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Efficient Robotic Object Search Via HIEM:
Hierarchical Policy Learning With
Intrinsic-Extrinsic Modeling

XinYe

Abstract—Despite the significant success at enabling robots
with autonomous behaviors makes deep reinforcement learning
a promising approach for robotic object search task, the deep
reinforcement learning approach severely suffers from the nature
sparse reward setting of the task. To tackle this challenge, we
present a novel policy learning paradigm for the object search
task, based on hierarchical and interpretable modeling with an
intrinsic-extrinsic reward setting. More specifically, we explore the
environment efficiently through a proxy low-level policy which is
driven by the intrinsic rewarding sub-goals. We further learn our
hierarchical policy from the efficient exploration experience where
we optimize both of our high-level and low-level policies towards
the extrinsic rewarding goal to perform the object search task well.
Experiments conducted on the House3D environment validate and
show that the robot, trained with our model, can perform the object
search task in a more optimal and interpretable way.

Index Terms—Reinforcement learning, semantic

understanding, vision-based navigation.

scene

[. INTRODUCTION

OBOTIC object search is a task where a robot (with an
R on-board camera) is expected to take reasonable steps to
approach a user-specified object in an unknown indoor envi-
ronment. It is an essential capability for assistant robots and
could serve as an enabling step for other tasks, such as the
Embodied Question Answering [1]. Classical map-based ap-
proaches like simultaneous localization and mapping (SLAM)
have been studied to address this problem for a long time, but
it is also well-known that SLAM-based approaches rely heavily
on sensor inputs and thus suffer from sensor noises [2], [3].
Recently, (deep) reinforcement learning (RL) has demonstrated
its power at enabling robots with autonomous behaviors [4],
such as navigating over an unknown environment [5], [6], ma-
nipulating objects with robot’s end effectors [7]-[9], and motion
planning [10], [11]. Under the RL setting, a robot learns the op-
timal behavioral policy by maximizing the expected cumulative
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rewards given the samples collected from its physical and/or
virtual interactions with the environment. The rewards serve as
the reinforcement signals for the robot to update its policy.

A pressing challenge to train a robot to perform object search
with RL is the sparse reward issue, due to the fact that the
environment and/or the location of the target object are typically
unknown. With well-designed reward functions, such as the ones
in Atari games [12], the learned policies are shown to achieve
extremely promising performance. However, it is a well-known
challenge designing the reward function for the real-world ap-
plications [13]. Typically, for applications such as object search
or target-driven visual navigation, prior research constructs the
reward function in terms of the distance between the robot’s
current location and the object location under a strict assumption
that the full information of the environment is known [14]-[16].
For an unknown environment, a straightforward way is to set a
high reward when the robot reaches the final goal state while at
all other intermediate states, the reward is either zero or a small
negative value [6]. More recently, [17] presented a relatively
denser reward function which is based on the bounding box
of the target object from the robot’s detection system, but the
reward is still not defined among the situations where the target
object is not detected. In such a sparse reward setting where
the reward is only defined for a small subset of the states, the
robot struggles to learn the object search policy as it is unlikely
to encounter and sample the very few rewarding states without
a well-designed goal-oriented exploration strategy, especially
dealing with complex environments.

Hierarchical RL (HRL) paradigm is thus formulated consid-
ering its efficient strategy for exploration [18] and superiority
under the sparse reward setting [19]-[21]. HRL aims to learn
multiple layers of policies. The higher layer breaks down the
task into several easier sub-tasks and proposes corresponding
sub-goals for the lower layer to achieve. Typically, the sub-goals
are aliases to the states that mandates the lower layer to reach,
as defined in [20], [22] for tasks with low dimensional state
spaces. Unfortunately, these methods are not directly applicable
for the object search task in which the state observations are
directly taken from the high dimensional RGB images. It is
utterly difficult and seemingly impractical for the higher layer
to output homogeneous images as sub-goals. On the other hand,
reconstructing a concise low dimensional sub-goal space from
the observation space without compromising the optimality of
the learned policy demands elaborate efforts [23], [24].
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Fig. 1. An example of our HIEM framework. When our high-level policy
proposes a sub-goal, our proxy low-level policy is invoked with the probability
of a to explore the environment by optimizing towards the sub-goal, and our
low-level policy learned from the exploration experience is invoked with the
probability of 1_a to collaborate with the high-level policy to better achieve
the goal.

In this paper, we put forward a novel two-layer hierarchical
policy learning paradigm for the object search task. Our hierar-
chical policy builds on a simple yet effective and interpretable
low dimensional sub-goal space. To obtain an optimal hierar-
chical policy given the small sub-goal space, we model the
object search task with both goal dependent extrinsic rewards
and sub-goal dependent intrinsic rewards. To be specific, our
high-level policy plans over the sub-goal space in order to
achieve the final goal by maximizing the extrinsic rewards. When
a sub-goal is given following the high-level policy, a proxy
low-level policy is then invoked for the robot to explore the
environment. The proxy low-level policy maximizes the intrinsic
rewards in order to achieve the proposed sub-goal. Meanwhile,
our low-level policy learns from the exploration experience
and optimizes towards the final goal. It is invoked eventually
to collaborate with our high-level policy to form an optimal
hierarchical object search sequence. Moreover, inspired by [25],
the low-level policy learns to terminate at valuable states that
further improves our hierarchical object search performance.
We dub our framework as HIEM: Hierarchical policy learn-
ing with Intrinsic-Extrinsic Modeling (see Fig. 1). We validate
HIEM with extensive sets of experiments on the House3D [26]
simulation environment which contains thousands of 3D houses
with a diverse set of objects and natural layouts resembling the
real-world. The observed results demonstrate the efficiency and
efficacy of our system over other state-of-the-art ones.

II. RELATED WORK

Our work is closely related to two major research thrusts:
hierarchical RL and target-driven visual navigation.
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Hierarchical reinforcement learning. Previous work has
studied hierarchical reinforcement learning in many different
ways. One is to come up with efficient methods to accelerate
the learning process of the general hierarchical reinforcement
learning scheme. As in [22], the authors introduce an off-policy
correction method. [27] and [21] propose to use Hindsight
Experience Replay to facilitate learning at multiple time scales.
Though these methods’ performance are impressive, they typi-
cally assume the sub-goal space for the higher level policy is the
state space. However, in the object search task, the RL system
takes the image as the state representation, these methods are
not directly applicable since the higher layer can hardly propose
an image as a sub-goal for the lower layer to achieve.

Other methods designate a separate sub-goal space for hier-
archical reinforcement learning. For example, [19] defines the
sub-goal space in the space of entities and relations, such as
the “reach” relation they use for their Atari game experiment.
Sub-tasks and their relations are provided as inputs in [28§]
and [29]. Closer related to our work, [30] adopts {exit-room,
find-room, find-object, answer} as the sub-goal space to learn a
hierarchical policy for the Embodied Question Answering task.
For the same task, [31] chooses {navigate, scan, detect, manipu-
late, answer} as the possible sub-tasks, while the reinforcement
learning methods are mainly applied for learning high-level
policy, i.e. planning over the pre-trained or fixed sub-tasks.

On the other side, attempts have been made to learn a set
of low-level skills automatically to achieve the goal. These
low-level skills are also referred to as temporal abstractions. [25]
proposes the option-critic framework to autonomously discover
the specified number of temporal abstractions. [32] learns the
temporal abstractions through advantage-weighted information
maximization. [23] addresses the sub-goal representation learn-
ing problem. With the learned representation, their hierarchical
policies are shown to approach the optimal performance within
a bounded error.

Motivated by aforementioned ones, we designate a simple yet
effective sub-goal space that makes the hierarchy better inter-
pretable. Meanwhile, to make the optimal policy expressible and
learnable with the specified sub-goal space, we also leverage
the benefits from the automatic temporal abstraction learning
methods, which ultimately yields a hybrid system.

Target-driven visual navigation. Deep reinforcement learn-
ing has been studied extensively for the target-driven visual
navigation tasks [33]. These tasks can be categorized in terms
of the description of the navigation target. [6], [17] and [34]
specify the navigation target by the image taken at the target
location. The robotic object search task studied in [14], [35]-[37]
and the room navigation task introduced in [26], [38] take the
semantic label of the target object and room as the navigation
target. The Embodied Question Answering [1], [30], [31] and the
Vision-and-Language Navigation [16], [39] address the problem
where the navigation target is provided with an unconstrained
natural language. Here, we study the robotic object search
task where the navigation target is an object specified by a
semantic label. Unlike the previous work that plans over the
atomic actions for navigation [14], [26], [35]-[37], we learn a
hierarchical policy that performs the robotic object search task
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in a more interpretable way. While [30], [31] and [38] also study
hierarchical policies, their low-level policies focus only on the
sub-tasks without keeping the final navigation target in mind,
thus may yield less optimal policies towards the final navigation
target.

Notably, many of the previous works address the sparse
reward issue by introducing additional supervision under the
assumption that the robot can access the full information of
the environments during the training time, such as defining the
reward function with the distance between the robot’s current
location and the target location (a.k.a. reward shaping) [14],
[26], adopting shortest path as the supervised signal for pre-
training [1], [16], and/or gradually increasing the distance be-
tween robot’s starting location and the target location (a.k.a.
curriculum learning) [30], [34]. Nevertheless, for applications
in real-world environments, collecting all the information is
unarguably expensive and sometimes impractical. We would
like to stress upon the point that our model does not assume
any environment information available even during the training
stage, which makes our object search task significantly more
challenging.

III. OUR APPROACH

First, we define the robotic object search task. Formally
speaking, when a target object is specified and provided with
a semantic label, the robot is asked to search and approach the
object from its random starting position. The RGB image from
the robot’s on-board camera is the only source of information for
decision making. None of the environment information, such as
the map of the environment or the location of the target object
could be accessed. Once the area of the target object in the
robot’s viewpoint (the image captured by its camera) is larger
than a predefined threshold, the robot stops and we consider
it as a success. In this work, we present a novel two-layer
hierarchical policy for the robot to perform the object search
task, motivated by how human beings typically conduct object
search. In the following sections, we first describe the hierarchy
of policies. Then we introduce two kinds of reward functions,
i.e. extrinsic rewards and intrinsic rewards, and we make use of
these two reward functions to formulate the solution. Finally,
we describe the network architecture adopted for learning the
two-layer hierarchical policy.

A. Hierarchy of Policies

Our hierarchical policy has two levels, a high-level pol-
icy mn and a low-level policy m. At time step ¢, the robot
takes the image captured by its camera as the current state st.
Given a target object or goal g, the high-level layer proposes a
sub-goal sg: ~ ma(sg|s:, g) and the low-level layer takes over
the control. The low-level layer then draws an atomic action
a: m(a s}, g, sg:) to perform. The robot will receive a new
image/state st+1. The low-level layer repeats N: times till 1)
the low-level layer terminates itself following the termination
signal term(se+n,, g, Sgt); 2) the low-level layer achieves the
sub-goal sg:. 3) the low-level layer has performed a predefined
maximum number of atomic actions. Either way, the low-level
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layer terminates at state St+n,, and then returns the control back
to the high-level layer, and the high-level layer proposes another
sub-goal. This process repeats until 1) the goal g is achieved,
i.e. the robot finds the target object successfully; 2) a predefined
maximum number of atomic actions has been performed.

For the object search task, we define the sub-goal space as {ap-
proach obj|obj is visible in the robot’s current view}. We argue
three reasons for the sub-goal space definition, a) approaching
an object that shows in the robot’s view is a more general and rel-
atively trainable task shown by [35]. It also aligns well with the
objective of the hierarchical reinforcement learning by breaking
down the task into several easier sub-tasks; b) approaching a
related object may increase the probability of seeing the target
object. As soon as the target object is captured in the robot’s
current view, the task becomes an object approaching task; c)
as also suggested by [19], specifying sub-goals over entities and
relations can provide an efficient space for exploration in a com-
plex environment. Moreover, in case there is no object visible
in the robot’s current view, we supplement a back-up “random”
sub-goal invoking a random low-level policy. The atomic action
space for the low-level layer is defined for navigation purpose,
namely {move forward / backward / left / right, turn left / right}
in which the move action updates the robot’s location only and
the turn action drives the robot’s rotation only.

B. Extrinsic Rewards and Intrinsic Rewards

We define two kinds of reward functions. The extrinsic re-
wards r¢ are defined for our object search task, thus are goal
dependent. Further, we also introduce the intrinsic rewards 7
for the low-level sub-tasks. The intrinsic rewards are hereby
sub-goal dependent. We specify the two reward functions re-
spectively as follows.

Extrinsic rewards re. Without loss of generality, to encour-
age the robot to finish the object search task, we provide a
positive extrinsic reward (in practice, 1) when the robot reaches
the final goal state. At all other intermediate states, the ex-
trinsic rewards are set to 0. Formally, re(se-1, a1, s, g)=1
if and only if s: is a goal state of the goal g, otherwise
r(st-1, ar-1, s, g) = 0.

Intrinsic rewards r. To facilitate the robot perform the
sub-task, i.e. approaching the object specified in the proposed
sub-goal sg which shows in the robot’s current view, we adopt
the similar binary rewards. To be specific, the intrinsic reward
r{se1, a1, s, sg)=1 if and only if st is a goal state of the
sub-goal sg, otherwise ri(si-1, ar-1, s, sg)= 0.

C. Model Formulation

We formulate the object search task in terms of the two
rewards introduced in Sec. III-B. When the robot starts from
an initial state So, it proposes a sub-goal sgo aiming to achieve
the final goal g (locating and approaching the target object). To
achieve the final goal, we can optimize the discounted cumula-
tive extrinsic rewards, expected over all trajectories starting at
state so and sub-goal sgo, which is E[ 72y V#4150, g, sgo].
If and only if the robot takes minimal steps to the goal state, the
discounted cumulative extrinsic rewards are thus maximized.
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The discounted cumulative extrinsic rewards is also known
as the state action value Q¢ [40] for our high-level layer, i.e.

E[ o Vrastlso = 5,9 = g, 590 = sg]= Qi(s, g, sg)- Fol-
lowing the option-critic framework [25], we unroll the
(s, g, s9) as,
QOK(s, 9, s9)
© L

= m(als,g,sg)E  Vrelso=s,9=9,890=5g, ap=a

a t=0

= n(als,g,59)Q1s, 9,59, a),

a
(1
where the state action value Q(s, g, sg, a) for our low-level
layer is the discounted cumulative extrinsic rewards after taking
action a under the state s, goal g and sub-goal sg. Given the

PR BIE MR RSP0 i RS B QP
l

can be further formulated as,

Qys, g, sg, a)= P(s|s,a)r(s, a, s, g)+ yU(g, sg,s)],

U(g,sg,s)= (1 — term(s, g, sg))Q°s, g, sg)
+ term(s; g; Sg)Vﬁ(S, g);
2

Q«s,g,sg,a) and
l

Vils, g)=  misgls, 9)Q%%s, g,s9).
sg
We parameterize Qc(s, g, sg),
term(s, g, sg) with 6¢, 8¢ h O ) .
n 1 and ¢ respectively. Then the high-
level policy mr(sg s,|g)= 1(sg = argmaxg, Q¢ (s, g, s9)),
and m(a $, g, sg)= 1(a = argmax,Q(s, g, sg, a)) is our
leatiloes pcdisy i ent s, BRRIA) B wethpdde
both of the values towards the 1-step extrinsic return
Rg=r«s, a, s, g)+ yU (g, sg, s), and consequently ¢
and 6¢ can be updated by Equation 3 and 4. In addition, 6 can
be updated by Equation 5 as demonstrated by [25].

9;“ 92— Veeh[R e~ Qeegs, 9,59)] 2

3)

e e e 2

0, — 6, — Ve[Ry — Qee(s, g, sg, a)] .
“)

6 -6 -V term (S; 9, Sg)(Qe(S: 9, Sg) - Ve(S, g))
t t 6: 6, h h )
&

Since the robot may start at a position far away from the
target object, it is unlikely for the robot to encounter the sparse
extrinsic rewarding states through the e-greedy [12] exploration
policy and collect the experience samples to effectively train 09,
Gle and 6:. On the contrary, encountering the intrinsic rewarding
states is much more possibly as an object shows in the robot’s
current view is usually nearby. Therefore, training the robot to
achieve a sub-goal is more accessible. Then, by iteratively askin,
the robot to achieve suitable sub-goals, i.e. to approach relate

obljects, the robot is more likely to observe the target object and
collect the valuable experience samples to train 96;,1 961 and 6.
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We hereby define a proxy low-level policy npg as, sg) aiming
to achieve the proposed sub-goal sg. Similarly, we learn the
proxy low-level policy by optimizing the discounted cumulative
intrinsic rewards Q{s, sg, a). We adopt the DQN method [12]
to learn it by updating its parameter 6} with Equation 6, where
Ri=r(s,a,s, sg)+ ymaxs Q(s, sg, a)is the Jstep intrin-

gie&epg}géa}g r@s(lét,, g;l&e}: BY9XY low-level policy m; (a s, sg)=
a l

0; — 6; — Vel R — Qpi(s, sg, a)]’. (6)

For our low-level layer to balance between exploitation by
achieving the goal g with the policy m(a S 9 sg) and the
exploration by achieving the sub-goal sg with the proxy policy
m(a|s, sg), we introduce a hyper-parameter ad0, 1] as the
probability that the low-level layer adopts the proxy policy
m(a|s, sg) to explore the environment and collect the expe-
rigncg samples.; The experience samples are used to batch train

0 d 6, with tion (3), (4), (5) and (6 ively.
%”pré’ct?ct:g?a de‘gellys %lr%l?l%cg 3’§c (’)gs)t gtr(aigl{flsgpgf)%‘(/)edlgs
to enable our low-level layer to act optimally towards the goal
with the policy m(als, g, sg) eventually.

D. HIEM Network Architecture

Since the image captured by the robot’s on-board camera
serves as the robot’s current state, we adopt deep neural networks
as 0%, 65, 0 and 6 to handle the high dimensional inputs and
approximate Qs, g, sg), Q4s, g, sg, a), term(s, g, sg) and
Qy(s, sg, a).

Fig. 2 illustrates our network architecture. For the object
search task, semantic segmentation and depth map are necessary
for the robot to detect the target object and avoid collision during

the navigation. Therefore, we first adopt the encoder-decoder
network [35] to predict the semantic segmentation and the depth

map from the robot’s observation. We take the predicted results
as the inputs to our policy networks to avoid the need of visual
domain adaption [14]. The predicted results of the 4 history
observations are fed into our high-level network 6¢ in addition
to a one-hot vector representing the target object. lfhe channel
size of the segmentation input is first reduced to 1 through a
convolutional layer with 1 filter of kernel size 1 X 1, and then
the three inputs are fed into three different fully connected layers
respectively and their outputs are further concatenated into a
joint vector before attaching another fully connected layer to
generate an embedding fusion. Our high-level network 6¢ feeds
the embedding fusion into one additional fully connected layer
to approximate Q¢ s, g, sg). To save the number of parameters,
our termination network 6: shares most parameters with the
high-level network 6 except the last fully connected layer where
it adopts a new one to approximate term(s, g, s](z).

For the low-level network Gle and Gll, we take the sub-goal
specified channel of the predicted semantic segmentation and
the predicted depth map as the inputs. The low-level network 6¢
takes the one-hot vector of the target object as an additional input.
Similar to our high-level network, each input of 9‘; and Gllls fed

into a fully connected layer before being concatenated together
to generate an embedding fusion with a new fully connected
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Fig. 2. Network architecture of our hierarchical reinforcement learning model.

layer. The embedding fusion is further fed into an additional fully
connected layer to approximate Qe(ls, g, g, a) and Qigs, sg, a).

We follow equation 3,4, 5 and 6 to learn Q¢(s, g, Sg),
Qj(s, g, Sg, a), term(s, g, sg) and Q’l(s, sg, a) respectively.

IV. EXPERIMENTS
A. Dataset

We validate our framework on the simulation platform
House3D [26]. House3D consists of rich indoor environments
with diverse layouts for a virtual robot to navigate. In each
indoor environment, a variety of objects are scattered at many
locations, such as television, sofa, desk. While navigating, the
robot has a first-person view RGB image as its observation.
The simulator also provides the robot with the ground truth
semantic segmentation and depth map corresponding to the RGB
image. The RGB images, as well as the semantic segmentation
and depth maps can be used as the training data to learn the
encoder-decoder network [35] (shown in Fig. 2 upper left) for
semantic segmentation and depth prediction as we mentioned
in Sec. III-D. We refer interested readers to [35] for more
details. In addition, the trained model, specifically the semantic
segmentation prediction, can be used as the robot’s detection
system.

To validate our proposed method in learning hierarchical
policy for object search, we conduct the experiments in an indoor
environment where the objects’ placements are in accordance
with the real-world scenario. For example, the television is
placed close to the sofa, and is likely occluded by the sogq at
many viewpoints. In’such a way, to search the farget object
television, the robot could approach sofa first to increase the
likelihood of seeing the television.

We consider discrete actions for the robot to navigate in this
environment. Specifically, the robot moves forward / backward
/left / right 0.2 meters, or rotates 90 degrees every time. We also

Collect

@e ©

Depth Map (768)

(256)

(4X10X10X1)

discretize the environment into a certain number of reachable
locations, as shown in Fig. 3.

B. Experimental Setting

We compare the following methods and variants:

ORACLE and RANDOM. At each time step, the robot ignores
its observation and performs the optimal action and a random
action respectively.

A3C [41]. The vanilla A3C implementation that has been
wildly adopted for the navigation task in the previous work [6],
[17], [35]-[37]. It learns the action policy n(a |s, g) and the state
value V (s, g) with a similar network architecture as our high-
level network g¢.

DQN [12]. The vanilla DQN implementation that adopts a
similar network architecture as our high-level network 6¢ to
predict the state action value Q«(s, g, a).

OC [25]. The Option-Critic implementation that learns a
hierarchical policy autonomously by maximizing the discounted
cumulative extrinsic rewards where only the number of the op-
tions needs to be manually set. We set it as 4 in our experiments.
H-DQN [19] with our proposed sub-goal space. It is equiva-
lent to our method when we set term(s, g, sg)=0 and a =1
to disable both the termination network 6: and the low-level
network 6¢.

HIEM. Our method follows Sec III. To further identify the
role of each component of our method, we conduct ablation
studies by disabling one component at a time. Specifically,
HIEM-proxy sets a =0 to disable the proxy low-level network
6}, HIEM-low sets a =1 to disable the low-level network 6¢,
and HIEM-term sets term(s, g, sg)=0 to disable the termi-
nation network 6.

For fair comparisons, all the methods share similar network
architectures and hyperparameters, and they all take the pre-
dicted semantic segmentation and the depth map as the inputs.
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Trajectories generated by DQN [12], H-DQN [19] and our method HIEM-low and HIEM for searching the target object music player (red dots) from

the same starting position (green triangle) which is 39 steps away. Different colors represent different sub-goals in which the colored lines and dots denote the
corresponding sub-goal-oriented trajectories and sub-goal states respectively. Our method HIEM generates a more concise and interpretable trajectory. We refer

readers to the supplemental video demo for animated demonstrations.

To be specific, for DQN networks in the method DQN, H-DQN
and HIEM, we adopt the Double DQN [42] technique where we
train the main network every 100 time steps with a batch of size
64 and we update the target network every 100 000 time steps.
The exploration rate decreases from 1 to 0.1 over 10 000 time

steptaFoa s A SNk WSSt dhspasishhel {hasskony
every 10 time steps unrolled. We adopt RMSProp optimizer of

learning rate 1 X 10-4 to train each method to search 6 different

target objects (78 in total) from random starting positions in
the environment. During testing time, we randomly sample 100
starting positions and the corresponding target objects. We set
the maximum number of atomic actions that all methods can take
as 500, and for the method H-DQN and HIEM, the maximum
number of atomic actions that the low-level layer can take at
each time is 25. The robot stops either when it reaches the goal
state (success case) or when it runs out of 500 atomic action steps
(failure case). We implement all the methods using Tensorflow
toolbox and conduct all the experiments with Nvidia V100 GPUs
and 16 Intel Xeon E5-2680 v4 CPU cores. In general, each
training takes around 2 days.

C. Experimental Results and Discussion

Since we formulate the object search problem as maximizing
the discounted cumulative extrinsic rewards, we take the Aver-
age discounted cumulative extrinsic Rewards (AR) as one of the

evaluation metrics, calculated by:
N o N

; 1

N V71 N
i=1 t=0

1(success)y*sters x 1, (7)
i=1
where y ¢ (0, 1] is the discount factor. From the perspective of
the evaluation metric, it can also be seen as a trade-off between
the success rate metric and the average steps metric. With the
higher value of y, the average steps metric weighs less, and vice
versa. In our experiments, we set y = 0.99.

In addition, we also report the following widely used evalua-
tion metrics. Success Rate (SR). Average Steps over all success-
ful cases compared to the Minimal Steps over these cases (AS
/ MS). Success weighted by inverse Path Length (SPL) [43],
which is calculated asyt 2 Si,.. 11, py- Here, Siis the
binary indicator of success in episode i, l; and p; are the lengths
of the shortest path and the path actually taken by the robot. We
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TABLEI
THE PERFORMANCE OF ALL METHODS FOR THE OBJECT SEARCH TAsK. (SR:
SUCCESS RATE; AS/ MS: AVERAGE STEPS / MINIMAL STEPS OVER ALL
SuccESSFUL CASES; SPL: SUCCESS WEIGHTED BY INVERSE PATH LENGTH;
AR: AVERAGE DISCOUNTED CUMULATIVE EXTRINSIC REWARDS.)

Method SR AS / MS| SPLT  ART
ORACLE 1.00  25.63/ 25.63 1.00  0.79
RANDOM 0.19 188.11 /7 7.05 0.03  0.08
A3C 0.13 93.23 / 4.00 0.03  0.08
DQN 047 12074 /1609 020 0.26
ocC 0.14 99.29 / 5.14 0.06  0.09
H-DQN 0.74 182.15/23.62 0.17 0.23
Ours
HIEM-proxy 040  95.08/1503 0.12 0.22
HIEM-low 0.99 76.81 / 25.55 0.47 0.56
HIEM-term 1.00  49.42 / 25.63 0.65  0.66
HIEM o0 41.18 / 25.63  0.72  0.70

adopt the number of the action steps as the path length. As a
result, SPL also trades-off success rate against average steps.

Table I shows comparisons of all the methods in perform-
ing the object search task. It demonstrates the superiority of
our method over all metrics, and also highlights the following
observations.

The intrinsic rewards help to explore. Comparing to H-
DQN and our methods (HIEM, HIEM-low, HIEM-term) which
model the object search task with both extrinsic and intrinsic
rewards, all the other methods where no intrinsic rewards is
involved achieve unsatisfactory success rate. It indicates that
under the sparse extrinsic rewards setting, the robot struggles
to reach the goal state even with the hierarchical policy OC or
HIEM-proxy, while our intrinsic rewards effectively encourage
the robot to explore the environment and encounter the goal state.
In fact, the intrinsic rewards guide our proxy low-level network
to approach a visible object, and only after the proxy low-level
network achieves good performance can it collaborate with our
high-level network to help explore.

Our intrinsic-extrinsic modeling contributes to a more
optimal policy. Though our intrinsic rewards help to explore
the environment and improve the success rate, they are limited
in improving the policy in terms of the optimality, as suggested
by the higher AS and lower SPL and AR that H-DQN and HIEM-
low achieve in comparison with HIEM. Different from H-DQN
or HIEM-low that models the low-level layer with the intrinsic
rewards solely, our HIEM adopts the novel intrinsic-extrinsic
modeling and yields a more optimal policy, demonstrating the
role of our intrinsic-extrinsic modeling in learning an optimal
policy.

Early termination to the non-optimal low-level policy is
necessary. A non-optimal low-level policy would drive the robot
to an undesirable state that in consequence hurts the object
search performance. The issue is shown to be mitigated by
terminating the low-level policy at a valuable state in HIEM-low
and HIEM when comparing them with H-DQN and HIEM-term
respectively. Furthermore, we also observe that the termination
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TABLE II
AVERAGE SPL ACHIEVED BY ALL METHODS ON 4 RANDOM ENVIRONMENTS

Method
Ave SPL

0.03

oc
0.03

HIEM
0.54

RANDOM
0.03

DON
0.33

H-DQN
0.11

function helps more to less optimal low-level policy as more
improvements are achieved from H-DQN to HIEM-low.

We also report in Table II the average SPL achieved by all
methods on 4 random environments. It further validates the
superiority of our HIEM on other environments as well. We
depict sample qualitative results in Fig. 3, which shows that
our method yields a more concise and interpretable trajectory
compare to other methods for the object search task.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel two-layer hierarchical
policy learning framework for the robotic object search task.
The hierarchical policy builds on a simple yet effective and
interpretable low dimensional sub-goal space, and is learned
with both extrinsic and intrinsic rewards to perform the object
search task in a more optimal and interpretable way. When our
high-level layer plans over the specified sub-goal space, the
low-level layer plans over the atomic actions to collaborate with
the high-level layer to better achieve the goal. This is efficiently
learned with the experience samples collected by our proxy
low-level policy, a policy optimizes towards the proposed sub-
goals. Moreover, our low-level layer terminates at valuable states
which further approximates the optimal policy. The empirical
and extensive experiments together with the ablation studies on
House3D platform demonstrate the efficacy and efficiency of our
presented framework. The presented HIEM framework further
paves several possible avenues for future study. A promising one
is by incorporating the Goals Relational Graph (GRG) [44] to
integrate top-down human knowledge together with the human
specified sub-goal space to facilitate the object search with
improved efficiency.

We want to mention that the current work assumes the robot
can access the environment for training before being deployed
in the same one for object search. In other words, we do not aim
for the generalization ability towards novel environments, but
our success sheds light on how to generalize well. Specifically,
an optimal object search policy in an environment is determined
by the map of the environment. In order to generalize a learned
object search policy to a new environment where the map is
unknown and no extra exploration or training process is allowed,
the robot must be able to infer the map from its observation
and/or from its external memory or knowledge. While the large
high-resolution map is extremely challenging to infer, inferring
a small part of it and a low-resolution object arrangement are
still tractable, which in consequence makes both of our low-level
policy and high-level policy more likely to generalize well. We
deem it as our future work.
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