. By one model, hypoxic stress signaling in OSA
patients alters the levels of inflammatory soluble cytokines TNF and IL6, damages the blood brain barrier, and activates
microglial targeting of neuronal cell death to increase the risk of neurodegenerative disorders and other diseases. However, it
is not yet clear if OSA significantly alters the levels of the soluble isoforms of TNF receptors TNFR1 and TNFR2 and IL6
receptor (IL6R) and co-receptor gp130, which have the potential to modulate TNF and IL6 signaling.
Methods Picogram per milliliter levels of the soluble isoforms of these four cytokine receptors were estimated in OSA patients,
in OSA patients receiving airways therapy, and in healthy control subjects. Triplicate samples were examined using Bio-Plex
fluorescent bead microfluidic technology. The statistical significance of cytokine data was estimated using the nonparametric
Wilcoxon rank-sum test. The clustering of these high-dimensional data was visualized using t-distributed stochastic neighbor
embedding (t-SNE).
Results OSA patients had significant twofold to sevenfold reductions in the soluble serum isoforms of all four cytokine receptors,
gp130, IL6R, TNFR1, and TNFR2, as compared with control individuals (p = 1.8 × 10−13 to 4 × 10−8). Relative to untreated OSA
patients, airways therapy of OSA patients had significantly higher levels of gp130 (p = 2.8 × 10−13), IL6R (p = 1.1 × 10−9),
TNFR1 (p = 2.5 × 10−10), and TNFR2 (p = 5.7 × 10−9), levels indistinguishable from controls (p = 0.29 to 0.95). The data for
most airway-treated patients clustered with healthy controls, but the data for a few airway-treated patients clustered with apneic
patients.
Conclusions Patients with OSA have aberrantly low levels of four soluble cytokine receptors associated with neurodegenerative
disease, gp130, IL6R, TNFR1, and TNFR2. Most OSA patients receiving airways therapy have receptor levels indistinguishable
from healthy controls, suggesting a chronic intermittent hypoxia may be one of the factors contributing to low receptor levels in
untreated OSA patients.
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Abbreviations The gene names for cytokines are shown in
italic
ND Neurodegenerative disease
OSA Obstructive sleep apnea syndrome
CPAP Continuous positive airways pressure
t-SNE t-distributed stochastic neighbor

embedding
gp130 (IL6ST) Interleukin 6 signal transducer, mem-

brane glycoprotein 130
IL6R (IL6R) IL-6R, IL6Ra, interleukin 6 receptor
TNFR1 (TNFRSF1A),
TNF-R1

Tumor necrosis factor receptor super-
family member 1A

TNFR2 (TNFRSF1B)
TNF-R2

Tumor necrosis factor receptor super-
family member 1B

TNF (TNF) TNF-α, tumor necrosis factor ligand
superfamily member 2

IL6 (IL6) IL-6, interleukin 6, B cell stimulatory
factor 2

Introduction

Obstructive sleep apnea (OSA) is a sleep-related breathing
disorder associated with numerous adverse health effects.
OSA patients may display any one or several symptoms in-
cluding fragmented sleep, snoring, excessive daytime sleepi-
ness, fatigue, high blood pressure, irritability, depression,
memory loss, and loss of concentration. Fragmented sleep
patterns, abnormally long pauses in breathing, or abnormally
low levels of breathing during sleep result in poor oxygenation
of the blood and chronic intermittent tissue hypoxia. Hypoxia
leads to tissue inflammation, which appears to be one major
cause of the diseases associated with OSA and OSA’s in-
creased mortality risk. These health problems develop over
months and years and include cardiovascular disease, meta-
bolic syndrome, kidney disease, autoimmune diseases, and
the focus of this study, neurodegenerative disease (ND).
OSA has been associated with the increased risk and severity
of the symptoms of Alzheimer’s disease [1, 2], amyotrophic
lateral sclerosis [3], Parkinson’s disease [4, 5], multiple scle-
rosis [6, 7], schizophrenia [8, 9], depression disorders [10, 11],
and cognitive dysfunction [12, 13]. Continuous positive air-
ways pressure therapy (CPAP) is the mainstay of OSA treat-
ment because it improves oxygenation, reduces inflammation,
and CPAP is shown to reverse many symptoms and risks
associated with OSA, including ND [5, 14–21]. Dental airway
devices produce a similar treatment effect and have gained
some acceptance as an effective alternative to CPAP [22,
23]. The success of CPAP treatment further supports a possi-
ble role for hypoxia-induced inflammation in ND risk.
Unfortunately, a significant portion of patients find nightly
CPAP therapy intolerable and reported non-compliance rates
are high, ranging from 10 to 40% [24–28]. Hence, there is a

pressing need for pharmaceutical treatments that might amend
CPAP.

Brain inflammation is common to most NDs. A cytokine-
centric model of neurodegeneration predicts that strong periph-
eral inflammation results in increased levels of inflammatory
leukocytes and cytokines infiltrating the central nervous system
(CNS), where they initiate neuroinflammation and neurodegen-
eration [29, 30]. Inflammatory monocytes and macrophages
and cytokines in the brain activate microglial cells. Activated
microglia secrete their own factors and some of the same cyto-
kines that direct neuronal death and increase in the permeability
of the blood brain barrier (BBB) to amplify the problem [30].
Elevated levels of two pro-inflammatory cytokines, in particu-
lar, tumor necrosis factor alpha (TNF) and interleukin 6 (IL6),
are observed in patients with Alzheimer’s disease [31], amyo-
trophic lateral sclerosis [32, 33], multiple sclerosis [34],
Parkinson’s disease [35–37], depression disorders [38, 39],
and acute patients with schizophrenia or bipolar disorder [40,
41]. Elevated expressions of both TNF [42, 43] and IL6 [44, 45]
are strongly associated with microglial activation, neuroinflam-
mation, and neurodegeneration. Hence, their signaling appears
central to many NDs.

The molecular mechanisms by which OSA increases the
risk of various NDs and behaviorial symptoms such as irrita-
bility, depression, memory loss, and loss of concentration are
poorly understood. Untreated OSA patients all suffer from
chronic intermittent hypoxia. Hypoxia-induced oxidative
stress signaling is known to alter the otherwise balanced levels
of a number of pro-inflammatory and anti-inflammatory cyto-
kines [46]. Elevated levels of TNF and IL6 are observed in
cultured cells treated with mild hypoxia [47, 48], in the carotid
body of mice treated with chronic hypoxia [49], in the ische-
mic rodent brain [50], and in most patients with OSA. In a
majority of studies examining TNF levels, OSA patients have
shown 1.2- to 2.5-fold higher serum levels [51] relative to
control subjects. In some, but not all studies, OSA patients
also show modest increases in IL6 [52–58]. CPAP treatment
of OSA patients was most often, but not always, associated
with normal levels of these cytokines similar to the levels in
control subjects [52, 59–69]. The normal levels of TNF and
IL6 observed in most OSA patients receiving airways therapy
and the generally protective role of airways therapy to patient
health strongly support the idea that chronic intermittent hyp-
oxia induces inflammatory cytokines that are causal
to neuroinflammation and ND.

The goal of th i s s tudy was to ident i fy o ther
neuroinflammatory cytokines in serum whose expression
levels were altered in OSA patients and but normal with
CPAP treatment, focusing on TNF receptors, TNFR1 and
TNFR2, and the IL6 receptor IL6R and its co-receptor
gp130. To date, neither large increases nor large decreases in
the expression of the soluble isoforms of these cytokine recep-
tors have been associated with OSA. IL6 receptor complexes
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may be composed of soluble IL6, the membrane-bound recep-
tor isoform or soluble isoform of IL6R, and the membrane-
bound receptor or soluble isoform of co-receptor gp130
[70–77]. IL6 receptor complexes are central to inflammatory
signaling, neurodegeneration, and ND [70–77]. The soluble,
non-membrane-bound, isoforms of gp130 and IL6R both
modulate inflammatory IL6/IL6R/gp130 membrane signaling
and both are capable of attenuating IL6 signaling [78–80].
Altered serum levels of the soluble isoforms of two TNF re-
ceptors, tumor necrosis factor receptor TNFR1 (TNFRSF1A)
and TNFR2 (TNFRSF1B), are linked to inflammatory signal-
ing, neuronal cell death, and regeneration, and altered in pa-
tients with ND [29, 32, 81–97]. The soluble, non-membrane-
bound, isoforms of these cytokine receptors can significantly
antagonize signaling by IL6 and TNF, respectively [98–100].
Changes in the expression of these cytokine receptors have the
potential to increase or decrease neuroinflammatory signaling
by IL-6 and TNF, and hence, contribute to ND risk. The serum
levels of the soluble isoforms of gp130, IL6R, TNFR1, and
TNFR2 were significantly lower in OSA patients relative to
control subjects, but OSA patients receiving airways therapy
had levels indistinguishable from controls.

Materials and methods

Study subjects A total of 46 study subjects were enrolled in
the study following informed consent, including nineteen sub-
jects with untreated OSA (i.e., not on airways therapy) and
nineteen treated OSA individuals, who were diagnosed by
polysomnography using the Apnea Hypopnea Index (AHI)
(Table 1) [101, 102]. The airway-treated OSA subjects

recorded using primary CPAP, except for one patient who
used a dental airways device, and both devices had been
employed for more than 6 months [22, 23]. Eight control in-
d i v i du a l s we r e r e c r u i t e d t h a t h ad unde r gone
polysomnography and did not have sleep disordered breath-
ing. Subject characteristics (age, gender), anthropometrics
(weight, weight, BMI), history of CVD, medication history,
AHI, SaO2, and ESS (Epworth Sleepiness Scale) as well as
fasting cholesterol, glucose, and HS-CRP were evaluated in
all subjects [54, 103–105] are shown in Table 1. Treated and
untreated OSA patients are well matched for nearly all param-
eters, while the control group was considerably younger and
leaner, and presumably represented an optimal cytokine levels
for comparison.

Powering the study The null hypothesis being tested was that
OSA patients and airway-treated OSA patients would express
the same levels of soluble cytokine receptors. The alternate
hypothesis being tested was that OSA patients would express
higher or lower levels of soluble cytokine receptors relative to
the airway-treatedOSA patients [106]. These hypotheses were
tested using Bio-Plex system to assay cytokine receptor levels,
which provides greater sensitivity, a wider dynamic range,
greater effect sizes, and more statistical significance for each
assay than conventional cytokine receptor immunoassays
used in most previous studies. In sample size planning, the
potential for large effect sizes for the differences in the levels
of the four cytokines examined and study costs were consid-
ered [107, 108]. Preliminary data showed large effect sizes for
cytokine receptor levels with high levels of statistical signifi-
cance (see statistical analysis). Hence, it was concluded that
modest OSA and airway-treated OSA patient sample sizes

Table 1 Patient biometric and laboratory data

Control subjects (n = 8) Airway-treated patients (n = 19) Apneic patients (n = 19)

Female/male 6/2 7/12 7/12

Age 37.7 ± 12.1 60.6 ± 10.5 58.2 ± 12.4

Hypertension or heart disease Y/N 2Y/6N 11Y/8N 11Y/8N

Race C/H/B(A/M)/A 4C/0H/3B/1A 17C/0H/2B/0A 11C/1H/6B/1A

BMI 25.7± 5.21 33.1 ± 9.07 35.0 ± 9.22

AHI at time of diagnosis 1.58 ± 1.64 35.7 ± 24.8 26.8 ± 25.7

SaO2 low % 92.4% ± 1.92% 80.7% ± 5.4% 76.4% ± 10.3%

ESS 6± 3.30 7.16 ± 5.80 7.94 ± 4.02

Glucose mg/dL 94.4± 9.21 106 ± 18.7 104 ± 12.1

Cholesterol mg/dL 170± 23.8 181 ± 25.1 179 ± 43.1

HDL mg/dL 53.8± 14.7 51.8 ± 18.1 45.7 ± 17.3

LDL mg/dL 99.2± 22.4 104 ± 27.6 106 ± 35.8

hs-CRP mg/L 1.07 ± 0.736 4.84 ± 7.65 3.48 ± 5.60

Chronic meds Y/N 2Y/6 N 16Y/3 N 16Y/3N

Race (C Caucasian, H Hispanic, B African American, A Asian); BMI Body Mass Index, ESS Epworth Sleepiness Score, AHI Apnea Hypopnea Index,
HDL high-density lipoprotein, LDL low-density lipoprotein, hs-CRP high-sensitivity C-reactive protein. Standard errors are indicated where appropriate
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would be sufficient to power a statistically significant prelim-
inary study that would avoid both type I (false positive) and
type II (false negative) errors [108] as recommended by the
Federal Food and Drug Administration’s study guidelines for
estimating minimum appropriate human subject sample size
[109].

Cytokine receptor assay The levels of soluble inflammatory
cytokine receptors in serum were examined using multiplex
kits that quantify biomarkers of human inflammation (Bio-
Rad #171AL001M). The 96-well plates were assayed using
a Bio-Rad Bio-Plex instrument. The Bio-Plex system has the
advantage that hundreds of beads estimate each cytokine level
in each well, which improves the statistical accuracy of each
individual well estimate. All the serum samples, standards,
and assay controls were prepared as per the manufacturer’s
instructions (Bio-Rad Bulletin 10044281). As recommended,
each serum sample was diluted fourfold. Fifty microliters of
this dilution was run in triplicate for the 8 control, 19 untreated
OSA patients, and 19 airways therapy–treated OSA patients
instead of duplicate samples recommended by the manufac-
turer, in order to better estimate experimental errors for each
cytokine measurement. The picogram per milliliter output da-
ta for each serum cytokine receptor level was normalized to
the concentration of standards, run as eight times fourfold
dilutions of each cytokine, and run in duplicate on each plate.
The quantitative nature of these assays over the expected con-
centration ranges estimated for serum samples was confirmed
by comparing the fluorescence output of quadruplicate stan-
dard samples run in eight steps of a fourfold dilution series.
The standard error of the lowest concentration standards used
to estimate concentration was less than 15% and much less
than that for higher concentrations.

Management of data sets and statistical analysis The data
output from separate Bio-Plex plates were combined to make
a single Excel data file, with one sheet for each cytokine re-
ceptor and separate sheets for biometric data (see
Supplemental Data File 1). At this point, the data were moved
into R v3.5.1 for further statistical analysis. The data for indi-
vidual human subjects were visualized using Boxplot. After
applying the Kolmogorov–Smirnov test, it was obvious that
the airway-treated patient data for each the cytokine were not
normally distributed (p value < 0.05) and generally fell into
two groups of values. The Kolmogorov–Smirnov test is a
nonparametric goodness-of-fit test and could be used to deter-
mine whether an underlying probability distribution differs
from a hypothesized distribution. Therefore, the nonparamet-
ric Wilcoxon rank-sum test was used to estimate p values for
the significance of pairwise differences in cytokine receptor
levels among OSA patients, airway-treated OSA patients, and
controls. To visualize the high-dimensional data for the levels
of all four cytokine receptors among all patients and controls

in a two-dimensional map, the nonparametric t-SNE visuali-
zation method [110] was applied using the Rtsne statistical
package available online [111].

Results

Serum cytokine receptor levels Soluble serum cytokine re-
ceptor levels in airway-treated OSA patients were compared
with untreated OSA patients and with control subjects. The
picogram per milliliter (pg/mL) protein expression levels of
the soluble isoforms of four inflammatory cytokine receptors
known to be involved in ND, but not yet linked to OSA, were
significantly lower in the serum of OSA patients relative to the
levels for both the control individuals and the OSA patients
receiving airways therapy. These data on the levels of soluble
Gp130 (IL6ST), IL6R (IL6Ra, IL6R), TNF-R1 (TNFRSF1A),
and TNF-R2 (TNFRSF1B) are shown in Fig. 1 and summa-
rized in Table 2.

The pg/mL concentrations of soluble gp130 and IL6R are
shown as Box plot comparisons among the OSA patient pop-
ulation, OSA patients receiving airways therapy, and control
individuals in Fig. 1a and b, respectively. It was observed that
the median serum level of gp130 in OSA patients was 2.3-fold
lower than that of the control subjects ((p = 2.9 × 10−13). OSA
patients receiving airways treatment had a median level of
gp130 that was much higher than that in untreated patients
(p = 2.8 × 10−13), a median level indistinguishable from that
observed in the younger control group (p = 0.87, Fig. 1a,
Table 2). Similarly, the median serum level of soluble IL6R
in OSA patients was 2.1-fold lower than in the serum of con-
trol subjects (p = 1.3 × 10−12). OSA patients receiving airways
therapy had a median level of soluble IL6R that was 2.8-fold
higher than that observed in untreated patients (p = 1.1 ×
10−9), a level that was indistinguishable from that of the con-
trol group (p = 0.95, Fig. 1b).

The median pg/mL serum levels of soluble TNFR1 and
TNFR2 were 3.4-fold and 6.8-fold lower in OSA patients
relative to control subjects, p = 4.1 × 10−8 and 1.8 × 10−13, re-
spectively (Fig. 1c and c, Table 2). The median serum level of
TNFR1 was 3.4-fold higher in airway-treated patients than
untreated apneic patients (p = 2.5 × 10−10, Fig. 1c) and was
statistically indistinguishable from the median level in con-
trols (p = 0.29). The median level of TNFR2 was 7.9-fold
higher in airway-treated patients than untreated apneic pa-
tients (p = 5.7 × 10−9, Fig. 1c) and was also indistinguishable
from the median level in controls (p = 0.58).

In short, OSA patients had aberrantly and significantly low
pg/mL levels of all four soluble cytokine receptors linked to
ND relative to younger healthy control individuals. By con-
trast, OSA patients receiving airways therapy had cytokine
receptor levels that were impossible to differentiate from those
observed for control subjects. However, some of the data for
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five airway-treated patients (patient numbers 12, 26, 34, 47,
and 70) were widely distributed and were more similar to
levels in untreated OSA patients (see areas encircled by red
dotted lines, Fig. 1). To better visualize the potentially similar
response among most airway-treated individual patients inde-
pendent of the direction or magnitude of change in the level of
all four cytokines, the t-distributed stochastic neighbor em-
bedding (t-SNE) method was applied. This machine-learning
2D visualization strategy has the capacity of capturing the
local structure of these high-dimensional data and revealing
the presence of data clusters as a global structure [110].
Figure 2 shows that all the patient and control subject cytokine
receptor data group in two clusters. Cluster 1 represents the
soluble cytokine receptor data for all nine control individuals
(red data points in Fig. 2) and fourteen of the nineteen airway-
treated patients (green data points in cluster 1). Cluster 2 rep-
resents the cytokine receptor data for all nineteen of the un-
treated OSA patients (blue data points in cluster 2) and five of
the patients classified as airway treated (i.e., green data points
within cluster 2). The cytokine receptor levels for patient num-
bers 12, 26, 34, 47, and 70 (numbered data points in Fig. 2)
clearly distinguished themselves, because the combined levels
of all four cytokines remain more similar to the levels in un-
treated OSA patients (again the encircled data points in Fig.
1).

The OSA patients, airway-treated patients, control subjects,
and the outlying airway-treated OSA patient group did not
appear to distinguish themselves based on a cursory analysis
of biometric data such as age, BMI, gender, or particular
chronic medications. A further analysis was made of the bio-
statistical, laboratory, and sleep data for potential causes for
the variation in cytokine levels among all patients, controls,
and particularly these five outlying airway-treated patients.
Biometric, laboratory, and sleep data were collected at the
time of serum collection for controls and for the untreated
OSA patients and these data were collected months before
serum collection at the time of their diagnosis of OSA for
airway-treated patients. A linear regression analysis was per-
formed, plotting the pg/mL level of each cytokine against age,
BMI, heart rate, ApneaHypopnea Index (AHI), and oxygen as

SaO2 low %, ESS, and the laboratory data from duplicate
serum samples including glucose levels, total cholesterol,
HDL, LDL, and CRP. None of the biometric, laboratory, or
sleep variables accounted for more than 40% of the variance
in any of the cytokine levels among any of the any of the OSA
patients, airway-treated OSA patients, control subjects or out-
liers, or all 49 subjects taken together. It was surprising that
none of the sleep-related measures obtained correlated with
cytokine levels in OSA. Although intermittent hypoxia is the
hallmark of OSA, the findings in this study suggest that other
mechanisms may be important in altering levels of GP130,
IL6Ra, TNF-R1, and TNF-R2. One explanation for the non-
parametric data for the small number outlying patients would
be that their lack of complete adherence to airways treatment
was misreported as adherence. The airways treated
OSA patient using the dental airways device was not among
the outliers, but had cytokine receptor levels similar to healthy
controls.

Discussion

We are working under a model in which chronic oxidative
stress signaling in OSA patients alters the levels of soluble
inflammatory cytokines in serum to initiate an inflammatory
cascade that passes the blood brain barrier and increases the
risk of ND. Making the presumption that cytokine levels re-
spond to airways therapy, then aberrant levels in OSA patients
may be directly or indirectly linked to oxidative stress signal-
ing. The soluble, non-membrane-bound, isoforms of the
membrane receptors gp130, IL6R, TNFR1, and TNFR2 all
have been shown to regulate inflammatory signaling by their
membrane-bound isoforms and by their cognate cytokines
[78, 100]. Cytokines can penetrate the blood brain barrier
particularly under circumstances of neuroinflammation [75].
If the significant reductions observed in the levels of all four
soluble cytokine receptors in the serum of OSA patients pass
the blood brain barrier, this should produce the mis-regulation
of TNF and IL6 signaling in the brain.While this discussion is
focused on the activities of the four cytokine receptors in ND,

Table 2 Cytokine receptor levels among apneic patients and controls

Cytokine Gene name Control
median pg/mL
cytokine

Airways treated
median pg/mL cy-
tokine

OSA patients
median pg/mL
cytokine

Fold change from
apneic to airways
treated

Control vs
OSA
p value

Control vs
airways treated
p value

Airways
treated vs OSA
p value

gp130 IL6ST 25,057 26,433 11,164 2.37 2.92 × 10−13 0.867 2.77 × 10−13

IL-6Ra IL6R 2064 2134 981 2.18 1.27 × 10−12 0.954 1.11 × 10−9

TNF-R1 TNFRSF1A 338 344 100 3.42 4.06 × 10−8 0.292 2.54 × 10−10

TNF-R2 TNFRSF1B 87 100 13 7.88 1.76 × 10−13 0.579 5.65 × 10−9

The median pg/mL cytokine levels of soluble gp130, IL6R, TNFR1, and TNFR2 are presented for airways-treated apneic patients, untreated apneic
patients, and control individuals. The fold difference between the median level for airways-treated patients and untreated apneic patients are presented
along with p values for all three pairwise comparisons of cytokine levels
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these receptors also have reported roles in autoimmune and
cardiovascular diseases.

IL6R and gp130Altered levels of the membrane and/or soluble
isoforms of gp130 and IL6R have been reported in the serum,
cerebral fluid, and/or brain of patients with Alzheimer disease

[112–114], amyotrophic lateral sclerosis [70], multiple sclero-
sis [71], and schizophrenia and bipolar disorder [72, 115]. A
few single nucleotide polymorphisms affecting IL6R expres-
sion levels or protein activity also correlate with ND [70,
116–118]. Hence, it is reasonable to consider that the altered
levels of soluble IL6R and gp130 observed in OSA patients
are risk factors of ND and may even contribute causally to ND
risk. Pro-and anti-inflammatory signaling by IL6 involving
IL6R and gp130 is divided into two pathways. In the classical
signaling pathway, IL6 binds to a classical receptor complex
composed of the membrane isoforms of IL6R and gp130.
Their inflammatory signaling is thought to contribute primar-
ily to beneficial anti-inflammatory activities and tissue regen-
eration. In the trans-signaling pathway, both soluble and
membrane isoforms of both cytokines are involved, and

�Fig. 1 The levels of four cytokine receptors involved in
neurodegenerative disease risk are low in OSA patients, but their levels
in airway-treated OSA patients are indistinguishable from those in control
subjects. The serum picogram per milliliter (pg/mL) levels of the soluble
isoforms of a gp130, b IL6R, c TNFR1, and c TNFR2 for the
eight control individuals, nineteen airway-treated apneic patients, and
nineteen apneic patients not receiving airways therapy are summarized
in box blots. The boxed area encloses the second and third quartile and is
bounded bymedian pg/mL value indicated by a black line. The lower and
upper whiskered ranges indicate the first quartile-1.5*IQR (interquartile
range) and the third quintile +1.5*IQR, respectively. Each of the three
independent Bio-Plex estimates of a cytokine level for each patient is
represented by separate data points. Potential outlying data among air-
ways treated patients are encircled by a red dotted line

Fig. 2 t-SNE clustered the cytokine receptor data for all OSA and airway-
treated OSA patients and control individuals into two groups. Cluster 1
represents the dimensional distribution and grouping of data for four
cytokines for all the control individuals, fifteen of the nineteen airway-
treated OSA patients, and one untreated OSA patient. Cluster 2 represents
the dimensional distribution of cytokine data among all but one of the
untreated OSA patients and five of the airway-treated OSA patients. Each
patient is represented by three separate data points. The individual patient
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hence, their soluble isoforms have a greater potential to regu-
late trans-signaling. The trans-signaling pathway is thought to
produce most of the harmful pro-inflammatory signaling lead-
ing to cell death directed by IL6 [78]. While the two signaling
pathways were elucidated in non-neuronal systems and cell
types [78], these are the best models for us to consider, while
examining the roles of soluble IL6R and gp130 in neurode-
generation and ND.

Significant reductions in the levels of both soluble pg130
and soluble IL6R were observed in OSA patients relative to
controls and relative to most airway-treated patients. Most
airway-treated OSA patients in this study had serum levels
of both cytokines that were essentially the same as controls.
Because soluble gp130 is directly involved in attenuating
harmful inflammatory trans-signaling by binding both the sol-
uble and membrane isoforms of IL6R, the dramatic reductions
observed in gp130 in OSA patients are likely to be harmful,
increasing neuroinflammation, neurodegeneration, and ND
risk [78]. However, it is harder to predict the consequences
of reduced levels of soluble IL6R on ND, because soluble
IL6R bound to IL6 binds with the membrane isoform of
gp130 to enhance trans-signaling and IL6R binds to soluble
gp130 with the potential to attenuate trans-signaling [78].
Previous studies had shown that the levels of the membrane
isoforms of gp130 and IL6R were elevated by acute hypoxia
in rodent models [119, 120], but the level of soluble IL6Rwas
not altered in teenage OSA patients [58]. Finally, the data
presented herein may be the first showing significant reduc-
tions in the levels of soluble gp130 and IL6R in the serum of
older OSA patients and the normal levels of these cytokine
receptors in patients receiving airways therapy.

There are immunotherapeutic approaches emerging to
counter the reduction in gp130 and/or IL6R levels for OSA
patients with symptoms of ND as a supplement to CPAP.
Prenissl et al. [121] have shown that the monoclonal antibody
tocilizumab, which specifically binds to the membrane recep-
tor isoform of IL6R, increases the production of soluble IL6R
twofold in peripheral tissues. Clinical studies have shown that
tocilizumab significantly reduces symptoms of inflammatory
disease, and it has been approved for the treatment of rheuma-
toid arthritis [122]. There is an ongoing clinical trial to treat
depressed patients with tocilizumab [123]. However, the treat-
ment of schizophrenic patients with tocilizumab did not im-
prove patient behavior [124]. Assuming that reductions in the
soluble isoforms of these receptors increase inflammatory sig-
naling, then reducing IL6 activity is another alternative.
Schuett et al. [125] showed treatment with modest concentra-
tions of a fusion between the soluble isoform of gp130 and the
IgG1 heavy chain constant region (sgp130Fc) dramatically
reduced IL6 inflammatory signaling, presumably by substitut-
ing for soluble gp130 in trans-signaling. It has been proposed
that sgp130Fc may be an effective therapeutic to treat depres-
sion [80, 126]. Unfortunately, inhibitors of IL6 itself, such as

the IL6-specific monoclonal siltuximab, have not been partic-
ularly effective at inhibiting the symptoms of inflammatory
disease [127], presumably because IL6’s activities are so
pleiotropic.

TNFR1 and TNFR2 The membrane and processed soluble iso-
forms of TNFR1 and TNFR2 both bind TNF [128, 129].
Altered expressions of one or both isoforms of these proteins
are associated with Alzheimer’s disease [89–91], amyotrophic
lateral sclerosis [32], depression [29, 86–88], Parkinson’s dis-
ease [85], and schizophrenia [93–96]. Both isoforms of
TNFR1 and TNFR2 are involved in inflammatory signaling,
but they generally signal via different transduction pathways
and with nearly opposing outcomes [129]. TNFR1 predomi-
nantly promotes inflammation and neuronal cell death [83],
while TNFR2 plays more neuroprotective roles in promoting
cell survival and tissue regeneration [89]. The soluble iso-
forms of both are found in serum, and increasing their levels
can antagonize or promote receptor signaling [98–100].
Hence, altering the ratio or levels of their co-expression can
shift the balance between cellular survival, regeneration, and
apoptosis. The expression of both receptors increases when
cultured cells are treated with acute intermittent hypoxia
[130], but in vitro studies examining the impact of chronic
hypoxia have not been reported.

Previous studies yielded marginal or conflicting results
concerning the levels of the soluble isoforms of TNF receptors
in OSA patients, with TNFR1 levels reported as 2.1-fold
higher than the levels control subjects [131] or only 1.1-fold
higher [132] or indistinguishable from controls [58, 133]. An
earlier report showed that airways therapy of OSA patients
decreased plasma levels of soluble TNFR1 marginally 1.2-
fold relative to untreated OSA patients [134]. Finally, one
study showed that OSA patients with AHI scores higher than
10 had 1.5-fold higher levels of soluble TNFR1 and TNFR2,
relative to patients with an AHI lower than 10 [135]. Hence,
both the direction and small magnitude of change in these
studies of OSA patients are inconsistent with the data collect-
ed herein. Although, deficiencies in soluble TNFR2 have been
associated with inflammatory autoimmune diseases [136].

By contrast to most previous studies, herein, statistically
significant several-fold lower levels of soluble TNFR1 and
TNFR2 were observed in untreated OSA patients relative to
control subjects. Cytokine receptor levels were dramatically
higher in airway-treated OSA patients and were essentially the
same as controls. These results strongly suggest that the serum
levels of the soluble isoforms of both cytokines are positively
regulated by blood oxygen levels. Consistent with these data,
chronically increased TNF expression has been associated
with reduced levels of TNFR1 and TNFR2 in the brain [97,
137]. Perhaps the chronic intermittent hypoxia experienced by
OSA patients creates a chronic increase in TNF, with the
potential to lower soluble TNFR1 and TNFR2 levels.
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It is worth considering why such large, highly statisti-
cally significant changes were observed herein in the
levels of TNFR1 and TNFR2 as compared with the small
1.2- to 1.5-fold changes observed in other studies of OSA
patients relative to controls or to the airway-treated OSA
pat ien t s . The f luorescen t bead immunocap ture
microfluidic technology applied to this patient population
gives highly dynamic results based on hundreds of fluo-
rescent beads for each measurement of pg/mL cytokine
levels, instead of using less dynamic colorimetric assay
in a few wells of a microtiter plate provided by ELISA
kits [131] such as reported in most earlier studies.
Fluorescent bead immunocapture microfluidics is more
sensitive or at least as sensitive as and statistically repro-
ducible as ELISA microtiter plate measurements of cyto-
kines used in these earlier studies [138, 139] and fluores-
cence bead assays have a higher dynamic range. The stan-
dard errors among the three independent replicate assays
performed for each cytokine were very small, even for the
lowest concentrations observed in untreated OSA patients
(see Materials and methods). It appears that fluorescent
bead capture technology provided an advantage, when
assaying the dynamic changes observed in cytokine levels
among apneic patients and airway-treated apneic patients
and control subjects.

One reasonable interpretation of these results would be
that the aberrantly low levels of soluble TNFR1 and
TNFR2 in OSA patients might no longer provide appro-
priate attenuation of TNF inflammatory signaling, thus
increasing the risk of ND. A few therapeutic treatments
have been shown to specifically block membrane TNFR1
signaling or to increase TNFR2 activity [97]. ATROSAB
is a humanized mouse monoclonal to TNFR1 that covers
the TNF binding epitope and neutralizes TNFR1’s mem-
brane signaling activity [140]. ATROSAB prevents neu-
ronal cell death in a mouse model of cognitive impairment
and ND [141]. Whereas in the same model, simultaneous-
ly blocking both TNFR1 and TNFR2 proved ineffective.
ATROSAB also proved to be an effective treatment for
multiple sclerosis in a mouse disease model [142].
Perhaps therapeutic treatment of OSA patients with
ATROSAB could aid OSA patients with symptoms of
ND, as a supplement to CPAP. Finally, the cholesterol-
lowering small molecule drug, lovastatin, selectively in-
creases TNFR2 expression [143] and prevents cognitive
deficits in mice [144].

Conclusions

The serum levels of the soluble isoforms of four membrane
receptors, gp130, IL6R, TNFR1, and TNFR2, with roles in
attenuating inflammatory signaling and neuronal cell death,

and hence, risk factors for ND, were examined. The pg/mL
protein levels of all four were expressed at aberrantly low levels
in OSA patients. The majority of airway-treated OSA patients
had levels for all four soluble cytokine receptors equivalent to
those observed in healthy control individuals. In short, airways
treatment was strongly correlated with normal cytokine recep-
tor levels in most of the airway-treated OSA patients. This
correlation with airways treatment suggests that chronic inter-
mittent hypoxia may be among the factors contributing to the
aberrantly low expression of TNF and IL6 receptors in untreat-
ed OSA patients. Several other OSA-associated abnormalities
such as sleep fragmentation and daytime sleepiness may also
play a role in altering the expression of cytokines and cytokine
receptors. Furthermore, any conclusions drawn from this study
are partially compromised by the surprising lack of a correlation
between cytokine receptor levels and CRP levels, SaO2 low
percent, and perhaps the relatively young age of our control
subjects. Increasing the serum levels of these cytokines in
OSA patients may be a beneficial supplement to airways
therapy.
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