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Abstract—Despite the significant success at enabling robots 
with autonomous behaviors makes deep reinforcement learning 
a promising approach for robotic object search task, the deep 
reinforcement learning approach severely suffers from the nature 
sparse reward setting of the task. To tackle this challenge, we 
present a novel policy learning paradigm for the object search 
task, based on hierarchical and interpretable modeling with an 
intrinsic-extrinsic reward setting. More specifically, we explore the 
environment efficiently through a proxy low-level policy which is 
driven by the intrinsic rewarding sub-goals. We further learn our 
hierarchical policy from the efficient exploration experience where 
we optimize both of our high-level and low-level policies towards 
the extrinsic rewarding goal to perform the object search task well. 
Experiments conducted on the House3D environment validate and 
show that the robot, trained with our model, can perform the object 
search task in a more optimal and interpretable way. 

Index Terms—Reinforcement learning, semantic scene 
understanding, vision-based navigation. 

 
I. INTRODUCTION 

OBOTIC object search is a task where a robot (with an 

on-board camera) is expected to take reasonable steps to 

approach a user-specified object in an unknown indoor envi- 

ronment. It is an essential capability for assistant robots and 

could serve as an enabling step for other tasks, such as the 

Embodied Question Answering [1]. Classical map-based ap- 

proaches like simultaneous localization and mapping (SLAM) 

have been studied to address this problem for a long time, but 

it is also well-known that SLAM-based approaches rely heavily 

on sensor inputs and thus suffer from sensor noises [2], [3]. 

Recently, (deep) reinforcement learning (RL) has demonstrated 

its power at enabling robots with autonomous behaviors [4], 

such as navigating over an unknown environment [5], [6], ma- 

nipulating objects with robot’s end effectors [7]–[9], and motion 

planning [10], [11]. Under the RL setting, a robot learns the op- 

timal behavioral policy by maximizing the expected cumulative 
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rewards given the samples collected from its physical and/or 

virtual interactions with the environment. The rewards serve as 

the reinforcement signals for the robot to update its policy. 

A pressing challenge to train a robot to perform object search 

with RL is the sparse reward issue, due to the fact that the 

environment and/or the location of the target object are typically 

unknown. With well-designed reward functions, such as the ones 

in Atari games [12], the learned policies are shown to achieve 

extremely promising performance. However, it is a well-known 

challenge designing the reward function for the real-world ap- 

plications [13]. Typically, for applications such as object search 

or target-driven visual navigation, prior research constructs the 

reward function in terms of the distance between the robot’s 

current location and the object location under a strict assumption 

that the full information of the environment is known [14]–[16]. 

For an unknown environment, a straightforward way is to set a 

high reward when the robot reaches the final goal state while at 

all other intermediate states, the reward is either zero or a small 

negative value [6]. More recently, [17] presented a relatively 

denser reward function which is based on the bounding box 

of the target object from the robot’s detection system, but the 

reward is still not defined among the situations where the target 

object is not detected. In such a sparse reward setting where 

the reward is only defined for a small subset of the states, the 

robot struggles to learn the object search policy as it is unlikely 

to encounter and sample the very few rewarding states without 

a well-designed goal-oriented exploration strategy, especially 

dealing with complex environments. 

Hierarchical RL (HRL) paradigm is thus formulated consid- 

ering its efficient strategy for exploration [18] and superiority 

under the sparse reward setting [19]–[21]. HRL aims to learn 

multiple layers of policies. The higher layer breaks down the 

task into several easier sub-tasks and proposes corresponding 

sub-goals for the lower layer to achieve. Typically, the sub-goals 

are aliases to the states that mandates the lower layer to reach, 

as defined in [20], [22] for tasks with low dimensional state 

spaces. Unfortunately, these methods are not directly applicable 

for the object search task in which the state observations are 

directly taken from the high dimensional RGB images. It is 

utterly difficult and seemingly impractical for the higher layer 

to output homogeneous images as sub-goals. On the other hand, 

reconstructing a concise low dimensional sub-goal space from 

the observation space without compromising the optimality of 

the learned policy demands elaborate efforts [23], [24]. 
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Fig. 1. An example of our HIEM framework. When our high-level policy 
proposes a sub-goal, our proxy low-level policy is invoked with the probability 
of α to explore the environment by optimizing towards the sub-goal, and our 
low-level policy learned from the exploration experience is invoked with the 
probability of 1 α to collaborate with the high-level policy to better achieve 
the goal. 

 

In this paper, we put forward a novel two-layer hierarchical 

policy learning paradigm for the object search task. Our hierar- 

chical policy builds on a simple yet effective and interpretable 

low dimensional sub-goal space. To obtain an optimal hierar- 

chical policy given the small sub-goal space, we model the 

object search task with both goal dependent extrinsic rewards 

and sub-goal dependent intrinsic rewards. To be specific, our 

high-level policy plans over the sub-goal space in order to 

achieve the final goal by maximizing the extrinsic rewards. When 

a sub-goal is given following the high-level policy, a proxy 

low-level policy is then invoked for the robot to explore the 

environment. The proxy low-level policy maximizes the intrinsic 

rewards in order to achieve the proposed sub-goal. Meanwhile, 

our low-level policy learns from the exploration experience 

and optimizes towards the final goal. It is invoked eventually 

to collaborate with our high-level policy to form an optimal 

hierarchical object search sequence. Moreover, inspired by [25], 

the low-level policy learns to terminate at valuable states that 

further improves our hierarchical object search performance. 

We dub our framework as HIEM: Hierarchical policy learn- 

ing with Intrinsic-Extrinsic Modeling (see Fig. 1). We validate 

HIEM with extensive sets of experiments on the House3D [26] 

simulation environment which contains thousands of 3D houses 

with a diverse set of objects and natural layouts resembling the 

real-world. The observed results demonstrate the efficiency and 

efficacy of our system over other state-of-the-art ones. 

 
II. RELATED WORK 

Our work is closely related to two major research thrusts: 

hierarchical RL and target-driven visual navigation. 

Hierarchical reinforcement learning. Previous work has 

studied hierarchical reinforcement learning in many different 

ways. One is to come up with efficient methods to accelerate 

the learning process of the general hierarchical reinforcement 

learning scheme. As in [22], the authors introduce an off-policy 

correction method. [27] and [21] propose to use Hindsight 

Experience Replay to facilitate learning at multiple time scales. 

Though these methods’ performance are impressive, they typi- 

cally assume the sub-goal space for the higher level policy is the 

state space. However, in the object search task, the RL system 

takes the image as the state representation, these methods are 

not directly applicable since the higher layer can hardly propose 

an image as a sub-goal for the lower layer to achieve. 

Other methods designate a separate sub-goal space for hier- 

archical reinforcement learning. For example, [19] defines the 

sub-goal space in the space of entities and relations, such as 

the “reach” relation they use for their Atari game experiment. 

Sub-tasks and their relations are provided as inputs in [28] 

and [29]. Closer related to our work, [30] adopts {exit-room, 

find-room, find-object, answer} as the sub-goal space to learn a 

hierarchical policy for the Embodied Question Answering task. 

For the same task, [31] chooses {navigate, scan, detect, manipu- 

late, answer} as the possible sub-tasks, while the reinforcement 

learning methods are mainly applied for learning high-level 

policy, i.e. planning over the pre-trained or fixed sub-tasks. 

On the other side, attempts have been made to learn a set 

of low-level skills automatically to achieve the goal. These 

low-level skills are also referred to as temporal abstractions. [25] 

proposes the option-critic framework to autonomously discover 

the specified number of temporal abstractions. [32] learns the 

temporal abstractions through advantage-weighted information 

maximization. [23] addresses the sub-goal representation learn- 

ing problem. With the learned representation, their hierarchical 

policies are shown to approach the optimal performance within 

a bounded error. 

Motivated by aforementioned ones, we designate a simple yet 

effective sub-goal space that makes the hierarchy better inter- 

pretable. Meanwhile, to make the optimal policy expressible and 

learnable with the specified sub-goal space, we also leverage 

the benefits from the automatic temporal abstraction learning 

methods, which ultimately yields a hybrid system. 

Target-driven visual navigation. Deep reinforcement learn- 

ing has been studied extensively for the target-driven visual 

navigation tasks [33]. These tasks can be categorized in terms 

of the description of the navigation target. [6], [17] and [34] 

specify the navigation target by the image taken at the target 

location. The robotic object search task studied in [14], [35]–[37] 

and the room navigation task introduced in [26], [38] take the 

semantic label of the target object and room as the navigation 

target. The Embodied Question Answering [1], [30], [31] and the 

Vision-and-Language Navigation [16], [39] address the problem 

where the navigation target is provided with an unconstrained 

natural language. Here, we study the robotic object search 

task where the navigation target is an object specified by a 

semantic label. Unlike the previous work that plans over the 

atomic actions for navigation [14], [26], [35]–[37], we learn a 

hierarchical policy that performs the robotic object search task 
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in a more interpretable way. While [30], [31] and [38] also study 

hierarchical policies, their low-level policies focus only on the 

sub-tasks without keeping the final navigation target in mind, 

thus may yield less optimal policies towards the final navigation 

target. 

Notably, many of the previous works address the sparse 

reward issue by introducing additional supervision under the 

assumption that the robot can access the full information of 

the environments during the training time, such as defining the 

reward function with the distance between the robot’s current 

location and the target location (a.k.a. reward shaping) [14], 

[26], adopting shortest path as the supervised signal for pre- 

training [1], [16], and/or gradually increasing the distance be- 

tween robot’s starting location and the target location (a.k.a. 

curriculum learning) [30], [34]. Nevertheless, for applications 

in real-world environments, collecting all the information is 

unarguably expensive and sometimes impractical. We would 

like to stress upon the point that our model does not assume 

any environment information available even during the training 

stage, which makes our object search task significantly more 

challenging. 

 
III. OUR APPROACH 

First, we define the robotic object search task. Formally 

speaking, when a target object is specified and provided with 

a semantic label, the robot is asked to search and approach the 

object from its random starting position. The RGB image from 

the robot’s on-board camera is the only source of information for 

decision making. None of the environment information, such as 

the map of the environment or the location of the target object 

could be accessed. Once the area of the target object in the 

robot’s viewpoint (the image captured by its camera) is larger 

than a predefined threshold, the robot stops and we consider 

it as a success. In this work, we present a novel two-layer 

hierarchical policy for the robot to perform the object search 

task, motivated by how human beings typically conduct object 

search. In the following sections, we first describe the hierarchy 

of policies. Then we introduce two kinds of reward functions, 

i.e. extrinsic rewards and intrinsic rewards, and we make use of 

these two reward functions to formulate the solution. Finally, 

we describe the network architecture adopted for learning the 

two-layer hierarchical policy. 

 
A. Hierarchy of Policies 

Our hierarchical policy has two levels, a high-level pol- 

layer terminates at state st+Nt , and then returns the control back 

to the high-level layer, and the high-level layer proposes another 
sub-goal. This process repeats until 1) the goal g is achieved, 

i.e. the robot finds the target object successfully; 2) a predefined 

maximum number of atomic actions has been performed. 

For the object search task, we define the sub-goal space as {ap- 

proach obj obj is visible in the robot’s current view}. We argue 

three reasons for the sub-goal space definition, a) approaching 

an object that shows in the robot’s view is a more general and rel- 

atively trainable task shown by [35]. It also aligns well with the 

objective of the hierarchical reinforcement learning by breaking 

down the task into several easier sub-tasks; b) approaching a 

related object may increase the probability of seeing the target 

object. As soon as the target object is captured in the robot’s 

current view, the task becomes an object approaching task; c) 

as also suggested by [19], specifying sub-goals over entities and 

relations can provide an efficient space for exploration in a com- 

plex environment. Moreover, in case there is no object visible 

in the robot’s current view, we supplement a back-up “random” 

sub-goal invoking a random low-level policy. The atomic action 

space for the low-level layer is defined for navigation purpose, 

namely {move forward / backward / left / right, turn left / right} 

in which the move action updates the robot’s location only and 

the turn action drives the robot’s rotation only. 

 
B. Extrinsic Rewards and Intrinsic Rewards 

We define two kinds of reward functions. The extrinsic re- 

wards re are defined for our object search task, thus are goal 

dependent. Further, we also introduce the intrinsic rewards ri 

for the low-level sub-tasks. The intrinsic rewards are hereby 

sub-goal dependent. We specify the two reward functions re- 

spectively as follows. 

Extrinsic rewards re. Without loss of generality, to encour- 

age the robot to finish the object search task, we provide a 

positive extrinsic reward (in practice, 1) when the robot reaches 

the final goal state. At all other intermediate states, the ex- 

trinsic rewards are set to 0. Formally, re(st−1, at−1, st, g )= 1  
if and only if st is a goal state of the goal g, otherwise 

re(st−1, at−1, st, g)= 0. 

Intrinsic rewards ri. To facilitate the robot perform the 

sub-task, i.e. approaching the object specified in the proposed 

sub-goal sg which shows in the robot’s current view, we adopt 

the similar binary rewards. To be specific, the intrinsic reward 

ri(st−1, at−1, st, sg )=1 if and only if st is a goal state of the 

sub-goal sg, otherwise ri(st−1, at−1, st, sg)= 0. 

icy πh and a low-level policy πl. At time step t, the robot 

takes the image captured by its camera as the current state st. 

Given a target object or goal g, the high-level layer proposes a 

sub-goal sgt  πh(sg st, g) and the low-level layer takes over 

the control. The low-level layer then draws an atomic action 

at πl(a st, g, sgt) to perform. The robot will receive a new 

image/state st+1. The low-level layer repeats Nt times till 1) 

the low-level layer terminates itself following the termination 

C. Model Formulation 

We formulate the object search task in terms of the two 

rewards introduced in Sec. III-B. When the robot starts from 

an initial state s0, it proposes a sub-goal sg0 aiming to achieve 

the final goal g (locating and approaching the target object). To 

achieve the final goal, we can optimize the discounted cumula- 

tive extrinsic rewards, expected over all trajectories starting at 

signal term(st+Nt , g, sgt); 2) the low-level layer achieves the state s0 and sub-goal sg0, which is E[
 ∞

t=0 
t e 

t+1 |s0, g, sg0]. 
sub-goal sgt. 3) the low-level layer has performed a predefined 

maximum number of atomic actions. Either way, the low-level 

If and only if the robot takes minimal steps to the goal state, the 

discounted cumulative extrinsic rewards are thus maximized. 
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The discounted cumulative extrinsic rewards is also known 

as the state action value Qe [40] for our high-level layer, i.e. 
We hereby define a proxy low-level policy πp(a s, sg) aiming 

to achieve the proposed sub-goal sg. Similarly, we learn the 

E[
   ∞

 

h 

γtre   | e . Fol- proxy low-level policy by optimizing the discounted cumulative 
lowing the option-critic framework [25], we unroll the 

Qe (s, g, sg) as, 
e 

intrinsic rewards Qi(s, sg, a). We adopt the DQN method [12] 

to learn it by updating its parameter θi with Equation 6, where 

Ri = ri(s, a, s, sg)+ γ maxa Qi(s, sg, a) is the 1-step intrin- Qh(s, g, sg) 1 l 
p 

sic return. As a result, the proxy low-level policy πl (a s, sg)=  ∞ 1(a = argmax Qi(s, sg, a)). 

=
   

π (a|s, g, sg)E  
  

γtre |s = s, g = g, sg = sg, a = a 
a   l

 

  
  

 

e 
l 

a 

(1) 

where the state action value Qe(s, g, sg, a) for our low-level 

layer is the discounted cumulative extrinsic rewards after taking 
action a under the state s, goal g and sub-goal sg. Given the 

transition probability P (s |s, a) which denotes the probability 

For our low-level layer to balance between exploitation by 

achieving the goal g with the policy πl(a s, g, sg) and the 

exploration by achieving the sub-goal sg with the proxy policy 

πp(a s, sg), we introduce a hyper-parameter α [0, 1] as the 

probability that the low-level layer adopts the proxy policy 

πp(a s, sg) to explore the environment and collect the expe- 

rience samples. The experience samples are used to batch train of being state s after taking action a at state s, Qe(s, g, sg, a) e e i 

can be further formulated as, 
l θh, θl , θt and θl with Equation (3), (4), (5) and (6) respectively. 

In practice, α decays from 1 to 0 across the training episodes 

Qe(s, g, sg, a)= P (s |s, a)[re(s, a, s, g)+ γU (g, sg, s )], 
s  

U (g, sg, s )=  (1 − term(s, g, sg))Qe (s, g, sg) 

+ term(s, g, sg)V e(s, g), 

V e(s, g )=
  

πh(sg |s, g)Qe (s, g, sg ). (2) 

to enable our low-level layer to act optimally towards the goal 

with the policy πl(a|s, g, sg) eventually. 

D. HIEM Network Architecture 

Since the image captured by the robot’s on-board camera 

serves as the robot’s current state, we adopt deep neural networks 

  
approximate Qe (s, g, sg), Qe(s, g, sg, a), term(s, g, sg) and 

We parameterize Qe (s, g, sg), Qe(s, g, sg, a) and i 
h l

 
h l term(s, g, sg) with θe , θe θ Ql (s, sg, a). 

h l and t respectively. Then the high- 

level policy πh(sg s, g)= 1(sg = argmaxsg Qe (s, g, sg)), 
and πl(a s, g, sg)= 1(a = argmaxaQe(s, g, sg, a)) is our 
low-level policy. We adopt the DQN [12] based method to 
learn Qe (s, g, sg) and Qe(s, g, sg, a) in which we update 

Fig. 2 illustrates our network architecture. For the object 

search task, semantic segmentation and depth map are necessary 

for the robot to detect the target object and avoid collision during 

the navigation. Therefore, we first adopt the encoder-decoder 
h l network [35] to predict the semantic segmentation and the depth 

both of the   values   towards   the   1-step extrinsic   return 

Re = re(s, a, s, g)+ γU (g, sg, s ), and consequently θe 
and θe can be updated by Equation 3 and 4. In addition, θt can 

be updated by Equation 5 as demonstrated by [25]. 

θ ← θ − ∇θe [R − Qθe (s, g, sg)] . 

map from the robot’s observation. We take the predicted results 

as the inputs to our policy networks to avoid the need of visual 

domain adaption [14]. The predicted results of the 4 history 

observations are fed into our high-level network θe in addition 

to a one-hot vector representing the target object. The channel 
h h h 1 h 

 
 

e e e 

(3) 
2 

size of the segmentation input is first reduced to 1 through a 

convolutional layer with 1 filter of kernel size 1 × 1, and then 

θl ← θl − ∇θe [R1 − Qθe (s, g, sg, a)] . 
(4) 

the three inputs are fed into three different fully connected layers 

respectively and their outputs are further concatenated into a 

θ ← θ −∇  term (s, g, sg)(Qe (s, g, sg) − V e(s, g)). joint vector before attaching another fully connected layer to 
t t θt θt h h 

(5) 
generate an embedding fusion. Our high-level network θe feeds 

the embedding fusion into one additional fully connected layer 

Since the robot may start at a position far away from the 

target object, it is unlikely for the robot to encounter the sparse 

extrinsic rewarding states through the e-greedy [12] exploration 

policy and collect the experience samples to effectively train θe , 
θe and θt. On the contrary, encountering the intrinsic rewarding 

to approximate Qe (s, g, sg). To save the number of parameters, 

our termination network θt shares most parameters with the 

high-level network θe except the last fully connected layer where 

it adopts a new one to approximate term(s, g, sg). 
For the low-level network θe and θi, we take the sub-goal 

l l l 

states is much more possibly as an object shows in the robot’s 

current view is usually nearby. Therefore, training the robot to 

achieve a sub-goal is more accessible. Then, by iteratively asking 
the robot to achieve suitable sub-goals, i.e. to approach related 

specified channel of the predicted semantic segmentation and 

the predicted depth map as the inputs. The low-level network θe 

takes the one-hot vector of the target object as an additional input. 
Similar to our high-level network, each input of θe and θi is fed 

l l 

objects, the robot is more likely to observe the target object and 
collect the valuable experience samples to train θe , θe and θt. 

into a fully connected layer before being concatenated together 
to generate an embedding fusion with a new fully connected 

h l 

and θi to handle the high dimensional inputs and t as θe , θe, θ 

l l 
t=0 a 

sg  
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Fig. 2.    Network architecture of our hierarchical reinforcement learning model. 

 

 

layer. The embedding fusion is further fed into an additional fully 

connected layer to approximate Qe(s, g, sg, a) and Qi(s, sg, a). 
discretize the environment into a certain number of reachable 

locations, as shown in Fig. 3. 
l l 

We follow Equation 3, 4, 5 and 6 to learn Qe (s, g, sg), 
Qe(s, g, sg, a), term(s, g, sg) and Qi(s, sg, a) respectively. 

l 
 
 
 

A. Dataset 

l 

 

IV. EXPERIMENTS 

B. Experimental Setting 

We compare the following methods and variants: 

ORACLE and RANDOM. At each time step, the robot ignores 

its observation and performs the optimal action and a random 

We validate our framework on the simulation platform 

House3D [26]. House3D consists of rich indoor environments 

with diverse layouts for a virtual robot to navigate. In each 

indoor environment, a variety of objects are scattered at many 

locations, such as television, sofa, desk. While navigating, the 

robot has a first-person view RGB image as its observation. 

The simulator also provides the robot with the ground truth 

semantic segmentation and depth map corresponding to the RGB 

image. The RGB images, as well as the semantic segmentation 

and depth maps can be used as the training data to learn the 

encoder-decoder network [35] (shown in Fig. 2 upper left) for 

semantic segmentation and depth prediction as we mentioned 

in Sec. III-D. We refer interested readers to [35] for more 

details. In addition, the trained model, specifically the semantic 

segmentation prediction, can be used as the robot’s detection 

system. 

To validate our proposed method in learning hierarchical 

policy for object search, we conduct the experiments in an indoor 

environment where the objects’ placements are in accordance 

with the real-world scenario. For example, the television is 

placed close to the sofa, and is likely occluded by the sofa at 
many viewpoints. In such a way, to search the target object 

action respectively. 

A3C [41]. The vanilla A3C implementation that has been 

wildly adopted for the navigation task in the previous work [6], 

[17], [35]–[37]. It learns the action policy π(a s, g) and the state 

value V e(s, g) with a similar network architecture as our high- 

level network θe . 

DQN [12]. The vanilla DQN implementation that adopts a 

similar network architecture as our high-level network θe to 

predict the state action value Qe(s, g, a). 

OC [25]. The Option-Critic implementation that learns a 

hierarchical policy autonomously by maximizing the discounted 

cumulative extrinsic rewards where only the number of the op- 

tions needs to be manually set. We set it as 4 in our experiments. 

H-DQN [19] with our proposed sub-goal space. It is equiva- 

lent to our method when we set term(s, g, sg )=0 and α =1  
to disable both the termination network θt and the low-level 

network θe. 

HIEM. Our method follows Sec III. To further identify the 

role of each component of our method, we conduct ablation 

studies by disabling one component at a time. Specifically, 

HIEM-proxy sets α =0  to disable the proxy low-level network 

θi, HIEM-low sets α =1 to disable the low-level network θe, l l 

television, the robot could approach sofa first to increase the 

likelihood of seeing the television. 

We consider discrete actions for the robot to navigate in this 

environment. Specifically, the robot moves forward / backward 

/ left / right 0.2 meters, or rotates 90 degrees every time. We also 

and HIEM-term sets term(s, g, sg )=0 to disable the termi- 

nation network θt. 

For fair comparisons, all the methods share similar network 

architectures and hyperparameters, and they all take the pre- 

dicted semantic segmentation and the depth map as the inputs. 
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∈ 

N i=1 max(li,pi) 

  

 

 
 

Fig. 3.    Trajectories generated by DQN [12], H-DQN [19] and our method HIEM-low and HIEM for searching the target object music player (red dots) from 
the same starting position (green triangle) which is 39 steps away. Different colors represent different sub-goals in which the colored lines and dots denote the 
corresponding sub-goal-oriented trajectories and sub-goal states respectively. Our method HIEM generates a more concise and interpretable trajectory. We refer 
readers to the supplemental video demo for animated demonstrations. 

 

To be specific, for DQN networks in the method DQN, H-DQN 

and HIEM, we adopt the Double DQN [42] technique where we 

train the main network every 100 time steps with a batch of size 

64 and we update the target network every 100 000 time steps. 

The exploration rate decreases from 1 to 0.1 over 10 000 time 

steps. For the A3C network, we set the weight of the entropy 

C. Experimental Results and Discussion 

Since we formulate the object search problem as maximizing 

the discounted cumulative extrinsic rewards, we take the Aver- 

age discounted cumulative extrinsic Rewards (AR) as one of the 

evaluation metrics, calculated by: 
regularization term as 0.01 and we update the network for N   ∞ N 

 every 10 time steps unrolled. We adopt RMSProp optimizer of 1      
γtre

 =
 1   

1(success)γ#steps ∗ 1, (7) 

learning rate 1 × 10−4 to train each method to search 6 different 
N 

i=1 t=0 

t+1 N 
i=1 

target objects (78 in total) from random starting positions in 

the environment. During testing time, we randomly sample 100 

starting positions and the corresponding target objects. We set 

the maximum number of atomic actions that all methods can take 

as 500, and for the method H-DQN and HIEM, the maximum 

number of atomic actions that the low-level layer can take at 

each time is 25. The robot stops either when it reaches the goal 

state (success case) or when it runs out of 500 atomic action steps 

(failure case). We implement all the methods using Tensorflow 

toolbox and conduct all the experiments with Nvidia V100 GPUs 

and 16 Intel Xeon E5-2680 v4 CPU cores. In general, each 

training takes around 2 days. 

where γ  (0, 1] is the discount factor. From the perspective of 

the evaluation metric, it can also be seen as a trade-off between 

the success rate metric and the average steps metric. With the 

higher value of γ, the average steps metric weighs less, and vice 

versa. In our experiments, we set γ = 0.99. 

In addition, we also report the following widely used evalua- 

tion metrics. Success Rate (SR). Average Steps over all success- 

ful cases compared to the Minimal Steps over these cases (AS 

/ MS). Success weighted by inverse Path Length (SPL) [43], 

which is calculated as  1   N  Si    li . Here, Si is the 

binary indicator of success in episode i, li and pi are the lengths 

of the shortest path and the path actually taken by the robot. We 
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TABLE I 

THE PERFORMANCE OF ALL METHODS FOR THE OBJECT SEARCH TASK. (SR: 
SUCCESS RATE; AS / MS: AVERAGE STEPS / MINIMAL STEPS OVER ALL 

SUCCESSFUL CASES; SPL: SUCCESS WEIGHTED BY INVERSE PATH LENGTH; 
AR: AVERAGE DISCOUNTED CUMULATIVE EXTRINSIC REWARDS.) 

 
 

 

 

 

 

 

 

 
 

 
adopt the number of the action steps as the path length. As a 

result, SPL also trades-off success rate against average steps. 

Table I shows comparisons of all the methods in perform- 

ing the object search task. It demonstrates the superiority of 

our method over all metrics, and also highlights the following 

observations. 

The intrinsic rewards help to explore. Comparing to H- 

DQN and our methods (HIEM, HIEM-low, HIEM-term) which 

model the object search task with both extrinsic and intrinsic 

rewards, all the other methods where no intrinsic rewards is 

involved achieve unsatisfactory success rate. It indicates that 

under the sparse extrinsic rewards setting, the robot struggles 

to reach the goal state even with the hierarchical policy OC or 

HIEM-proxy, while our intrinsic rewards effectively encourage 

the robot to explore the environment and encounter the goal state. 

In fact, the intrinsic rewards guide our proxy low-level network 

to approach a visible object, and only after the proxy low-level 

network achieves good performance can it collaborate with our 

high-level network to help explore. 

Our intrinsic-extrinsic modeling contributes to a more 

optimal policy. Though our intrinsic rewards help to explore 

the environment and improve the success rate, they are limited 

in improving the policy in terms of the optimality, as suggested 

by the higher AS and lower SPL and AR that H-DQN and HIEM- 

low achieve in comparison with HIEM. Different from H-DQN 

or HIEM-low that models the low-level layer with the intrinsic 

rewards solely, our HIEM adopts the novel intrinsic-extrinsic 

modeling and yields a more optimal policy, demonstrating the 

role of our intrinsic-extrinsic modeling in learning an optimal 

policy. 

Early termination to the non-optimal low-level policy is 

necessary. A non-optimal low-level policy would drive the robot 

to an undesirable state that in consequence hurts the object 

search performance. The issue is shown to be mitigated by 

terminating the low-level policy at a valuable state in HIEM-low 

and HIEM when comparing them with H-DQN and HIEM-term 

respectively. Furthermore, we also observe that the termination 

TABLE II 

AVERAGE SPL ACHIEVED BY ALL METHODS ON 4 RANDOM ENVIRONMENTS 

 

 

 

 
 

function helps more to less optimal low-level policy as more 

improvements are achieved from H-DQN to HIEM-low. 

We also report in Table II the average SPL achieved by all 

methods on 4 random environments. It further validates the 

superiority of our HIEM on other environments as well. We 

depict sample qualitative results in Fig. 3, which shows that 

our method yields a more concise and interpretable trajectory 

compare to other methods for the object search task. 

 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we present a novel two-layer hierarchical 

policy learning framework for the robotic object search task. 

The hierarchical policy builds on a simple yet effective and 

interpretable low dimensional sub-goal space, and is learned 

with both extrinsic and intrinsic rewards to perform the object 

search task in a more optimal and interpretable way. When our 

high-level layer plans over the specified sub-goal space, the 

low-level layer plans over the atomic actions to collaborate with 

the high-level layer to better achieve the goal. This is efficiently 

learned with the experience samples collected by our proxy 

low-level policy, a policy optimizes towards the proposed sub- 

goals. Moreover, our low-level layer terminates at valuable states 

which further approximates the optimal policy. The empirical 

and extensive experiments together with the ablation studies on 

House3D platform demonstrate the efficacy and efficiency of our 

presented framework. The presented HIEM framework further 

paves several possible avenues for future study. A promising one 

is by incorporating the Goals Relational Graph (GRG) [44] to 

integrate top-down human knowledge together with the human 

specified sub-goal space to facilitate the object search with 

improved efficiency. 

We want to mention that the current work assumes the robot 

can access the environment for training before being deployed 

in the same one for object search. In other words, we do not aim 

for the generalization ability towards novel environments, but 

our success sheds light on how to generalize well. Specifically, 

an optimal object search policy in an environment is determined 

by the map of the environment. In order to generalize a learned 

object search policy to a new environment where the map is 

unknown and no extra exploration or training process is allowed, 

the robot must be able to infer the map from its observation 

and/or from its external memory or knowledge. While the large 

high-resolution map is extremely challenging to infer, inferring 

a small part of it and a low-resolution object arrangement are 

still tractable, which in consequence makes both of our low-level 

policy and high-level policy more likely to generalize well. We 

deem it as our future work. 
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