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Abstract

Linking genotype to phenotype is a primary goal for understanding the genomic underpinnings of 

evolution. However, little work has explored whether patterns of linked genomic and phenotypic 

differentiation are congruent across study systems and traits. Here we investigate such patterns with a 

meta-analysis of studies examining population-level differentiation at subsets of loci and traits 

putatively responding to divergent selection. We show that across the 31 studies (88 population-level 

comparisons) we examined, there was a moderate (R2 = 0.39) relationship between genomic 

differentiation (FST) and phenotypic differentiation (PST) for loci and traits putatively under selection. 

This quantitative relationship between PST and FST for loci under selection in diverse taxa provides 

broad context and cross-system predictions for genomic and phenotypic adaptation by natural 

selection in wild populations. This context may eventually allow for more precise ideas of what 

constitutes “strong” differentiation, predictions about the effect size of loci, comparisons of taxa 

evolving in non-parallel ways, and more. On the other hand, links between PST and FST within studies 

were very weak, suggesting that much work remains in linking genomic differentiation to phenotypic 

differentiation at specific phenotypes. We suggest that linking genotypes to specific phenotypes can 

be improved by correlating genomic and phenotypic differentiation across a spectrum of diverging 

populations within a taxon and including wide coverage of both genomes and phenomes.

Keywords: FST, PST, Candidate gene approaches, Outlier analysis, GWAS, Natural selection
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Introduction

Quantifying the relationship between genomic and phenomic (Box 1) population differentiation is 

fundamental to characterizing the genomic basis for phenotypic evolution (Rodríguez‐Verdugo et al., 

2017). Understanding the association between genes and phenotypes in natural populations also has 

the potential to reveal generalizable patterns of evolution (Feder and Mitchell-Olds, 2003; Gallant and 

O’Connell, 2020; Rudman et al., 2018). The genomic basis for adaptive evolution also has profound 

implications for evolutionary conservation, including genetic evolutionary management (Hoffmann et 

al., 2015; Kinnison and Hairston, 2007) and evolutionary rescue (Carlson et al., 2014). A universal 

pattern of congruent differentiation in genetic loci and phenotypic traits (i.e., a similar positive 

relationship between population-level genomic and phenotypic differentiation for traits and loci 

putatively under selection) in wild populations would have many theoretical and practical benefits, 

including context for interspecific comparison of genomic and phenotypic differentiation and 

generalizable patterns of genomic and phenotypic adaptation. Comparing individual results to 

generalizable patterns would allow us to address questions such as 1) what constitutes “large” 

differentiation, 2) whether certain loci have relatively strong effects on phenotypes, and 3) whether 

nonparallel adaptations are similar in their scope of differentiation, if not in trait pathways.

To date, however, the genomic architecture of phenotypic change in most natural populations remains 

poorly understood, and studies of adaptive population genomics greatly outnumber studies linking 

genomic change to adaptive phenotypic change (Hendry, 2013, 2016a). Recent technological 

advances have made sequencing large or whole portions of genomes possible for many non-model 

species (Bolger et al., 2019; Davey et al., 2011; Cuperus and Queitsch, 2020; Goodwin et al., 2016; 

Russell et al., 2017; Whibley et al., 2021), but are the patterns from these studies generalizable? 

Specifically, does this growing body of literature support the premise that greater phenotypic 

differentiation corresponds with greater genomic differentiation in natural organisms (controlling for 

the number of contributing loci)? Here we examine this link via standardized measures of genomic 

differentiation (FST) and phenotypic differentiation (PST)—while assessing potential interacting effects 

associated with different study designs (Box 2). While details of species-specific genomic architecture 
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certainly affect this link, we sought generalizable patterns at a broader scale, particularly for when 

information on these specifics is lacking.

The keystone fact of the Modern Evolutionary Synthesis is the genetic basis for evolution (Fisher, 

1930; Huxley, 1942). While phenotypes determine fitness, their heritable, genetic basis controls the 

response of phenotypes to selection and their persistence in time. In a small but growing number of 

cases, clear relationships between phenotypes subject to natural selection and their associated genes 

(e.g., Barrett et al., 2019; Colosimo et al., 2004) have been identified in natural populations. However, 

the ability to associate genetic variation with phenotypes in natural populations—where 

environmental conditions are beyond manipulation—remains challenging (Hendry, 2013, 2016a). 

Nonetheless, substantial progress in linking genetic and phenotypic variation in limited cases has been 

made (i.e. Genome Wide Association Studies; GWAS: Visscher et al., 2017).

Despite this progress, biologists have struggled to systematically associate genomic data with 

biologically relevant phenotypes, particularly when pleiotropy, polygenic inheritance, epistasis, and 

phenotypic plasticity confound their relationship (Pigliucci and Muller, 2010; Walsh and Lynch, 

2018). In a large proportion of studies of adaptation in natural populations, genomic variation is 

analyzed for signals of selection without any direct quantification of biologically relevant phenotypic 

trait variation. As such, most literature on the heritable basis of adaptation tends to focus primarily on 

the characterization of either genomic or phenotypic variation in natural populations, but not 

explicitly link the two. Genome-wide association studies (GWAS) provide one avenue to explore 

genotype-phenotype relationships in natural populations, but are often plagued by high false positive 

rates and commonly struggle to detect the small genetic effect sizes of many polygenic traits (Chen et 

al., 2021; Evangelou and Ioannidis, 2013). This growing body of studies have attempted to associate 

genomic and phenotypic aspects of adaptation in the same diverging populations of organisms. These 

studies in turn provide a means to assess how genomic and phenotypic variation are distributed 

among populations experiencing ongoing adaptive differentiation. Genetic and phenotypic 

differentiation are particularly useful for linking genotypes to phenotypes, as they produce phenotypic 
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and genetic variation, which can then be harnessed statistically for GWAS or outlier studies (Gibson, 

2018; Visscher and Goddard, 2019).

While numerous phenotypic traits clearly have a heritable basis, their underlying genomic architecture 

is rarely fully—or even mostly—explained, leading to what is sometimes called the ‘missing 

heritability problem’ (Young, 2019; Zuk et al., 2012). This is not entirely unexpected given the great 

complexity of genomes and phenomes, and the constraints both present for statistical power (López-

Cortegano and Caballero, 2019; Uricchio, 2020). This recognized challenge has led to substantial 

innovation—and thus variability—among investigators and studies in methods used to associate 

genomic and phenotypic differentiation (Burt and Munafò, 2021). Despite a growing number of 

approaches, no clear best practices exist for linking genotype to phenotype across systems. Each 

method has substantial limitations, and the lack of best practices adds noise to any attempt to detect 

underlying trends common across the tree of life (Tam et al., 2019).

For example, while gene-knockout experiments provide an ideal means of studying how variation in a 

particular candidate gene determines phenotype when the species can be reared in a laboratory setting 

(Hall et al., 2009), these experiments are prohibitive or unethical for studies of most non-model 

species in natural systems. Further key choices in study system, study design, genomic data 

collection, and analytical approach all likely influence calculations of genomic and phenotypic 

differentiation in idiosyncratic ways. Controlling for methodological variation can therefore 

potentially reveal more generalizable patterns that may help in understanding the relationship between 

genomic and phenotypic differentiation, allowing for cross-system comparisons and generalizations 

about responses of natural populations to selection.

Here we conduct a meta-analysis of 31 studies of natural populations representing 88 unique multi-

population comparisons that demonstrate putative genomic and phenotypic differentiation in response 

to selection. We address two main questions: 
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1) How does genomic differentiation at loci under selection explain phenotypic differentiation, both 

across and within studies? Under ideal conditions, when all the loci underlying a phenotypic trait are 

identified and the phenotype is accurately quantified, we would expect a strong, positive relationship 

between PST and FST for loci under selection (Brommer, 2011; Kaeuffer et al., 2012; Raeymaekers et 

al., 2007). However, measuring numerous genotypes and phenotypes inherently leaves much room for 

error, even beyond methodological nuances, as not all highly differentiated loci will code for highly 

differentiated phenotypes, and some important loci may exhibit little differentiation, muddying the 

relationship between PST and FST. Fundamental differences in genomic architecture—including the 

strength of individual loci (many weak vs. few strong), linkage, and gene interactions—across taxa 

and traits will also muddy the relationship between PST and FST (Keane et al., 2011). Finally, some 

phenotypic differentiation will simply be explained by neutral genomic differentiation (Raeymaekers 

et al., 2017; Whitlock, 2008; Zhang, 2018).

2) How do key methodological choices affect the strength of the genome-to-phenome association? 

Differences in methodological choices for genome-to-phenome studies are likely to affect not only 

conclusions about the extent of genomic and phenotypic differentiation, but the expected relationship 

between PST and FST as well. As some genomic markers are more likely to fall in or near coding or 

modifier regions (Box 3), those markers may have stronger relationships with phenotypes. 

Furthermore, smoothing or adjusting FST and correcting for false-positive rates may improve 

statistical error rates, but bias the relationships between PST and FST, in part by changing the 

proportion of the genome characterized as “non-neutral” (Lotterhos and Whitlock, 2014; Luu et al., 

2017). Finally, common-rearing experiments may avoid some of these challenges by isolating genetic 

differences in phenotypes, but they also remove gene-by-environment interactions, which are 

important genetically based sources of phenotypic variation (Via and Lande, 1985).

Methods

Overview

We used Web of Science (https://webofknowledge.com) and the search terms in Table S-1 to isolate 

88 population-level comparisons that included phenotypic and genotypic data from two or more A
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populations under purported divergent selection (Table 1). We extracted or calculated three metrics 

from each paper for all possible pair-wise comparisons of each phenotype measured between 

populations: (1) PST, phenotypic differentiation, (2) neutral FST, neutral genomic differentiation, and 

(3) non-neutral FST (nnFST), genetic differentiation for loci putatively under selection (i.e., candidate 

genes, outlier loci, or loci associated with a differentiated phenotype in a GWAS) (Wright, 1949). We 

also included methodological covariates, including the method of determining loci under selection 

(Box 4), type of genetic marker used (Box 3), the software used to calculate FST, whether the study 

included a common-garden design, and the proportion of loci identified as non-neutral.

We used general linear models to examine the relationship between phenotypic differentiation (PST) 

and 1) neutral and non-neutral genetic differentiation (FST, nnFST), 2) proportion of loci identified as 

non-neutral, and 3) several methodological choices. The result is several models that assess the degree 

to which phenotypic and genomic differentiation are congruent (in traits and loci putatively under 

selection), as well as the role of some potential confounding methodological factors.

The database

We used all databases within the online citation database Web of Science and the 25 search terms in 

Table S-1 to find relevant papers which included phenotypic and genomic data from two or more 

populations undergoing divergent selection. Searches returned anywhere from 0 to 340,088 papers; 

we retained papers revealed by searches with <700 results (Table S-1). We used R version 3.6.1 (R 

Core Team, 2019) and the packages metagear (Lajeunesse, 2016) and Bibliometrix (Aria and 

Cuccurullo, 2017) to screen the abstracts of each paper to determine whether the paper was likely to 

contain both genomic and phenotypic comparisons for multiple populations. For consistency, the 

same observer (Author #1) reviewed every abstract. To examine how well our search terms captured 

the breadth of the relevant literature, we conducted a forwards-backwards literature search following 

Koricheva et al. (2013). We examined literature cited by and literature which cited every study 

included in our meta-analysis for relevance based on the title alone. We used Google Scholar on 

December 8th 2019 to find literature that cited the papers included in our analysis. We then 

determined how many of those papers were already captured by our original search terms. Any papers A
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that were not included in our original screening process were then screened based on the abstract as 

described above; none of the additionally screened papers contained appropriate data for inclusion in 

our meta-analysis. In total, we screened 4,317 papers, retaining 31 papers for analysis (Figure S-1). 

The most common reason for non-inclusion of papers (nearly all) was lack of measured phenotypic 

data. As this data was generally not measured, rather than not reported, we did not request data from 

authors.

We extracted the following information from each paper: species, phenotypic trait, PST of the 

phenotypic trait, number of individuals used to calculate PST, number of groups the phenotypes were 

sampled from, number of groups the genotype data were sampled from, FST of loci under selection 

(“non-neutral;” nnFST), FST of neutral loci, FST formula, marker type, number of loci under selection, 

number of neutral loci and method(s) used to determine which loci are under selection. For papers 

which included raw phenotypic measurements (16) we calculated PST using:

(1)

𝑃𝑆𝑇 = 1 ―
∑

𝑗
∑

𝑖(𝑥𝑗𝑖 ― 𝑥𝑗)2

∑
𝑗
∑

𝑖(𝑥𝑗𝑖 ― 𝑥)2

The numerator is the sum of squared deviations of each individual’s phenotype from the population 

mean, and the denominator is the sum of squared deviations of each individual’s phenotype from the 

metapopulation mean. We used F tests to confirm that all reported and calculated PST values were 

statistically different than 0, i.e. implied phenotypic differentiation.

For papers with more than two study populations, we used all possible pairwise population 

comparisons for analysis.

We organized genomic analysis software into 4 groups:

1) Raw: raw FST calculations

2) Bayesian: Bayescan and 2DSFS

3) Non-bayesian: Arlequin, Lositan, fdist, dfdist, fstat, detsel, lnRV

4) GWAS-specific: other software used specifically for GWASA
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Analyses

We logit-transformed all FST and PST data in this study. The logit transformation assumes that small 

changes at the ends of the range of possibilities (e.g. from FST = 0.01 to 0.02 or 0.98 to 0.99) are more 

important than small changes in the middle of the range (e.g. from FST = 0.50 to 0.51). Logit 

transforming FST and PST also standardizes their sensitivity to differentiation—doubling 

interpopulation variation produces an equal change in logit (FST or PST) regardless of the starting 

variation (Figure 1). Finally, logit-transforming FST makes FST data—which are often right-skewed—

roughly normally distributed (Figure S-2). All neutral FST values < 0.005 were changed to 0.005 to 

avoid having zero or negative values, which cannot be handled by a logit transformation.

Due to the large range in number of phenotypes measured in any given paper, we used paper-specific 

averages for our global PST-FST analysis. Specifically, we averaged values for all numeric variables 

for each unique population-level comparison, allowing multiple points if a comparison was replicated 

with multiple methods (i.e. different statistical software or a GWAS and outlier approach). This 

averaging resulted in a final 111 datapoints for 88 unique population-level comparisons across 31 

papers.

We then tested these data for relationships between average PST and average neutral FST or average 

non-neutral FST (henceforth: nnFST). As nnFST and FST are strongly correlated (Figure 2), including 

both in the same model is inadvisable; we therefore tested them separately using two general linear 

models and likelihood ratio tests (Fox and Weisberg, 2011). We compared the models using relative 

likelihood—as these models were not nested, a likelihood ratio test was not feasible (Burnham and 

Anderson, 2003).

As nnFST was superior to neutral FST in predicting PST (Figure 3), we investigated the proportion of 

non-neutral loci as a covariate in the PST-nnFST relationship. A study that found one locus with high 

FST has different implications for PST than a similar study finding hundreds of loci with high FST. We 

therefore fit the following general linear model:A
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(2)

logit(𝑃𝑆𝑇) = 𝛽0 + 𝛽𝐹logit(𝑛𝑛𝐹𝑆𝑇) + 𝛽𝐿logit( 𝑁𝑛𝑛

𝑁𝑡𝑜𝑡𝑎𝑙) + 𝛽𝐹𝐿logit(𝑛𝑛𝐹𝑆𝑇)logit( 𝑁𝑛𝑛

𝑁𝑡𝑜𝑡𝑎𝑙)
PST and nnFST are described above; Nnn = number of non-neutral loci; Ntotal = total number of loci; and 

β-terms are coefficients determined during model fitting.

We tested all effects in the above model using type II likelihood ratio tests. As only the first-order 

effect of proportion non-neutral loci was significant (see Results), we removed the interaction and 

refit the model. We also included a first-order effect of proportion of non-neutral loci in all 

subsequent analyses.

We tested for the effects of four methodological variables—common garden rearing, genetic marker 

type, broad methodological approach (candidate gene, outlier, GWAS), and software choice—on PST 

and the PST-nnFST slope. We did not test for an effect of nnFST p-value threshold, as p-value threshold 

did not have a strong effect on nnFST (Figure S-3). We tested each of the methodological variables 

separately to avoid overfitting, as there were only 31 papers in our dataset. We fit the following 

general linear model for each methodological variable:

(3)

logit(𝑃𝑆𝑇) = 𝛽𝑀 + 𝛽𝐹𝑀logit(𝑛𝑛𝐹𝑆𝑇) + 𝛽𝐿logit( 𝑁𝑛𝑛

𝑁𝑡𝑜𝑡𝑎𝑙)
PST, nnFST, Nnn, and Ntotal are described above; β-terms are coefficients determined during model 

fitting: βM indicates a method specific intercept and βFM indicates a method specific PST-nnFST slope.

We tested all variables in each model using type II likelihood ratio tests.

We also examined PST-nnFST trends within studies, with the goal of elucidating a PST-nnFST 

relationship for individual phenotypes across numerous populations. We winnowed our master 

database down to all paper-phenotype-method combinations that had at least five PST-nnFST 
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datapoints (18 paper-phenotype-method combinations total). We then fit the following general linear 

model across all datapoints from the winnowed database:

(4)

logit(𝑃𝑆𝑇) = 𝛽𝑍 + 𝛽𝐹𝑍logit(𝑛𝑛𝐹𝑆𝑇) + 𝛽𝐿logit( 𝑁𝑛𝑛

𝑁𝑡𝑜𝑡𝑎𝑙)
PST, nnFST, Nnn, and Ntotal are described above; β-terms are coefficients determined during model 

fitting: βZ indicates a phenotype-specific intercept and βFZ indicates a phenotype-specific PST-nnFST 

slope—i.e., βZ and βFZ took a unique value for each paper-phenotype-method combination.

We fit one βL (proportion of non-neutral loci) slope across all paper-phenotype-method combinations, 

rather than fitting a unique βL term for each (as we did for βF) due to the overall small sample size and 

the lack of variation in proportion of non-neutral loci for three papers. We tested the slopes of each 

phenotype-specific PST-nnFST relationship (βFZ) using t tests. As the relatively small number of points 

within each study certainly lowered the power to detect significant PST-nnFST relationships, we also 

examined the distribution of PST-nnFST slopes for the within-study analysis.

Results

Non-neutral FST (nnFST) was superior to neutral FST in predicting PST, with higher slope (0.43 vs. 0.30) 

and R2 (0.20 vs. 0.12) (Figure 3). Both had statistically significant relationships with PST (Likelihood 

ratio test—non-neutral FST: χ2 = 27.3; df = 1; p < 0.001. Likelihood ratio test—neutral FST: χ2 = 15.0; 

df = 1; p < 0.001.). However, the nnFST model outperformed the neutral FST model, with the neutral 

model having a likelihood of 0.005 with respect to the nnFST model. 

Proportion of non-neutral loci also had a significant negative effect on PST, but had no significant 

interaction with nnFST (Figure 4, Table 2). Including proportion of non-neutral loci in a model with 

nnFST (without the non-significant interaction) increased the model R2 from 0.20 to 0.25.

Of our four methodological variables (common-garden rearing, genetic marker type, broad method, 

and software analysis method), only marker type had a significant effect on PST (Figure 5, Table 3). A
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PST was highest (for any given value of non-neutral FST) for AFLPs, then QTLs, which were closely 

followed by SNPs and msats. This model result does not, however, imply that some marker types 

caused higher PST, rather it indicates that PST was higher for a given estimate of nnFST (or more 

intuitively, nnFST was estimated as lower for a given value of PST) for some markers. Marker type did 

not have a significant interaction with nnFST.

Within studies, we found no significant relationships between PST and nnFST for any phenotypes, even 

with proportion of non-neutral loci included in the model (Figure 6, Table S-2). The mean and 

standard error for the PST-nnFST slope within studies were 0.05 and 0.44, respectively, indicating an 

average PST-nnFST slope close to zero for individual phenotypes within studies (Figure S-4).

Discussion

Linking genotypic and phenotypic differentiation across and within studies

Here we show that there is a discernible positive relationship between metrics that measure genomic 

and phenotypic differentiation when applied to loci and traits putatively under selection (Figure 3). In 

spite of vast confounding variation within our data set (Table 1)—including species biology, study 

design, marker type used, statistical approach, and software used—we were able to demonstrate a 

significant relationship across a diverse range of taxa (i.e., plants, vertebrates, arthropods). This 

relationship suggests that natural selection acting on the phenome drives evolutionary differentiation 

on the level of the genome in predictable, somewhat universal ways across clades. The reverse is 

therefore likely true for the evolutionary processes of drift, mutation, and gene flow, in which 

genomic change may drive phenotypic change. This work expands on similar findings of congruent 

genomic and phenotypic differentiation within taxa (Brommer, 2011; Kaeuffer et al., 2012; 

Raeymaekers et al., 2007). 

Our major finding—of a positive relationship between PST and nnFST despite the noise of diverse 

study systems and study design—has encouraging implications for evolutionary biology. First and 

foremost, this relationship unsurprisingly supports the genomic basis for phenotypic evolution, 

suggesting that phenotypic differentiation often has some underlying genomic basis. Of course, that A
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does not rule out additional environmental contributions like phenotypic plasticity and 

transgenerational epigenetics. It also suggests that the genomic patterns behind contemporary 

phenotypic evolution are at least somewhat comparable among taxa on average, even if their 

characterization is incomplete. Specifically, despite the litany of confounding factors described below, 

we still found a significant relationship between PST and nnFST, and nnFST explained a meaningful 

proportion of the variation in PST. With further refinement of genomic methods, standardization and 

reporting of phenotypic data, and clearer details of how study systems differ in terms of genetic 

architecture (including the strength of individual loci (many weak vs. few strong), linkage, and gene 

interactions), this relationship should get clearer.

Practically, our results also suggest that reasonably comparing genomic and phenotypic differentiation 

across taxa should be possible given standardization of methods and reporting. Such comparisons 

could prove useful in several situations: First, our results give context for what can be considered 

large or small differentiation by comparing any given study to the distribution of other studies along 

the shared axis of genomic and phenomic differentiation presented here (i.e. Figure 4, right panel). 

Second, the relative phenotypic effect size of a particular genetic locus or set of loci can be 

captured—at least in part—by looking at the relative size of PST and FST, compared to the values 

predicted by our model. Finally, as mounting evidence suggests that adaptation in response to 

selection is generally non-parallel (Bolnick et al., 2018), similar patterns of linked genomic and 

phenotypic divergence could allow non-parallel adaptation to be compared in terms of degree of 

differentiation, rather than differentiation in specific traits. 

Furthermore, this study contributes to the mounting evidence that contemporary differentiation due to 

natural selection can provide sufficient, perhaps ideal, phenotypic and genomic variation for linking 

genomes to phenomes (Evangelou and Ioannidis, 2013). Indeed, the congruence of phenotypic and 

genomic differentiation across diverse study systems suggests such techniques can be fairly 

reasonable across taxa. Divergent selection not only produces genomic variation, it generates targeted 

variation at loci at or near regions that code for responding phenotypes. Thus, differentiation due to 

natural selection—especially among closely related populations—may generate ideal patterns of A
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genomic variation for genome-phenome association studies by reducing genomic variation at 

unimportant loci.

Confounding factors

While we have demonstrated a relationship between genomic and phenotypic differentiation, much 

variation remains, implying the presence of numerous or influential confounding factors. We also 

acknowledge limitations in our study for identifying these confounding factors; our study only 

contained data from 31 papers, nor do we have a balanced design covering equal number of papers for 

each combination of organism, methods, markers, phenotypes and analysis tool. What follows are our 

hypotheses for the major sources of variation aside from the genome-phenome mechanism of interest. 

In general, we believe that variation in the shape of the genomic to phenotypic differentiation 

relationship comes from three distinct sources: underlying biological, genomic methodological, and 

phenotypic methodological differences among studies and study systems. 

Confounding biological factors. Inherent to the biology of phenotypes are factors that make a 

universal genome-phenome relationship challenging to elucidate. These factors likely contribute to 

the problem of missing heritability—that numerous phenotypic traits with quantifiable heritability 

have genetic underpinnings that remain elusive (Zuk et al., 2012):

1. Few strong vs. many weak loci. Variation in the strength, number, and interaction of loci 

underlying phenotypes will affect the nature of the PST-FST relationship. For example, 

hundreds of loci likely underlie body size in animals (Kenney-Hunt et al., 2006), with small 

changes in many loci (which are challenging to detect) cumulatively leading to large changes 

in body size. On the other hand, some traits—like stickleback lateral plate number—can be 

influenced by a few loci of major effect, which will be much easier to detect (Cresko et al., 

2007). We would expect the slope of the PST-FST relationship would be much shallower in the 

first relationship compared to the second, even if both phenotypes having an equal additive 

genetic basis. Furthermore, dominance and epistasis will allow differentiation at some genes to 

amplify or override differentiation at other genes (Holland, 2007). Developing a PST-FST 

model that is robust to these variations will require high genomic coverage for FST data (to A
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ensure all differentiated loci are found) and methods elucidating gene interactions (Pecanka et 

al., 2017; Ritchie and Van Steen, 2018).

2. Genotype-environment interactions. Environmental effects (intra and transgenerational), 

including phenotypic plasticity, can also muddle the PST - FST relationship. Indeed, genotype-

environment effects account for a large portion of variation in many phenotypes (Forsman, 

2015; Hendry, 2016b). Cogradient plasticity can increase PST, resulting in an apparently 

stronger PST - FST relationship, while countergradient plasticity can decrease PST, resulting in 

an apparently weaker PST - FST relationship (Ghalambor et al., 2007). Plasticity that is 

unrelated to the gradient in question can still weaken the PST - FST relationship simply by 

adding noise to PST (Brommer, 2011). Common-rearing approaches can remove plastic effects, 

but also muddle genetic differentiation in plastic capacity (also known as gene by environment 

interactions), thus underestimating PST. These opposing potential consequences of common 

rearing approaches may explain why common rearing had no significant effect on PST or the 

PST-nnFST slope in our study (Figure 5). As with many issues in biology, a solution here is to 

consider results within the context of the specific study organism, and examine genetic 

differentiation, plasticity, and genetic differentiation in plastic capacity (i.e. gene by 

environment interactions) through reciprocal-transplant or multi-environment common-rearing 

studies.

Biases in identifying loci under selection. Different methodological approaches to determine genetic 

differentiation associated with selection introduce noise to genotype-phenotype relationships between 

studies. However, as the genome is a relatively concrete feature of an organism, the bias introduced 

by the choice of genetic and analytical methods can be reduced by systematically identifying 

appropriate methodology. 

1) Methods used for identifying differentiated loci. While we found no evidence for favoring any 

particular method of identifying differentiated loci, we did find a significant negative 

relationship between the proportion of non-neutral loci identified and PST (Figure 4). If most 

loci had similar phenotypic effect sizes, we would expect a positive relationship between the 

proportion of non-neutral loci and PST, as differentiation that involves more loci of the same A
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phenotypic effect size should generate stronger phenotypic differentiation. We offer two 

hypotheses as to the observed negative relationship between PST and the proportion of non-

neutral loci. The negative relationship may be linked to the effect size of loci (López-

Cortegano and Caballero, 2019). In this case, studies that detected few loci of large effect 

would have high PST values and low proportions of non-neutral loci, while studies detecting 

many loci of small effects would have higher proportions of non-neutral loci, but likely lower 

PST, thus generating a negative relationship between the two. Alternatively, the observed 

negative relationship may instead be linked to methodology, as studies with more liberal 

classification of loci as non-neutral (i.e., high false positive rates) would report a higher 

proportion of non-neutral loci despite relatively low levels of PST. If this hypothesis is 

confirmed, more liberal classification of loci as non-neutral may require down weighting of 

non-neutral FST.

2) Marker choice. Our results confirm that marker choice induces significant variation into the 

nnFST-PST relationship. While marker choice did not significantly affect the PST-nnFST slope, 

including an effect of marker choice on PST raised the model R2 from 0.25 to 0.39. This 

apparent effect may be due to the correlation of marker type and genomic coverage, as high 

genomic coverage (e.g. SNPs) resulted in a lower value of PST for a given value of nnFST than 

low genomic coverage (e.g. AFLPs). This result suggests that historical low-coverage 

approaches associated with certain marker types may have underestimated nnFST, leading to 

higher PST values for a given value of nnFST (or more intuitively, lower nnFST estimates for a 

given value of PST).

3) Estimating FST. While our results indicated no particular best FST estimation method in terms 

of linking PST to nnFST, we note that our observed PST-nnFST relationship is almost certainly 

muddied by noise generated by varying software and software settings used to estimate FST.

Bias in measuring phenotype. Unlike the genome, which has an objective, finite definition as a 

nucleotide sequence, the “phenome” is inherently subjective (Box 1). Though phenotype is the object 

of selection and a physical property determined in part by the genome, different phenotypes must be 

recognized and defined on a case-by-case basis, and it is unlikely that the simple metrics used by A
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researchers to define traits fully capture the more complex integrated phenotypes that are truly under 

selection. Moreover, investigators may be inconsistent in how they capture traits from study to study. 

Therefore, we recommend reducing the subjectivity of phenotypic data by standardizing the 

measurement of traits within taxonomic groups and by capturing a wider array of phenotypes within 

studies:

1. Data standardization. Variable methods for measuring complex phenotypes can make 

comparisons across studies challenging, e.g. features like “body shape” may be quantified 

several different ways even within a particular clade. As relevant phenotypes are study-

dependent, this variability in measurements is to be expected. However, it is crucial that 

authors report methods detailing their phenotyping protocols so that phenotypic data that are 

comparable across studies can be more easily extracted. Even methods for calculating PST 

vary, seemingly arbitrarily, from paper to paper, often without reporting of assumed values of 

some variables included in calculations (such as heritability). Some disciplines, like 

macroecology and studies of vertebrate museum specimens, utilize simplified, standardized 

phenotypic measurements for a particular taxon (Schneider et al., 2019). Adopting similar 

protocols across and within study systems will increase the power of meta-analyses and allow 

for broader comparisons of phenotypic differentiation. For example, standardized descriptions 

and databases of mutant phenotypes have been developed for a few model taxa (Bogue et al., 

2018; Davis et al., 2012; Smith et al., 2004). We also encourage researchers within certain 

study systems to explore correlative statistical approaches—like structural equation 

modeling—to describe the relationship among particular phenotypic measurements and how 

they might relate to the latent phenotypic trait of interest (e.g., body shape). Large strides have 

been made in behavioral ecology with these methods to understand what phenotypic traits are 

being measured by different quantifications of behavior (Dingemanse et al., 2010), and similar 

approaches should be possible for any complex phenotypic trait.

2. More extensive phenotypic data collection. Many phenotypes are highly plastic (Forsman, 

2015), and detecting causative loci even for those phenotypes with a strong genetic basis may 

be difficult with reduced-representation genome-sequencing methods. Therefore, much as 

increasing the completeness of genome sequencing increases the chance of finding A
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differentiated loci when they are present, expanding phenomic coverage by measuring more 

biologically relevant phenotypes increases the chance of finding phenotypes with a strong 

genetic basis (but, also like genomic methods, requires appropriate multiple comparison 

corrections). Furthermore, expanded coverage of the phenome will provide additional useful 

information like an estimate of the background neutral phenotypic differentiation and 

correlations in degree of differentiation among suites of differentiated traits, both of which 

could increase the power of association studies. Finally, the more traits measured, the more 

likely that multivariate phenotypes can be identified that come closer to the latent, integrated 

phenotypes under selection.

Data archiving

Standardization of data collection and publication methods is necessary to ensure reproducibility and 

to allow more broad-scale analyses of the genome-to-phenome association like we have done here. 

Thanks to increasingly common data sharing requirements by journals and broadly standardized data 

archiving efforts such as GenBank or Dryad, genotypic data are widely available; however, the 

relatively modest number of studies analyzed here reflects that only a small proportion of papers 

adequately publish associated phenotypic data. Perhaps the best resource is the Database of 

Genotypes and Phenotypes (dbGaP) that is used by the human genetics community (Tryka et al., 

2014). Going forward, it is imperative that authors ensure relevant phenotypic data and metadata are 

collected and archived with genotypic data at the time of publication. 

Some metadata accessibility issues are common to both genetic and phenotypic data. In particular, 

thorough metadata and scripts on bioinformatic and analytical pipelines—particularly those including 

phenotypes (i.e., GWAS)—are often not published in sufficient detail. The inclusion of metadata and 

workflows for bioinformatic and statistical analyses will improve reproducibility and ensure data are 

accessible for future analyses as technologies evolve (Broman et al., 2017; Sandve et al., 2013). 

Increasing power to link genomes to phenomes
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Jarringly, we found no significant relationships between PST and nnFST for individual phenotypes 

within studies (Figure 6, Table S-2). This result, we hypothesize, suggests that loci identified as 

differentiated are largely not responsible for the differentiation in phenotypes documented in these 

studies. This lack of trend is unlikely to be a statistical artifact due to small sample size, as the 

average intra-study PST-nnFST slope was strikingly close to zero (Figure S-4). We speculate that a 

scarcity of population-level replication may constrain our ability to link genomic differentiation to 

phenotypic differentiation. Using relatively few populations to identify diverging loci may mask 

important loci (through lack of variation) and lead us to focus on spurious loci (through random 

variation).

Based on our ability to infer a general PST -nnFST relationship across study systems, we suggest 

several approaches to establishing genome to phenome relationships within study systems with 

greater power. These approaches focus on correlating genomic and phenotypic differentiation across 

metapopulations, and involve:

1) Replicate correlations of PST and nnFST across a multitude of populations spanning a 

differentiation spectrum.

2) Broad coverage of phenotype (to correspond with broad genomic coverage), including 

sampling of as many biologically relevant and evolutionarily independent phenotypes as 

feasible

3) A standardization of traits documented within taxonomic groups

Correlating PST and nnFST across a spectrum of differentiation ensures that genotypes and phenotypes 

are not only associated, but clearly differentiate congruently across landscapes, providing more 

thorough evidence for the genome-phenome functional link. Having a gradient of differentiation (i.e. 

numerous nnFST and PST values) avoids potentially spurious genome-phenome relationships generated 

by cherry-picking highly differentiated populations, which may be responsible for the observed weak 

PST-nnFST relationship within studies. Measuring numerous phenotypes increases the likelihood of 

finding a phenotype that is strongly determined by diverging loci, as long as appropriate statistical 

corrections are used to avoid false positives, and also helps us better understand how a given trait 

diverges in reference to the rest of the phenome. With enough careful measurement, we should be A
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able to describe the relationship between nnFST and nnPST, the non-neutral components of phenotype. 

Currently our only approach to this is to use our limited understanding of the system to select what we 

judge as the most differentiated traits. Through careful methodological choices, broader measurement 

of phenotypes, and a meta-population approach, genome-to-phenome associations in natural 

populations can become a more powerful and accessible tool for understanding contemporary 

evolution.
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Figure Captions, Tables, and Boxes

Figure 1. Logit transformations are useful for quantifying differentiation. Left: FST and PST, 

untransformed, provide limited characterization of differentiation when differentiation is low or high 

(i.e. interpopulation variation is very small or large relative to intrapopulation variation). Center: logit 

transformations of FST and PST, however, provide a log-linear metric of differentiation whose shape is 

independent of differentiation. Right: doubling differentiation (interpopulation variation) has the same 

effect on logit(FST and PST) regardless of starting point, whereas the effect of doubling differentiation 

on untransformed FST and PST depends heavily on starting point.

Figure 2. Non-neutral and neutral FST are highly correlated across studies. Gray labels show 

untransformed FST values. Each point represents average PST and FST values for a unique population-

population comparison, with multiple points for multiple methods (see text).

Figure 3. Both non-neutral (left) and neutral (right) FST predict PST, but non-neutral FST is a much 

stronger predictor of PST. Gray labels show untransformed FST values. Each point represents average 

PST and FST values for a unique population-population comparison, with multiple points for multiple 

methods (see text).

Figure 4. Left: proportion of non-neutral loci (the ratio of candidate, outlier, or GWAS positive loci 

to the total number) has a negative effect on PST. Removing this effect allows for a clearer view of the 

PST-non-neutral FST relationship (right). There is no significant interaction between proportion of non-

neutral loci and non-neutral FST (Table 2). Gray labels show untransformed FST values. Each point 

represents average PST and FST values for a unique population-population comparison, with multiple 

points for multiple methods (see text).

Figure 5. Effects of common garden experimentation (top left), marker type (top right), broad method 

(bottom left) and analysis method (bottom right) on PST and the PST-non-neutral FST slope. Only 

marker type had a significant effect on PST, and none of the four variables had a significant effect on A
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the PST-non-neutral FST slope (Table 2). Gray labels show untransformed FST values. Each point 

represents average PST and FST values for a unique population-population comparison, with multiple 

points for multiple methods (see text). Variation due to proportion of non-neutral loci is removed in 

each panel. 

* Only marker type (top right) had a significant effect on PST; R2 values and trendlines for the other 

three models are from the base (Figure 4) model.

Figure 6. Neither non-neutral FST (left) nor proportion of non-neutral loci (right) predicts PST 

consistently well within studies. Each row represents a study; each symbol type represents a 

phenotype. Data are taken from (top to bottom): Culling et al. 2013, Hamlin et al 2015, Hudson et al 

2013, Kaueffer et al 2012, Laporte et al 2015, Raeymaekers et al 2007. Gray labels show 

untransformed FST values. R2 values were calculated based on Equation 4, with a few negative values 

when study-specific trends in non-neutral FST versus proportion of non-neutral loci were the opposite 

of trends across studies.
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Table 1. Papers used in this meta-analysis.

Paper1 Species Method2 Phens.3
Unique 

comps.4
Mean 

N5

Marker 

type

Analysis 

methods6

Common 

garden

Defaveri and Merilä, 2013 Gasterosteus aculeatus C 1 1 34.8 QTL R No

Morris et al., 2018 Gasterosteus aculeatus C 4 1 39.2 QTL R No

Paccard et al., 2018 Gasterosteus aculeatus C 6 1 25.4 MSAT R No

Le Corre, 2005 Arabidopsis thaliana C 12 1 NA Haplo. R Yes

Pedersen et al., 2017 Gasterosteus aculeatus C, O 2 1 116.8 SNP N, R No

Ólafsdóttir and Snorrason, 2009 Gasterosteus aculeatus C, O 3 1 46.0 MSAT N, R No

Royer et al., 2016 Yucca spp G 3 1 103.0 SNP G No

Johnston et al., 2014 Salmo salar G, O 1 1 125.8 SNP N, B No

Wei et al., 2017 Brassica napus G, O 4 2 108.6
SNP, 

Window
G Yes

Porth et al., 2015 Populus trichocarpa G, O 113 1 108.3 SNP N, B No

Laporte et al., 2015*
Coregonus 

clupeaformis
O 1 5 30.0 SNP N No

Marques et al., 2017 Gasterosteus aculeatus O 1 1 70.0 SNP N No

Raeymaekers et al., 2007* Gasterosteus aculeatus O 1 6 30.0 QTL N No

Kovi et al., 2015 Lolium perenne O 1 1 300.0 SNP N Yes

Izuno et al., 2017
Metrosideros 

polymorpha
O 2 1 8.0 SNP B Yes

Smith et al., 2008 Andropadus virens O 3 1 20.9 AFLP N No

Qiu et al., 2017 Phragmites australis O 3 1 9.0 AFLP N, B Yes

He et al., 2019 Banksia attenuata O 4 1 11.0 SNP B No

Sra et al., 2019 Brassica spp O 4 3 270.3 SNP N Yes

Hamlin and Arnold, 2015* Iris hexagona O 5 22 10.1 SNP B No

Nakazato et al., 2012 Solanum peruvianum O 5 1 10.9 AFLP N Yes

Hudson et al., 2013* Coregonus spp O 6 9 6.8 AFLP N, B No

Kaeuffer et al., 2012* Gasterosteus aculeatus O 9 6 40.0 MSAT R No

Culling et al., 2013* Salmo salar O 9 10 36.8 SNP N, B Yes

Sedeek et al., 2014 Ophrys spp O 10 1 28.4 SNP B No

Keller et al., 2011 Populus balsamifera O 10 3 15.2 SNP N Yes

N’Diaye et al., 2018 Triticum turgidum O 11 1 42.7 SNP N, B Yes

Eimanifar et al., 2018 Apis mellifera O 13 1 154.7 SNP N No

Porth et al., 2016 Quercus spp O 13 1 827.5 SNP R No

Flanagan et al., 2016 Syngnathus scovelli O 14 1 21.2 SNP R No

Dillon et al., 2013 Pinus radiata O 39 1 149 SNP N YesA
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1) * indicates papers in within-study analysis. 2) C = candidate gene; G = GWAS; O = outlier. 3) 

Number of phenotypes studied. 4) Unique interpopulation comparisons. 5) Mean individuals per 

population. 6) R = raw; N = non-Bayesian; B = Bayesian; G = GWAS-specific.
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Table 2. Type II likelihood ratio tests for model predicting PST.

Variable χ2 df p

logit(non-neutral 

proportion of loci)
7.2 1 0.007

logit(non-neutral FST) 24.8 1 < 0.001

logit(proportion of loci) ×

logit(non-neutral FST)
0.9 1 0.338
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Table 3. Type II likelihood ratio tests for effects of methodological choices on PST and the PST-FST 

slope.

Variable χ2 df p

Common garden model

Common garden 1.3 1 0.260

logit(non-neutral FST) 24.6 1 < 0.001

Common garden ×

logit(non-neutral FST)
1.3 1 0.251

logit(non-neutral 

proportion of loci)
6.1 1 0.014

Marker model

Marker 24.0 3 < 0.001

logit(non-neutral FST) 22.6 1 < 0.001

Marker ×

logit(non-neutral FST)
2.9 3 0.406

logit(non-neutral 

proportion of loci)
3.0 1 0.083

Method model

Method 4.1 2 0.129

logit(non-neutral FST) 20.6 1 < 0.001

Method ×

logit(non-neutral FST)
0.3 2 0.849

logit(non-neutral 

proportion of loci)
8.9 1 0.003

Analytical method model

Analytical method 2.3 3 0.521

logit(non-neutral FST) 19.6 1 < 0.001

Analytical method ×

logit(non-neutral FST)
4.4 3 0.222

logit(non-neutral 

proportion of loci)
1.5 1 0.224
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Box 1, what is a phenome?

Numerous papers use the word phenome, a phenotypic analogue to genome (Bogue et al., 2018; Burnett et al., 

2020; Freimer and Sabatti, 2003; Oti et al., 2008). A genome is the combination of all coding material and 

corresponding non-coding material in an organism, i.e. its DNA or RNA. In theory, a genome can be objectively 

characterized, though sequencing and alignment choices add a layer of subjectivity to the process. A phenome is 

the combination of all phenotypic traits of an organism (Oti et al., 2008). Phenotypic traits inherently contain a 

degree of subjectivity, as we must define phenotypes in order to measure them. For example, a phenotype, such 

as bird wing morphology could be defined by wing size, wing mass, wing shape, number of wing feathers, 

developmental architecture, and/or other attributes. Some phenotypes, such as behavior, become even more 

difficult to comprehensively describe. The phenome is also theoretically infinitely large, as measures of 

phenotypes are constrained in number only by our imagination. One means for limiting the size of the phenome is 

to consider only ecologically relevant functional traits (ERFTs), or functional traits that affect organismal fitness 

and interactions with the environment (Wood et al., 2021).
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Box 2, FST and PST

FST is the proportion of genetic variation associated with population structure. As populations become more 

differentiated, the proportions of alleles at various loci will become less similar across populations, leading to 

increasing between-population variation. In principle, FST can be calculated as:

𝐹𝑆𝑇 =
∑

𝑗(𝑝𝑗 ― 𝑝)2𝑁𝑗

𝑝(1 ― 𝑝)∑
𝑗𝑁𝑗

 

where j represents a population; pj = the frequency of allele p in population j; p-bar = the frequency of allele p 

across all populations; and Nj = the number of individuals censused in population j.

PST is a phenotypic analogue for FST, and measures the proportion of phenotypic variation associated with 

population structure. The more differentiated two populations are for a particular phenotype, the greater the 

proportion of phenotypic variation will be explained by population structure, and the higher PST will be. PST can 

be calculated as:

𝑃𝑆𝑇 = 1 ―
∑

𝑗
∑

𝑖(𝑥𝑗𝑖 ― 𝑥𝑗)2

∑
𝑗
∑

𝑖(𝑥𝑗𝑖 ― 𝑥)2

where the numerator is the sum of squared deviations of each individual’s phenotype (xji
) from the population 

mean (xj-bar) across all populations; and the denominator is the sum of squared deviations of each individual’s 

phenotype (xji
) from the metapopulation mean (x-bar).

PST is analogous to several other common statistics of variance, including R2 and F ratios. For a model in which 

the only independent variable is a categorical variable for population:

𝑃𝑆𝑇 = 𝑅2

For any model including a variable for population:
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𝑃𝑆𝑇 =

𝑓𝑆

𝜈𝑛𝑆

𝜈𝑑𝑆

1 + ∑
𝑍𝑓𝑍

𝜈𝑛𝑍

𝜈𝑑𝑍

 

where fS = the F ratio for the population variable; νnS
 and νdS

 are the numerator and denominator degrees of 

freedom for the population variable; and Z represents all other covariates in the model.

For mean and standard deviation data:

𝑃𝑆𝑇 =
∑

𝑗𝑠
2
𝑗 𝑁𝑗

∑
𝑗𝑠

2
𝑗 𝑁𝑗 + ∑

𝑗(𝑥𝑗 ― 𝑥)2𝑁𝑗

where j indicates a population; sj = standard deviation for population j; Nj = number of individuals censused in 

population j; and xJ-bar and x-bar indicate population-specific and metapopulation means.

QST is calculated the same way as PST, but only applies to phenotypes for which the heritable component has been 

isolated, usually via common rearing experiments.
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Box 3: common genomic markers

Over the past several decades, genetic variation has been assayed using a variety of molecular markers. Rapid 

advancements in DNA sequencing technologies now allow researchers to cost-effectively sequence whole or 

large proportions of genomes. The following markers are frequently used to study genomic differentiation.

Microsatellite (msat): Msats are short (typically 2-4 nucleotide) sequence repeats (typically 5-50 times) of DNA 

in non-coding regions that vary in length between individuals, and thus are generally regarded as neutrally 

evolving loci (Schlötterer, 2000). Msats are also referred to as short tandem repeats (STRs) and simple sequence 

repeats (SSRs). Occasionally msats demonstrate signals of selection, likely due to linkage with coding regions 

experiencing a selective sweep (i.e., genetic hitchhiking). However, in rare cases msats may be directly involved 

in phenotype determination by affecting gene expression (Li et al., 2002) or when they occur within a gene (Li et 

al., 2004).

Quantitative Trait Loci (QTLs): QTLs are genomic regions that are significantly associated with a quantitative, 

or continuous, trait with a polygenic basis. These regions are defined using experimental crosses in a process 

called QTL mapping (Sen and Churchill, 2001). Regions are genotyped using msats or SNP markers.

Amplified Fragment Length Polymorphism (AFLP): AFLP methods assess the fragment profile of DNA that 

has been amplified after digestion with restriction enzymes. AFLPs provide biallelic genotypes based on 

presence/absence scoring. Hundreds of loci can be assayed for relatively little cost, making ALFPs a useful tool 

for studying patterns of selection across the genome without any knowledge of the genome sequence.

Single Nucleotide Polymorphism (SNP): A SNP is DNA variation that occurs at a single nucleotide position. 

While most SNPs have no effect on fitness because either they are in neutral regions of the genome or represent a 

silent mutation (i.e., one that does not affect amino acid coding), some SNPs in coding regions can be highly 

influential. Sliding windows can be used to measure the collective FST of numerous nearby SNPs, thus isolating 

islands of genomic differentiation, rather than single differentiated SNPs.

Haplotype/Microhaplotypes: Most SNP genotyping methods involve sequencing contiguous sets of nucleotides 

that may contain multiple polymorphic sites. A microhaplotype genotyping approach considers all the 

neighboring SNPs present on a single sequencing read to be representative of single allele/haplotype due to the 

assumption of extremely low recombination rates over short distances (<300 nucleotides). With this approach, a 

locus that contains multiple SNPs is then analyzed in a multiallelic framework, much like a microsatellite.
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Box 4: genomic methods for detecting divergent selection

Techniques used for detecting selection can broadly be split into complementary approaches that detect either loci 

of presumably large effect or those that identify patterns of polygenic selection.

Candidate gene approaches. Candidate gene approaches investigate associations between genotypes and 

phenotypes at specific pre-ordained loci with a priori hypothesized functions. Candidate gene approaches are 

most commonly pursued in species with relatively rich genomic resources. Reproducibility has been challenging 

for many candidate locus approaches (Tabor et al., 2002).

Outlier approaches. Genetic differentiation (e.g., FST) outlier tests are most commonly used to identify candidate 

loci. These tests assume that loci with genetic differentiation values that significantly exceed background (i.e., 

neutral) differentiation levels are under selection.

Genome-wide association studies (GWAS). Genome-wide association analyses (GWAS) are one suite of 

methods that identify correlations between genomic data—usually high coverage genomic data—and fitness 

values, phenotypes, or environmental values (GEAS).
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