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Obstructive Sleep Apnea (OSA) damages the health of 35% of adult Americans. Disordered sleep results in
increased risk of several autoimmune disorders, but the molecular links to autoimmunity are poorly understood.
Herein, we identified four cytokines associated with autoimmune disease, whose median serum levels were
significantly different for OSA patients receiving airways therapy, from the levels in untreated OSA patients,
APRIL (5.2-fold lower, p = 3.5 x 10~ '), CD30 (1.6-fold higher, p = 7.7 x 10~°), IFN-Alpha-2 (2.9-fold
higher, p = 9.6 x 10™'%) and IL-2 (1.9-fold higher, p = 0.0003). Cytokine levels in airways treated patients

were similar to the levels in control subjects. t-SNE and UMAP analysis of these high dimensional patient cy-
tokine data identified only two groups, suggesting a similar global response for all four cytokines to airways
therapy. Our findings suggest the levels of these four cytokines may be altered by disordered sleep and perhaps
by chronic hypoxia. Therapeutic options are discussed.

Protein abbreviations

APRIL, TNFSF13, Tumor Necrosis Factor Superfamily Member 13.
BAFF, TNFSF13B, B-Cell Activating Factor. CD30, TNFRSF8, CD30L,
Tumor Necrosis Factor Receptor Superfamily Member 8. CD163 CD163.
Chitinase 3-like 1 CHI3L1. CXCR5 CXCR5. CXCL13, CXCL13. HIF1A,
HIF1A, Hypoxia Inducible Factor 1 alpha. IL-2, IL2, IL2, T Cell Growth
Factor Interleukin 2. IFN-Alpha-2, IFNA2, Interferon Alpha 2.
Endothelin 1, EDN1, Preproendothelin-1. IFN-Gamma, IFNG. IL-6, IL6,
Interleukin 6, B-Cell Stimulatory Factor. IL-17A, IL17A: Interleukin 17,
Cytotoxic T-Lymphocyte-Associated Antigen 8. IL-23 IL23A. NF-
kappaB, NFKBI1, Nuclear Factor Kappa B Subunit 1. Nrf2, NFE2L2,
Nuclear Factor, Erythroid 2 Like 2. Pentraxin-3, PTX3. TNF-Alpha, TNF,
Tumor necrosis factor. VEGFA, VEGFA: Vascular Endothelial Growth
Factor A.

1. Introduction

Obstructive Sleep Apnea (OSA) is the most common cause of sleep
apnea and accounts for 75% of all cases of disordered sleep. OSA

patients may display abnormally long pauses in breathing or abnor-
mally low levels of breathing during sleep, and often have fragmented
sleep, snoring, excessive daytime sleepiness, fatigue, high blood pres-
sure, irritability, depression, loss of concentration, poor neurocogni-
tion, and reduced work performance [1-5]. Because sleep disorders and
lack of sleep affect 35% of adult and 68% of adolescent Americans, the
CDC has declared sleep deprivation as an epidemic [6]. Interruptions of
breathing, while asleep, result in chronic intermittent low oxygen levels
(chronic intermittent hypoxia) and tissue inflammation. Hence, OSA is
most commonly treated with Continuous Positive Airway Pressure
(CPAP) administered at night while sleeping. Dental airways devices
produce a similar treatment effect, and thus, have gained some recent
acceptance as an effective alternative to CPAP [7,8].

Hypoxia induced systemic inflammation is often considered the
major cause of increased risk for the various apnea-related health
problems. These problems develop over time and include cardiovas-
cular disease, metabolic syndrome associated insulin deficiency and
diabetes, tissue inflammation, hypertension, obesity, depression, cog-
nitive decline, and stroke, all of which increase mortality [9-14]. More
recently apnea has been linked to increased risk for a number of

Abbreviation: OSA, obstructive sleep apnea; CPAP, continuous positive airways pressure; t-SNE, t-distributed stochastic neighbor embedding; SLE, systemic lupus
erythematosus; ESS, Epworth sleepiness score; AHI, (apnoea-hypopnoea index); SaO,% low, average low percent oxygen saturation during each cycle of breathing
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autoimmune diseases affecting a variety of tissues and organs including
autoimmune encephalitis [15], systemic lupus erythematosus (SLE)
[16,17], rheumatoid arthritis [17-19], ankylosing spondylitis [17],
Sjogren's syndrome [17], and systemic sclerosis [17], autoimmune
hypopituitarism [20], atopic dermatitis [21], and psoriasis [22-24].

Even though OSA has been linked to the risk of autoimmune disease
[16,25,26], the evidence that chronic intermittent hypoxia-induced
chronic inflammation might be the mechanistic cause is only emerging
recently [20,27,28]. Hypoxia leads to necessary changes in energy
metabolism in myeloid cells [29] with the potential to influence auto-
antibody production [30]. It is well known that in cultured cells hy-
poxia induces a number of stress signaling cascades mediated by factors
including HIF-1, NF-kappa B, and Nrf2, endothelin 1 and VEGF. By one
current model, oxidative stress signaling induces higher levels of a
number of inflammatory cytokines to initiate an inflammatory cascade,
which in turn increases the risk of autoimmune disorders [27]. In-
flammatory cytokine cascades [27] and over stimulation of dendritic
cells by autoantigens may stimulate auto-reactive B cells to increase the
production of autoantibodies [31]. Altered levels of TNF-Alpha
[32-34], IL-17 and [35-37] and IL-6 [38-40] are all associated with
autoimmune disease and appear to play roles in initiating hypoxia-in-
duced inflammatory cascades. Relative to control subjects OSA patients
are reported to have 1.2- to 2.5-fold higher levels of, TNF-Alpha
[41-50], IL-17 [51,52] and IL-6 [45,53-55]. Most, but not all, of these
studies show airways therapy results in more normal levels of TNF-
Alpha, IL-17, and IL-6, more similar to the levels in control individuals
without apnea. Based on a model in which these cytokines initiate in-
flammatory signaling, TNF-Alpha and IL-6 are targets for im-
munotherapeutic suppression of inflammatory autoimmune diseases
[33,34,38-40].

Our goal was to discover other novel autoimmune-associated cyto-
kines that responded to airways treatment in OSA patients and might
play roles in autoimmune diseases. Their identification would increase
our understanding the link between OSA and autoimmunity and these
cytokines might be additional targets for therapeutic treatment of OSA.
We compared the levels of several inflammatory cytokines previously
linked to autoimmunity in serum among well matched patients with
OSA not yet receiving airway therapy to OSA patients receiving airways
therapy, and also to healthy control individuals. We found significant
changes in the levels of APRIL (TFNSF13), CD30 (TNFRSF8), IFN-Alpha-
2 (IFNA2), and IL-2 (IL2) in OSA patients receiving airway therapy,
such that cytokines were more similar to the levels observed in healthy
control subjects.

2. Materials and methods
2.1. Patient data

Nineteen OSA patients had formerly been diagnosed using poly-
somnography (PSG) based on their Apnea Hypopnea Index (AHI > 5),
but were currently receiving nightly airways therapy and were desig-
nated airways treated OSA patients. Eighteen of these recorded using
CPAP, while patient #31 reported using a dental airways device [8].
There were 19 OSA patients currently with apnea, but not receiving
airways therapy. Also 8 Control individuals were recruited, but among
these, patient #9 was borderline for high blood pressure (PB 145/89).
Although autoimmune disorders can develop in younger or older in-
dividuals, none of our patients reported having an autoimmune disease.
Neither patient #31 nor patient #9 produced outlying data. Patients
were evaluated in this study after obtaining written informed consent.
Gender, BMI, CVD, age, ESS [56,57], AHL, Sa0,% low, glucose levels,
Cholesterol, LDL, HDL, and CRP, were assessed at the time of first re-
cruitment (Table 1), which in the case of the airways treated patients
was after months of treatment. A Yes/No indication was recorded for
chronic medications. Compliance with nightly airways therapy was
confirmed by patients' response to a simple yes/no question. The
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airways therapy treated OSA patients and untreated OSA patients were
well matched for nearly all parameters (P values Table 1). The control
group was considerably younger and leaner, and potentially re-
presented more nearly optimal biometric data and cytokine levels.
Patients were recruited, consented, and blood drawn at the University
of Georgia's Clinical and Translational Research Unit (CTRU) in Athens,
GA. The detailed data collected on individual subjects are given in
Supplementary Data File SD1.

2.2. Cytokine levels

The levels of inflammatory cytokines were examined using Bio-Plex
Pro™ Human Inflammation Panel 1 multiplex kits that quantify bio-
markers of human inflammation (BioRad #171AL001M). Multiple 96
well plates were assayed using Bio-Rad Bio-Plex instrument at UGA's
Cytometry Shared Resource Laboratory. The Bio-Plex system has the
advantage that hundreds of individual beads each estimate each cyto-
kine level in each well, which improves the statistical accuracy of each
individual well estimate of all cytokines assayed. All the flash frozen
serum samples were thawed only once. Serum, standards and assay
controls were diluted as per the manufacturer's instructions (Bio-Rad
Bulletin 10,044,281) [58]. As recommended, each serum sample was
diluted 4-fold. Fifty microliters of this dilution were run in triplicate for
the 8 control, 19 untreated OSA patients, and 19 airways therapy
treated OSA patients (Supplemental Data File D1), instead of running
duplicate patient serum samples recommended by the manufacturer.
This allowed a more robust assessment of potential experimental errors
in each cytokine assayed. The picogram output data for each serum
cytokine level was normalized to the concentration of standards, run as
an eight-step, four-fold dilution series of each cytokine, and run in
duplicate on each assay plate. The quantitative nature of these assays
over the expected concentration ranges estimated for serum samples
was confirmed by comparing the fluorescence output of the quad-
ruplicate standard samples (two from each plate). The standard error of
the lowest concentration standards used to estimate concentration was
less than 15% and less than that for higher concentrations (Supple-
mental Data File SD1).

2.3. Power analysis

We determined effect sizes estimates in the context of hypothesis
testing for our data on each of these four cytokines using the three
methods [60] the absolute value of r, Cliff's delta, and Vargha and
Delaney's A. The standard values that give small, medium, large effect
sizes using each method are summarized in Table A of Supplementary
Data File SD2. By all three metrics, comparisons of each of the four
cytokine levels between airway treated OSA patients and untreated OSA
patients or between OSA patients and controls produced medium to
large effect sizes as shown in Table B of Supplementary Data File SD2.

The null hypothesis being tested was that OSA patients and airways
treated OSA patients express the same levels of soluble cytokines in-
volved in autoimmunity. The alternate hypothesis being tested was that
OSA patients express altered levels of soluble cytokines relative to the
airways treated OSA patients [61]. These hypotheses were tested using
Bio-Plex system, which provides a wider dynamic range when mea-
suring cytokine levels, greater sensitivity, and more statistical sig-
nificance for each assay than conventional cytokine immunoassays used
in most previous studies. Hence, the medium to large effect sizes esti-
mates for the differences in the levels of the four cytokines (Supple-
mentary Data File SD2) and study costs were both taken into account
[62,63], in estimating that the patient sample sizes were sufficient to
power a statistically significant preliminary study that would avoid
both Type I (false positive) and Type II (false negative) errors [63] as
recommended by the Federal Food and Drug Administration's study
guidelines for estimating minimum appropriate patient sample size
[64]. Finally, an empirical power calculation [65-67] was applied to
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Table 1
Summary of patient biometric, sleep, and laboratory data.
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Control subjects (n = 8)

Airways treated patients (n = 19) Apneic patients (n = 19)

Female/Male 6/2

Age 37.7 = 11.5
Hypertension or heart disease Y/N 2 Yes/6 No
Race C/H/B(A/M)/A 4C/0H/3B/1A
BMI 26.8 + 5.96
AHI at time of diagnosis 1.58 + 1.64
Sa0, low % 91.5% * 2.8%
ESS 5.33 * 3.67
Glucose mg/dL 94.8 + 8.70
Cholesterol mg/dL 165 + 26.8
HDL mg/dL 52.1 = 14.6
LDL mg/dL 96.4 + 22,6
hs-CRP mg/L 1.07 + 0.689
Chronic Meds Y/N 2 Yes/6 No
Airways therapy adherence 0 Yes/8 No

7/12 7/12

60.6 = 10.5 58.2 * 124
11 Yes/8 No 11 Yes/8 No
17C/0H/2B/0A 11C/1H/6B/1A
33.1 = 9.07 35.0 = 9.22
35.7 + 24.8 26.8 + 257
80.7% * 5.4% 76.4% * 10.3%
7.16 = 5.80 7.94 £ 4.02
106 = 18.7 104 = 12.1
181 + 25.1 179 + 43.1
51.8 = 18.1 45.7 = 17.3
104 = 27.6 106 = 35.8
4.84 + 7.65 3.48 = 5.60
16 Yes /3 No 16 Yes/3 No
19 Yes/0 No 0 Yes/19 No

the Wilcoxon rank sum test of the cytokine data and demonstrated there
was sufficient power with the number of test subjects for all compar-
isons of all four cytokine levels between airways treated OSA patients
and untreated OSA patients as shown in Table C of Supplementary Data
File SD2.

2.4. Management of data sets and statistical analysis

The data from separate plates were combined to make multiple
excel data files, one for each cytokine (Supplemental Data File SD1).
The levels of IFN-Alpha-2 among some untreated OSA patients and five
airways treated patients were either at or were below the range of
detection, with the latter being designated as out of range, OOR < , by
the instrument software. The lowest picogram patient serum sample
concentration of IFN-Alpha-2 that was estimated to be in the range of
detection was substituted for OOR < cytokine values. In this way, any
estimate of fold difference for IFN-Alpha-2 between OSA patients and
airways therapy treated OSA patients would not over-estimate the ac-
tual fold differences (Supplemental Data File SD1). At this point, the
data were moved into R v3.5.1 for further statistical analysis. The data
for patient groups were visualized using Boxplot. After applying the
Kolmogorov-Smirnov test in R [68-72], it was clear that the airways
treated patient data for cytokine levels were not normally distributed
(p < 0.05) and often fell into two groups of values. The Kolmogor-
ov-Smirnov test is a nonparametric goodness-of-fit test and could be
used to determine whether an underlying probability distribution dif-
fers from the hypothesized normal distribution. Therefore, without the
normality assumption, the nonparametric Wilcoxon rank-sum test was
used to estimate p values for the significance of pairwise differences in
cytokine levels among OSA patients, airways treated OSA patients, and
controls. The two-sample Wilcoxon rank sum test is a rank-based test
that compares values for two groups. Without any distribution as-
sumption, the test addresses if it is likely that an observation in one
group is greater than an observation in the other, with significance level
(alpha) = 0.05 = 5% in our case [59].

To visualize the high-dimensional data for the levels of all four
cytokines among all patients and controls in a two-dimensional map,
the nonparametric t-distributed Stochastic Neighbor Embedding (t-
SNE) visualization method [73] was applied using the Rtsne version
0.15 statistical R package available online [74]. T-SNE reduces di-
mensionality by first using a Gaussian distance to analyze the similarity
among data points in high-dimensional space and then projecting these
data into two dimensional space [75]. We also employed Uniform
Manifold Approximation and Projection (UMAP) as an alternative
method to visualize these high-dimensional data in two-dimensions
[75,76]. UMAP analysis is quite distinct from t-SNE in that it first es-
timates a topology for the high-dimensional data and then uses the

topology information to construct two dimensional space [75]. It has
been argued that UMAP may be superior to and/or equivalent to t-SNE
at recovering the global structure among high dimensional data
[76,77].

2.5. Theory/calculation

The bulk of literature supporting current models in which oxidative
stress signaling initiates an inflammatory cascade of cytokines to in-
crease the risk of autoimmune disorders [27] are based on data from
acute hypoxic treatment of cell culture models, or for example, acute
ischemia in rodent models. However, OSA patients experience long
term chronic long-term hypoxia over months or years in which the
acute response may be attenuated. Similarly, airways therapy of OSA
patients is administered over long if not indefinite time periods, for
which there are no analogous cell culture or rodent models. The work
herein responds to the need for more quantitative and statistically
significant data on changes in autoimmune related cytokine levels after
airways therapy.

3. Results
3.1. Patients

Cytokine levels were examined in the serum of nineteen OSA pa-
tients receiving airways therapy (airways treated patients, Table 1) and
compared to nineteen OSA patients not receiving airways therapy and a
group of volunteers without OSA (control individuals). Table 1 sum-
marizes important biometric, sleep and laboratory data for the three
groups of subjects with details presented in Supplemental Data Files
SD1.

3.2. Assaying changes in serum cytokine levels

We found the levels of four cytokines with previously reported rolls
in autoimmunity were significantly different in airways treated OSA
patients relative to untreated OSA patients, including APRIL
(TFNSF13), CD30 (TNFRSF8), IL-2 (IL2) and IFN-Alpha-2 (IFNA2) with
the detailed data presented as four box plots in Fig. 1 and the statistical
data summarized in Table 2. Increased serum levels of APRIL (Tumor
Necrosis Factor Superfamily Member 13) and increased APRIL signaling
have been linked to several autoimmune disorders including rheuma-
toid arthritis [78], eczema [79], multiple sclerosis [80], and systemic
lupus erythematosus [81]. We found the median pg/mL serum level of
the soluble isoform of APRIL was 5.2-fold lower in airway treated OSA
patients relatively to the median level in untreated OSA patients
(p = 3.5 x 10~ ', Fig. 1A). The level in airways treated patients was
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still 1.7-fold higher than the levels in control subjects
(p = 6.6 x 10~%). Hence, patients receiving airways therapy had levels
of APRIL that were much closer to those in controls, but still higher
than the levels observed in controls.

CD30 (CD30L) is member of the Tumor Necrosis Factor Receptor
Superfamily expressed in activated T and B cells. Its soluble isoform is
generally found to be upregulated in leukocytes in patients with chronic
inflammatory and autoimmune diseases including lupus erythematosus,
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Fig. 1. The levels of four cytokines involved in the autoimmune disease are
significantly altered in OSA patients receiving airways therapy. The serum pi-
cogram per milliliter (pg/mL) levels of (A) APRIL, (B) CD30, (C) IFN-Alpha-2
and (D) IL-2 from control individuals, airways treated OSA patients and OSA
patients not receiving airways therapy are summarized in box blots. The top
box encloses the third quartile and is bounded by median pg/mL value, the
lower box encloses first quartile and is bounded by median value. The whiskers
indicate the median values —/+ 1.5 IQR (interquartile range), and hence ex-
clude outliers. The median value is indicated by a black line. Each of the three
independent estimates of a cytokine level for each patient are represented by
separate data points. Outliers among the airways treated patients that resemble
untreated OSA patient data are encircled with a red dotted line. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

asthma, rheumatoid arthritis and atopic dermatitis and CD4+ T cell-
mediated graft-versus-host disease [82,83]. However, we found the
median pg/mL level of CD30 was 1.6-fold higher in the serum of air-
ways treated OSA patients relative to untreated OSA patients
=77 x 1075, Fig. 1B, Table 2). Whereas, the median level in
airways treated patients was slightly lower than that in controls, this
difference was not statistically significant (p = 0.064).

Interferon Alpha 2 (IFN-Alpha2) expression is elevated in a number
of autoimmune diseases such as arthritis, systemic lupus erythematous
and Sjogren's syndrome with the proposed effect of reducing both in-
flammation and the autoimmune response [84,85]. The median pg/mL
level of the soluble isoform of INF-alpha2 was 2.9 -fold higher in the
serum of airways treated OSA patients relative to untreated OSA pa-
tients (p = 9.6 x 10!, Fig. 1C, Table 2). Median IFN-Alpha-2 levels
in airways treated OSA patients were more similar to the levels in
control subjects, but were statistically distinguishable (p = 0.015).

Defects in T Cell Growth Factor Interleukin IL-2 (IL2) or in IL-2
signaling produce multiorgan autoimmunity and are linked to systemic
lupus erythematosus [86], asthma [87], and multiple sclerosis [88,89].
We found the median pg/mL serum level of IL-2 was 1.9-fold higher for
airways treated OSA patients relatively to untreated OSA patients
(p = 0.0003, Fig. 1D, Table 2). The median level in airways treated
OSA patients was not statistically distinguishable from the median level
in controls subjects (p = 0.15).

In short, it appears that OSA patients had aberrantly low levels of all
four autoimmune-related cytokines, and OSA patients receiving airways
therapy had cytokine levels more similar to those observed in control
subjects. However, the cytokine levels for airways treated OSA patients
did not appear normally distributed and the data for five patients ap-
peared as outliers with levels that were more similar to those of un-
treated patients (red encircled data, Fig. 1). In order to visualize the
potentially coordinated response of all four cytokine levels independent
of the direction of that response for most of airways treated OSA pa-
tients relative to OSA patients and controls and the potential common
relationship among the outliers, we applied two machine-learning 2D
visualization strategies (Fig. 2). The first, t-SNE is a non-linear di-
mensionality reduction method, that has the capacity to capture local
structures among these high-dimensional data, while also revealing the
presence of groups of related data as global, and to present these data in
two-dimensional space [73]. As shown in the t-SNE analysis in Fig. 2A
all the patient cytokine data lie in two clusters, with Group 1 re-
presenting the cytokine data among all the untreated OSA patients and
five of the nineteen airways treated OSA patients. Group 2 represents
the cytokine data for all the controls and fourteen of the nineteen air-
ways treated OSA patients. The robustness of the t-SNE result was tested
by applying UMAP, an alternative method for recovering global struc-
ture among high dimensional data [76,77]. Applying UMAP to these
patient data (Fig. 2B) we again found two groups. Group membership is
the same for Group 1 and Group 2 data using either t-SNE or UMAP.

A combined examination of Fig. 1 (data encircled by red dotted
lines) and Fig. 2 suggests that five patients (i.e., patient numbers 12, 26,
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Fig. 2. t-SNE and UMAP placed the high dimensional
patient cytokine data into the same two groups in
two dimensions. The high dimensional data for the
changes in the levels of APRIL, CD30, IFN-Alpha-2
and IL-2 were reduced to a two dimensional visua-
lization by t-SNE (A) and UMAP (B). A. t-SNE. Group
1 represents the dimensional distribution of the le-
vels of four cytokines among all the untreated OSA
patient and a five of the nineteen patients airways
treated OSA patients. Group 2 represents the cyto-
kine data for all the control individuals and fourteen
of the nineteen airways treated OSA patients. B.
UMPA. Group 1 and 2 in have the same affiliated
patients as observed with t-SNE. Each patient is re-
presented by 3 data points that combine the dimen-
sional distribution of the levels of the three mea-
surements made for each of four cytokines for that
patient.
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expression [94]. Yet, we found what appears to be aberrantly high le-
vels of soluble APRIL protein in OSA patients. In airway treated OSA
patients, soluble APRIL levels in serum were several-fold lower, but not
quite as low as levels in control individuals. The extremely high levels
of soluble serum APRIL in untreated OSA patients may dampen APRIL
receptor membrane signaling, resulting in damage to early stages of T
and B cell development, and hence, contribute to the increased risk of
apnea-related autoimmune disorders. Chemical inhibition of APRIL has
some efficacy in the treatment of systemic lupus erythematosus [95],
suggesting suppression of APRIL might aid patients with OSA-linked
autoimmune diseases.

CD30 is a receptor expressed as both membrane and soluble iso-
forms by activated, but not resting B and T cells [82,83]. CD30 sig-
naling can lead to cell proliferation and/or cell death. As mentioned,
increased levels of CD30 are associated with a number of autoimmune
disorders. Direct and indirect evidence suggest signal transduction
through the CD30 receptor plays diverse roles in regulating B and T cell
development, apoptosis, autoimmunity and in reducing inflammation

[82,96-99]. CD30's role in T cell mediated responses and inflammation
likely account for increased CD30 levels in increasing the risk of au-
toimmune disorder. We did not find publications linking OSA to altered
levels of CD30. However, the serum levels of CD30 are increased 1.4-
fold in patients with Chronic Obstructive Pulmonary Disease relative to
control subjects suggesting hypoxia related stress upregulates CD30
expression [100]. In contrast to these data, we found low levels of CD30
in the serum of untreated OSA patients. The levels in airways treated
OSA patients were very similar to those in controls. We are considering
a model in which the long term chronic hypoxia experienced by OSA
patients attenuates the acute response of increasing CD30. Any im-
balance in expression of soluble CD30 in serum, either an increase or
decrease, would alter the amount free to bind the CD30 membrane
receptor, and hence, alter signaling. Altered CD30 receptor signaling
caused by reduced soluble CD30 expression might then contribute to
increased autoimmune disease risk in OSA patients. Restoring appro-
priate balanced CD30 levels by therapeutic CD30 supplementation
might be considered as a treatment for OSA-induced autoimmune



B.G. Phillips, et al.

diseases in patients with low cytokine levels in addition to CPAP.
Conversely, immunosuppression of elevated levels of CD30 has shown
efficacy in the treatment of a mouse model of autoimmune en-
cephalomyelitis [99] and has been suggested as a treatment for MS
[101].

IFN-Alpha-2 is considered the prototypical member of the IFN-alpha
family of cytokines involved in the innate immune response, acting
primarily on T cells [102]. It is produced as a soluble cytokine in
macrophages and at low levels by most cell types in response to viral
infection, having an antiviral effect. However, balanced expression of
IFN-Alpha-2 appears essential to a normally functioning immune
system [84,85]. Modest overexpression of IFN-Alpha-2 has been ob-
served in the serum of patients with autoimmune diseases. IFN-Alpha-2
delivered exogenously to human endothelial cells induces the expres-
sion of hypoxia inducing factor HIF-1a within 2 to 4 h of IFN-Alpha-2
transgene stimulation even under normoxic conditions. Exogenous IFN-
Alpha-2 expression induces HIF-lalpha to almost the same levels as
treating cells with hypoxia and has an antiproliferative effect on en-
dothelial cell growth. Because of this positive association with the acute
response and autoimmunity, we anticipated increased IFN-Alpha-2 le-
vels in OSA patients. Contrary to expectation, we found dramatically
low levels of IFN-Alpha-2 in OSA patients. Whereas, the airways treated
OSA patients had 3-fold higher levels of IFN-Alpha-2, levels more si-
milar to the levels in control individuals. Considering that airways
therapy had such a dramatic effect, it is likely that chronic intermittent
hypoxia was the cause of the reduced levels in OSA patients. Chronic
hypoxia experienced over months and years may attenuates the short
term acute response as has been modeled previously for the relationship
between OSA and autoimmune disorders [20,27,28]. The extremely
low levels of IFN-Alpha-2 in untreated OSA patients may cause an im-
balance in their immune responses and may account for the increased
incidence of autoimmune diseases among OSA patients. The extremely
low levels of IFN-Alpha-2 observed in OSA patients contrasted by the
nearly normal levels in airways treated patients suggests the proin-
flammatory response produced by acute hypoxia has been attenuated
by chronic intermittent hypoxia experienced by these patients. If this is
the case, it suggests a therapy in which carefully balanced supple-
mentation of exogenous IFN-Alpha-2 might be used to treat OSA-asso-
ciated autoimmune disorders in addition to CPAP. Reports on the
therapeutic use of IFN-Alpha-2 are limited. Treating mice with exo-
genous IFN-Alpha-2 show dramatically increased rates of leukocyte
migration with a proinflammatory effect. [103]. By contrast, IFN-
Alpha-2 neutralizing antibodies appear useful in reducing inflammation
in some, but not all SLE patients [104].

IL-2 is a secreted soluble cytokine with diverse pro- and anti-in-
flammatory roles in controlling an appropriate immune response and it
is an essential factor in immune suppression and self-tolerance
[105,106]. IL-2 is capable of suppressing undesirable immune re-
sponses, for example, by increasing the activity of regulatory T cells,
but also by increasing the immune response by stimulating effector T
cells. Defects in IL-2 increase the risk of an autoimmune response [107].
Hypoxia significantly induces expression of IL-2 in microglial cells in
the brain [108]. Previous studies on adults and children found no sig-
nificant differences in IL-2 levels between OSA patients and controls
[90,109,110]. We found the median level of soluble IL-2 was sig-
nificantly lower in OSA patients relative to controls. IL-2 levels were
significantly higher in airways treated OSA patients than untreated OSA
patients, so as to be indistinguishable from levels in control subjects.
The extremely low levels of IL-2 untreated OSA patients may be so low
that IL-2 is unable to perform its anti-inflammatory roles, and hence,
contribute to increased risk of autoimmune disease, similar to genetic
defects in IL-2. Therefore, therapeutic balanced supplementation with
low doses of IL-2 might be an appropriate treatment for OSA patients
with associated autoimmune diseases in addition to CPAP. Autoimmune
disorders such as SLE have been treated with some success with low
doses of IL-2 [86,111-113].
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We also examined the pg/mL levels of other cytokine with im-
plicated roles in autoimmune disease, but that we found were not al-
tered in our OSA patients relative to controls and did not respond to
airways therapy including BAFF, CD163, Chitinase 3-like 1, IFN-
Gamma, Pentraxin-3. There are numerous other cytokines that have
been associated with autoimmune disease, which were not considered
in this study such as TNF-Alpha, IL-17 and IL-23 [84,114]. A more
comprehensive simultaneous analysis of the dozens of cytokines con-
tributing to autoimmune-related inflammatory cascades is needed to
properly link OSA and the potential benefits of airways therapy to au-
toimmune disorders.

5. Conclusions

The low levels of CD30, IL-2 and IFN-Alpha-2 we observed in OSA
patients contrasted with expectations of increase in their expression
based on previous direct or indirect evidence linking their elevated
expression with acute hypoxia. APRIL levels were higher in OSA pa-
tients than in airways treated OSA patients, but the link between APRIL
expression and hypoxia experienced by OSA has not been suggested in
previous literature. Perhaps the chronic intermittent hypoxia experi-
enced for months and years by OSA patients leads to an attenuation of
the acute response and chronically altered levels of all four cytokines.
This distinction, that cytokine levels respond differently to chronic in-
termittent hypoxia experienced by OSA subject than to acute hypoxia in
experimental systems was described previously [27]. The fact that all
four were more similar to control levels in airways treated OSA patients
suggested the likely link to blood oxygenation levels. However, the lack
of a correlation between cytokine levels and either SaO2 low % or CRP
levels of any patient group or groups draws into question any clear
conclusion about the direct role of hypoxia. Airways therapy of OSA
patients appears to be an effective way to control aberrant levels of
these four cytokines involved in autoimmune disease and immune
processes. The outlying cytokine data for five airways treated patients,
suggests we may need a more critical method to access compliance with
airways therapy.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.clim.2020.108601.
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