
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021 4425

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

R

Efficient Robotic Object Search Via HIEM:

Hierarchical Policy Learning With

Intrinsic-Extrinsic Modeling
Xin Ye and Yezhou Yang

Abstract—Despite the significant success at enabling robots
with autonomous behaviors makes deep reinforcement learning
a promising approach for robotic object search task, the deep
reinforcement learning approach severely suffers from the nature
sparse reward setting of the task. To tackle this challenge, we
present a novel policy learning paradigm for the object search
task, based on hierarchical and interpretable modeling with an
intrinsic-extrinsic reward setting. More specifically, we explore the
environment efficiently through a proxy low-level policy which is
driven by the intrinsic rewarding sub-goals. We further learn our
hierarchical policy from the efficient exploration experience where
we optimize both of our high-level and low-level policies towards
the extrinsic rewarding goal to perform the object search task well.
Experiments conducted on the House3D environment validate and
show that the robot, trained with our model, can perform the object
search task in a more optimal and interpretable way.

Index Terms—Reinforcement learning, semantic scene
understanding, vision-based navigation.

I. INTRODUCTION

OBOTIC object search is a task where a robot (with an

on-board camera) is expected to take reasonable steps to

approach a user-specified object in an unknown indoor envi-

ronment. It is an essential capability for assistant robots and

could serve as an enabling step for other tasks, such as the

Embodied Question Answering [1]. Classical map-based ap-

proaches like simultaneous localization and mapping (SLAM)

have been studied to address this problem for a long time, but

it is also well-known that SLAM-based approaches rely heavily

on sensor inputs and thus suffer from sensor noises [2], [3].

Recently, (deep) reinforcement learning (RL) has demonstrated

its power at enabling robots with autonomous behaviors [4],

such as navigating over an unknown environment [5], [6], ma-

nipulating objects with robot’s end effectors [7]–[9], and motion

planning [10], [11]. Under the RL setting, a robot learns the op-

timal behavioral policy by maximizing the expected cumulative

Manuscript received October 15, 2020; accepted February 16, 2021. Date

of publication March 25, 2021; date of current version April 9, 2021. This
letter was recommended for publication by Associate Editor E. Ricci and
Editor E. Marchand upon evaluation of the reviewers’ comments. This work
was supported by the NSF Robust Intelligence Program Project #1750082, and
Samsung Research. (Corresponding author: Xin Ye.)

The authors are with the Active Perception Group, the School of Comput-
ing, Informatics, and Decision Systems Engineering, Arizona State University,
Tempe, AZ USA (e-mail: xinye1@asu.edu; yz.yang@asu.edu).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3068906, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3068906

rewards given the samples collected from its physical and/or

virtual interactions with the environment. The rewards serve as

the reinforcement signals for the robot to update its policy.

A pressing challenge to train a robot to perform object search

with RL is the sparse reward issue, due to the fact that the

environment and/or the location of the target object are typically

unknown. With well-designed reward functions, such as the ones

in Atari games [12], the learned policies are shown to achieve

extremely promising performance. However, it is a well-known

challenge designing the reward function for the real-world ap-

plications [13]. Typically, for applications such as object search

or target-driven visual navigation, prior research constructs the

reward function in terms of the distance between the robot’s

current location and the object location under a strict assumption

that the full information of the environment is known [14]–[16].

For an unknown environment, a straightforward way is to set a

high reward when the robot reaches the final goal state while at

all other intermediate states, the reward is either zero or a small

negative value [6]. More recently, [17] presented a relatively

denser reward function which is based on the bounding box

of the target object from the robot’s detection system, but the

reward is still not defined among the situations where the target

object is not detected. In such a sparse reward setting where

the reward is only defined for a small subset of the states, the

robot struggles to learn the object search policy as it is unlikely

to encounter and sample the very few rewarding states without

a well-designed goal-oriented exploration strategy, especially

dealing with complex environments.

Hierarchical RL (HRL) paradigm is thus formulated consid-

ering its efficient strategy for exploration [18] and superiority

under the sparse reward setting [19]–[21]. HRL aims to learn

multiple layers of policies. The higher layer breaks down the

task into several easier sub-tasks and proposes corresponding

sub-goals for the lower layer to achieve. Typically, the sub-goals

are aliases to the states that mandates the lower layer to reach,

as defined in [20], [22] for tasks with low dimensional state

spaces. Unfortunately, these methods are not directly applicable

for the object search task in which the state observations are

directly taken from the high dimensional RGB images. It is

utterly difficult and seemingly impractical for the higher layer

to output homogeneous images as sub-goals. On the other hand,

reconstructing a concise low dimensional sub-goal space from

the observation space without compromising the optimality of

the learned policy demands elaborate efforts [23], [24].

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

mailto:xinye1@asu.edu
mailto:yz.yang@asu.edu
https://doi.org/10.1109/LRA.2021.3068906
https://doi.org/10.1109/LRA.2021.3068906
http://www.ieee.org/publications/rights/index.html

4426 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

−

Fig. 1. An example of our HIEM framework. When our high-level policy
proposes a sub-goal, our proxy low-level policy is invoked with the probability
of α to explore the environment by optimizing towards the sub-goal, and our
low-level policy learned from the exploration experience is invoked with the
probability of 1 α to collaborate with the high-level policy to better achieve
the goal.

In this paper, we put forward a novel two-layer hierarchical

policy learning paradigm for the object search task. Our hierar-

chical policy builds on a simple yet effective and interpretable

low dimensional sub-goal space. To obtain an optimal hierar-

chical policy given the small sub-goal space, we model the

object search task with both goal dependent extrinsic rewards

and sub-goal dependent intrinsic rewards. To be specific, our

high-level policy plans over the sub-goal space in order to

achieve the final goal by maximizing the extrinsic rewards. When

a sub-goal is given following the high-level policy, a proxy

low-level policy is then invoked for the robot to explore the

environment. The proxy low-level policy maximizes the intrinsic

rewards in order to achieve the proposed sub-goal. Meanwhile,

our low-level policy learns from the exploration experience

and optimizes towards the final goal. It is invoked eventually

to collaborate with our high-level policy to form an optimal

hierarchical object search sequence. Moreover, inspired by [25],

the low-level policy learns to terminate at valuable states that

further improves our hierarchical object search performance.

We dub our framework as HIEM: Hierarchical policy learn-

ing with Intrinsic-Extrinsic Modeling (see Fig. 1). We validate

HIEM with extensive sets of experiments on the House3D [26]

simulation environment which contains thousands of 3D houses

with a diverse set of objects and natural layouts resembling the

real-world. The observed results demonstrate the efficiency and

efficacy of our system over other state-of-the-art ones.

II. RELATED WORK

Our work is closely related to two major research thrusts:

hierarchical RL and target-driven visual navigation.

Hierarchical reinforcement learning. Previous work has

studied hierarchical reinforcement learning in many different

ways. One is to come up with efficient methods to accelerate

the learning process of the general hierarchical reinforcement

learning scheme. As in [22], the authors introduce an off-policy

correction method. [27] and [21] propose to use Hindsight

Experience Replay to facilitate learning at multiple time scales.

Though these methods’ performance are impressive, they typi-

cally assume the sub-goal space for the higher level policy is the

state space. However, in the object search task, the RL system

takes the image as the state representation, these methods are

not directly applicable since the higher layer can hardly propose

an image as a sub-goal for the lower layer to achieve.

Other methods designate a separate sub-goal space for hier-

archical reinforcement learning. For example, [19] defines the

sub-goal space in the space of entities and relations, such as

the “reach” relation they use for their Atari game experiment.

Sub-tasks and their relations are provided as inputs in [28]

and [29]. Closer related to our work, [30] adopts {exit-room,

find-room, find-object, answer} as the sub-goal space to learn a

hierarchical policy for the Embodied Question Answering task.

For the same task, [31] chooses {navigate, scan, detect, manipu-

late, answer} as the possible sub-tasks, while the reinforcement

learning methods are mainly applied for learning high-level

policy, i.e. planning over the pre-trained or fixed sub-tasks.

On the other side, attempts have been made to learn a set

of low-level skills automatically to achieve the goal. These

low-level skills are also referred to as temporal abstractions. [25]

proposes the option-critic framework to autonomously discover

the specified number of temporal abstractions. [32] learns the

temporal abstractions through advantage-weighted information

maximization. [23] addresses the sub-goal representation learn-

ing problem. With the learned representation, their hierarchical

policies are shown to approach the optimal performance within

a bounded error.

Motivated by aforementioned ones, we designate a simple yet

effective sub-goal space that makes the hierarchy better inter-

pretable. Meanwhile, to make the optimal policy expressible and

learnable with the specified sub-goal space, we also leverage

the benefits from the automatic temporal abstraction learning

methods, which ultimately yields a hybrid system.

Target-driven visual navigation. Deep reinforcement learn-

ing has been studied extensively for the target-driven visual

navigation tasks [33]. These tasks can be categorized in terms

of the description of the navigation target. [6], [17] and [34]

specify the navigation target by the image taken at the target

location. The robotic object search task studied in [14], [35]–[37]

and the room navigation task introduced in [26], [38] take the

semantic label of the target object and room as the navigation

target. The Embodied Question Answering [1], [30], [31] and the

Vision-and-Language Navigation [16], [39] address the problem

where the navigation target is provided with an unconstrained

natural language. Here, we study the robotic object search

task where the navigation target is an object specified by a

semantic label. Unlike the previous work that plans over the

atomic actions for navigation [14], [26], [35]–[37], we learn a

hierarchical policy that performs the robotic object search task

YE AND YANG: EFFICIENT ROBOTIC OBJECT SEARCH VIA HIEM: HIERARCHICAL POLICY LEARNING WITH INTRINSIC-EXTRINSIC MODELING 4427

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

|

t

t

t

t

∼ |

∼ |

γ r

in a more interpretable way. While [30], [31] and [38] also study

hierarchical policies, their low-level policies focus only on the

sub-tasks without keeping the final navigation target in mind,

thus may yield less optimal policies towards the final navigation

target.

Notably, many of the previous works address the sparse

reward issue by introducing additional supervision under the

assumption that the robot can access the full information of

the environments during the training time, such as defining the

reward function with the distance between the robot’s current

location and the target location (a.k.a. reward shaping) [14],

[26], adopting shortest path as the supervised signal for pre-

training [1], [16], and/or gradually increasing the distance be-

tween robot’s starting location and the target location (a.k.a.

curriculum learning) [30], [34]. Nevertheless, for applications

in real-world environments, collecting all the information is

unarguably expensive and sometimes impractical. We would

like to stress upon the point that our model does not assume

any environment information available even during the training

stage, which makes our object search task significantly more

challenging.

III. OUR APPROACH

First, we define the robotic object search task. Formally

speaking, when a target object is specified and provided with

a semantic label, the robot is asked to search and approach the

object from its random starting position. The RGB image from

the robot’s on-board camera is the only source of information for

decision making. None of the environment information, such as

the map of the environment or the location of the target object

could be accessed. Once the area of the target object in the

robot’s viewpoint (the image captured by its camera) is larger

than a predefined threshold, the robot stops and we consider

it as a success. In this work, we present a novel two-layer

hierarchical policy for the robot to perform the object search

task, motivated by how human beings typically conduct object

search. In the following sections, we first describe the hierarchy

of policies. Then we introduce two kinds of reward functions,

i.e. extrinsic rewards and intrinsic rewards, and we make use of

these two reward functions to formulate the solution. Finally,

we describe the network architecture adopted for learning the

two-layer hierarchical policy.

A. Hierarchy of Policies

Our hierarchical policy has two levels, a high-level pol-

layer terminates at state st+Nt , and then returns the control back

to the high-level layer, and the high-level layer proposes another
sub-goal. This process repeats until 1) the goal g is achieved,

i.e. the robot finds the target object successfully; 2) a predefined

maximum number of atomic actions has been performed.

For the object search task, we define the sub-goal space as {ap-

proach obj obj is visible in the robot’s current view}. We argue

three reasons for the sub-goal space definition, a) approaching

an object that shows in the robot’s view is a more general and rel-

atively trainable task shown by [35]. It also aligns well with the

objective of the hierarchical reinforcement learning by breaking

down the task into several easier sub-tasks; b) approaching a

related object may increase the probability of seeing the target

object. As soon as the target object is captured in the robot’s

current view, the task becomes an object approaching task; c)

as also suggested by [19], specifying sub-goals over entities and

relations can provide an efficient space for exploration in a com-

plex environment. Moreover, in case there is no object visible

in the robot’s current view, we supplement a back-up “random”

sub-goal invoking a random low-level policy. The atomic action

space for the low-level layer is defined for navigation purpose,

namely {move forward / backward / left / right, turn left / right}

in which the move action updates the robot’s location only and

the turn action drives the robot’s rotation only.

B. Extrinsic Rewards and Intrinsic Rewards

We define two kinds of reward functions. The extrinsic re-

wards re are defined for our object search task, thus are goal

dependent. Further, we also introduce the intrinsic rewards ri

for the low-level sub-tasks. The intrinsic rewards are hereby

sub-goal dependent. We specify the two reward functions re-

spectively as follows.

Extrinsic rewards re. Without loss of generality, to encour-

age the robot to finish the object search task, we provide a

positive extrinsic reward (in practice, 1) when the robot reaches

the final goal state. At all other intermediate states, the ex-

trinsic rewards are set to 0. Formally, re(st−1, at−1, st, g)= 1
if and only if st is a goal state of the goal g, otherwise

re(st−1, at−1, st, g)= 0.

Intrinsic rewards ri. To facilitate the robot perform the

sub-task, i.e. approaching the object specified in the proposed

sub-goal sg which shows in the robot’s current view, we adopt

the similar binary rewards. To be specific, the intrinsic reward

ri(st−1, at−1, st, sg)=1 if and only if st is a goal state of the

sub-goal sg, otherwise ri(st−1, at−1, st, sg)= 0.

icy πh and a low-level policy πl. At time step t, the robot

takes the image captured by its camera as the current state st.

Given a target object or goal g, the high-level layer proposes a

sub-goal sgt πh(sg st, g) and the low-level layer takes over

the control. The low-level layer then draws an atomic action

at πl(a st, g, sgt) to perform. The robot will receive a new

image/state st+1. The low-level layer repeats Nt times till 1)

the low-level layer terminates itself following the termination

C. Model Formulation

We formulate the object search task in terms of the two

rewards introduced in Sec. III-B. When the robot starts from

an initial state s0, it proposes a sub-goal sg0 aiming to achieve

the final goal g (locating and approaching the target object). To

achieve the final goal, we can optimize the discounted cumula-

tive extrinsic rewards, expected over all trajectories starting at

signal term(st+Nt , g, sgt); 2) the low-level layer achieves the state s0 and sub-goal sg0, which is E[
 ∞

t=0
t e

t+1 |s0, g, sg0].
sub-goal sgt. 3) the low-level layer has performed a predefined

maximum number of atomic actions. Either way, the low-level

If and only if the robot takes minimal steps to the goal state, the

discounted cumulative extrinsic rewards are thus maximized.

4428 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

l |

h

l

l

|

= π (a|s, g, sg)Q (s, g, sg, a),l

|

l
l

l |

| ∈

l

h

h

h

l |
|

l

e e e 2
h

h

h

h

h

l

t=0 t+1 s0 = s, g = g, sg0 = sg]= Qh(s, g, sg)

l t+1 0 0 0
i i i 2

θl ← θl − ∇θi [R1 − Qθi (s, sg, a)] . (6)

h h

h l l

1 h

l

l l

The discounted cumulative extrinsic rewards is also known

as the state action value Qe [40] for our high-level layer, i.e.
We hereby define a proxy low-level policy πp(a s, sg) aiming

to achieve the proposed sub-goal sg. Similarly, we learn the

E[
 ∞

h

γtre | e . Fol- proxy low-level policy by optimizing the discounted cumulative
lowing the option-critic framework [25], we unroll the

Qe (s, g, sg) as,
e

intrinsic rewards Qi(s, sg, a). We adopt the DQN method [12]

to learn it by updating its parameter θi with Equation 6, where

Ri = ri(s, a, s, sg)+ γ maxa Qi(s, sg, a) is the 1-step intrin- Qh(s, g, sg) 1 l
p

sic return. As a result, the proxy low-level policy πl (a s, sg)= ∞ 1(a = argmax Qi(s, sg, a)).

=

π (a|s, g, sg)E

γtre |s = s, g = g, sg = sg, a = a
a l

e
l

a

(1)

where the state action value Qe(s, g, sg, a) for our low-level

layer is the discounted cumulative extrinsic rewards after taking
action a under the state s, goal g and sub-goal sg. Given the

transition probability P (s |s, a) which denotes the probability

For our low-level layer to balance between exploitation by

achieving the goal g with the policy πl(a s, g, sg) and the

exploration by achieving the sub-goal sg with the proxy policy

πp(a s, sg), we introduce a hyper-parameter α [0, 1] as the

probability that the low-level layer adopts the proxy policy

πp(a s, sg) to explore the environment and collect the expe-

rience samples. The experience samples are used to batch train of being state s after taking action a at state s, Qe(s, g, sg, a) e e i

can be further formulated as,
l θh, θl , θt and θl with Equation (3), (4), (5) and (6) respectively.

In practice, α decays from 1 to 0 across the training episodes

Qe(s, g, sg, a)= P (s |s, a)[re(s, a, s, g)+ γU (g, sg, s)],
s

U (g, sg, s)= (1 − term(s, g, sg))Qe (s, g, sg)

+ term(s, g, sg)V e(s, g),

V e(s, g)=

πh(sg |s, g)Qe (s, g, sg). (2)

to enable our low-level layer to act optimally towards the goal

with the policy πl(a|s, g, sg) eventually.

D. HIEM Network Architecture

Since the image captured by the robot’s on-board camera

serves as the robot’s current state, we adopt deep neural networks

approximate Qe (s, g, sg), Qe(s, g, sg, a), term(s, g, sg) and

We parameterize Qe (s, g, sg), Qe(s, g, sg, a) and i
h l

h l term(s, g, sg) with θe , θe θ Ql (s, sg, a).

h l and t respectively. Then the high-

level policy πh(sg s, g)= 1(sg = argmaxsg Qe (s, g, sg)),
and πl(a s, g, sg)= 1(a = argmaxaQe(s, g, sg, a)) is our
low-level policy. We adopt the DQN [12] based method to
learn Qe (s, g, sg) and Qe(s, g, sg, a) in which we update

Fig. 2 illustrates our network architecture. For the object

search task, semantic segmentation and depth map are necessary

for the robot to detect the target object and avoid collision during

the navigation. Therefore, we first adopt the encoder-decoder
h l network [35] to predict the semantic segmentation and the depth

both of the values towards the 1-step extrinsic return

Re = re(s, a, s, g)+ γU (g, sg, s), and consequently θe
and θe can be updated by Equation 3 and 4. In addition, θt can

be updated by Equation 5 as demonstrated by [25].

θ ← θ − ∇θe [R − Qθe (s, g, sg)] .

map from the robot’s observation. We take the predicted results

as the inputs to our policy networks to avoid the need of visual

domain adaption [14]. The predicted results of the 4 history

observations are fed into our high-level network θe in addition

to a one-hot vector representing the target object. The channel
h h h 1 h

e e e

(3)
2

size of the segmentation input is first reduced to 1 through a

convolutional layer with 1 filter of kernel size 1 × 1, and then

θl ← θl − ∇θe [R1 − Qθe (s, g, sg, a)] .
(4)

the three inputs are fed into three different fully connected layers

respectively and their outputs are further concatenated into a

θ ← θ −∇ term (s, g, sg)(Qe (s, g, sg) − V e(s, g)). joint vector before attaching another fully connected layer to
t t θt θt h h

(5)
generate an embedding fusion. Our high-level network θe feeds

the embedding fusion into one additional fully connected layer

Since the robot may start at a position far away from the

target object, it is unlikely for the robot to encounter the sparse

extrinsic rewarding states through the e-greedy [12] exploration

policy and collect the experience samples to effectively train θe ,
θe and θt. On the contrary, encountering the intrinsic rewarding

to approximate Qe (s, g, sg). To save the number of parameters,

our termination network θt shares most parameters with the

high-level network θe except the last fully connected layer where

it adopts a new one to approximate term(s, g, sg).
For the low-level network θe and θi, we take the sub-goal

l l l

states is much more possibly as an object shows in the robot’s

current view is usually nearby. Therefore, training the robot to

achieve a sub-goal is more accessible. Then, by iteratively asking
the robot to achieve suitable sub-goals, i.e. to approach related

specified channel of the predicted semantic segmentation and

the predicted depth map as the inputs. The low-level network θe

takes the one-hot vector of the target object as an additional input.
Similar to our high-level network, each input of θe and θi is fed

l l

objects, the robot is more likely to observe the target object and
collect the valuable experience samples to train θe , θe and θt.

into a fully connected layer before being concatenated together
to generate an embedding fusion with a new fully connected

h l

and θi to handle the high dimensional inputs and t as θe , θe, θ

l l
t=0 a

sg

YE AND YANG: EFFICIENT ROBOTIC OBJECT SEARCH VIA HIEM: HIERARCHICAL POLICY LEARNING WITH INTRINSIC-EXTRINSIC MODELING 4429

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

h

|

h

h

l

Fig. 2. Network architecture of our hierarchical reinforcement learning model.

layer. The embedding fusion is further fed into an additional fully

connected layer to approximate Qe(s, g, sg, a) and Qi(s, sg, a).
discretize the environment into a certain number of reachable

locations, as shown in Fig. 3.
l l

We follow Equation 3, 4, 5 and 6 to learn Qe (s, g, sg),
Qe(s, g, sg, a), term(s, g, sg) and Qi(s, sg, a) respectively.

l

A. Dataset

l

IV. EXPERIMENTS

B. Experimental Setting

We compare the following methods and variants:

ORACLE and RANDOM. At each time step, the robot ignores

its observation and performs the optimal action and a random

We validate our framework on the simulation platform

House3D [26]. House3D consists of rich indoor environments

with diverse layouts for a virtual robot to navigate. In each

indoor environment, a variety of objects are scattered at many

locations, such as television, sofa, desk. While navigating, the

robot has a first-person view RGB image as its observation.

The simulator also provides the robot with the ground truth

semantic segmentation and depth map corresponding to the RGB

image. The RGB images, as well as the semantic segmentation

and depth maps can be used as the training data to learn the

encoder-decoder network [35] (shown in Fig. 2 upper left) for

semantic segmentation and depth prediction as we mentioned

in Sec. III-D. We refer interested readers to [35] for more

details. In addition, the trained model, specifically the semantic

segmentation prediction, can be used as the robot’s detection

system.

To validate our proposed method in learning hierarchical

policy for object search, we conduct the experiments in an indoor

environment where the objects’ placements are in accordance

with the real-world scenario. For example, the television is

placed close to the sofa, and is likely occluded by the sofa at
many viewpoints. In such a way, to search the target object

action respectively.

A3C [41]. The vanilla A3C implementation that has been

wildly adopted for the navigation task in the previous work [6],

[17], [35]–[37]. It learns the action policy π(a s, g) and the state

value V e(s, g) with a similar network architecture as our high-

level network θe .

DQN [12]. The vanilla DQN implementation that adopts a

similar network architecture as our high-level network θe to

predict the state action value Qe(s, g, a).

OC [25]. The Option-Critic implementation that learns a

hierarchical policy autonomously by maximizing the discounted

cumulative extrinsic rewards where only the number of the op-

tions needs to be manually set. We set it as 4 in our experiments.

H-DQN [19] with our proposed sub-goal space. It is equiva-

lent to our method when we set term(s, g, sg)=0 and α =1
to disable both the termination network θt and the low-level

network θe.

HIEM. Our method follows Sec III. To further identify the

role of each component of our method, we conduct ablation

studies by disabling one component at a time. Specifically,

HIEM-proxy sets α =0 to disable the proxy low-level network

θi, HIEM-low sets α =1 to disable the low-level network θe, l l

television, the robot could approach sofa first to increase the

likelihood of seeing the television.

We consider discrete actions for the robot to navigate in this

environment. Specifically, the robot moves forward / backward

/ left / right 0.2 meters, or rotates 90 degrees every time. We also

and HIEM-term sets term(s, g, sg)=0 to disable the termi-

nation network θt.

For fair comparisons, all the methods share similar network

architectures and hyperparameters, and they all take the pre-

dicted semantic segmentation and the depth map as the inputs.

4430 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

∈

N i=1 max(li,pi)

Fig. 3. Trajectories generated by DQN [12], H-DQN [19] and our method HIEM-low and HIEM for searching the target object music player (red dots) from
the same starting position (green triangle) which is 39 steps away. Different colors represent different sub-goals in which the colored lines and dots denote the
corresponding sub-goal-oriented trajectories and sub-goal states respectively. Our method HIEM generates a more concise and interpretable trajectory. We refer
readers to the supplemental video demo for animated demonstrations.

To be specific, for DQN networks in the method DQN, H-DQN

and HIEM, we adopt the Double DQN [42] technique where we

train the main network every 100 time steps with a batch of size

64 and we update the target network every 100 000 time steps.

The exploration rate decreases from 1 to 0.1 over 10 000 time

steps. For the A3C network, we set the weight of the entropy

C. Experimental Results and Discussion

Since we formulate the object search problem as maximizing

the discounted cumulative extrinsic rewards, we take the Aver-

age discounted cumulative extrinsic Rewards (AR) as one of the

evaluation metrics, calculated by:
regularization term as 0.01 and we update the network for N ∞ N

 every 10 time steps unrolled. We adopt RMSProp optimizer of 1
γtre

 =
 1

1(success)γ#steps ∗ 1, (7)

learning rate 1 × 10−4 to train each method to search 6 different
N

i=1 t=0

t+1 N
i=1

target objects (78 in total) from random starting positions in

the environment. During testing time, we randomly sample 100

starting positions and the corresponding target objects. We set

the maximum number of atomic actions that all methods can take

as 500, and for the method H-DQN and HIEM, the maximum

number of atomic actions that the low-level layer can take at

each time is 25. The robot stops either when it reaches the goal

state (success case) or when it runs out of 500 atomic action steps

(failure case). We implement all the methods using Tensorflow

toolbox and conduct all the experiments with Nvidia V100 GPUs

and 16 Intel Xeon E5-2680 v4 CPU cores. In general, each

training takes around 2 days.

where γ (0, 1] is the discount factor. From the perspective of

the evaluation metric, it can also be seen as a trade-off between

the success rate metric and the average steps metric. With the

higher value of γ, the average steps metric weighs less, and vice

versa. In our experiments, we set γ = 0.99.

In addition, we also report the following widely used evalua-

tion metrics. Success Rate (SR). Average Steps over all success-

ful cases compared to the Minimal Steps over these cases (AS

/ MS). Success weighted by inverse Path Length (SPL) [43],

which is calculated as 1 N Si li . Here, Si is the

binary indicator of success in episode i, li and pi are the lengths

of the shortest path and the path actually taken by the robot. We

YE AND YANG: EFFICIENT ROBOTIC OBJECT SEARCH VIA HIEM: HIERARCHICAL POLICY LEARNING WITH INTRINSIC-EXTRINSIC MODELING 4431

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I

THE PERFORMANCE OF ALL METHODS FOR THE OBJECT SEARCH TASK. (SR:
SUCCESS RATE; AS / MS: AVERAGE STEPS / MINIMAL STEPS OVER ALL

SUCCESSFUL CASES; SPL: SUCCESS WEIGHTED BY INVERSE PATH LENGTH;
AR: AVERAGE DISCOUNTED CUMULATIVE EXTRINSIC REWARDS.)

adopt the number of the action steps as the path length. As a

result, SPL also trades-off success rate against average steps.

Table I shows comparisons of all the methods in perform-

ing the object search task. It demonstrates the superiority of

our method over all metrics, and also highlights the following

observations.

The intrinsic rewards help to explore. Comparing to H-

DQN and our methods (HIEM, HIEM-low, HIEM-term) which

model the object search task with both extrinsic and intrinsic

rewards, all the other methods where no intrinsic rewards is

involved achieve unsatisfactory success rate. It indicates that

under the sparse extrinsic rewards setting, the robot struggles

to reach the goal state even with the hierarchical policy OC or

HIEM-proxy, while our intrinsic rewards effectively encourage

the robot to explore the environment and encounter the goal state.

In fact, the intrinsic rewards guide our proxy low-level network

to approach a visible object, and only after the proxy low-level

network achieves good performance can it collaborate with our

high-level network to help explore.

Our intrinsic-extrinsic modeling contributes to a more

optimal policy. Though our intrinsic rewards help to explore

the environment and improve the success rate, they are limited

in improving the policy in terms of the optimality, as suggested

by the higher AS and lower SPL and AR that H-DQN and HIEM-

low achieve in comparison with HIEM. Different from H-DQN

or HIEM-low that models the low-level layer with the intrinsic

rewards solely, our HIEM adopts the novel intrinsic-extrinsic

modeling and yields a more optimal policy, demonstrating the

role of our intrinsic-extrinsic modeling in learning an optimal

policy.

Early termination to the non-optimal low-level policy is

necessary. A non-optimal low-level policy would drive the robot

to an undesirable state that in consequence hurts the object

search performance. The issue is shown to be mitigated by

terminating the low-level policy at a valuable state in HIEM-low

and HIEM when comparing them with H-DQN and HIEM-term

respectively. Furthermore, we also observe that the termination

TABLE II

AVERAGE SPL ACHIEVED BY ALL METHODS ON 4 RANDOM ENVIRONMENTS

function helps more to less optimal low-level policy as more

improvements are achieved from H-DQN to HIEM-low.

We also report in Table II the average SPL achieved by all

methods on 4 random environments. It further validates the

superiority of our HIEM on other environments as well. We

depict sample qualitative results in Fig. 3, which shows that

our method yields a more concise and interpretable trajectory

compare to other methods for the object search task.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel two-layer hierarchical

policy learning framework for the robotic object search task.

The hierarchical policy builds on a simple yet effective and

interpretable low dimensional sub-goal space, and is learned

with both extrinsic and intrinsic rewards to perform the object

search task in a more optimal and interpretable way. When our

high-level layer plans over the specified sub-goal space, the

low-level layer plans over the atomic actions to collaborate with

the high-level layer to better achieve the goal. This is efficiently

learned with the experience samples collected by our proxy

low-level policy, a policy optimizes towards the proposed sub-

goals. Moreover, our low-level layer terminates at valuable states

which further approximates the optimal policy. The empirical

and extensive experiments together with the ablation studies on

House3D platform demonstrate the efficacy and efficiency of our

presented framework. The presented HIEM framework further

paves several possible avenues for future study. A promising one

is by incorporating the Goals Relational Graph (GRG) [44] to

integrate top-down human knowledge together with the human

specified sub-goal space to facilitate the object search with

improved efficiency.

We want to mention that the current work assumes the robot

can access the environment for training before being deployed

in the same one for object search. In other words, we do not aim

for the generalization ability towards novel environments, but

our success sheds light on how to generalize well. Specifically,

an optimal object search policy in an environment is determined

by the map of the environment. In order to generalize a learned

object search policy to a new environment where the map is

unknown and no extra exploration or training process is allowed,

the robot must be able to infer the map from its observation

and/or from its external memory or knowledge. While the large

high-resolution map is extremely challenging to infer, inferring

a small part of it and a low-resolution object arrangement are

still tractable, which in consequence makes both of our low-level

policy and high-level policy more likely to generalize well. We

deem it as our future work.

4432 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

Authorized licensed use limited to: ASU Library. Downloaded on July 19,2021 at 21:06:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied
question answering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 2054–2063.

[2] N. Kojima and J. Deng, “To learn or not to learn: Analyzing the role of
learning for navigation in virtual environments,” 2019, arXiv:1907.11770.

[3] D. Mishkin, A. Dosovitskiy, and V. Koltun, “Benchmarking classic and
learned navigation in complex 3d environments,” 2019, arXiv:1901.10915.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A
brief survey of deep reinforcement learning,” 2017, arXiv:1708.05866.

[5] P. Mirowski et al., “Learning to navigate in complex environments,” in
Proc. Int. Conf. on Learn. Representations, 2017.

[6] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 3357–3364.

[7] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” in Proc.
IEEE Int. Conf. Robot. Automat., 2017, pp. 3389–3396.

[8] I. Popov et al., “Data-efficient deep reinforcement learning for dexterous
manipulation,” 2017, arXiv:1704.03073.

[9] A. Rajeswaran et al., “Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations,” in Proc. of Robotics:
Science and Systems, 2018.

[10] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2017, pp. 1343–1350.

[11] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learn-
ing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018,
pp. 3052–3059.

[12] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in Proc. 21st Int. Conf. Mach. Learn.. ACM, 2004.

[14] A. Mousavian, A. Toshev, M. Fišer, J. Košecká, A. Wahid, and J. Davidson,
“Visual representations for semantic target driven navigation,” in Proc. Int.
Conf. Robot. Automat., 2019, pp. 8846–8852.

[15] X. Wang, W. Xiong, H. Wang, and W. Yang Wang, “Look before you leap:
Bridging model-free and model-based reinforcement learning for planned-
ahead vision-and-language navigation,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 37–53.

[16] X. Wang et al., “Reinforced cross-modal matching and self-supervised
imitation learning for vision-language navigation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 6629–6638.

[17] X. Ye, Z. Lin, H. Li, S. Zheng, and Y. Yang, “Active object per-
ceiver: Recognition-guided policy learning for object searching on mo-
bile robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018,
pp. 6857–6863.

[18] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine, “Why does
hierarchy (sometimes) work so well in reinforcement learning?” 2019,
arXiv:1909.10618.

[19] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3675–3683.

[20] H. M. Le, N. Jiang, A. Agarwal, M. Dudík, Y. Yue, and H. Daumé III,
“Hierarchical imitation and reinforcement learning,” in Proc. Int. Conf. on
Mach. Learn., 2018, pp. 2917–2926.

[21] A. Levy, R. Platt, and K. Saenko, “Hierarchical reinforcement learning
with hindsight,” 2018, arXiv:1805.08180.

[22] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 3307–3317.

[23] O. Nachum, S. Gu, H. Lee, and S. Levine, “Near-optimal representation
learning for hierarchical reinforcement learning,” in Proc. Int. Conf. on
Learn. Representations, 2019.

[24] Z. Dwiel, M. Candadai, M. J. Phielipp, and A. K. Bansal, “Hierarchical
policy learning is sensitive to goal space design,” 2019, arXiv:1905.01537.

[25] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1726–1734.

[26] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable agents
with a realistic and rich 3 d environment,” 2018, arXiv:1801.02209.

[27] A. Levy, R. Platt, and K. Saenko, “Hierarchical actor-critic,” 2017,
arXiv:1712.00948.

[28] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in Proc. 34th Int. Conf. Mach. Learn.-
Volume 70. JMLR. org, 2017, pp. 166–175.

[29] S. Sohn, J. Oh, and H. Lee, “Hierarchical reinforcement learning for zero-
shot generalization with subtask dependencies,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 7156–7166.

[30] A. Das, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Neural modular
control for embodied question answering,” in Proc. Conf. on Robot Learn.,
2018, pp. 53–62.

[31] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi,
“Iqa: Visual question answering in interactive environments,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4089–4098.

[32] T. Osa, V. Tangkaratt, and M. Sugiyama, “Hierarchical reinforcement
learning via advantage-weighted information maximization,” in Proc. Int.
Conf. on Learn. Representations, 2019.

[33] X. Ye and Y. Yang, “From seeing to moving: A survey on learning for
visual indoor navigation (vin),” 2020, arXiv:2002.11310.

[34] J. Kulhánek, E. Derner, T. de Bruin, and R. Babuška, “Vision-based
navigation using deep reinforcement learning,” in Proc. Eur. Conf. Mobile
Robots., 2019, pp. 1–8.

[35] X. Ye, Z. Lin, J.-Y. Lee, J. Zhang, S. Zheng, and Y. Yang, “Gaple: Gener-
alizable approaching policy learning for robotic object searching in indoor
environment,” IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 4003–4010,
Oct. 2019.

[36] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi, “Visual
semantic navigation using scene priors,” in Proc. Int. Conf. on Learn.
Representations, 2019.

[37] R. Druon, Y. Yoshiyasu, A. Kanezaki, and A. Watt, “Visual object search
by learning spatial context,” IEEE Robot. Automat. Lett., vol. 5, no. 2,
pp. 1279–1286, Apr. 2020.

[38] Y. Wu, Y. Wu, A. Tamar, S. Russell, G. Gkioxari, and Y. Tian, “Bayesian
relational memory for semantic visual navigation,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 2769–2779.

[39] P. Anderson et al., “Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3674–3683.

[40] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[41] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[42] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016, pp.2094–2100.

[43] P. Anderson et al., “On evaluation of embodied navigation agents,” 2018,
arXiv:1807.06757.

[44] X. Ye and Y. Yang, “Hierarchical and partially observable goal-driven
policy learning with goals relational graph,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021.

