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Computer simulation can be a useful tool when designing robots expected to operate inde-
pendently in unstructured environments. In this context, one needs to simulate the dynamics
of the robot’s mechanical system, the environment in which the robot operates, and the
sensors which facilitate the robot’s perception of the environment. Herein, we focus on
the sensing simulation task by presenting a virtual sensing framework built alongside an
open-source, multi-physics simulation platform called Chrono. This framework supports
camera, lidar, GPS, and IMU simulation. We discuss their modeling as well as the noise
and distortion implemented to increase the realism of the synthetic sensor data. We close
with two examples that show the sensing simulation framework at work: one pertains to
a reduced scale autonomous vehicle and the second is related to a vehicle driven in a
digital replica of a Madison neighborhood. [DOI: 10.1115/1.4050080]
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1 Introduction

1.1 Motivation and Contribution. In the fields of robotics
and autonomous vehicles (AVs), simulation can play a key role
in understanding how candidate designs respond when placed in a
myriad of operational scenarios. The motivating factor of the
research described herein is that of improving the realism of the
simulation, so that the behavior of the virtual robot in simulation
is similar to that of the physical robot in the real world. In other
words, we seek to reduce the so-called simulation-to-reality gap [1].

Herein, we outline a sensing simulation module that has been
built into a multi-physics simulation framework called Chrono
[2,3]. This new module, called Chrono::Sensor, generates synthetic
data for camera, lidar, GPS, and IMU when any of these sensors is
immersed in a virtual environment whose time evolution is simu-
lated via Chrono. By combining dynamics simulation and sensing
simulation, we seek to establish a comprehensive analysis platform
for complex robotic systems operating in unstructured, complex,
and dynamic environments.

The primary objective of Chrono::Sensor is to provide realistic
synthetic sensor data for use in the investigation, development,
testing, and optimization of robots through simulation. The interest
is in generating synthetic data streams that reflect the distortions and
noise levels encountered in the actual sensor data. For instance,
while photorealism can be an important aspect of a virtual environ-
ment, Chrono::Sensor camera simulation is concerned primarily
with data realism such that the perception and control algorithms,
not humans, find the synthetic data indistinguishable from real
data. It is important to note that photorealism and data realism are
not mutually exclusive, but unlike video gaming, the emphasis
here is on data realism. Moreover, we seek a solution that is versa-
tile (supports multiple sensors); efficient (soft-real time targeted);
and accurate in order to provide a simulation-in-robotics experience
that demonstrates effective sim-to-real transferability attributes.

In this contribution we (i) introduce a sensing library built along-
side an open-source, multi-physics simulation framework for the
purpose of simulating complex robotic systems and AVs;
(if) describe an extensible and robust sensing framework for
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implementing sensor noise and distortion models to improve syn-
thetic data realism; and (iii) outline the methods and models cur-
rently supported in the Chrono::Sensor for generating synthetic
sensor data from a dynamic virtual environment. To that end, the
article is structured as follows. Section 1.2 overviews other simula-
tion frameworks used for autonomous agent analysis. Our sensor
simulation framework is described from a software implementation
point of view in Sec. 2. The sensor models are outlined in Sec. 3.
The document concludes with two demonstrations of Chrono::
Sensor usage in Sec. 4. Specifically, we use a detailed vehicle
model and equip it with multiple sensors to either evaluate a navi-
gation algorithm or generate data for offline testing of autonomous
systems. Ultimately, this contribution concerns sensor simulation
models, and not the specific use of sensor simulation in particular
applications, a very important task which nonetheless is too broad
to be approached here. Section 5 presents a conclusion and
future work is discussed.

1.2 Related Work. One of the most widely used robotics
simulation platforms is Gazebo [4-6] owing to the fact that it is
free, open source, it is closely integrated with the robot operating
system (ROS), it offers a breadth of sensors, and it interfaces to
several dynamics engines (Bullet [7], ODE [8], DART [9], and
Simbody [10]). On the downside, it lacks depth in relation to:
physics modeling (i.e., flexible bodies, fluid—solid interaction,
deformable terrains, etc.); and sensor sophistication. CoppelliaSim
(previously known as V-REP) [11] follows a similar paradigm to
Gazebo, with which it shares a similar set of strengths and weak-
nesses. The major additional weakness of CoppelliaSim is that it
is not provided free and open source. Recently, NVIDIA has
released a robot simulation platform called ISAAC Sim [12],
which leverages the PhysX dynamics engine [13] to support robot
simulation. While ISAAC Sim is perhaps the most modern simula-
tion software for robotics, its closed-source nature introduces a
barrier to adoption and extension. Additionally, since little is pub-
lished on their sensor models and dynamics validation, it is difficult
to judge its ability to simulate complex scenarios. Additional frame-
works exist for robot simulation, including Webots [14] and
USARSim [15], but they largely lack the feature set and/or fidelity
of the aforementioned frameworks, particularly so for unstructured,
off-road conditions. Beyond this list, many frameworks focus on
dynamics and have sought to add sensing capabilities to broaden

APRIL 2021, Vol. 1 / 021001-1

Copyright © 2021 by ASME

SABl/EEZ/799/100120/2/1/1Pd-0I01LIE/SBIOIBASNOWOUOINE/BI0"BUISE" UON8|(00|ENBIPaISE/:(

C

d'100120

U930} BSed; Jp!

10 16BN Ueq ‘UoSIPE|N UISUODSIM JO Alsieaun Aq 3dz361SUZAMANDUMO AABHINIAEPTbLSANGI0DEDWOBOEYD TMNXDOXSUAMIIMZANSEASN LAYV VY VSAAZMIX AN


mailto:amelmquist@wisc.edu
mailto:serban@wisc.edu
mailto:negrut@wisc.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4050080&domain=pdf&date_stamp=2021-02-23

the scope of their simulation capabilities. These include frameworks
such as PyBullet [16] and MuJoCo [17].

For on-road AV navigation simulation, the most broadly utilized
platforms are Carla [18] and AirSim [19]. Both are developed on
top of Unreal Engine [20], with AirSim also supporting use of
Unity three-dimensional (3D) [21]. Unity 3D and Unreal Engine
are game development platforms that have seen broad use in AV
and robot simulation. In video gaming, vehicle dynamics model
fidelity is of less concern than simulation speed. Since they build
on gaming engines, Carla and AirSim can provide photo-realistic
images and support complex and artistically generated virtual envi-
ronments. In terms of sensing, photorealism is important but not
necessarily sufficient for camera simulation. Moreover, the ray-
casting implementations in Carla and AirSim used for lidar simula-
tion are low-fidelity methods that limit the realism of the synthetic
point clouds. Beyond visual sensors, AirSim does provide a detailed
approach for generating realistic noise and distortion for dynamics-
based sensors including GPS, IMU, barometer, and magnetometer.
While these simulators represent some of the most capable on-road
frameworks, they are unable to support off-road environments with
more complex dynamics, e.g., deformable terrain, which is impor-
tant in capturing the vehicle—environment interplay for terrains
with mud, sand, snow, etc. Two simulators for off-road scenarios
are VANE [22] and MAVS [23], with the later leveraging Chrono
for vehicle dynamics support. VANE is closed source, but pub-
lished literature [24—27] illustrates the capabilities of the framework
for military applications. MAVS provides high-fidelity lidar simula-
tion [28,29] but it is not freely available as open source. A real-time
desktop framework for robotic simulation, called ANVEL [30], is
also designed for military applications and is tightly developed
alongside VANE. Finally, Vortex [31] offers a real-time simulation
solution with support for AV simulation.

Other frameworks for AV simulation include AutonoVi [32],
PreScan [33], SynCity [34], rfPro [35], VIRES [36], dSPACE
[37], and NVIDIA DRIVE Sim [38]. Most of these frameworks
are commercial and closed-source, with limited breadth of pub-
lished use to show simulation results. Relatively little information
is available for the closed-source platforms to determine the level
of sophistication and realism of the synthetic sensor data and
dynamics support.

2 Simulation Framework

Chrono::Sensor extends the Chrono dynamics engine to provide
a sensing simulation solution for robotic systems operating in
complex and unstructured environments. Chrono::Sensor generates
synthetic data based on the choice of number and type of sensors
(RGB camera, lidar, GPS, and IMU) and passes these synthetic
data to the robot control stack to determine the next set of robot

Fig. 1 Example of an off-road autonomous vehicle navigating a
complex and deformable environment
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commands. Based on this set of commands, the dynamics engine
determines the evolution of the robot and its interaction with the
environment. This sequence: sensing — command — dynamics,
loops for the duration of the simulation, with specific frequencies
of the control stack, sensing, and dynamics maintained according
to real-world hardware (sensing and control) and physical require-
ments (dynamics). An example is shown in Fig. 1, where an instru-
mented all-terrain vehicle is interacting with the environment by
deforming the terrain on which it operates. The scene is shown
from the perspective of a third-person, Chrono::Sensor camera.

2.1 Simulation of Physics with Chrono. Herein, the discus-
sion of Chrono is limited to covering the components relevant to
the sensor simulation. An overview of Chrono can be found in
Ref. [2]. The Chrono dynamics engine supports rigid and flexible
body dynamics with additional simulation modules for granular
mechanics and fluid—solid interaction. Through the Chrono::
Vehicle module [39], Chrono provides template-based support for
specifying the topology of a vehicle from subsystems such as sus-
pension, tires, steering mechanism, powertrain, and track subsys-
tem. This allows a user to build a model from designed or
measurable parameters rather than requiring construction of each
individual body and kinematic constraint. Figure 2 illustrates the
components of a Chrono::Vehicle suspension model. All of these
components, including other moving obstacles, robot joints, vehi-
cles, or agents, are visible to the sensors in Chrono.

Chrono can simulate vehicle—terrain interaction in complex
off-road environments with deformable terrains [40]. While
Chrono’s primary objective is high-fidelity modeling, which
might come at a high computational cost, simulations with trivial-
to-compute dynamics; i.e., a vehicle in an on-road maneuver oper-
ating on rigid terrain, can be performed faster than real-time. This
paradigm of “as fast as possible” simulation carries over to
Chrono::Sensor, where there is no hard constraint on the simulation
to be real time—instead, it is expected to run as fast as possible with
real-time being an arbitrary line that comes into play for hardware/
human-in-the-loop scenarios. In fact, for many applications in
machine learning there is significant benefit to faster-than-real-time
simulation. An example of reinforcement learning for off-road nav-
igation is discussed in Ref. [41]. Therein, off-road navigation using
a military convoy was learned in Chrono using reinforcement learn-
ing, and then demonstrated in simulation on deformable soil in
off-road environments with silt-like and snow-like terrains.

2.2 Simulation of Sensing with Chrono::Sensor. Chrono::
Sensor communicates with the Chrono dynamics engine to collect
information about how the robot changes the environment and the
environment changes the robot. Then, based on the set of sensors
endowed upon the robot by the user, Chrono::Sensor generates syn-
thetic data from the virtual world. In the case of the camera and lidar
sensors, the synthetic data are generated via GPU-based ray-tracing,
leveraging hardware accelerated support [42], and the headless ren-
dering capabilities provided by OptiX [43]. Ray tracing allows the
sensor models to closely mimic the data acquisition of light-
detecting sensors (i.e., lidar and camera). While our solution
relies on OptiX as a ray-tracing library, OptiX itself does not simu-
late cameras or lidars, but rather allows this simulation framework
to model physics-based data acquisition using ray tracing. For IMU
and GPS data, the Chrono system is queried and the ground-truth
simulated data are augmented to form the distorted and noisy data
that would be generated from a real sensor. The sensor framework
is closely coupled with Chrono, but is extensible through a filter-
graph that is applied to each sensor in a post-process step repre-
sented in Fig. 3. The figure shows the general implementation
applied to each sensor, which follow similar flows to generate
data, augment the data, and then return the data to the user. Each
step can include specific models for the sensors, with an interface
to implement and add custom filters to the framework.
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Fig. 2 Vehicle assembly showing the simulated components of a Chrono::Vehicle suspension

This filter graph is used for implementing specific models, as dis-
cussed in Sec. 3.

Due to the dynamic simulation requiring a much higher update
frequency than sensor simulation (dynamics: order 1 kHz;
sensors: order 10-100 Hz), the sensor framework uses a separate
thread to manage the rendering and synthetic data curation. This
thread manages a process in which multiple dynamics engine simu-
lation steps complete during a single render step, yet there is time
coherency in that neither the dynamics nor the sensing drift apart
in time. An illustration of this is shown in Fig. 4. In this paradigm,
a defined frequency of a sensor, e.g., 50 Hz, will be guaranteed to
maintain 50 Hz in simulation time regardless of whether the compu-
tational bottleneck is sensing or dynamics related. When a system
includes many sensors, and when more graphics hardware is avail-
able, Chrono::Sensor can leverage multiple render threads each
managing a separate GPU for simulating a subset of the sensors
present in the virtual test. This is particularly useful for scenarios
with many agents with numerous sensors that also operate
at various update frequencies in a highly complex virtual

General Sensor
Filter List

Data Generation

v

Data Augmentation

4

Data Access

Fig. 3 Visualization of the filter graph implemented in Chrono::
Sensor. The basic components are data generation (using ray
tracing for camera and lidar), data augmentation (e.g. noise,
point cloud conversion, color space conversion, etc.), and data
access (including lag). Custom filters can be applied in any of
the three above steps.
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environment. Results that characterize that performance and
scaling of Chrono::Sensor can be found in Ref. [44].

For camera and lidar simulation, Chrono::Sensor does not need to
push an image to the display when simulating robots or AVs. Since
no image needs to be rendered on a screen, the screen-based graph-
ics contexts are bypassed altogether, resulting in “headless render-
ing.” Due to the headless nature of Chrono::Sensor, many parallel
simulations can be launched in unison on remote compute hard-
ware. In addition, the framework is developed to be middleware,
allowing the user to link their C++ application directly to Chrono
or make direct calls to Chrono through the PyChrono module
rather than set up a client-server model as would be needed for
game engines like Unity and Unreal. These features are particularly
relevant for reinforcement learning problems, when the computa-
tion associated with the simulation component is intensive and
one would like to launch tens of simulations at the same time,
using a multi-core chip or multiple nodes in a cluster.

3 Sensor Models Implemented in Chrono::Sensor

3.1 The Lidar Model. The lidar sensor available in Chrono::
Sensor is based on scanning time-of-flight sensors frequently used
in automotive and robotic applications. The model implementation
leverages the GPU OptiX library since lidar is fundamentally a ray
tracing measurement. Each ray in the lidar is launched in parallel
using the GPU and is traced with its own origin acting as its sole
light source. The diffuse reflectance model based purely on geom-
etry is used to calculate the relative intensity of the return. The
implementation is flexible enough to allow custom materials that
encode lidar reflectance on a per-object or per-triangle basis, analo-
gous to any camera-based graphics model. For this to be useful, the
reflectance of the object must be measured in the lidar-specific
wavelength and attached to the Chrono body.

To accurately characterize the range and intensity of the lidar
returns, and to generate physically realistic artifacts in the measure-
ments, modeling and configurable quantities are provided by the
user. Foremost are the basic parameters that define the quantity
and update frequency of the lidar data: horizontal field of view, ver-
tical field of view, scanning frequency, channels, angular resolution,
and maximum distance. For modeling temporal artifacts, lag and
collection time parameters are included. Lag defines the delay
between when the data are measured and the time at which the
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Fig. 4 Since camera and lidar are simulated on the GPU at lower frequencies than
dynamics, GPU computation is done in parallel with dynamics time-steps, and data
are returned between time-steps as defined by the lag setting of the sensor. The
hashed boxes refer to Chrono dynamics time-steps, solid boxes refer to Chrono::

Sensing processes.

user receives these data. While this importance is often overlooked
by sensor simulation environments, it can play a critical role when
understanding time-evolutionary behavior of a control stack. The
lidar collection time is the time window over which the data are col-
lected. For a 360 deg scanning lidar, this is typically equal to the
update period or 1/UpdateFrequency.

When the collection window is greater than 0, the movements of
the sensor and scene relative to the sensor are taken into account
using interpolation between keyframes. Building the scene from
keyframes and using interpolation of the sensor position allow
each lidar beam to be traced at the correct instant resulting in fine
precision artifacts such as lengthening and shortening of quickly
moving objects such as vehicles. This interpolation generates a con-
tinuous scan, avoiding non-physical artifacts that are often intro-
duced when using ray-casting from within game engines. A
comparison of the lidar data from an instantaneous model and
from a continuous model is shown in Fig. 5, with data generated
using Chrono::Sensor. The data correspond to a simulated experi-
ment where a lidar is moved at 20 m/s along a path lined with cylin-
drical obstacles of 1 m diameter at 2 m intervals. Since the lidar is
scanning in a counter-clockwise direction, the cylinders on the
right appear shorter than the cylinders on the left.

In addition to temporal distortion modeling, the lidar implemen-
tation allows for beam discretization when the divergence angle of
the lidar rays plays a significant role in the acquired data. This is the
case in many automotive applications where medium to long range
lidar are common. Furthermore, manufacturers can leverage beam
divergence to detect multiple returns, effectively increasing the

10.0
e Instantaneous Lidar
7.5 Temporal Model
e Lidar Position
5.0
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Fig. 5 Example of difference in point cloud when temporal dis-
tortions are considered. The lidar parameters are set for a Velo-
dyne HDL-32E with a frequency of 20 Hz. The lidar is moved at a
constant velocity of 20 m/s in the positive x direction (direction of
arrow) with cylinders of 1m diameter at two meter intervals
placed on either side.
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number of points in the resulting point cloud. An illustration of
this process is shown in Figs. 6 and 7, as modified from
Ref. [45]. This is an effect that is not possible to reproduce effec-
tively with single ray casting. The sampling model is illustrated
in Fig. 8, where the radius (R) of the samples is user-defined.
Since Chrono::Sensor uses GPU-accelerated ray tracing, the dis-
crete samples for each beam are all launched in parallel and
reduced after launch, resulting in a sub-linear scaling of simulation
time with respect to discrete samples.

With the raw data generated, noise is modeled based on the mea-
surement uncertainty. Rather than applying a Gaussian noise inde-
pendently to x, y, z and intensity values of the point cloud, the noise
is applied to the range, angular, and intensity measurements of the
lidar, and mapped into noise on the point cloud. The noise param-
eters can be estimated from the accuracy presented on most lidar
data sheets or through calibration data collected from a known
object.

As a final step, the data are provided to the user based on a param-
eterized lag. This models the processing interval of the lidar sensor
such that the user will obtain data at an appropriately delayed time.
This is a physical artifact with which perception and navigation
algorithms must contend, so to accurately train or evaluate a
control stack, the simulation should account for the time delay of
received data.

The lidar model is set up to allow the physics-based characteris-
tics to be based on quantities found in a datasheet. These can
include frequency, range, channels, angular resolution, and beam
divergence. To further improve the model, noise on the distance
and angular measurements would need calibration data to be esti-
mated. The accuracy of these models can significantly change the
generated point clouds. Accurately capturing noise can improve
the realism of the sensor, but quantification of that improvement
remains an open research question.

Since the virtual environment plays an important role in the simu-
lation of lidar data, the resolution of the 3D environment should be
fine enough to allow geometric characteristics down to the scale of
the beam divergence. Additionally, material properties, which are
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First Return A 4
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S A | .
Time or Range

Lida} Origin
Fig.6 Beam divergence used to detect multiple objects depend-

ing on return mode. Single ray cast would return a single mea-
surement detecting the more distant wall. Modified from Ref. [45].
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Fig.7 Beam divergence used to detect multiple objects depend-

ing on return mode. Single ray cast would return a single mea-
surement detecting the nearer wall. Modified from Ref. [45].
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Fig. 8 Beam discretization model in Chrono::Sensor allows for
a single beam to be traced by a user-defined number of rays,

parameterized by the radius (R) of the samples in the sampling
pattern

the subject of ongoing development, will be introduced to allow the
user to specify reflectance in the lidar wavelength.

3.2 Camera Model. For simulating a typical RGB camera,
Chrono::Sensor takes in several user-defined parameters: image
size (height, width), frequency, horizontal field of view (FOV),
exposure time, lag, and lens model type. These parameters are
chosen for simple lens models as they are typically specified in
camera data sheets, allowing the model to be physics-based rather
than empirically based on calibration data. Additionally, the user
can define computer graphics settings such as super-sampling
factor and ray-tracing depth to improve the rendering fidelity or
render time. Just like the lidar simulator, the camera simulation

method uses the OptiX library, leveraging real-time-ray-tracing
techniques. The rendering accounts for material and lighting of
the environment. The simulation pipeline is built to mirror the
image acquisition process [46], see Fig. 9. Specifically, in terms
of computer graphics models, Chrono::Sensor implements physics-
based rendering which includes reflectance, refractance, and Cook-
Torrance [47] lighting models.

For the lens component of the pipeline, beyond the classical
pinhole model, Chrono::Sensor implements a wide-angle-lens
model based on the geometric considerations of a single spherical
lens. The model draws on an approach discussed in Refs. [48,49],
and follows from

_ tan(r; tan (w))
- tan

(€Y

where o is equal to half of the FOV of the camera, r, is the undis-
torted radius of the pixel, and r, is the distorted radius of the pixel.
To allow this model to be based on an empirical FOV, this equation
is modified to form the following

tan(r; tan (w))
r = \/(x% +y), nE=———
tan w

tan( tan (o))
S=—"——", 2 s V2
tan rs rs

(€3

X112 yira
Xy =——

where x; and y; are the horizontal and vertical coordinates of undis-
torted radius ry, and x, and y, are the horizontal and vertical coor-
dinates of distorted radius r,. Since the model augments a
ray-tracing operation, the distortion is applied directly to the direc-
tion of launched rays to minimize post-processing overhead. An
example of the FOV distortion is shown in Fig. 10 with @ equal
to 0.704. The example shows that the horizontal FOVs for both
lens models are identical.

To account for another important distortion, motion blur is fac-
tored in at the ray-tracing level. To mimic the cause of the distor-
tion, the interval over which data are collected is determined by
the user-defined exposure time. Using keyframes for the scene
and camera position, each pixel is super-sampled with random
launch times within the exposure window. Based on the ray’s
random time, the scene can be queried through the entire exposure
time, interpolating the entire set of object positions from the scene
and camera keyframes. This method introduces blur that captures
the effects of a moving camera, as well as changes or movements
in the environment.

To model the image measurement noise, Chrono::Sensor can add
pixel-wise intensity-dependent noise, motivated by the EMV A stan-
dard [50] and subsequent variations, including the model described
in Ref. [51] by

pre-amplifier
post-amplifier

2 Pt
o(p)t o
A(p) = = + ;§d+ Gine 3)

where p is the individual pixel; 6°(p) parameterizes the zero mean
Gaussian distribution used for the specific pixel; ®(p) is the
radiant flux for the pixel; ¢ is the exposure time; 62, is the read
noise variance; o3, is the quantization variance produced by
analog to digital conversion; and g is the user defined or computed

Image
Scene —» Optics Sensor —» Signal —» Encoding
Processor
Weather Lens Distortion Measurement Demosaicking Compression
Lighting Lens Flare noise Color Balancing

Auto exposure

Fig.9 The image acquisition process, according to Ref. [46]. The camera simulation pipe-
line mirrors the same components, and builds off models of each component.
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Fig. 10 Example of the difference between images generated
with pinhole model and FOV lens model in Chrono::Sensor:
(a) image generated with the pinhole lens model and (b) image
generated with the field-of-view lens model

gain. The product ®(p)r is then the photon intensity measured by
the pixel and proportional to the preprocessed image intensity.
With constant gain g and fixed exposure time ¢, the model
reduces to a zero-mean Gaussian parameterized by the intensity
of the pixel and two user-defined or measured parameters:

o(p) = o (p) + o3 )

where o, and o, model the linear dependence of variance on image
intensity. Equation (4) is the explicit model implemented in
Chrono::Sensor. The parameters to this model can be calibrated
from data measurements. Development is ongoing to implement
an EMVA-compliant model which can be parameterized based on
manufacturer-specified values provided in the camera data sheet.
While these noise models account for the sensor-level measure-
ment error, they do not factor in the effects of the image signal

processor (ISP), which often correlates the noise spatially, tempo-
rally, and chromatically [52-54]. Figure 11 illustrates why the
EMVA noise model, while accurate at the image sensor level,
does not fully model the final noise on a processed image such as
an RGB JPEG image. Further work will focus on implementing
components of the ISP to correctly augment the standard noise,
and validate the final model.

As a final step in the camera simulation process, the data are
made available to the user only after the lag time has elapsed.
Similar to a lidar, the camera processes the measured data and pro-
vides sensed information to the user after a finite amount of time.
This is modeled in Chrono::Sensor to account for inevitable tem-
poral error that may factor into perception algorithm choices and
pose estimation.

Many of the camera model parameters can be found in sensor
data sheets including field-of-view, frequency, resolution, and
exposure time. For other parameters such as noise levels for the
implemented models, calibration experiments often need to be per-
formed. A common noise calibration method is the mean-image
method to estimate a noise distribution that can be used to fit a
Gaussian or intensity-dependent model. An example noise estima-
tion was performed in a related work [44].

The camera model relies on having a sufficiently realistic virtual
environment, with 3D geometry of a resolution and fidelity similar
to that found in the gaming community. For both lidar and camera,
the visual properties must be specified to the same level as a video
game, including colors, reflectance, refractance, texture and normal
maps, and other lighting characteristics. The precise level of sensor
realism is a function of both the virtual environment and the sensor
model. Additionally, the intended use case (i.e., perception training,
development testing, algorithm certification, etc.) will drive the
level of realism required.

3.3 GPS and IMU. The GPS and IMU models are parameter-
ized by a set of intrinsic values including update frequency, collec-
tion time, and lag. These sensors can be attached to any object
within the Chrono simulation and can have an arbitrary attachment
position and orientation. Therefore, these sensors can be placed on
or in any location of a vehicle or robot including wheels, robotic
arms, etc. These sensors make use of the dynamic quantities com-
puted for the body by the dynamics engine to determine the propri-
oceptive data of interest. Even though GPS and IMU do not have a
direct equivalence to the exposure time of a camera, a collection
window is still used as a parameter for the IMU and GPS sensor
models. This helps in two respects. First, when the sensor does
signal collection over a finite amount of time as with GPS, the simu-
lation can capture this trait. Second, because the simulation steps
through time using numerical integration, the acceleration values
can often be much noisier than in reality. Then, the collection
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model [50] and the ISP example described in Ref. [55].
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Fig. 12 Demonstration of sensors used to control a scaled
autonomous vehicle in simulation. The vehicle uses lidar data
to navigate a closed course without prior knowledge of the track.

Fig. 13 Demonstration of sensors used to control a scaled
autonomous vehicle in simulation. While this image is not used
in control, it represents a gray-scale image from a front-mounted
camera that could be used in navigating the course.

time provides an opportunity to smooth the ground truth data used
in the sensor model.

While all sensors allow the user to implement a customized post-
processing noise model, both the GPS and IMU allow for the addi-
tion of simple parameterized Gaussian drift models following

wout=w+na+bt’ r]aNN(”a’ O'i)

dt
bi=by + 1y 1y~ N(#h, b%/%)

where w,,, is the final measure of angular velocity produced by the
gyroscope, @ is the ground truth angular velocity, and u,, pp, 04
by, dt, and 1, are user-defined parameters of the noise model. The

Fig. 15 The vehicle shown is operated by a human in the loop
and serves as a data collection vehicle within the virtual environ-
ment. The third-person perspective is for reader context; it is
also used by the student driving the vehicle in the virtual neigh-
borhood of Madison, WI.

Fig. 16 The front facing camera, in combination with other
cameras and lidars, can be used as an input for
software-in-the-loop simulation to test autonomous control
algorithms

noise model for the accelerometer follows that for the gyroscope
while additionally accounting for the gravitation offset. The model
is given by

Aout =(a_g)+’7a + b, M NN(”a’ gi)

dt (5)
bi=bi_1+n, n,~N|u,, b E

where a,,, is the final measure of translational acceleration produced
by the accelerometer, a is the ground truth translational acceleration,
g is the gravitational constant, and p,, pp, 0,4, by, dt, and 1, are user-

Fig. 14 Scaled autonomous vehicle navigation demonstration. The lidar-generated point cloud shown is used by the
vehicle to navigate the course. For user readability, the intensity encodes height in the point cloud (the intensity used for

visualization is not associated with the lidar model).
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Fig. 17 The illustrated point cloud shows data collected from the intersection and same point in time as in Figs. 15
and 16. The height of the cloud is encoded as color in the image for readability. The intensity of the returned signal is
also collected, but not plotted here.
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Fig. 18 The lidar point cloud is shown from a birds eye view and displays the information
from the environment that can be seen by the sensor including trees, buildings, and roads
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defined parameters for the accelerometer’s noise. As show in Ref. [19],
this drift model closely accounts for the noise in an IMU as recorded on
both the accelerometer and gyroscope. While GPS noise can be signif-
icantly more complex than a Gaussian distribution, the use of OptiX
allows for continued development of a more sophisticated model
that includes the number satellites visible to the receiver as determined
by path tracing methods similar to the model discussed in Ref. [56].
However, since many correction algorithms are often applied to posi-
tional estimates, the higher-fidelity model discussed in Ref. [56] could
provide artifacts that have been removed by an on-sensor chip.

The sensor model parameters such as update frequency can be
found in the sensor datasheet. For GPS and IMU noise models,
these are inherently empirical and require calibration or noise estima-
tion. Steady-state noise can be calibrated using stationary sensors,
and using statistical methods and curve fitting to approximate
noise components such as standard deviation and time constants.

4 Demonstration of Chrono::Sensor

Two examples are provided herein to show Chrono::Sensor at
work. The first is a scaled version of an autonomous vehicle that nav-
igates a closed course using only a lidar mounted on the top of the
vehicle. The car has no prior knowledge of the course and can nav-
igate safely between the barriers. A third person view of the car and
course can be seen in Fig. 12. A front facing gray-scale camera is
mounted on the front of the car (Fig. 13), yet in this setup its
output is not used by the control algorithm (the control policy
relies on the lidar information only). The implemented control algo-
rithm parsed the point cloud into clusters representing the right and
left barriers, found a center point as a target location, and used a
PID steering controller to navigate to the target. This is not intended
to demonstrate a state of the art controller, but rather flex the sensor
simulation framework for demonstration purposes. The point cloud
generated by the lidar is shown in Fig. 14 and matches the same
frame shown by both cameras. Both the cameras and lidar are simu-
lated in Chrono::Sensor. The vehicle is modeled using Chrono::
Vehicle with parameters based on a remote control car that has
been modified to drive autonomously.

The second demonstration pertains to a sedan in a replica envi-
ronment. Specifically, through collaboration with Continental
Mapping [57], an airplane flying over Madison, WI, generated a
replica of a neighborhood in which the virtual vehicle was driven
around (this is not an AV, details below). The human-driven
vehicle is equipped with a simulated camera and lidar for generating
and saving data that can be used offline for evaluating perception
algorithms. The collected data are shown in Figs. 16-18.

Figure 15 provides a third-person perspective of the ego vehicle.
The vehicle was driven by a student via a Logitech console using
the data stream from this very camera for human-in-the-loop
control. The data shown in Fig. 16 represent data that could be used
for software-in-the-loop control of the vehicle, or for offline training
or evaluation of perception algorithms. This camera is placed in the
simulation and attached to the hood of the ego vehicle.

Data from a lidar attached to the roof of the virtual vehicle are
shown in Figs. 17 and 18. The point cloud is colored by vertical posi-
tion of each point (height of the point) for readability. The data are
aligned with the vehicle coordinate system with X-forward, Z-up,
and Y-left. The full videos for both demonstrations can be viewed
at [58] under the “Autonomous Vehicles” heading.

5 Conclusion and Future Work

This contribution outlines the Chrono::Sensor framework for
software/hardware/human-in-the-loop simulation of robots and
AVs. The sensor models represent a foundational component of
the Chrono simulation platform endowing it with an expandable
sensing solution that complements its multi-physics simulation
engine. By leveraging ray-tracing techniques for light-based
sensing, high-fidelity models and methods are implemented that
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mimic the light-acquisition process of real sensors. The IMU and
GPS models can augment ground-truth data that comes from the
Chrono dynamics engine with realistic noise and lag. The lidar
and camera models discussed herein include noise, distortion, and
lag. Through Chrono, Chrono::Sensor is available in a public repo-
sitory as open-source under a BSD3 license for unfettered use/mod-
ification/redistribution. The included demonstrations show example
data generation for autonomous vehicles simulated in Chrono with
Chrono::Vehicle and Chrono::Sensor. Chrono::Sensor has also
been used in an off-road AV navigation scenario in Ref. [41].
The source code is freely available [3,59] along with documentation
[60] and tutorial/demo examples [61]. The implementation and
models herein can be modified and used in external software, but
are designed primarily to be a simulation component in Chrono.
Chrono as a whole, including Chrono::Sensor are designed as mid-
dleware and can be used or called from external frameworks.

The ongoing research associated with this framework seeks to
tackle both the breadth and depth of sensing in order to facilitate
the simulation of robotic systems and on/off-road autonomous vehi-
cles. To support a broader set of robotic systems, future work will
seek to expand the collection of available sensors, to include stereo
and omnidirectional cameras (commonly used in robotic systems),
encoders, odometers, and magnetometers. For on/off-road AVs, we
plan to add exteroceptive sensors such as radar and infrared.

Future work also includes the improvement of the realism of the
sensors discussed herein, an effort motivated by a desire to reduce
the simulation-to-reality gap. Characterizing and closing the
sim-to-real transferability gap will continue to be a paramount chal-
lenge to ours and any other simulation-in-robotics effort. Important
effects that could significantly impact sensing realism, particularly
for off-road scenarios, are tied to environmental attributes, e.g.,
weather conditions, dust, smoke, foliage, haze. These are beyond
the scope of this paper and regarded as directions of future research.

While the underlying ground-truth measurements of the sensor
models have been verified within the simulation framework [44],
an important path of future work pertains to validating the sensor
models against real-world data, and comparison with other sensor
simulation frameworks. Presently, this calls for more research to
understand and develop methods to meaningfully compare sensor
data in a manner that accounts for the intended use of that data
(sometimes sloppy sensing can be good enough). In addition to
basic modeling research, ongoing work aims at improving the per-
formance and scalability of the simulation framework to provide
“as-fast-as-possible” simulation; and increasing the support for
deformable objects (the geometries that need to be rendered
change in time) to allow for robotic and AV simulation that
includes, for instance, soft-robots or deformable terrains.
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