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Abstract

Linking genotype to phenotype is a primary goal for understanding the genomic underpinnings of
evolution. However, little work has explored whether patterns of linked genomic and phenotypic
differentiation are congruent across study systems and traits. Here we investigate such patterns with a
meta-analysis of studies examining population-level differentiation at subsets of loci and traits
putatively responding to divergent selection. We show that across the 31 studies (88 population-level
comparisons) we examined, there was a moderate (R*> = 0.39) relationship between genomic
differentiation (Fs7) and phenotypic differentiation (Psr) for loci and traits putatively under selection.
This quantitative relationship between Pgy and Fg7 for loci under selection in diverse taxa provides
broad context and cross-system predictions for genomic and phenotypic adaptation by natural
selection in wild populations. This context may eventually allow for more precise ideas of what
constitutes “strong” differentiation, predictions about the effect size of loci, comparisons of taxa
evolving in non-parallel ways, and more. On the other hand, links between Ps7 and Fsy within studies
were very weak, suggesting that much work remains in linking genomic differentiation to phenotypic
differentiation at specific phenotypes. We suggest that linking genotypes to specific phenotypes can
be improved by correlating genomic and phenotypic differentiation across a spectrum of diverging

populations within a taxon and including wide coverage of both genomes and phenomes.
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Introduction

Quantifying the relationship between genomic and phenomic (Box 1) population differentiation is
fundamental to characterizing the genomic basis for phenotypic evolution (Rodriguez-Verdugo et al.,
2017). Understanding the association between genes and phenotypes in natural populations also has
the potential to reveal generalizable patterns of evolution (Feder and Mitchell-Olds, 2003; Gallant and
O’Connell, 2020; Rudman et al., 2018). The genomic basis for adaptive evolution also has profound
implications for evolutionary conservation, including genetic evolutionary management (Hoffmann et
al., 2015; Kinnison and Hairston, 2007) and evolutionary rescue (Carlson et al., 2014). A universal
pattern of congruent differentiation in genetic loci and phenotypic traits (i.e., a similar positive
relationship between population-level genomic and phenotypic differentiation for traits and loci
putatively under selection) in wild populations would have many theoretical and practical benefits,
including context for interspecific comparison of genomic and phenotypic differentiation and
generalizable patterns of genomic and phenotypic adaptation. Comparing individual results to
generalizable patterns would allow us to address questions such as 1) what constitutes “large”
differentiation, 2) whether certain loci have relatively strong effects on phenotypes, and 3) whether

nonparallel adaptations are similar in their scope of differentiation, if not in trait pathways.

To date, however, the genomic architecture of phenotypic change in most natural populations remains
poorly understood, and studies of adaptive population genomics greatly outnumber studies linking
genomic change to adaptive phenotypic change (Hendry, 2013, 2016a). Recent technological
advances have made sequencing large or whole portions of genomes possible for many non-model
species (Bolger et al., 2019; Davey et al., 2011; Cuperus and Queitsch, 2020; Goodwin et al., 2016;
Russell et al., 2017; Whibley et al., 2021), but are the patterns from these studies generalizable?
Specifically, does this growing body of literature support the premise that greater phenotypic
differentiation corresponds with greater genomic differentiation in natural organisms (controlling for
the number of contributing loci)? Here we examine this link via standardized measures of genomic
differentiation (Fs7) and phenotypic differentiation (Psy)—while assessing potential interacting effects

associated with different study designs (Box 2). While details of species-specific genomic architecture
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certainly affect this link, we sought generalizable patterns at a broader scale, particularly for when

information on these specifics is lacking.

The keystone fact of the Modern Evolutionary Synthesis is the genetic basis for evolution (Fisher,
1930; Huxley, 1942). While phenotypes determine fitness, their heritable, genetic basis controls the
response of phenotypes to selection and their persistence in time. In a small but growing number of
cases, clear relationships between phenotypes subject to natural selection and their associated genes
(e.g., Barrett et al., 2019; Colosimo et al., 2004) have been identified in natural populations. However,
the ability to associate genetic variation with phenotypes in natural populations—where
environmental conditions are beyond manipulation—remains challenging (Hendry, 2013, 2016a).
Nonetheless, substantial progress in linking genetic and phenotypic variation in limited cases has been

made (i.e. Genome Wide Association Studies; GWAS: Visscher et al., 2017).

Despite this progress, biologists have struggled to systematically associate genomic data with
biologically relevant phenotypes, particularly when pleiotropy, polygenic inheritance, epistasis, and
phenotypic plasticity confound their relationship (Pigliucci and Muller, 2010; Walsh and Lynch,
2018). In a large proportion of studies of adaptation in natural populations, genomic variation is
analyzed for signals of selection without any direct quantification of biologically relevant phenotypic
trait variation. As such, most literature on the heritable basis of adaptation tends to focus primarily on
the characterization of either genomic or phenotypic variation in natural populations, but not
explicitly link the two. Genome-wide association studies (GWAS) provide one avenue to explore
genotype-phenotype relationships in natural populations, but are often plagued by high false positive
rates and commonly struggle to detect the small genetic effect sizes of many polygenic traits (Chen et
al., 2021; Evangelou and Ioannidis, 2013). This growing body of studies have attempted to associate
genomic and phenotypic aspects of adaptation in the same diverging populations of organisms. These
studies in turn provide a means to assess how genomic and phenotypic variation are distributed
among populations experiencing ongoing adaptive differentiation. Genetic and phenotypic

differentiation are particularly useful for linking genotypes to phenotypes, as they produce phenotypic
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and genetic variation, which can then be harnessed statistically for GWAS or outlier studies (Gibson,

2018; Visscher and Goddard, 2019).

While numerous phenotypic traits clearly have a heritable basis, their underlying genomic architecture
is rarely fully—or even mostly—explained, leading to what is sometimes called the ‘missing
heritability problem’ (Young, 2019; Zuk et al., 2012). This is not entirely unexpected given the great
complexity of genomes and phenomes, and the constraints both present for statistical power (Lopez-
Cortegano and Caballero, 2019; Uricchio, 2020). This recognized challenge has led to substantial
innovation—and thus variability—among investigators and studies in methods used to associate
genomic and phenotypic differentiation (Burt and Munafo, 2021). Despite a growing number of
approaches, no clear best practices exist for linking genotype to phenotype across systems. Each
method has substantial limitations, and the lack of best practices adds noise to any attempt to detect

underlying trends common across the tree of life (Tam et al., 2019).

For example, while gene-knockout experiments provide an ideal means of studying how variation in a
particular candidate gene determines phenotype when the species can be reared in a laboratory setting
(Hall et al., 2009), these experiments are prohibitive or unethical for studies of most non-model
species in natural systems. Further key choices in study system, study design, genomic data
collection, and analytical approach all likely influence calculations of genomic and phenotypic
differentiation in idiosyncratic ways. Controlling for methodological variation can therefore
potentially reveal more generalizable patterns that may help in understanding the relationship between
genomic and phenotypic differentiation, allowing for cross-system comparisons and generalizations

about responses of natural populations to selection.
Here we conduct a meta-analysis of 31 studies of natural populations representing 88 unique multi-

population comparisons that demonstrate putative genomic and phenotypic differentiation in response

to selection. We address two main questions:
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1) How does genomic differentiation at loci under selection explain phenotypic differentiation, both
across and within studies? Under ideal conditions, when all the loci underlying a phenotypic trait are
identified and the phenotype is accurately quantified, we would expect a strong, positive relationship
between Pgr and Fg7 for loci under selection (Brommer, 2011; Kaeuffer et al., 2012; Raeymaekers et
al., 2007). However, measuring numerous genotypes and phenotypes inherently leaves much room for
error, even beyond methodological nuances, as not all highly differentiated loci will code for highly
differentiated phenotypes, and some important loci may exhibit little differentiation, muddying the
relationship between Pgr and Fs7. Fundamental differences in genomic architecture—including the
strength of individual loci (many weak vs. few strong), linkage, and gene interactions—across taxa
and traits will also muddy the relationship between Pgsr and Fsr (Keane et al., 2011). Finally, some
phenotypic differentiation will simply be explained by neutral genomic differentiation (Raecymaekers

et al., 2017; Whitlock, 2008; Zhang, 2018).

2) How do key methodological choices affect the strength of the genome-to-phenome association?
Differences in methodological choices for genome-to-phenome studies are likely to affect not only
conclusions about the extent of genomic and phenotypic differentiation, but the expected relationship
between Psr and Fsr as well. As some genomic markers are more likely to fall in or near coding or
modifier regions (Box 3), those markers may have stronger relationships with phenotypes.
Furthermore, smoothing or adjusting Fsr and correcting for false-positive rates may improve
statistical error rates, but bias the relationships between Psr and Fir, in part by changing the
proportion of the genome characterized as “non-neutral” (Lotterhos and Whitlock, 2014; Luu et al.,
2017). Finally, common-rearing experiments may avoid some of these challenges by isolating genetic
differences in phenotypes, but they also remove gene-by-environment interactions, which are

important genetically based sources of phenotypic variation (Via and Lande, 1985).

Methods
Overview
We used Web of Science (https://webofknowledge.com) and the search terms in Table S-1 to isolate

88 population-level comparisons that included phenotypic and genotypic data from two or more
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populations under purported divergent selection (Table 1). We extracted or calculated three metrics
from each paper for all possible pair-wise comparisons of each phenotype measured between
populations: (1) Psr, phenotypic differentiation, (2) neutral Fs7, neutral genomic differentiation, and
(3) non-neutral Fgr (nnFsr), genetic differentiation for loci putatively under selection (i.e., candidate
genes, outlier loci, or loci associated with a differentiated phenotype in a GWAS) (Wright, 1949). We
also included methodological covariates, including the method of determining loci under selection
(Box 4), type of genetic marker used (Box 3), the software used to calculate Fsr, whether the study

included a common-garden design, and the proportion of loci identified as non-neutral.

We used general linear models to examine the relationship between phenotypic differentiation (Psy)
and 1) neutral and non-neutral genetic differentiation (Fsy, nnFlr), 2) proportion of loci identified as
non-neutral, and 3) several methodological choices. The result is several models that assess the degree
to which phenotypic and genomic differentiation are congruent (in traits and loci putatively under

selection), as well as the role of some potential confounding methodological factors.

The database

We used all databases within the online citation database Web of Science and the 25 search terms in
Table S-1 to find relevant papers which included phenotypic and genomic data from two or more
populations undergoing divergent selection. Searches returned anywhere from 0 to 340,088 papers;
we retained papers revealed by searches with <700 results (Table S-1). We used R version 3.6.1 (R
Core Team, 2019) and the packages metagear (Lajeunesse, 2016) and Bibliometrix (Aria and
Cuccurullo, 2017) to screen the abstracts of each paper to determine whether the paper was likely to
contain both genomic and phenotypic comparisons for multiple populations. For consistency, the
same observer (Author #1) reviewed every abstract. To examine how well our search terms captured
the breadth of the relevant literature, we conducted a forwards-backwards literature search following
Koricheva et al. (2013). We examined literature cited by and literature which cited every study
included in our meta-analysis for relevance based on the title alone. We used Google Scholar on
December 8th 2019 to find literature that cited the papers included in our analysis. We then

determined how many of those papers were already captured by our original search terms. Any papers
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that were not included in our original screening process were then screened based on the abstract as
described above; none of the additionally screened papers contained appropriate data for inclusion in
our meta-analysis. In total, we screened 4,317 papers, retaining 31 papers for analysis (Figure S-1).
The most common reason for non-inclusion of papers (nearly all) was lack of measured phenotypic
data. As this data was generally not measured, rather than not reported, we did not request data from

authors.

We extracted the following information from each paper: species, phenotypic trait, Psy of the
phenotypic trait, number of individuals used to calculate Pg7, number of groups the phenotypes were
sampled from, number of groups the genotype data were sampled from, Fsr of loci under selection
(“non-neutral;” nnFgr), Fsr of neutral loci, Fsr formula, marker type, number of loci under selection,
number of neutral loci and method(s) used to determine which loci are under selection. For papers

which included raw phenotypic measurements (16) we calculated Py using:

(1)

Por=1-—

iji(xji - 9_6)2

The numerator is the sum of squared deviations of each individual’s phenotype from the population
mean, and the denominator is the sum of squared deviations of each individual’s phenotype from the
metapopulation mean. We used F tests to confirm that all reported and calculated Pgy values were
statistically different than 0, i.e. implied phenotypic differentiation.

For papers with more than two study populations, we used all possible pairwise population

comparisons for analysis.

We organized genomic analysis software into 4 groups:
1) Raw: raw Fs7 calculations
2) Bayesian: Bayescan and 2DSFS
3) Non-bayesian: Arlequin, Lositan, fdist, dfdist, fstat, detsel, InRV
4) GWAS-specific: other software used specifically for GWAS
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Analyses

We logit-transformed all Fsr and Pgsr data in this study. The logit transformation assumes that small
changes at the ends of the range of possibilities (e.g. from Fs7=0.01 to 0.02 or 0.98 to 0.99) are more
important than small changes in the middle of the range (e.g. from Fis7 = 0.50 to 0.51). Logit
transforming Fsy and Pgr also standardizes their sensitivity to differentiation—doubling
interpopulation variation produces an equal change in logit (Fsr or Psr) regardless of the starting
variation (Figure 1). Finally, logit-transforming Fsr makes Fsr data—which are often right-skewed—
roughly normally distributed (Figure S-2). All neutral Fis7 values < 0.005 were changed to 0.005 to

avoid having zero or negative values, which cannot be handled by a logit transformation.

Due to the large range in number of phenotypes measured in any given paper, we used paper-specific
averages for our global Pg~Fs7 analysis. Specifically, we averaged values for all numeric variables
for each unique population-level comparison, allowing multiple points if a comparison was replicated
with multiple methods (i.e. different statistical software or a GWAS and outlier approach). This
averaging resulted in a final 111 datapoints for 88 unique population-level comparisons across 31

papers.

We then tested these data for relationships between average Psr and average neutral Fr or average
non-neutral Fsy (henceforth: nnFsr). As nnFsr and Fsr are strongly correlated (Figure 2), including
both in the same model is inadvisable; we therefore tested them separately using two general linear
models and likelihood ratio tests (Fox and Weisberg, 2011). We compared the models using relative
likelihood—as these models were not nested, a likelihood ratio test was not feasible (Burnham and

Anderson, 2003).

As nnFsy was superior to neutral Fgr in predicting Psy (Figure 3), we investigated the proportion of
non-neutral loci as a covariate in the Pg-nnF gy relationship. A study that found one locus with high
Fsr has different implications for Pgr than a similar study finding hundreds of loci with high Fs7. We

therefore fit the following general linear model:
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2)

Nnn

nn )
N total N total

Pgr and nnF¢r are described above; N, = number of non-neutral loci; N, = total number of loci; and

N
logit(Psr) = Bo + Lrlogit(nnFsr) + Llogit( ) + Brlogit(nnF ST)logit(

[f-terms are coefficients determined during model fitting.

We tested all effects in the above model using type II likelihood ratio tests. As only the first-order
effect of proportion non-neutral loci was significant (see Results), we removed the interaction and
refit the model. We also included a first-order effect of proportion of non-neutral loci in all

subsequent analyses.

We tested for the effects of four methodological variables—common garden rearing, genetic marker
type, broad methodological approach (candidate gene, outlier, GWAS), and software choice—on Psr
and the Psr-nnF sy slope. We did not test for an effect of nnF sy p-value threshold, as p-value threshold
did not have a strong effect on nnFsy (Figure S-3). We tested each of the methodological variables
separately to avoid overfitting, as there were only 31 papers in our dataset. We fit the following

general linear model for each methodological variable:

©)

Nnn
lOgit(PST) = ﬁM + ,BFMlogit(nnFST) + ﬁLIOgit
Ntotal

Pgr, nnFsr, N,,, and N, are described above; f-terms are coefficients determined during model

fitting: ), indicates a method specific intercept and fr), indicates a method specific Ps-nnFsy slope.
We tested all variables in each model using type II likelihood ratio tests.
We also examined Psr-nnF sy trends within studies, with the goal of elucidating a Psr-nnFsr

relationship for individual phenotypes across numerous populations. We winnowed our master

database down to all paper-phenotype-method combinations that had at least five Psr-nnFr
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datapoints (18 paper-phenotype-method combinations total). We then fit the following general linear

model across all datapoints from the winnowed database:

4

Nnn
logit(Psr) = Bz + Brlogit(nnFgr) + B logit
Ntotal

Pgr, nnFsr, N,,, and N, are described above; f-terms are coefficients determined during model
fitting: 7 indicates a phenotype-specific intercept and S indicates a phenotype-specific Ps-nnFsr

slope—i.e., Sz and fr; took a unique value for each paper-phenotype-method combination.

We fit one S, (proportion of non-neutral loci) slope across all paper-phenotype-method combinations,
rather than fitting a unique f; term for each (as we did for fr) due to the overall small sample size and
the lack of variation in proportion of non-neutral loci for three papers. We tested the slopes of each
phenotype-specific Ps-nnFsr relationship (frz) using ¢ tests. As the relatively small number of points
within each study certainly lowered the power to detect significant Psy-nnFsr relationships, we also

examined the distribution of Ps;-nnFsr slopes for the within-study analysis.

Results

Non-neutral Fsr (nnF'sy) was superior to neutral Fg7 in predicting Psz, with higher slope (0.43 vs. 0.30)
and R? (0.20 vs. 0.12) (Figure 3). Both had statistically significant relationships with Psr (Likelihood
ratio test—non-neutral Fgr: x> =27.3; df = 1; p < 0.001. Likelihood ratio test—neutral Fsz: y> = 15.0;
df=1; p <0.001.). However, the nnFsr model outperformed the neutral Fs; model, with the neutral

model having a likelihood of 0.005 with respect to the nnF sy model.
Proportion of non-neutral loci also had a significant negative effect on Pz, but had no significant
interaction with nnFsy (Figure 4, Table 2). Including proportion of non-neutral loci in a model with

nnFgr (without the non-significant interaction) increased the model R? from 0.20 to 0.25.

Of our four methodological variables (common-garden rearing, genetic marker type, broad method,

and software analysis method), only marker type had a significant effect on Psy (Figure 5, Table 3).
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Pgrwas highest (for any given value of non-neutral Fsy) for AFLPs, then QTLs, which were closely
followed by SNPs and msats. This model result does not, however, imply that some marker types
caused higher Pgr, rather it indicates that Psy was higher for a given estimate of nnFsr (or more
intuitively, nnFsy was estimated as lower for a given value of Pgr) for some markers. Marker type did

not have a significant interaction with nnFsr.

Within studies, we found no significant relationships between Py and nnFsr for any phenotypes, even
with proportion of non-neutral loci included in the model (Figure 6, Table S-2). The mean and
standard error for the Psr-nnF sy slope within studies were 0.05 and 0.44, respectively, indicating an

average Psr-nnFgr slope close to zero for individual phenotypes within studies (Figure S-4).

Discussion

Linking genotypic and phenotypic differentiation across and within studies

Here we show that there is a discernible positive relationship between metrics that measure genomic
and phenotypic differentiation when applied to loci and traits putatively under selection (Figure 3). In
spite of vast confounding variation within our data set (Table 1)—including species biology, study
design, marker type used, statistical approach, and software used—we were able to demonstrate a
significant relationship across a diverse range of taxa (i.e., plants, vertebrates, arthropods). This
relationship suggests that natural selection acting on the phenome drives evolutionary differentiation
on the level of the genome in predictable, somewhat universal ways across clades. The reverse is
therefore likely true for the evolutionary processes of drift, mutation, and gene flow, in which
genomic change may drive phenotypic change. This work expands on similar findings of congruent
genomic and phenotypic differentiation within taxa (Brommer, 2011; Kaeuffer et al., 2012;

Raeymaekers et al., 2007).

Our major finding—of a positive relationship between Psy and nnF sy despite the noise of diverse
study systems and study design—has encouraging implications for evolutionary biology. First and
foremost, this relationship unsurprisingly supports the genomic basis for phenotypic evolution,

suggesting that phenotypic differentiation often has some underlying genomic basis. Of course, that
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does not rule out additional environmental contributions like phenotypic plasticity and
transgenerational epigenetics. It also suggests that the genomic patterns behind contemporary
phenotypic evolution are at least somewhat comparable among taxa on average, even if their
characterization is incomplete. Specifically, despite the litany of confounding factors described below,
we still found a significant relationship between Psr and nnFsy, and nnFsy explained a meaningful
proportion of the variation in Psy. With further refinement of genomic methods, standardization and
reporting of phenotypic data, and clearer details of how study systems differ in terms of genetic
architecture (including the strength of individual loci (many weak vs. few strong), linkage, and gene

interactions), this relationship should get clearer.

Practically, our results also suggest that reasonably comparing genomic and phenotypic differentiation
across taxa should be possible given standardization of methods and reporting. Such comparisons
could prove useful in several situations: First, our results give context for what can be considered
large or small differentiation by comparing any given study to the distribution of other studies along
the shared axis of genomic and phenomic differentiation presented here (i.e. Figure 4, right panel).
Second, the relative phenotypic effect size of a particular genetic locus or set of loci can be
captured—at least in part—by looking at the relative size of Psy and Fs7, compared to the values
predicted by our model. Finally, as mounting evidence suggests that adaptation in response to
selection is generally non-parallel (Bolnick et al., 2018), similar patterns of linked genomic and
phenotypic divergence could allow non-parallel adaptation to be compared in terms of degree of

differentiation, rather than differentiation in specific traits.

Furthermore, this study contributes to the mounting evidence that contemporary differentiation due to
natural selection can provide sufficient, perhaps ideal, phenotypic and genomic variation for linking
genomes to phenomes (Evangelou and loannidis, 2013). Indeed, the congruence of phenotypic and
genomic differentiation across diverse study systems suggests such techniques can be fairly
reasonable across taxa. Divergent selection not only produces genomic variation, it generates targeted
variation at loci at or near regions that code for responding phenotypes. Thus, differentiation due to

natural selection—especially among closely related populations—may generate ideal patterns of
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genomic variation for genome-phenome association studies by reducing genomic variation at

unimportant loci.

Confounding factors

While we have demonstrated a relationship between genomic and phenotypic differentiation, much
variation remains, implying the presence of numerous or influential confounding factors. We also
acknowledge limitations in our study for identifying these confounding factors; our study only
contained data from 31 papers, nor do we have a balanced design covering equal number of papers for
each combination of organism, methods, markers, phenotypes and analysis tool. What follows are our
hypotheses for the major sources of variation aside from the genome-phenome mechanism of interest.
In general, we believe that variation in the shape of the genomic to phenotypic differentiation
relationship comes from three distinct sources: underlying biological, genomic methodological, and

phenotypic methodological differences among studies and study systems.

Confounding biological factors. Inherent to the biology of phenotypes are factors that make a
universal genome-phenome relationship challenging to elucidate. These factors likely contribute to
the problem of missing heritability—that numerous phenotypic traits with quantifiable heritability
have genetic underpinnings that remain elusive (Zuk et al., 2012):

1. Few strong vs. many weak loci. Variation in the strength, number, and interaction of loci
underlying phenotypes will affect the nature of the Psy-F's7 relationship. For example,
hundreds of loci likely underlie body size in animals (Kenney-Hunt et al., 2006), with small
changes in many loci (which are challenging to detect) cumulatively leading to large changes
in body size. On the other hand, some traits—Tlike stickleback lateral plate number—can be
influenced by a few loci of major effect, which will be much easier to detect (Cresko et al.,
2007). We would expect the slope of the Ps~Fs7 relationship would be much shallower in the
first relationship compared to the second, even if both phenotypes having an equal additive
genetic basis. Furthermore, dominance and epistasis will allow differentiation at some genes to
amplify or override differentiation at other genes (Holland, 2007). Developing a Psr-Fisr

model that is robust to these variations will require high genomic coverage for Fsr data (to
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ensure all differentiated loci are found) and methods elucidating gene interactions (Pecanka et
al., 2017; Ritchie and Van Steen, 2018).

2. Genotype-environment interactions. Environmental effects (intra and transgenerational),
including phenotypic plasticity, can also muddle the Pg7 - Fis7 relationship. Indeed, genotype-
environment effects account for a large portion of variation in many phenotypes (Forsman,
2015; Hendry, 2016b). Cogradient plasticity can increase Pgr, resulting in an apparently
stronger Psr - Fsr relationship, while countergradient plasticity can decrease Psr, resulting in
an apparently weaker Pgr - Fgr relationship (Ghalambor et al., 2007). Plasticity that is
unrelated to the gradient in question can still weaken the Pgr - Fsy relationship simply by
adding noise to Pgy (Brommer, 2011). Common-rearing approaches can remove plastic effects,
but also muddle genetic differentiation in plastic capacity (also known as gene by environment
interactions), thus underestimating Pgr. These opposing potential consequences of common
rearing approaches may explain why common rearing had no significant effect on Pgy or the
Psr-nnFsr slope in our study (Figure 5). As with many issues in biology, a solution here is to
consider results within the context of the specific study organism, and examine genetic
differentiation, plasticity, and genetic differentiation in plastic capacity (i.e. gene by
environment interactions) through reciprocal-transplant or multi-environment common-rearing

studies.

Biases in identifying loci under selection. Different methodological approaches to determine genetic
differentiation associated with selection introduce noise to genotype-phenotype relationships between
studies. However, as the genome is a relatively concrete feature of an organism, the bias introduced
by the choice of genetic and analytical methods can be reduced by systematically identifying
appropriate methodology.

1) Methods used for identifyving differentiated loci. While we found no evidence for favoring any
particular method of identifying differentiated loci, we did find a significant negative
relationship between the proportion of non-neutral loci identified and Pgsr (Figure 4). If most
loci had similar phenotypic effect sizes, we would expect a positive relationship between the

proportion of non-neutral loci and Ps7, as differentiation that involves more loci of the same
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phenotypic effect size should generate stronger phenotypic differentiation. We offer two
hypotheses as to the observed negative relationship between Psr and the proportion of non-
neutral loci. The negative relationship may be linked to the effect size of loci (Lopez-
Cortegano and Caballero, 2019). In this case, studies that detected few loci of large effect
would have high Pgr values and low proportions of non-neutral loci, while studies detecting
many loci of small effects would have higher proportions of non-neutral loci, but likely lower
Pgr, thus generating a negative relationship between the two. Alternatively, the observed
negative relationship may instead be linked to methodology, as studies with more liberal
classification of loci as non-neutral (i.e., high false positive rates) would report a higher
proportion of non-neutral loci despite relatively low levels of Pgr. If this hypothesis is
confirmed, more liberal classification of loci as non-neutral may require down weighting of
non-neutral Fir.

2) Marker choice. Our results confirm that marker choice induces significant variation into the
nnF s-Pgrrelationship. While marker choice did not significantly affect the Ps-nnFsr slope,
including an effect of marker choice on Pgrraised the model R? from 0.25 to 0.39. This
apparent effect may be due to the correlation of marker type and genomic coverage, as high
genomic coverage (e.g2. SNPs) resulted in a lower value of Pgr for a given value of nnF's; than
low genomic coverage (e.g. AFLPs). This result suggests that historical low-coverage
approaches associated with certain marker types may have underestimated nnFsr, leading to
higher Py values for a given value of nnFsr (or more intuitively, lower nnFsr estimates for a
given value of Pgr).

3) Estimating Fsr. While our results indicated no particular best Fgr estimation method in terms
of linking Py to nnFsr, we note that our observed Psr-nnFsrrelationship is almost certainly

muddied by noise generated by varying software and software settings used to estimate Fsr.

Bias in measuring phenotype. Unlike the genome, which has an objective, finite definition as a
nucleotide sequence, the “phenome” is inherently subjective (Box 1). Though phenotype is the object
of selection and a physical property determined in part by the genome, different phenotypes must be

recognized and defined on a case-by-case basis, and it is unlikely that the simple metrics used by
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researchers to define traits fully capture the more complex integrated phenotypes that are truly under
selection. Moreover, investigators may be inconsistent in how they capture traits from study to study.
Therefore, we recommend reducing the subjectivity of phenotypic data by standardizing the
measurement of traits within taxonomic groups and by capturing a wider array of phenotypes within
studies:

1. Data standardization. Variable methods for measuring complex phenotypes can make
comparisons across studies challenging, e.g. features like “body shape” may be quantified
several different ways even within a particular clade. As relevant phenotypes are study-
dependent, this variability in measurements is to be expected. However, it is crucial that
authors report methods detailing their phenotyping protocols so that phenotypic data that are
comparable across studies can be more easily extracted. Even methods for calculating Pgr
vary, seemingly arbitrarily, from paper to paper, often without reporting of assumed values of
some variables included in calculations (such as heritability). Some disciplines, like
macroecology and studies of vertebrate museum specimens, utilize simplified, standardized
phenotypic measurements for a particular taxon (Schneider et al., 2019). Adopting similar
protocols across and within study systems will increase the power of meta-analyses and allow
for broader comparisons of phenotypic differentiation. For example, standardized descriptions
and databases of mutant phenotypes have been developed for a few model taxa (Bogue et al.,
2018; Davis et al., 2012; Smith et al., 2004). We also encourage researchers within certain
study systems to explore correlative statistical approaches—Ilike structural equation
modeling—to describe the relationship among particular phenotypic measurements and how
they might relate to the latent phenotypic trait of interest (e.g., body shape). Large strides have
been made in behavioral ecology with these methods to understand what phenotypic traits are
being measured by different quantifications of behavior (Dingemanse et al., 2010), and similar
approaches should be possible for any complex phenotypic trait.

2. More extensive phenotypic data collection. Many phenotypes are highly plastic (Forsman,
2015), and detecting causative loci even for those phenotypes with a strong genetic basis may
be difficult with reduced-representation genome-sequencing methods. Therefore, much as

increasing the completeness of genome sequencing increases the chance of finding
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differentiated loci when they are present, expanding phenomic coverage by measuring more
biologically relevant phenotypes increases the chance of finding phenotypes with a strong
genetic basis (but, also like genomic methods, requires appropriate multiple comparison
corrections). Furthermore, expanded coverage of the phenome will provide additional useful
information like an estimate of the background neutral phenotypic differentiation and
correlations in degree of differentiation among suites of differentiated traits, both of which
could increase the power of association studies. Finally, the more traits measured, the more
likely that multivariate phenotypes can be identified that come closer to the latent, integrated

phenotypes under selection.

Data archiving

Standardization of data collection and publication methods is necessary to ensure reproducibility and
to allow more broad-scale analyses of the genome-to-phenome association like we have done here.
Thanks to increasingly common data sharing requirements by journals and broadly standardized data
archiving efforts such as GenBank or Dryad, genotypic data are widely available; however, the
relatively modest number of studies analyzed here reflects that only a small proportion of papers
adequately publish associated phenotypic data. Perhaps the best resource is the Database of
Genotypes and Phenotypes (dbGaP) that is used by the human genetics community (Tryka et al.,
2014). Going forward, it is imperative that authors ensure relevant phenotypic data and metadata are

collected and archived with genotypic data at the time of publication.

Some metadata accessibility issues are common to both genetic and phenotypic data. In particular,
thorough metadata and scripts on bioinformatic and analytical pipelines—particularly those including
phenotypes (i.e., GWAS)—are often not published in sufficient detail. The inclusion of metadata and
workflows for bioinformatic and statistical analyses will improve reproducibility and ensure data are

accessible for future analyses as technologies evolve (Broman et al., 2017; Sandve et al., 2013).

Increasing power to link genomes to phenomes
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Jarringly, we found no significant relationships between Pgr and nnF sy for individual phenotypes
within studies (Figure 6, Table S-2). This result, we hypothesize, suggests that loci identified as
differentiated are largely not responsible for the differentiation in phenotypes documented in these
studies. This lack of trend is unlikely to be a statistical artifact due to small sample size, as the
average intra-study Psr-nnFsr slope was strikingly close to zero (Figure S-4). We speculate that a
scarcity of population-level replication may constrain our ability to link genomic differentiation to
phenotypic differentiation. Using relatively few populations to identify diverging loci may mask
important loci (through lack of variation) and lead us to focus on spurious loci (through random

variation).

Based on our ability to infer a general Psy -nnFsy relationship across study systems, we suggest
several approaches to establishing genome to phenome relationships within study systems with
greater power. These approaches focus on correlating genomic and phenotypic differentiation across
metapopulations, and involve:

1) Replicate correlations of Py and nnF sy across a multitude of populations spanning a
differentiation spectrum.

2) Broad coverage of phenotype (to correspond with broad genomic coverage), including
sampling of as many biologically relevant and evolutionarily independent phenotypes as
feasible

3) A standardization of traits documented within taxonomic groups

Correlating Psr and nnFsr across a spectrum of differentiation ensures that genotypes and phenotypes
are not only associated, but clearly differentiate congruently across landscapes, providing more
thorough evidence for the genome-phenome functional link. Having a gradient of differentiation (i.e.
numerous nnFsr and Psr values) avoids potentially spurious genome-phenome relationships generated
by cherry-picking highly differentiated populations, which may be responsible for the observed weak
Psr-nnF sy relationship within studies. Measuring numerous phenotypes increases the likelihood of
finding a phenotype that is strongly determined by diverging loci, as long as appropriate statistical
corrections are used to avoid false positives, and also helps us better understand how a given trait

diverges in reference to the rest of the phenome. With enough careful measurement, we should be
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able to describe the relationship between nnF sy and nnPsr, the non-neutral components of phenotype.
Currently our only approach to this is to use our limited understanding of the system to select what we
judge as the most differentiated traits. Through careful methodological choices, broader measurement
of phenotypes, and a meta-population approach, genome-to-phenome associations in natural
populations can become a more powerful and accessible tool for understanding contemporary

evolution.
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Figure Captions, Tables, and Boxes

Figure 1. Logit transformations are useful for quantifying differentiation. Left: Fsr and Pgsr,
untransformed, provide limited characterization of differentiation when differentiation is low or high
(i.e. interpopulation variation is very small or large relative to intrapopulation variation). Center: logit
transformations of Fsr and Psr, however, provide a log-linear metric of differentiation whose shape is
independent of differentiation. Right: doubling differentiation (interpopulation variation) has the same
effect on logit(Fsr and Pgr) regardless of starting point, whereas the effect of doubling differentiation

on untransformed Fsy and Psr depends heavily on starting point.

Figure 2. Non-neutral and neutral F7 are highly correlated across studies. Gray labels show
untransformed Fsr values. Each point represents average Psr and Fsr values for a unique population-

population comparison, with multiple points for multiple methods (see text).

Figure 3. Both non-neutral (/eff) and neutral (right) Fsr predict Psr, but non-neutral Fgr is a much
stronger predictor of Pgr. Gray labels show untransformed Fg7 values. Each point represents average
Pgrand Fgrvalues for a unique population-population comparison, with multiple points for multiple

methods (see text).

Figure 4. Left: proportion of non-neutral loci (the ratio of candidate, outlier, or GWAS positive loci
to the total number) has a negative effect on Pgz. Removing this effect allows for a clearer view of the
Pgsr-non-neutral Fg7 relationship (right). There is no significant interaction between proportion of non-
neutral loci and non-neutral Fgr (Table 2). Gray labels show untransformed Fs7 values. Each point
represents average Pgr and Fgr values for a unique population-population comparison, with multiple

points for multiple methods (see text).
Figure 5. Effects of common garden experimentation (top left), marker type (fop right), broad method

(bottom left) and analysis method (bottom right) on Psr and the Ps-non-neutral Fgr slope. Only

marker type had a significant effect on Psz, and none of the four variables had a significant effect on
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the Ps-non-neutral Fsr slope (Table 2). Gray labels show untransformed Fsr values. Each point
represents average Pgrand Fsr values for a unique population-population comparison, with multiple
points for multiple methods (see text). Variation due to proportion of non-neutral loci is removed in
each panel.

* Only marker type (top right) had a significant effect on Pgz; R? values and trendlines for the other

three models are from the base (Figure 4) model.

Figure 6. Neither non-neutral Fs7 (leff) nor proportion of non-neutral loci (right) predicts Pgr
consistently well within studies. Each row represents a study; each symbol type represents a
phenotype. Data are taken from (top to bottom): Culling et al. 2013, Hamlin et al 2015, Hudson et al
2013, Kaueffer et al 2012, Laporte et al 2015, Raeymaekers et al 2007. Gray labels show
untransformed Fg7 values. R? values were calculated based on Equation 4, with a few negative values
when study-specific trends in non-neutral Fs7 versus proportion of non-neutral loci were the opposite

of trends across studies.
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Table 1. Papers used in this meta-analysis.

Unique Mean Marker Analysis Common
Paper! Species Method> Phens.® comps.* NS type methods®  garden
Defaveri and Merild, 2013 Gasterosteus aculeatus C 1 1 34.8 QTL R No
Morris et al., 2018 Gasterosteus aculeatus C 4 1 39.2 QTL R No
Paccard et al., 2018 Gasterosteus aculeatus C 6 1 25.4 MSAT R No
Le Corre, 2005 Arabidopsis thaliana C 12 1 NA Haplo. R Yes
Pedersen et al., 2017 Gasterosteus aculeatus C,0 2 1 116.8 SNP N,R No
Olafsdottir and Snorrason, 2009 Gasterosteus aculeatus C,0 3 1 46.0 MSAT N,R No
Royer et al., 2016 Yucca spp G 3 1 103.0 SNP G No
Johnston et al., 2014 Salmo salar G,0 1 1 125.8 SNP N,B No
Wei et al., 2017 Brassica napus G,0 4 2 108.6 SNE, G Yes
Window
Porth et al., 2015 Populus trichocarpa G,0 113 1 108.3 SNP N, B No
Laporte et al., 2015* Coregons (6] 1 5 30.0 SNP N No
clupeaformis
Marques et al., 2017 Gasterosteus aculeatus (6] 1 1 70.0 SNP No
Raeymackers et al., 2007* Gasterosteus aculeatus 1 6 30.0 QTL N No
Kovi et al., 2015 Lolium perenne (0] 1 1 300.0 SNP N Yes
Izuno et al., 2017 Metrosideros (6] 2 1 8.0 SNP B Yes
polymorpha
Smith et al., 2008 Andropadus virens (6] 3 1 20.9 AFLP N No
Qiu et al., 2017 Phragmites australis (0] 3 1 9.0 AFLP N,B Yes
He et al., 2019 Banksia attenuata (0] 4 1 11.0 SNP B No
Sra et al., 2019 Brassica spp (6] 4 3 270.3 SNP N Yes
Hamlin and Arnold, 2015* Iris hexagona (0] 5 22 10.1 SNP B No
Nakazato et al., 2012 Solanum peruvianum (0] 5 1 10.9 AFLP N Yes
Hudson et al., 2013* Coregonus spp (6] 6 9 6.8 AFLP N, B No
Kaeuffer et al., 2012* Gasterosteus aculeatus (0] 9 6 40.0 MSAT R No
Culling et al., 2013* Salmo salar (6] 9 10 36.8 SNP N,B Yes
Sedeek et al., 2014 Ophrys spp (6] 10 1 28.4 SNP B No
Keller et al., 2011 Populus balsamifera (0] 10 3 15.2 SNP N Yes
N’Diaye et al., 2018 Triticum turgidum (6] 11 1 42.7 SNP N,B Yes
Eimanifar et al., 2018 Apis mellifera (6] 13 1 154.7 SNP N No
Porth et al., 2016 Quercus spp (0] 13 1 827.5 SNP R No
Flanagan et al., 2016 Syngnathus scovelli (6] 14 1 21.2 SNP R No
Dillon et al., 2013 Pinus radiata (0] 39 1 149 SNP N Yes

This article is protected by copyright. All rights reserved



mm Wondershare

Trial Version @™ ppFrelement

1) * indicates papers in within-study analysis. 2) C = candidate gene; G = GWAS; O = outlier. 3)
Number of phenotypes studied. 4) Unique interpopulation comparisons. 5) Mean individuals per

population. 6) R =raw; N = non-Bayesian; B = Bayesian; G = GWAS-specific.

This article is protected by copyright. All rights reserved



mm Wondershare
PDFelement

Trial Version g

Table 2. Type II likelihood ratio tests for model predicting Pgr.

Variable x df P

logit(non-neutral
7.2 1 0.007
proportion of loci)

logit(non-neutral Fgr) 24.8 1 <0.001

logit(proportion of loci) x
git(prop ) 0.9 1 0.338
logit(non-neutral Fsr)
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Table 3. Type II likelihood ratio tests for effects of methodological choices on Psy and the Ps~Fsr

slope.

Variable 1 df P

Common garden model
Common garden 1.3 1 0.260
logit(non-neutral Fr) 24.6 1 <0.001

Common garden %
1.3 1 0.251
logit(non-neutral Fsr)

logit(non-neutral
6.1 1 0.014
proportion of loci)

Marker model
Marker 24.0 3 <0.001
logit(non-neutral Fir) 22.6 1 <0.001
Marker x
29 3 0.406

logit(non-neutral Fr)

logit(non-neutral

proportion of loci) 3.0 1 0.083
Method model
Method 4.1 5 0.129
logit(non-neutral Fy) 20.6 1 <0.001

Method x
) 0.3 2 0.849
logit(non-neutral Fr)

logit(non-neutral

proportion of loci) 89 ! 0.003
Analytical method model
Analytical method 2.3 3 0.521
logit(non-neutral Fsr) 19.6 1 <0.001

Analytical method x
44 3 0.222
logit(non-neutral Fy)

logit(non-neutral
. ) 1.5 1 0.224
proportion of loci)

This article is protected by copyright. All rights reserved



Trial Version g

Wondershare
PDFelement

Box 1, what is a phenome?

Numerous papers use the word phenome, a phenotypic analogue to genome (Bogue et al., 2018; Burnett et al.,
2020; Freimer and Sabatti, 2003; Oti et al., 2008). A genome is the combination of all coding material and
corresponding non-coding material in an organism, i.e. its DNA or RNA. In theory, a genome can be objectively
characterized, though sequencing and alignment choices add a layer of subjectivity to the process. A phenome is
the combination of all phenotypic traits of an organism (Oti et al., 2008). Phenotypic traits inherently contain a
degree of subjectivity, as we must define phenotypes in order to measure them. For example, a phenotype, such
as bird wing morphology could be defined by wing size, wing mass, wing shape, number of wing feathers,
developmental architecture, and/or other attributes. Some phenotypes, such as behavior, become even more
difficult to comprehensively describe. The phenome is also theoretically infinitely large, as measures of
phenotypes are constrained in number only by our imagination. One means for limiting the size of the phenome is
to consider only ecologically relevant functional traits (ERFTs), or functional traits that affect organismal fitness

and interactions with the environment (Wood et al., 2021).
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Box 2, FST and PST

Fgr is the proportion of genetic variation associated with population structure. As populations become more
differentiated, the proportions of alleles at various loci will become less similar across populations, leading to

increasing between-population variation. In principle, Fsr can be calculated as:

Zj(Pj—I_?)zNj
Fp=——a—
TR -PIN

where j represents a population; p; = the frequency of allele p in population j; p-bar = the frequency of allele p

across all populations; and N; = the number of individuals censused in population ;.

Pgr is a phenotypic analogue for Fgy, and measures the proportion of phenotypic variation associated with
population structure. The more differentiated two populations are for a particular phenotype, the greater the
proportion of phenotypic variation will be explained by population structure, and the higher Psr will be. Psr can

be calculated as:

iji(xji % ’

Pg=1———
ST ijl.(x}'i _ J_C)Z

where the numerator is the sum of squared deviations of each individual’s phenotype (le,) from the population

mean (x;-bar) across all populations; and the denominator is the sum of squared deviations of each individual’s

phenotype (xji) from the metapopulation mean (x-bar).

Pgris analogous to several other common statistics of variance, including R? and F ratios. For a model in which

the only independent variable is a categorical variable for population:
P ST = RZ

For any model including a variable for population:
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Psr=
v

1+ f "
+
ZZVdZ

where fg = the F ratio for the population variable; v, s and Vag are the numerator and denominator degrees of

freedom for the population variable; and Z represents all other covariates in the model.
For mean and standard deviation data:

2
Z].Sij

Pgr = — 2
ZJ.S]ZN]' + Zj(x]' - Q_C) Nj

where j indicates a population; s; = standard deviation for population j; N; = number of individuals censused in

population j; and x,-bar and x-bar indicate population-specific and metapopulation means.

Qs is calculated the same way as Pgr, but only applies to phenotypes for which the heritable component has been

isolated, usually via common rearing experiments.
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Box 3: common genomic markers

Over the past several decades, genetic variation has been assayed using a variety of molecular markers. Rapid
advancements in DNA sequencing technologies now allow researchers to cost-effectively sequence whole or

large proportions of genomes. The following markers are frequently used to study genomic differentiation.

Microsatellite (msat): Msats are short (typically 2-4 nucleotide) sequence repeats (typically 5-50 times) of DNA
in non-coding regions that vary in length between individuals, and thus are generally regarded as neutrally
evolving loci (Schlbtterer, 2000). Msats are also referred to as short tandem repeats (STRs) and simple sequence
repeats (SSRs). Occasionally msats demonstrate signals of selection, likely due to linkage with coding regions
experiencing a selective sweep (i.e., genetic hitchhiking). However, in rare cases msats may be directly involved
in phenotype determination by affecting gene expression (Li et al., 2002) or when they occur within a gene (Li et

al., 2004).

Quantitative Trait Loci (QTLs): QTLs are genomic regions that are significantly associated with a quantitative,
or continuous, trait with a polygenic basis. These regions are defined using experimental crosses in a process

called QTL mapping (Sen and Churchill, 2001). Regions are genotyped using msats or SNP markers.

Amplified Fragment Length Polymorphism (AFLP): AFLP methods assess the fragment profile of DNA that
has been amplified after digestion with restriction enzymes. AFLPs provide biallelic genotypes based on
presence/absence scoring. Hundreds of loci can be assayed for relatively little cost, making ALFPs a useful tool

for studying patterns of selection across the genome without any knowledge of the genome sequence.

Single Nucleotide Polymorphism (SNP): A SNP is DNA variation that occurs at a single nucleotide position.
While most SNPs have no effect on fitness because either they are in neutral regions of the genome or represent a
silent mutation (i.e., one that does not affect amino acid coding), some SNPs in coding regions can be highly
influential. Sliding windows can be used to measure the collective Fgr of numerous nearby SNPs, thus isolating

islands of genomic differentiation, rather than single differentiated SNPs.

Haplotype/Microhaplotypes: Most SNP genotyping methods involve sequencing contiguous sets of nucleotides
that may contain multiple polymorphic sites. A microhaplotype genotyping approach considers all the
neighboring SNPs present on a single sequencing read to be representative of single allele/haplotype due to the
assumption of extremely low recombination rates over short distances (<300 nucleotides). With this approach, a

locus that contains multiple SNPs is then analyzed in a multiallelic framework, much like a microsatellite.
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Box 4: genomic methods for detecting divergent selection

Techniques used for detecting selection can broadly be split into complementary approaches that detect either loci

of presumably large effect or those that identify patterns of polygenic selection.

Candidate gene approaches. Candidate gene approaches investigate associations between genotypes and
phenotypes at specific pre-ordained loci with a priori hypothesized functions. Candidate gene approaches are
most commonly pursued in species with relatively rich genomic resources. Reproducibility has been challenging

for many candidate locus approaches (Tabor et al., 2002).

Outlier approaches. Genetic differentiation (e.g., Fs7) outlier tests are most commonly used to identify candidate
loci. These tests assume that loci with genetic differentiation values that significantly exceed background (i.e.,

neutral) differentiation levels are under selection.

Genome-wide association studies (GWAS). Genome-wide association analyses (GWAS) are one suite of
methods that identify correlations between genomic data—usually high coverage genomic data—and fitness

values, phenotypes, or environmental values (GEAS).
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