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ABSTRACT

Medical images differ from natural images in significantly higher resolutions and smaller regions of inter-
est. Because of these differences, neural network architectures that work well for natural images might
not be applicable to medical image analysis. In this work, we propose a novel neural network model to
address these unique properties of medical images. This model first uses a low-capacity, yet memory-
efficient, network on the whole image to identify the most informative regions. It then applies another
higher-capacity network to collect details from chosen regions. Finally, it employs a fusion module that
aggregates global and local information to make a prediction. While existing methods often require le-
sion segmentation during training, our model is trained with only image-level labels and can generate
pixel-level saliency maps indicating possible malignant findings. We apply the model to screening mam-
mography interpretation: predicting the presence or absence of benign and malignant lesions. On the
NYU Breast Cancer Screening Dataset, our model outperforms (AUC = 0.93) ResNet-34 and Faster R-CNN
in classifying breasts with malignant findings. On the CBIS-DDSM dataset, our model achieves perfor-
mance (AUC = 0.858) on par with state-of-the-art approaches. Compared to ResNet-34, our model is 4.1x
faster for inference while using 78.4% less GPU memory. Furthermore, we demonstrate, in a reader study,
that our model surpasses radiologist-level AUC by a margin of 0.11.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

from the side (the mediolateral oblique or MLO view) and from
above (the craniocaudal or CC view) for a total of four images. Ra-

Breast cancer is the second leading cause of cancer-related
death among women in the United States (DeSantis et al., 2017). It
is estimated that 276,480 women would be diagnosed with breast
cancer and 42,170 would die in 2020 (Siegel et al., 2020). Screen-
ing mammography, a low-dose X-ray examination, is a major tool
for early detection of breast cancer. A standard screening mammo-
gram consists of two high-resolution X-rays of each breast, taken
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diologists, physicians specialized in the interpretation of medical
images, analyze screening mammograms for tissue abnormalities
that may indicate breast cancer. Any detected abnormality leads to
additional diagnostic imaging and possible tissue biopsy. A radiol-
ogist assigns a standardized assessment to each screening mam-
mogram per the American College of Radiology Breast Imaging Re-
porting and Data System (BI-RADS), with specific follow-up recom-
mendations for each category (Liberman and Menell, 2002).
Screening mammography interpretation is a particularly chal-
lenging task because mammograms are in very high resolutions
while most asymptomatic cancer lesions are small, sparsely dis-
tributed over the breast and may present as subtle changes in the
breast tissue pattern. While randomized clinical trials have shown
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Fig. 1. Four examples of breasts that were biopsied along with the annotated findings. The breasts (from left to right) were diagnosed with benign calcifications, a benign
mass, malignant calcifications, and malignant architectural distortion. While microcalcifications are common in both benign and malignant findings, their presence in a ductal

distribution, such as in the third example, is a strong indicator of malignancy.

that screening mammography has significantly reduced breast can-
cer mortality (Duffy et al, 2002; Kopans, 2002), it is associated
with limitations such as false positive recalls for additional imag-
ing and subsequent false positive biopsies which result in benign,
non-cancerous findings. About 10% to 20% of women who have an
abnormal screening mammogram are recommended to undergo a
biopsy. Only 20% to 40% of these biopsies yield a diagnosis of can-
cer (Kopans, 2015).

To tackle these limitations, convolutional neural networks
(CNN) have been applied to assist radiologists in the analysis of
screening mammography (Kim et al., 2018; McKinney et al., 2020;
Ribli et al,, 2018; Zhu et al.,, 2017; Kyono, Gilbert, van der Schaar;
Wu, Phang, Park, Shen, Huang, Zorin, Jastrzebski, Févry, Katsnel-
son, Kim, et al.). An overwhelming majority of existing studies on
this task utilize models that were originally designed for natural
images. For instance, VGGNet (Simonyan and Zisserman, 2014), de-
signed for object classification on ImageNet (Deng et al., 2009), has
been applied to breast density classification (Wu et al., 2018) and
Faster R-CNN (Ren et al., 2015) has been adapted to localize sus-
picious findings in mammograms (Ribli et al., 2018; Févry, Phang,
Wu, Kim, Moy, Cho, Geras).

Screening mammography is inherently different from typical
natural images from a few perspectives. First of all, as illustrated in
Fig. 1, regions of interest (ROI) in mammography images, such as
masses, asymmetries, and microcalcifications, are often smaller in
comparison to the salient objects in natural images. Moreover, as
suggested in multiple clinical studies (Van Gils et al., 1998; Pereira
et al., 2009; Wei et al., 2011), both the local details, such as lesion
shape, and global structure, such as overall breast fibroglandular
tissue density and pattern, are essential for accurate diagnosis. For
instance, while microcalcifications are common in both benign and
malignant findings, their presence in a ductal distribution, such as
in the third example of Fig. 1, is a strong indicator of malignancy.
This is in contrast to typical natural images where objects outside
the most salient regions provide little information towards predict-
ing the label of the image. In addition, mammography images are
usually of much higher resolutions than typical natural images. The
most accurate deep CNN architectures for natural images are not
applicable to mammography images due to the limited size of GPU
memory.

To address the aforementioned issues, in this work, we ex-
tended and comprehensively evaluated the globally-aware multi-
ple instance classifier (GMIC), whose preliminary version we pro-
posed in Shen et al. (2019). GMIC first applies a low-capacity,
yet memory-efficient, global module on the whole image to gen-
erate saliency maps that provide coarse localization of possible
benign/malignant findings. As a result, GMIC is able to process
screening mammography images in their original resolutions while
keeping GPU memory manageable. In order to capture subtle pat-
terns contained in small ROIs, GMIC then identifies the most infor-

mative regions in the image and utilizes a high-capacity local mod-
ule to extract fine-grained visual details from these regions. Finally,
it employs a fusion module that aggregates information from both
global context and local details to predict the presence or absence
of benign and malignant lesions in a breast. The specific contribu-
tions of this work are the following:

o We extended the original architecture (Shen et al., 2019) with
a fusion module which combines information from both global
and local features. We applied the improved model to the task
of screening mammography interpretation: predicting the pres-
ence or absence of benign and malignant lesions. On the NYU
Breast Cancer Screening Dataset (NYUBCS) (Wu et al., 2019c),
consisting of more than one million images, GMIC achieves an
AUC of 0.93 in identifying breasts with malignant findings, out-
performing baselines including ResNet-34 (He et al., 2016a),
Faster R-CNN (Févry et al., 2019), and DMV-CNN (Wu et al.,
2019b). To demonstrate its generalizability, we trained and
evaluated GMIC on the CBIS-DDSM dataset (Lee et al., 2017).
We showed that GMIC achieved slightly stronger performance
(AUC = 0.858) than the state-of-the-art approaches (Zhu et al.,
2017; Shu et al., 2020). In addition, GMIC is computationally ef-
ficient. Compared to ResNet-34, GMIC has 28.8% fewer parame-
ters, uses 78.4% less GPU memory, is 5.6x faster during training
and 4.1x faster during inference.

We demonstrate the clinical potential of the GMIC by compar-
ing the improved model to human experts. In the reader study,
we show that it surpasses a radiologist-level classification per-
formance: the AUC for the proposed model was greater than
the average AUC for radiologists by a margin of 0.11, reducing
the error approximately by half. In addition, we experimented
with hybrid models that combine predictions from both GMIC
and each of the radiologists separately. At radiologists’ sensitiv-
ity (62.1%), the hybrid models achieve an average specificity of
91.9% improving radiologists’ average specificity by 6.3%.

An advantage of GMIC over networks, such as Faster R-
CNN (Ren et al., 2015) and its derivatives (Ribli et al., 2018), is
that GMIC only needs image-level labels (e.g. presence of can-
cer) to learn to localize lesions, so it does not reply on manual
segmentation (e.g. pixel-level location of caner lesions) which is
often expensive to obtain for medical images. In Section 3.5, we
demonstrate that the regions highlighted by the saliency maps
indeed correlate with the objects of interest.

2. Methods
We frame the task of screening mammography interpretation
as a multi-label classification problem: given a grayscale image
b
X € REW we predict the image-level label y = [}J}}m], where yb, y™ ¢

{0, 1} indicate whether any benign/malignant lesion is present in x.
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Fig. 2. Overall architecture of GMIC (left) and architecture of ResNet-22 (right).” The patch map indicates positions of ROI patches (blue squares) on the input. In ResNet-22,
we use ¢, s, and p to denote number of output channels, strides and size of padding. “ResBlock, ¢ = 32, d = 2” denotes a vanilla ResBlock proposed in He et al. (2016b) with
32 output channels and a downsample skip connection that reduces the resolution with a factor of 2. In comparison to canonical ResNet architectures (He et al., 2016a),
ResNet-22 has one more residual block and only a quarter of the filters in each convolution layer. Narrowing network width decreases the total number of hidden units
which reduces GPU memory consumption. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.1. Globally-aware classification framework

As shown in Fig. 2, we propose a classification framework that
resembles the diagnostic procedure of a radiologist. We first use a
global network f; to extract a feature map hg from the input image
X, i.e. we compute

hg = fz(x), (1)

which is analogous to a radiologist roughly scanning through the
entire image to obtain a holistic view.

We then apply a 1 x 1 convolution layer with sigmoid non-
linearity to transform hg into two saliency maps AP AM ¢ RhW in-
dicating approximate locations of benign and malignant lesions.
Each element Aﬁj € [0, 1] where c € {b, m}, denotes the contribu-
tion of spatial location (i, j) towards predicting the presence of be-
nign/malignant lesions. Let A denote the concatenation of A and
A™. That is, we compute A as

A = sigm(convy,q (hy)). (2)

Due to limited GPU memory, in prior work, input images x are
usually down-sampled (Guan et al., 2018; Yao et al., 2018; Zhong
et al, 2019). For mammography images, however, down-sampling
distorts important visual details such as lesion margins and blurs
small microcalcifications. Instead of sacrificing the input resolution,
we control memory consumption by reducing the complexity of
the global network fg. Because of its constrained capacity, fg; may
not be able to capture all subtle patterns contained in the images
at all scales. To compensate for this, we utilize a high-capacity local

2 In our experiments, each input image x has a resolution of 2944 x 1920 pixels
and each ROI patch X, has a resolution of 256 x 256 pixels. The dimensions of the
intermediate representations depend on the implementation of f; and f;. With f;
parameterized as ResNet-22 and f; parameterized as ResNet-18, we have the fol-
lowing dimensions: h, € R46:30.256 A ¢ R46302 |, e RS2, and z € R512,

network f; to extract fine-grained details from a set of informative
regions. In the second stage, we use A to retrieve K most informa-
tive patches from x:

{X,} = retrieve_roi(A), (3)

where retrieve_roi denotes a heuristic patch-selection procedure
described later. This procedure can be seen as an analogue to a
radiologist concentrating on areas that might correspond to le-
sions. The fine-grained visual features {h;} contained in all chosen
patches {X,} are then processed using f; and are aggregated into a
vector z by an aggregator fg. That is,

hy=fi(%) and z=fo({l}). (4)

Finally, a fusion network fson combines information from both
global structure hg and local details z to produce a prediction §.
This is analogous to modelling a radiologist comprehensively con-
sidering the global and local information to render a full diagnosis
as

y:ffusion(h ,Z). (5)
2.2. Model parameterizaiton

Generating the saliency maps

To process high-resolution images while keeping GPU mem-
ory consumption manageable, we parameterize f; as a ResNet-
22 (Wu et al., 2019b) whose architecture is shown in Fig. 2. In
comparison to canonical ResNet architectures (He et al., 2016a),
ResNet-22 has one more residual block and only a quarter of the
filters in each convolution layer. As suggested by Tan and Le (2019),
a deeper CNN has larger receptive fields and can capture richer and
more complex features in high-resolution images. Narrowing net-
work width can decrease the total number of hidden units which
reduces GPU memory consumption.
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It is difficult to define a loss function that directly compares
saliency maps A and the cancer label y, since y does not contain
localization information. In order to train fg, we use an aggregation
function fagg (A°) : R"W 5 [0, 1] to transform a saliency map into
an image-level class prediction:

92101331 = fagg (AC)~ (6)

With figg we can train fg by backpropagating the gradient of the
classification loss between y and Y,jopa1- The design of fagg (A) has
been extensively studied (Durand et al., 2017). Global average pool-
ing (GAP) would dilute the prediction as most of the spatial lo-
cations in A¢ correspond to background and provide little training
signal. On the other hand, with global max pooling (GMP), the gra-
dient is backpropagated through a single spatial location, which
makes the learning process slow and unstable. In our work, we
propose, top t% pooling, which is a soft balance between GAP and
GMP. Namely, we define the aggregation function as

fagg(Af)=ﬁ S A (7)

(i.j)eH*

where H denotes the set containing locations of top t% values in
A°, where t is a hyperparameter. In all experiments, we tune t us-
ing a procedure described in Section 3.3. In fact, GAP and GMP can
be viewed as two extremes of top t% pooling. GMP is equivalent
to setting t = ﬁ and GAP is equivalent to setting t = 100%. In
Section 3.6, we study the impact of t and empirically demonstrate
that our parameterization of figz achieves performance superior to
GAP and GMP.

Acquiring ROI patches We designed a greedy algorithm
(Algorithm 1) to retrieve K patches as proposals for ROIs, X,
RheWe | from the input X, where w; = h. = 256 in all experiments.
In each iteration, retrieve_roi greedily selects the rectangu-
lar bounding box that maximizes the criterion defined in line 7.
The algorithm then maps each selected bounding box to its cor-
responding location on the input image. The reset rule in line 12
explicitly ensures that extracted ROI patches do not significantly
overlap with each other. In Section 3.6, we show how the classifi-
cation performance is impacted by K.

Algorithm 1 retrieve_roi

Input: x € RAEW, A e RhW2 K
Output: 0 = {X|%, € RfcWe}

1: 0=9¢

2: for each class c € {benign, malignant} do
3:  A° = min-max-normalization(A°)

4: end for

5. A* = Y AC

6: | denotes an arbitrary hc% X Wy rectangular patch on A*
7. criterion(l, A*) = 37 ; ;o A*[i, j]

8: for each 1,2, ....,K do

9:  I* = argmaxcriterion(l, A*)

10: L = position of I* in x

1 0=0uU{L}

12 Y(@, j) e I*, set A*[i, j]=0

13: end for

14: return O

Utilizing information from patches

With retrieve_roi, we can focus learning on a selected set
of small yet informative patches {X,}. We can now apply a local
network f; with higher capacity (wider or deeper) that is able to
utilize fine-grained visual features, to extract a vector representa-
tion hy € RL from every patch %,. We experiment with several pa-
rameterizations of f; including ResNet-18, ResNet-34 and ResNet-
50.
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To combine information from all ROI patches, we utilize the ag-
gregator f, which computes an attention-weighted average of vec-
tor representations ﬁk, as formalized in Eq. (9). Since ROI patches
are retrieved using coarse saliency maps, the information rele-
vant for classification carried in each patch varies significantly.
To address this issue, we use the Gated Attention Mechanism
(GA) (llse et al., 2018), allowing the model to selectively incor-
porate information from all patches. Compared to other common
attention mechanisms (Bahdanau et al., 2014; Luong et al., 2015),
GA uses the sigmoid function to provide a learnable non-linearity
which increases model flexibility. An attention score ¢, is com-
puted on each patch:

exp{wT (tanh(Vh]) o sigm(UA))}

_ - - , 8
S exp{wr (tanh(Vh]) @ sigm(UhT))} ®)

k

where ® denotes an element-wise multiplication and w e RL, V e
REM U e RI*M gre learnable parameters. In all experiments, we
set L =512 and M = 128. This process yields an attention-weighted
representation

K
z=>) aihy, 9)
k=1

where the attention score «y € [0, 1] indicates the relevance of
each patch X;. The representation z is then passed to a fully con-
nected layer with sigmoid activation to generate a prediction

S’local = Sigm(wlocasz)’ (10)

where Wiy, € RE*? are learnable parameters.

Information fusion To combine information from both saliency
maps and ROI patches, we apply a global max pooling on hg and
concatenate it with z. The concatenated representation is then fed
into a fully connected layer with sigmoid activation to produce the
final prediction:

yfusion = Sigm(wf[GMP(hg)s Z]T) (]1)

where GMP denotes the global max pooling operator and wy are
learnable parameters.

2.3. Learning the parameters of GMIC

In order to constrain the saliency maps to only highlight im-
portant regions, we impose the L1 regularization on A° to make
the saliency maps sparser:

Lreg(AC) = Z |Aﬁj . (12)
(@.j)

Despite the relative complexity of our proposed framework, the

model can be trained end-to-end using stochastic gradient descent

with following loss function, defined for a single training example

as:

L(Y.¥) = X ce(p.m) BCE(Y". ¥oca) + BCE(YC. Vgiopa)
+BCE(Y", ¥ysion) + Blreg (A).

where BCE is the binary cross-entropy and g is a hyperparameter.
While all of ¥giobal» Viocal: and Frysion are used in the loss calculation
during training, we use ¥fson as the predictions of the model at
test time since Yoy already contains information that is used to
derive both ¥joc and Vsusion-

(13)

3. Experiments and results

To demonstrate the effectiveness of GMIC on high-resolution
image classification, we evaluated it on the task of screening
mammography interpretation: predicting the presence or absence
of benign and malignant findings in a breast. On NYUBCS, we
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compared GMIC to a ResNet-like network dedicated to mammog-
raphy (Wu et al., 2019b) as well as to the standard ResNet-
34 (He et al., 2016a) and Faster-RCNN (Ren et al., 2015; Févry et al.,
2019) in terms of classification accuracy, number of parameters,
computation time, and GPU memory consumption. On the CBIS-
DDSM dataset, we compared GMIC to two state-of-the-art models
designed for whole-mammogram classification (Zhu et al., 2017;
Shu et al.,, 2020). In addition, we also evaluated the localization
performance of GMIC on NYUBCS by qualitatively and quantita-
tively comparing the saliency maps produced by GMIC with the
ground truth segmentation provided by the radiologists.

3.1. Data

NYU breast cancer screening dataset The NYU Breast Cancer
Screening Dataset (Wu et al., 2019¢) includes 229,426 exams
(1,001,093 images) from 141,472 patients.> Each exam contains at
least four images which correspond to the four standard views
used in screening mammography: R-CC (right craniocaudal), L-CC
(left craniocaudal), R-MLO (right mediolateral oblique) and L-MLO
(left mediolateral oblique). An example is shown in Fig. 3.

Across the entire dataset (458,852 breasts), malignant findings
were present in 985 breasts (0.21%) and benign findings in 5,556
breasts (1.22%). All findings were confirmed by at least one biopsy
performed within 120 days of the screening mammogram. For the
remaining screening exams that were not matched with a biopsy,
we assigned labels corresponding to the absence of malignant and
benign findings in both breasts. In each exam, the two views of the
same breast share the same label.

For all exams matched with biopsies, we asked a group of ra-
diologists (provided with the corresponding pathology reports) to
retrospectively indicate the location of the biopsied lesions. This
way we obtained the segmentation labels: M?, M™ ¢ {0, 1}H>W
where M%m =1 if pixel i, j belongs to the benign/malignant find-
ings. An example of such a segmentation is shown in Fig. 3. In all
experiments (except for experiments in Section 3.6 that assess the
benefits of utilizing segmentation labels), segmentation labels are
only used for evaluation. We found that, according to the radiol-
ogists, approximately 32.8% of exams were mammographically oc-
cult, i.e., the lesions that were biopsied were not visible on mam-
mography, even retrospectively, and were identified using other
imaging modalities: ultrasound or MRI.

We split NYUBCS into training, validation and test sets in accor-
dance to the Checklist for Artificial Intelligence in Medical Imag-
ing (Mongan and Moy, 2020). We first sorted the patients accord-
ing to the date of their latest exam and divided them into dis-
joint training (first 80%), validation (next 10%) and test (last 10%)
sets. This step ensures that each patient only appears in one of the
training, validation, and test set. We then retrieved the correspond-
ing exams associated with all patients. For patients in the training
and validation sets we utilized all the exams available for each pa-
tient; for test patients we dropped all but the latest exam for each
test patient. After this procedure there were 186,816, 28,462 and
14,148 exams in the training, validation and test sets respectively.

All images were cropped to 2944 x 1920 pixels and normal-
ized to have zero mean and unit standard deviation. We adopted
the same pre-processing and augmentation (random cropping, size
noise) as Wu et al. (2019b). During test phase, we similarly apply
data augmentation and average predictions over 10 random aug-
mentations to compute the prediction for a given image. No data
augmentation is used during validation. Since the classes of the

3 Our retrospective study was approved by our institutional review board and
was compliant with the Health Insurance Portability and Accountability Act. In-
formed consent was waived.
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L-MLO

R-MLO

Fig. 3. Example screening mammography exam. Each exam is associated with four
images that correspond to the CC and MLO view of both left and right breast. The
left breast is diagnosed with benign findings which are highlighted in green. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

images in the dataset are imbalanced, we adopted the following
sampling strategy during training. In each epoch, we trained the
model using all exams that contain at least one benign or malig-
nant finding and an equal number of randomly sampled negative
exams. During the training phase, we also randomly rotated the
selected ROI patches by {0, 90, 180, 270} degrees with equal prob-
ability. No rotation to the patches was applied during validation
and test phases.

CBIS-DDSM The Curated Breast Imaging Subset of DDSM dataset
includes mammography images, lesion segmentation, lesion ROI
patches, and pathologic diagnosis for 753 breast screening ex-
ams with calcification findings and 891 breast screening exams
with mass findings. Each mammography image is associated with
two binary labels indicating the presence of any benign and ma-
lignant lesions. For a fair comparison, in all experiments, we
only utilize the entire mammography images with the image-
level cancer labels for training our model. We refer the readers
to Lee et al. (2017) for more details about this public dataset.

For the purpose of comparison to Zhu et al. (2017) and Shu et al.
(2020), we applied the standardized splitting provided
in Lee et al. (2017) (85% for training/validation and 15% for
testing). We further randomly split training-validation subset into
a training subset (80%) and a validation subset (20%). All models
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were trained using only the training subset. The validation subset
was used for hyperprameter tuning and model selection.

To preprocess mammography images in CBIS-DDSM, we first
found the largest connected component containing only non-zero
pixels to locate the breast. We then applied erosion and dilation to
refine the breast margin. Lastly, we re-oriented all mammography
images so that the breasts are always on the left side of the im-
age. All images are resized to 2944 x 1920 pixels and pixels values
were normalized to the range [0,1]. During training, we use im-
age augmentations including random horizontal flipping (p=0.5),
random rotation (—15° to 15°), random translation (up to 10% of
image size), scaling by a random factor between 0.8 and 1.6, ran-
dom shearing (—25° to 25°), and pixel-wise Gaussian noise (1 = 0,
o =0.005).

3.2. Evaluation metrics

To measure classification performance, we report area under
the ROC curve (AUC), on the breast-level for NYUBCS and, for con-
sistency with prior work, on the image-level for CBIS-DDSM. As
each breast is associated with two images (CC and MLO views) and
our model generates a prediction for each image, we define breast-
level predictions as the average of the two image-level predictions.
In the reader study, we also used area under the precision-recall
curve (PRAUC) to compare radiologists and the proposed model.
We computed the radiologists sensitivity which served as a thresh-
old to derive the specificity of GMIC. To assess statistical signifi-
cance, we computed binomial proportion confidence intervals for
specificity. To quantitatively evaluate our model’s localization abil-
ity, we calculate the Dice similarity coefficient (DSC) and pixel av-
erage precision (PxAP) proposed by Choe et al. (2020). Both the
DSC and PxAP values we report are computed as an average over
images for which segmentation labels are available (i.e. images
from breasts which have biopsied findings which were not mam-
mographically occult).

In addition to accuracy, computation time and memory effi-
ciency are also important for medical image analysis. To mea-
sure memory efficiency, we report the peak GPU memory us-
age during training as in Canziani et al. (2016). Similar to
Schlemper et al. (2019), we also report the run-time performance
by recording the total number of floating-point operations (FLOPs)
during inference and elapsed time for forward and backward prop-
agation. Both memory and run-time statistics were measured by
benchmarking each model on a single exam (4 images), averaged
across 100 exams. All experiments are conducted on an NVIDIA
Tesla V100 GPU.

3.3. Classification performance

3.3.1. NYU Breast Cancer Screening Dataset

Implementation details

We parameterize f; as a ResNet-22 whose architecture is shown
in Fig. 2. We pretrain f; on BI-RADS labels as described in
Geras et al. (2017) and Wu et al. (2019b). For f;, we experi-
ment with three different architectures with varying levels of com-
plexity (ResNet-18, ResNet-34, ResNet-50). We extract K =6 ROI
patches from each image. In all experiments (except the ablation
study in Section 3.6), we only used image-level labels to train
GMIC. In all experiments, the training loss is optimized using Adam
(Kingma and Ba, 2014) with learning rate fine-tuned as described
in Section 3.3. Our PyTorch (Paszke et al., 2017) implementation
(the code and the trained weights of the model) is available at
https://github.com/nyukat/GMIC.

Baselines The proposed model is compared against three base-
lines. We first trained ResNet-34 (He et al., 2016a). ResNet-34 is
the highest capacity model among the ResNet architectures that

Medical Image Analysis 68 (2021) 101908

can process a mammography image in its original resolution while
fitting in the memory of an NVIDIA Tesla V100 GPU. We also
experimented with a variant of ResNet-34 (ResNet-34-1x1 conv)
by replacing the fully connected classification layer with a 1 x 1
convolutional layer and top t% pooling as the aggregation func-
tion. In addition, we compared our model with Deep Multi-view
CNN (DMV-CNN) proposed by Wu et al. (2019b) which has two
versions. In the vanilla version, DMV-CNN applies a ResNet-based
model on four standard views to generate two breast-level predic-
tions for each exam. DMV-CNN can also be enhanced with pixel-
level heatmaps generated by a patch-level classifier, which re-
quires hand-annotated segmentation labels during training. Lastly,
we also compared GMIC with the work of Févry et al. (2019) which
used a model based on Faster R-CNN (Ren et al., 2015) that uti-
lizes segmentation labels to localize anchor boxes that correspond
to malignant or benign lesions. Unlike DMV-CNN and Faster R-CNN
which rely on segmentation labels, GMIC can be trained with only
image-level labels.

Hyperparameter tuning To make a fair comparison between
model architectures, we optimize the hyperparameters with ran-
dom search (Bergstra and Bengio, 2012) for both ResNet-34 base-
lines and GMIC. Specifically, for all models, we search for the
learning rate 1 e 10[-55-4] on a logarithmic scale. Additionally,
for GMIC and ResNet-34 with 1x 1 filters in the last convo-
lutional layer, we also search for the regularization weight § ¢
101-55-35] (on a logarithmic scale) and for the pooling thresh-
old t € {1%, 3%, 5%, 10%, 20%}. For all models, we train 30 separate
models using hyperparameters randomly sampled from ranges de-
scribed above. Each model is trained for 50 epochs, and we report
the test performance using the weights from the training epoch
that achieves highest validation performance.

Performance For each network architecture, we selected the top
five models (referred to as top-5) from the hyperparameter tun-
ing phase that achieved the highest validation AUC in identifying
breasts with malignant findings and evaluated their performance
on the held-out test set. In Table 1, we report the mean and the
standard deviation of AUC for the top-5 models in each network ar-
chitecture. In general, the GMIC model outperformed all baselines.
In particular, GMIC achieved higher AUC than Faster R-CNN and
DMV-CNN (with heatmaps), despite GMIC not learning with pixel-
level labels. We hypothesize that GMIC's superior performance is
related to its ability to efficiently integrate both global features
and local details. In Section 3.6, we empirically investigate this hy-
pothesis with multiple ablation studies. Separately, we also observe
that increasing the complexity of f; brings a small improvement in
AUC.

To further improve our results, we employed the technique of
model ensembling (Dietterich, 2000). Specifically, we averaged the
predictions of the top-5 models for GMIC-ResNet-18, GMIC-ResNet-
34, and GMIC-ResNet-50 to produce the overall prediction of the
ensemble. Our best ensemble model achieved an AUC of 0.930 in
identifying breasts with malignant findings.

In addition, GMIC is efficient in both run-time complexity and
memory usage. Compared to ResNet-34, GMIC-ResNet-18 has 28.8%
fewer parameters, uses 78.43% less GPU memory, is 4.1x faster dur-
ing inference and 5.6x faster during training. GMIC achieved even
more prominent superiority in both run-time and GPU memory us-
age compared to Faster R-CNN. This improvement is brought forth
by its design that avoids excessive computation on the whole im-
age while selectively focusing on informative regions.

3.3.2. CBIS-DDSM dataset

Implementation details We parameterize f; as ResNet-18 with
initial weights pretraiend on ImageNet (Deng et al., 2009). We
experimented ResNet-18, ResNet-34, and ResNet-50 for f;. Unlike
NYUBCS, CBIS-DDSM does not include any exams without benign
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Comparison of performance of GMIC and the baselines on NYUBCS. For both GMIC and ResNet-34, we reported test AUC
(mean and standard deviation) of top-5 models that achieved highest validation AUC in identifying breasts with malig-
nant findings. We also measure the total number of learnable parameters in millions, peak GPU memory usage (Mem)
for training a single exam (4 images), time taken for forward (Fwd) and backward (Bwd) propagation in milliseconds,

and number of floating-point operations (FLOPs) in billions.

Model AUC(M) AUC(B) #Param  Mem(GB) Fwd/Bwd (ms) FLOPs
ResNet-34 0.736+0.026  0.684+0.015 21.30M  13.95 189/459 1622B
ResNet-34-1 x 1 conv 0.889+0.015 0.772+0.008 21.30M  12.58 201/450 16258
DMV-CNN (w/o heatmaps) ~ 0.827+0.008 0.731+0.004 6.13M 24 38/86 658
DMV-CNN (w/ heatmaps) ~ 0.886+0.003  0.747 +£0.002  6.13M 2.4 38/86 65B
Faster R-CNN 0.908+0.014  0.761+0.008 104.8M 2575 920/2019 -
GMIC-ResNet-18 0.913+0.007 0.791+0.005 1517M  3.01 46/82 122B
GMIC-ResNet-34 0.909+0.005 0.790+0.006 2529M  3.45 58/94 180B
GMIC-ResNet-50 0915+0.005 0.797+0.003 27.95M 5.05 66/131 194B
GMIC-ResNet-18-ensemble  0.930 0.800 - - - -
GMIC-ResNet-34-ensemble  0.920 0.795 - - - -
GMIC-ResNet-50-ensemble  0.927 0.805 - - - -
or malignant findings. All breasts in CBIS-DDSM contain either be-
nign or malignant lesions. To be consistent with the baseline ap-
proaches, we adopted a binary classification framework and only 1.0 10 — ‘avg Feader
computed the probability for the presence of malignant findings. ©0.8 08
We adopted the same setting for hyperparameter tuning as for the ®
NYUBCS.* 206 _5 0.6
Baselines We compared GMIC to ResNet-34, ResNet-34-1x1 = 3
conv, Deep MIL (Zhu et al., 2017), and two other models based g0.4 Loa
on Deep MIL with more elaborate pooling mechanism proposed “_:.’
by Shu et al. (2020).> Deep MIL consists of a CNN applied on =02 0z
downsampled mammography images, followed by a multiple in- 0.0l ¥ —— avgreader 0.0
stance learning (MIL) pooling layer to aggregate predictions from 0.0 05 1.0 0.0 05 1.0
all spatial positions. Shu et al. (2020) further extended Deep MIL false positive rate recall
with two new pooling mechanisms: region-based group-max pool- @ @)
ing (RGP) and global group-max pooling (GGP) to address the 1.0 1.0 — avg hybrid
variability of lesion size. To make the comparison to GMIC fair,
for ResNet-34 and ResNet-34-1x1 conv, we used the training 2 £:8 9.8
and hyperparameter search procedure described in Section 3.3.1. E’O.e So06
For Deep MIL, RGP, and GGP, we used the performance reported p= Zg
by Shu et al. (2020). S04 04
Performance We report the classification performance on the e
test set in Table 2. On average, the top-5 GMIC-ResNet-18 achieved 50.2 0.2
the AUC of 0.833 (std:0.004) in identifying breasts with malig- )
nant lesions. This result is on par with the two state-of-the-art ap- 20 o0 ; avg hyblng 9:0 o0 o5 0
proaches. Moreover, we observed that increasing the complexity of " false positive rate ’ recall '
fi does not improve the classification performance, which is con- (b) (b*)
sistent with our observation in Section 3.3.1. In addition, we simi- 1.0 1.0 GMIC
larly applied model ensembling as with NYUBCS which further im- — DMV-CNN
proves GMIC’s performance (AUC = 0.858). In summary, the classi- 20.8 0.8 —— avg reader
fication performance on CBIS-DDSM further confirms the general- g c —— avg hybrid
izability of GMIC. = 06 £0.6
.504 §04
3.4. Reader study 9 GMIC =
Organization To evaluate the potential clinical impact of our — &4 Leabdijr
model, we compared the performance of GMIC to the performance 0'00 0 (: ave y 1n0 0'00 0 05 0
of radiologists using data from the reader study conducted by " false positive rate ’ recall '
(© (c*)

4 The implementation of Faster R-CNN by Févry et al. (2019) is not compatible
with our framework of FLOPs calculation.

5 In this work, when using the CBIS-DDSM dataset, we compared GMIC to mod-
els that are trained only with image-level labels as this is the scenario for which
GMIC is primarily designed for. While existing works demonstrate that incorporat-
ing pixel-level segmentations can improve classification performance (Ribli et al.,
2018; Shen et al, 2019; Li, Chen, Nailon, Davies, Laurenson), they are evaluated
using different subsets of CBIS-DDSM as the test set. This makes direct numeri-
cal comparisons to our work, as well as comparisons between them, inappropriate.
Therefore, we leave evaluating the utility of pixel-level segmentations for feature
work.

Fig. 4. The ROC curves ((a), (b), (c)) and the precision-recall curves ((a*), (b*), (c*))
computed on the reader study dataset. (a) & (a*): curves for all 14 readers. We
derive the ROC/PRC for the average reader by computing the average true positive
rate and precision across all readers for every false positive rate and recall. (b) &
(b*): curves for hybrid models with each single reader. The curve highlighted in
blue indicates the average performance of all hybrids. (¢) & (c*): comparison among
the GMIC, DMV-CNN, the average reader, and average hybrid. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5. AUC and PRAUC as a function of A €[0,1) for hybrids between each
reader and GMIC (left))DMV-CNN (right) ensemble. Each hybrid achieves the high-
est AUC/PRAUC for a different A (marked with <).
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Fig. 6. (a) and (a*): the distribution of maximum AUC/PRAUC achieved for hybrids
between each reader and GMIC/DMV-CNN ensemble. (b) and (b*): the distribution
of the optimal A* that achieves the maximum AUC/PRAUC for both GMIC/DMV-
CNN hybrids. GMIC hybrids achieve higher AUC and PRAUC than DMV-CNN hybrids.
Moreover, GMIC plays a more important role than DMV-CNN in the hybrid models
as indicated by the distribution of A*.

Wu et al. (2019b). This study includes 14 readers: 12 attending ra-
diologists at various level of experience (between 2 and 30 years),
a medical resident, and a medical student. Each reader was asked
to provide probability estimates as well as binary predictions of
malignancy for 720 screening exams (1440 breasts). Among the
1440 breasts, 62 breasts were associated with malignant findings
and 356 breasts were associated with benign findings. Among the
breasts in which there were malignant findings, there were 21
masses, 26 calcifications, 12 asymmetries and 4 architectural dis-
tortions. The radiologists were only shown images with no other
data.
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Table 2

Classification performance on CBIS-DDSM. For
GMIC, we reported test AUC of top-5 models that
achieved highest validation AUC in identifying
breasts with malignant findings. We compared
GMIC with five baselines. The performance of Deep
MIL, RGP, and GGP in this table was originally
reported in Shu et al. (2020).

Model AUC(M)
ResNet-34 0.792 + 0.014
ResNet-34-1x1 conv 0.800 + 0.011

Deep MIL (Zhu et al., 2017)
RGP (Shu et al., 2020)

GGP (Shu et al., 2020) 0.823 + 0.0002
GMIC-ResNet-18 0.833 +0.004
GMIC-ResNet-18 (best) 0.840
GMIC-ResNet-34 0.830 +0.003
GMIC-ResNet-50 0.828 +0.001
GMIC-ResNet-18-ensemble 0.858
GMIC-ResNet-34-ensemble 0.849
GMIC-ResNet-50-ensemble 0.849

0.791 £ 0.0002
0.838 + 0.0001

Table 3

Performance of readers, GMIC, and the hybrid model in the
reader study. The specificity of GMIC and hybrid model is
computed at readers’ average sensitivity level (62.1%). In all
metrics, GMIC outperforms the readers and the hybrid model
outperforms both the readers and GMIC.

AUC PRAUC specificity

readers 0.779 + 0.044 0.364 + 0.05 85.2%
GMIC 0.891 0.39 90%
hybrid 0.892 + 0.009 0.449 £+ 0.036  91.5%

Comparison to radiologists We calculate AUC and PRAUC on the
reader study dataset to measure the performance of radiologists
and GMIC. We obtain GMIC's predictions by ensembling the pre-
dictions of the top-5 GMIC-ResNet-18 models. In Fig. 4 ((a) and
(a*)), we visualize the receiver operating characteristic curve (ROC)
and precision-recall curve (PRC) for each individual reader using
their probability estimates of malignancy. We also compared GMIC
with DMV-CNN and the radiologists ((c) and (c*)). GMIC achieves
an AUC of 0.891 and PRAUC of 0.39 outperforming DMV-CNN
(AUC: 0.876, PRAUC: 0.318). The AUCs associated with each individ-
ual reader ranges from 0.705 to 0.860 (mean: 0.778, std: 0.0435)
and the PRAUCs for readers vary from 0.244 to 0.453 (mean: 0.364,
std: 0.0496). GMIC achieves a higher AUC and PRAUC than the av-
erage reader. We note that there is a limitation associated with
AUC and PRAUC. While AUC and PRAUC are calculated on con-
tinuous predictions, radiologists are trained to make diagnosis by
choosing from a discrete set of BI-RADS scores (D’Orsi, 2013). In-
deed, even though the readers were given a possibility to predict
any number between 0% and 100%, they chose to stick to the prob-
ability threshold corresponding to BI-RADS scores.

To compare GMIC to radiologists, we also use sensitivity and
specificity as additional evaluation metrics. We first compute the
radiologists’ sensitivity and specificity using the data from the
reader study. We then use the average specificity and sensitiv-
ity among readers as the proxy for radiologists’ performance un-
der a single-reader setting and use the statistics of the consen-
sus reading to approximate the performance under a multi-reader
setting. The predictions for the consensus reading are derived us-
ing majority voting. We summarize the performance of both GMIC
and radiologists in Table 3. The 14 radiologists achieved an aver-
age specificity of 85.2% (std:5.5%) and average sensitivity of 62.1%
(std:9%). The consensus reading yields a specificity of 94.6% and
a sensitivity of 76.8%. The performance of the radiologists in the
reader study is lower than that for community practice radiolo-
gists performance (Lehman et al., 2016) which reported a sensi-
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tivity of 86.9% and a specificity 88.9%. However, the overall sen-
sitivity in our study falls within acceptable national performance
standards (Lehman et al.,, 2016) and likely reflects the lack of prior
imaging and other clinical data available during interpretation. At
the average radiologists’ sensitivity level (62.1%), GMIC achieves a
specificity of 90% which is higher (P<0.001) than the average ra-
diologists’ specificity (85.2%). At the consensus reading sensitivity
level (76.8%), GMIC's specificity is 83.6% which is lower than con-
sensus reading specificity (94.6%). While the proposed model un-
derperforms the consensus reading, the results demonstrate the
potential value of GMIC as a second reader.

Human-machine hybrid To further demonstrate the clinical po-
tential of GMIC, we create a hybrid model whose predictions are a
linear combination of predictions from each reader and the model:
Vhybrid = AVreader + (1 — A)¥emic. We compute the AUC and PRAUC
of the hybrid models by setting A = 0.5. We note that A = 0.5 is
not the optimal value for all hybrid models. On the other hand, the
performance obtained by retroactively fine-tuning A on the reader
study is not transferable to realistic clinical settings. Therefore, we
chose A = 0.5 as the most natural way of aggregating two sets of
predictions when not having prior knowledge of their quality. In
Fig. 4((b) and (b*)), we visualize the ROC and PRC curves of the
hybrid models (A = 0.5) which on average achieve an AUC of 0.892
(std: 0.009) and an PRAUC of 0.449 (std: 0.036), improving radi-
ologists’ mean AUC by 0.114 and mean PRAUC by 0.085. For each
of the hybrid models, we also calculate its specificity at the aver-
age radiologists’ sensitivity (62.1%). The 14 hybrid models achieve
an average specificity of 91.5% (std: 1.8%) which is higher than
(P < 0.001) the average radiologists’ specificity (85.2%). These re-
sults indicate that our model captures different aspects of the task
compared to radiologists and can be used as a tool to assist in in-
terpreting breast cancer screening exams.

In addition, in Fig. 5, we visualize the AUC and PRAUC achieved
by combining predictions from each of these 14 readers with GMIC
((@) and (b)) and DMV-CNN ((a*) and (b*)) with varying A. The
diamond mark on each curve indicates the A* that achieves the
highest AUC/PRAUC. As shown in the plot, the predictions from
all radiologists could be improved (A* < 1.0) by incorporating pre-
dictions from GMIC. More specifically, as shown in Fig. 6 ((a) and
(a*)), with the optimal A*, GMIC hybrids achieves a mean AUC of
0.898 & 0.005 and mean PRAUC of 0.465 + 0.03 both of which are
higher than the counterparts of DMV-CNN hybrids (AUC:0.895 +
0.01, PRAUC:0.439 £ 0.035). In addition, we compare the distribu-
tion of A* for GMIC and DMV-CNN. The average value of A* asso-
ciated with GMIC hybrid models to achieve maximum AUC/PRAUC
is 0.25+0.15/0.34 + 0.11 which is lower than DMV-CNN (0.34 +
0.15/0.59 &+ 0.12). This result shows that, the more accurate the
model used in the human-machine hybrid is, the more weight is
attached to its predictions.

3.5. Localization performance

To evaluate the localization performance of GMIC, we select the
model with the highest DSC for malignancy localization using the
validation set. During inference, we upsample saliency maps using
nearest neighbour interpolation to match the resolution of the in-
put image. Our best localization model achieved a mean test DSC
of 0.325 (std:0.231) for localization of malignant lesions and 0.240
(std:0.175) for localization of benign lesions. The extracted ROI
patches correctly indicate the biopsy-confirmed lesions in 78.1% of
all annotated images in the test set (a lesion is considered to be
correctly indicated by the ROI patches if they cover at least 70% of
its pixels). The best localization model achieves an AUC of 0.886
and 0.78 on classifying malignant and benign lesions, respectively.
We observe that localization and classification performance are not
perfectly correlated. The trade-off between classification and lo-
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Table 4

Localization performance of GMIC on malignant (M) and benign (B) lesions. We
adopt Dice similairty score (DSC) and pixel average precision (PXAP) as evaluation
metrics. We compared GMIC with U-Net and a random baseline whose pixel-level
predictions are randomly drawn from the standard uniform distribution.

Model DSC(M) DSC(B) PXAP(M) PXAP(B)

GMIC 0325+ 0231 0240 + 0.175 0396 + 0275  0.283 + 0.244
U-Net 0.504 + 0.283  0.412 £ 0316  0.589 + 0329  0.498 + 0.357
random  0.039 + 0.044  0.021 +£0.030 0.012 + 0.015  0.006 = 0.010

calization has been discussed in the weakly supervised object de-
tection literature (Feng et al., 2017; Sedai et al., 2018; Yao et al.,
2018). To estimate an upper bound of localization performance for
this dataset, we use the pixel-level segmentations to train a U-
Net (Ronneberger et al., 2015). To estimate performance of a model
which did not learn anything, we generate random saliency maps
whose pixel values were obtained by uniformly sampling values in
the range of [0,1]. We summarize the localization performance of
GMIC in Table 4. While GMIC underperformed U-Net, it achieved
higher DSC and PxXAP than random baseline indicating that GMIC
provides non-trivial localization on the lesions of interest.

In Fig. 7, we visualize saliency maps for four samples selected
from the test set. In the first two examples, the saliency maps
are highly activated on the annotated lesions, suggesting that our
model is able to detect suspicious lesions without pixel-level su-
pervision. Moreover, the attention c, is highly concentrated on ROI
patches that overlap with the annotated lesions. In the third ex-
ample, the saliency map for benign findings identifies three ab-
normalities. Although only the top abnormality was escalated for
biopsy and hence annotated by radiologists, the radiologist’s report
confirms that the two non-biopsied findings have a high probabil-
ity of benignity and a low probability of malignancy. In the fourth
example, we illustrate a case when there is some level of disagree-
ment between our model and the annotation in the dataset. The
malignancy saliency map only highlights part of a large malignant
lesion with segmental coarse heterogeneous calcifications. This be-
havior is related to the design of fagg: a fixed pooling threshold ¢
cannot be optimal for all sizes of ROIL The impact of fagg is fur-
ther studied in 3.6. This example also illustrates that while human
experts are asked to annotate the entire lesion, CNNs tend to em-
phasize only the most informative regions. While no benign lesion
is present, the saliency map of benign findings still highlights re-
gions similar to that in the malignancy saliency map, but with a
lower probability than the malignancy saliency map. In fact, calcifi-
cations with this morphology and distribution can also result from
benign pathophysiology (Liberman and Menell, 2002). We provide
additional visualization of both successful and failed localization of
benign and malignant lesions in Supplementary Figs. 14-16.

In addition, we observe that GMIC is able to provide meaning-
ful localization when the lesions are hardly visible to radiologists
in the image. In Fig. 8, we illustrate a mammographically occult
mammogram of a 59-year old patient with no family history of
breast cancer and dense breasts. There is an asymmetry in the left
lateral breast posterior depth which appears stable compared to
prior mammograms and was determined to be benign by the read-
ing radiologist. However, the saliency map of malignant findings
successfully identifies the malignant lesion on the screening mam-
mogram. Same day screening ultrasound (sagittal image) demon-
strated a 1.2 cm irregular mass; ultrasound biopsy yielded moder-
ate grade invasive ductal carcinoma.

3.6. Ablation study

We performed ablation studies to explore the effectiveness of
global module, local module, fusion module, patch-level attention,
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Fig. 7. Visualization of results for four examples. From left to right: input images annotated with segmentation labels (green = benign, red = malignant), locations of ROI
patches (blue squares), saliency map for benign class, saliency map for malignant class, and ROI patches with their attention scores. The top example contains a circumscribed
oval mass in the left upper breast middle depth which was diagnosed as a benign fibroadenoma by ultrasound biopsy. The second example contains an irregular mass in
the right lateral breast posterior depth which was diagnosed as an invasive ductal carinoma by ultrasound biopsy. In the third example, the saliency map of benign findings
identifies (from up to bottom) (a) a circumscribed oval mass in the lateral breast middle depth, (b) a smaller circumscribed oval mass in the media breast, and (c) an
asymmetry in the left central breast middle depth. Ultrasound-guided biopsy of the finding shown in (a) yielded benign fibroadenoma. The medial breast mass (b) was
recommended for short-term follow-up by the breast radiologist. The central breast asymmetry (c) was imaging-proven stable on multiple prior mammograms and benign.
The bottom example contains segmental coarse heterogeneous calcifications in the right central breast middle depth. Stereotactic biopsy yielded high grade ductal carcinoma
in situ. We provide additional visualizations of exams with benign and malignant findings in Supplementary Figs. 14-16. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

and the proposed top t% pooling. In addition, we also assess how
much performance of GMIC could be improved by utilizing the
pixel-level labels and ensembling GMIC with DMV-CNN and Faster
R-CNN. All ablation experiments are based on the GMIC-ResNet-18
model.

Synergy of global and local information In the preliminary ver-
sion of GMIC (Shen et al., 2019), the final prediction is defined

10

as %(yglobal + Viocal)- In this work, we enhance GMIC with a fusion
module that combines signals from both global features and local
details. To empirically evaluate the effectiveness of the fusion mod-
ule, we compared the performance achieved using only global fea-
tures (Ygiopar)» ONly local patches (§joca1), the average prediction of
two modules ( (Vgiobal + Yiocal))» and the fusion of the two (Jgysion)-
As shown in Table 5, ¥5s0n achieved a higher AUC consistently for
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Fig. 8. A mammographically occult example with a biopsy-proven malignant finding. From left to right: the original image, the saliency map for benign findings, the saliency
map for malignant findings, and the sagittal ultrasound image of this patient. While the asymmetry in the left lateral breast posterior depth was intepreted as benign by
the radiologist, a subsequent screening ultrasound and ultrasound-guided biopsy yielded mammographically-occult moderate grade invasive ductal carcinoma. On saliency
maps, this area shows a weak probability of benignity and a high probability of malignancy.

Table 5

Ablation study: effectiveness of incorporating both
global and local features. We report the mean and stan-
dard deviation of the test AUC for top-5 GMIC-ResNet-
18. We experimented with 4 GMIC variants that use
i’g]obalv g’]oca]s the average of ygloba] and g’locals and S’fusion
as predictions. The proposed design that uses ¥susion as
predictions outperforms all variants.

Prediction AUC(M) AUC(B)

Velobal 0.892+0.009 0.776 £ 0.004

Viocal 0.897 £0.004  0.778 +0.005

1 (Jiocal + Vglobat) ~ 0.905+£0.006  0.785 £ 0.004

Viusion 0.913+0.007  0.791 + 0.005
Table 6

To evaluate the effectiveness of the patch-wise attention, we com-
pare the proposed model with the variant (uniform) that always as-
signs equal attention to all patches. To investigate the importance of
the localization information in the saliency maps, we trained another
variant (random) that randomly selects patches from the input im-
age. We use GMIC-ResNet-18 model with top 3% pooling as the base
model. The performance of the local module (¥, ) is reported.

Attention ROI patches AUC(M) AUC(B)
uniform retrieve_roi 0.874 +£0.008 0.776 £0.007
gated random 0.629+0.042  0.658 +0.011
gated retrieve_roi 0.898 +0.01 0.78 +0.008

classifying both benign and malignant lesions than either $yjopa
or Vjocal- This result suggests that the fusion module helps GMIC
to aggregate signals from both global and local module. Moreover,
Viusion also outperforms the ensemble prediction  (¥iocal + Jglobal)-
which further demonstrates that the fusion module promotes an
effective synergy beyond an ensembling effect created from aver-
aging predictions over two sets of parameters.

ROI proposals and patch-wise attention GMIC applies two mech-
anisms to control the quality of patches provided to the local mod-
ule. First, the retrieve_roi algorithm utilizes localization in-
formation from the saliency maps and greedily selects informa-
tive patches of the input image. Those selected patches are then
weighted using the Gated Attention network. To evaluate the ef-
fectiveness of both mechanisms, we trained two variants: one (uni-
form) that always assigns equal attention score to each patch and
another (random) that randomly samples patches without using
the saliency map. As shown in Table 6, if patch-wise attention is
disabled, the AUC of classifying malignant lesions decreases from
0.898 to 0.874. If the retrieve_roi algorithm is replaced with

1

Table 7

Ablation study: effect of different choice of aggregation function. We report the
performance achieved by parameterizing f,g; as global average pooling (GAP),
global maximum pooling (GMP), and top t% pooling. For each setting, we trained
five GMIC-ResNet-18 models and report the mean and standard deviation of AUC
and DSC.

foss AUC(M) AUC(B) DSC(M) DSC(B)

GMP 0.890+0.02  0.785+0.012 0.127+0.052  0.103+0.060
t=1%  0.906+0.01 0.784+0.007 0.190+0.030  0.147 +0.053
t=2%  0916+0.009 0.790+0.007 0.203+0.013  0.191+0.042
t=3%  0913+£0007 0.791+£0.004 0.228+0.036 0.178 + 0.041
t=5%  0912+£0.009 0.790+0.002 0.172+0.004  0.194+0.027
t=10% 00914+0.005 0.791+0.008 0.156+0.050  0.182+0.028
t=20% 00907+0.017 0.785+0.008 0.126+0.048  0.182 +0.040
GAP 0.903+0.02  0.783+0.012  0.065+0.006 0.181+0.011

random sampling, the local module suffers from a significant per-
formance decrease. These results suggest that both the patch-wise
attention and retrieve_roi procedure are essential for the lo-
cal module to make accurate predictions.

Aggregation function In order to study the the impact of
the aggregation function, we experimented with 8 parameteriza-
tions of fage including GAP, GMP, and top t% pooling with t €
{1,2,3,5,10, 20}. For each parameterization, we fixed other hy-
perparameters and trained five GMIC-ResNet-18 models with ran-
domly initialized weights. In Table 7, we report the AUC and DSC
achieved by each value of t. GMIC-ResNet-18 achieves the highest
AUC on identifying malignant cases when using top t% pooling with
t = 2. The performance of top t% pooling decreases as t moves away
from 2 and converges to that of GAP/GMP when t is large/small.
This observation is consistent with the intuition that GAP and GMP
are two extremes of top t% pooling. We observe a similar but less
pronounced trend on the AUC of identifying benign cases.

GMIC-ResNet-18 also obtains better localization performance
with top t% pooling than with GAP or GMP. The highest DSC for
localizing malignant and benign lesions is achieved when ¢t is set
to 3% and 5% respectively. To further study the effect of t, we vi-
sualize the saliency maps for four examples selected from the test
set. As illustrated in Fig. 9, when t is small, the saliency maps tend
to highlight a small area. When t is large, the highlighted region
grows. Ideally, the choice of t should reflect the true size of lesions
contained in the image and different images could use different t.
In future research, we propose to learn t using information within
the image.
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Fig. 9. In this figure we illustrate the effect of ¢ in the pooling function on the saliency maps. From left to right: the mammogram with ground truth segmentation and the
saliency map generated using GMP, top 3% pooling, top 10% pooling, top 20% pooling, and GAP. The corresponding DSC is specified below each saliency map. A benign lesion
is found in the top two examples. A malignant lesion is found in the bottom two examples.

Number of ROI patches

We experimented with GMIC varying the number of patches
Ke{1,2,3,4,6,8,10}. For each setting, we trained five GMIC-
ResNet-18 models with top t% pooling (t = 3%). In Fig. 10, we il-
lustrate the mean and the standard deviation of AUC achieved
by Vusion and ¥iocar 0N classifying benign and malignant lesions.
Increasing K improves the classification performance when K is
small. The improvement is more evident on .., than ¥ssion, be-

12

cause Yssion also utilizes global features. However, for K > 3, the
classification performance saturates. This observation demonstrates
a trend of diminishing marginal return of incorporating additional
ROI patches.

Utilizing segmentation labels

We also assessed how much performance of GMIC could be
improved by utilizing pixel-level labels during training. Follow-
ing Wu et al. (2019b), we used the pixel-level labels to train
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Fig. 10. The classification performance of GMIC-ResNet-18 with a varying number
of patches K € {1, 2,3, 4,6, 8, 10}. For each K, we trained five models and reported
the mean and the standard deviation of test AUC on classifying malignant (top) and
benign (bottom) lesions. We show the performance of both ¥ssion and ¥ioca. The
performance saturates for K > 3.

Fig. 11. Example heatmaps generated by the patch-level model proposed
by Wu et al. (2019b). The original image (left), the “benign” heatmap over the im-
age (middle), and the “malignant” heatmap over the image (right).

a patch-level model which classifies 256 x 256-pixel patches of
mammograms, making two predictions: the presence or absence
of malignant and benign findings in a given patch. We then ap-
ply the patch-level classifier to each full-resolution image in a slid-
ing window fashion to create two heatmaps (illustrated in Fig. 11),
one containing an estimated probability of a malignant finding for
each pixel, and the other containing an estimated probability of a
benign finding. In this comparison study, we concatenated the in-
put images with these two heatmaps® to train 30 GMIC-ResNet-18
models (referred as GMIC-ResNet-18-heatmap models) using the

6 The two heatmap channels are only used by the global network f,. The local
network f; does not use them.
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hyperparameter optimization setting described in Section 3.3. We
reported the test performance of the top-5 GMIC-heatmap mod-
els that achieved the highest validation AUC on identifying breasts
with malignant lesions. The top-5 GMIC-ResNet-18-heatmap mod-
els achieved a mean AUC of 0.927 +0.04 |/ 0.792 4+ 0.008 in iden-
tifying breasts with malignant/benign lesions, outperforming the
vanilla GMIC models (0.913 +0.007 / 0.791 4+ 0.005). The ensem-
ble of the top-5 GMIC-ResNet-18-heatmap models achieved an AUC
of 0.931/0.80 in identifying breasts with malignant/benign lesions
matching the performance of vanilla GMIC models (0.930/0.80).
While augmenting GMIC with heatmaps improves its classification
performance, the improvement is marginal especially when com-
paring to the ensemble of models. We conjecture that, for a suffi-
ciently large dataset, image-level labels alone are powerful enough
to capture most of the signal, and additional localization infor-
mation from the pixel-level segmentation labels only slightly im-
proves the performance of GMIC. In fact, sometimes it might even
be biasing the model towards ignoring mammographically-occult
findings.

Ensembling GMIC with other models In order to estimate a lower
bound of what level of performance is possible to achieve on this
task, we build a large “super-ensemble” of models by aggregating
the predictions of: (a) an ensemble of top-5 GMIC-ResNet-18, (b)
an ensemble of 5 DMV-CNN model (with heatmaps) (Wu et al.,
2019b), and (c) an ensemble of 3 Faster R-CNN models (Févry et al.,
2019). Similar to the human-machine hybrid model, the predic-
tions of the ensemble model are defined as Vensemple = A1Yaomic +
A2¥Faster R-CNN + A3¥Dmv-cnn Where Aq + 25 + 43 =1. On the test
set, the ensemble model with equal weights associated with each
of its components (A = Ay = A3 = %) achieves an AUC of 0.936
in identifying breasts with malignant lesions. We note that the
improvement against top-5 GMIC-ResNet-18-ensemble (0.930) is
small. We also note that utilizing this ensemble might be imprac-
tical, due to its complexity and computational cost.

We also checked what would be the AUC of this ensemble if we
could tune the weighting coefficients of the ensemble on the test
set. In Fig. 12, we visualize its classification performance on the
reader study dataset and the full test set for different combinations
of Ay, A, and A3. For the optimal combinations of A{, A, and A3
that achieve the highest AUC on both datasets, the weight associ-
ated with GMIC (A1) is the largest, however, the two other weights
are also non-negligible, suggesting that the three types of models
are complementary, even though the improvement in terms of AUC
is small.

4. Related work
4.1. High-resolution 2D medical image classification

The increased resolution level of medical images has posed new
challenges for machine learning. Early works on applying deep
neural networks to medical image classification typically utilize a
CNN acting on the entire image to generate a prediction, resem-
bling approaches developed for object classification in natural im-
ages. For instance, Roth et al. (2015) adopted a 5-layer CNN to per-
form anatomical classification of CT slices. A similar approach was
adopted by Codella et al. (2015) to recognize melanoma on der-
moscopy images. More recently, Rajpurkar et al. (2017) fine-tuned
a 121-layer DenseNet (Huang et al., 2016) to classify thorax dis-
ease on chest X-ray images. However, this line of work suffers
from two drawbacks. Unlike many natural images in which ROIs
are sufficiently large, ROIs in medical images are typically small
and sparsely distributed over the image. Applying a CNN indis-
criminately over the entire image may include a considerable level
of noise outside the ROI. Moreover, input images are commonly
downsampled to fit in GPU memory. Aggressively downsampling
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Fig. 12. We visualize the AUC of identifying breasts with malignant findings achieved by the ensemble model with varying Ay, A,, and A3 on the reader study dataset (left)

and the test set (right). The optimal combination of A4,

largest among the three models for both datasets. On the reader study dataset, the optimal combination (A; = 0.56, A; = 0.2, A3 =

Xy, and A5 that achieves highest AUC is highlighted in white diamond. The weight associated with GMIC is the

0.24) achieves an AUC of 0.905. On the

test set, the optimal combination (A; = 0.65, A, = 0.16, A3 = 0.19) achieves an AUC of 0.939.

medical images could distort important details making the correct
diagnosis difficult (Geras et al., 2017).

In another line of research, input images are uniformly di-
vided into small patches. A classifier is trained and applied
to each patch, and patch-level predictions are aggregated to
form an image-level prediction. This family of methods has
been commonly applied to the segmentation and classification of
pathology images (Campanella et al., 2019; Sun et al., 2019a,b).
Coudray et al. (2018) used Inception V3 (Szegedy et al., 2016)
on tiles of whole-slide histopathology images to detect adeno-
carcinoma and squamous cell carcinoma. Sun et al. (2019) pro-
posed a multi-scale patch-level classifier using dilated convolu-
tions to localize gastric cancer regions. For breast cancer screen-
ing, Wu et al. (2019b) utilized patch-level predictions as additional
input channels to classify screening mammograms. A major limi-
tation of these methods is that many of them require lesion loca-
tions to train the patch-level classifiers, which might be expensive
to obtain. Moreover, global information such as the image structure
could be lost by dividing input images into small patches.

Instead of applying patch-level model on all tiles, several meth-
ods have been proposed to select patches that are related to the
classification task. Zhong et al. (2019) suggested selecting impor-
tant patches based on a coarse attention map generated by ap-
plying an U-Net (Ronneberger et al., 2015) on downsampled in-
put images. Guo et al. (2019) adopted a similar strategy to detect
strut points on intravascular optical coherence tomography images.
Guan et al. (2018) further developed this idea and proposed the at-
tention guided convolution neural network (AG-CNN) that explic-
itly merges information from both the global image and a refined
local patch to detect thorax disease on chest X-ray images. Our
work is perhaps most similar to Guan et al. (2018). While AG-CNN
only selects one patch for each class, our method is able to se-
lectively aggregate information from a variable number of patches,
which enables the model to learn from broader source of signal.

4.2. Breast cancer classification in mammography

Early works on breast cancer screening exam classification
were computer-aided detection (CAD) systems built with hand-
crafted features (Li et al, 2001; Wu et al., 2007; Masotti et al.,
2009; Oliver et al., 2010). Despite their popularity, clinical study
has suggested that CAD systems do not improve diagnostic ac-
curacy (Lehman et al, 2015). With the advances in deep learn-
ing in the last decade (LeCun et al, 2015), neural networks
have been extensively applied to assist radiologists in interpret-
ing screening mammograms (McKinney et al., 2020; Rampun
et al, 2019; Wu et al, 2018; Zhu et al, 2017). In particular,
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Geras et al. (2017) adopted a multi-view CNN that jointly uti-
lizes information from four standard views to classify the BI-
RADS category associated with mammograms. To accurately de-
tect small lesions on mammograms, segmentation labels have
been utilized to train patch-level classifiers (Lotter et al., 2017;
Kooi and Karssemeijer, 2017; Shen, 2017; Teare et al., 2017; Wu
et al., 2019b). Hagos et al. (2018) further designed a multi-input
CNN that learns symmetrical difference among patches to de-
tect breast masses. Another popular way of utilizing segmenta-
tion labels is to train anchor-based object detection models. For
instance, Ribli et al. (2018) and Févry et al. (2019) fine-tuned a
Faster RCNN (Ren et al., 2015) to localize lesions on mammo-
grams. Xiao et al. (2019) integrated object detector in a Siamese
structure with explicit loss terms to differentiate anchor propos-
als containing lesion from those with only normal tissues. We re-
fer the readers to Hamidinekoo et al. (2018); Gao et al. (2019);
Geras et al. (2019) for comprehensive reviews of prior works on
machine learning for mammography.

4.3. Weakly supervised object detection

Recent progress demonstrates that CNN classifiers, trained with
image-level labels, are able to perform semantic segmentation
at the pixel level (Oquab et al., 2015; Pinheiro and Collobert,
2015; Bilen and Vedaldi, 2016; Zhou et al., 2016; Diba et al.,,
2017; Zeng et al,, 2019). This is commonly achieved in two steps.
First, a backbone CNN converts the input image to a saliency
map which highlights the discriminative regions. A global pool-
ing operator then collapses the saliency map into scalar pre-
dictions, which makes the entire model trainable end-to-end.
Durand et al. (2017) devised a new pooling operator that per-
forms feature pooling on both spatial space and class space.
Wei et al. (2018) augmented the backbone network using convo-
lution filters with varying dilation rates to address scale variation
among object classes. Zhu et al. (2019) refined segmentation masks
using pseudo-supervision from noisy segment proposals.

Weakly supervised object detection (WSOD) has become in-
creasingly popular in the field of medical image analysis as it
eliminates the reliance of models on segmentation labels which
are often expensive to obtain. WSOD has been broadly utilized
in medical applications including disease classification (Yao et al.,
2018; Liu et al, 2019), cell segmentation (Li et al, 2019; Yoo
et al., 2019), and lesion detection (Xu et al., 2014; Luo et al.,
2019; Wu et al, 2019a). Schlemper et al. (2019) designed a
novel attention gate unit that can be integrated with standard
CNN classifiers to localize objects of interest in ultrasound im-
ages. Ouyang et al. (2019) proposed a spatial smoothing regular-
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ization to model the uncertainty associated with the segmenta-
tion mask. Kervadec et al. (2019) demonstrated that regularization
terms stemming from inequality constraints can significantly im-
prove the localization performance of a weakly supervised model.
While many works still rely on weak localization labels such as
point annotations (Yoo et al., 2019) and scribbles (Ji et al., 2019)
to produce saliency maps, our approach requires only image-level
labels that indicate the presence of an object of a given class. In
addition, to make an image-level prediction, most existing models
only utilize global information from the saliency maps which often
neglect fine-grained details. In contrast, our model also leverages
local information from ROI patches using a dedicated network. In
Section 3.6, we empirically demonstrate that the ability to focus on
fine visual detail is important for classification.

5. Discussion and conclusion

Medical images differ from typical natural images in many ways
such as much higher resolutions and smaller ROIs. Moreover, both
the global structure and local details play essential roles in the
classification of medical images. Because of these differences, deep
neural network architectures that work well for natural images
might not be applicable to many medical image classification tasks.
In this work, we present a novel framework, GMIC, to classify
high-resolution screening mammograms. GMIC first applies a low-
capacity, yet memory-efficient, global module on the whole image
to extract the global context and generate saliency maps that pro-
vide coarse localization of possible benign/malignant findings. It
then identifies the most informative regions in the image and uti-
lizes a local module with higher capacity to extract fine-grained
visual details from the chosen regions. Finally, it employs a fusion
module that aggregates information from both global context and
local details to produce the final prediction.

Our approach is well-suited for the unique properties of med-
ical images. GMIC is capable of processing input images in a
memory-efficient manner, thus being able to handle medical im-
ages in their original resolutions while still using a high-capacity
neural network to pick up on fine visual details. Moreover, despite
being trained with only image-level labels, GMIC is able to gener-
ate pixel-level saliency maps that provide additional interpretabil-
ity.

We applied GMIC to interpret screening mammograms: predict-
ing the presence or absence of malignant and benign lesions in a
breast. Evaluated on a large mammography dataset, the proposed
model outperforms the ResNet-34 while being 4.3x faster and us-
ing 76.1% fewer memory of GPU. Moreover, we also demonstrated
that our model can generate predictions that are as accurate as
radiologists, given equivalent input information. Given its generic
design, the proposed model could be widely applicable to various
high-resolution image classification tasks. In future research, we
would like to extend this framework to other imaging modalities
such as ultrasound, tomosynthesis, and MRI.

In addition, we note that training GMIC is slightly more com-
plex than training a standard ResNet model. As shown in Fig. 13,
the learning speeds for the global and local module are differ-
ent. As learning of the global module stabilizes, the saliency maps
tend to highlight a fixed set of regions in each example, which de-
creases the diversity of patches provided to the local module. This
causes the local module to overfit, causing its validation AUC to
decrease. We speculate that GMIC could benefit from a curricu-
lum that optimally coordinates the learning of both modules. A
learnable strategy such as the one proposed in Katharopoulos and
Fleuret (2019) could help to jointly train both global and local
module.
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