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Abstract—

We prove a tight uniform continuity bound for the
conditional Shannon entropy of discrete finitely supported

random variables in terms of total variation distance.

I. INTRODUCTION

There has been significant work towards understand-
ing the interplay between the Shannon entropy and
various distance measures on the probability simplex [1],
[2], [3]. In conjunction, remarkable progress has been
made in the study of the continuity of the von Neumann
entropy, or matrix entropy, versus trace distance [4], [5],
[6]. In both cases, several proofs of a tight uniform
continuity bound have been presented [1], [2], [7], [5],
[8], [9]. On the other hand, uniform bounds, which
are not tight but are independent of the size of the
conditioning system, were proven for the conditional
Shannon and von Neumann entropies in [10], [8]. In this
note, We present a proof of a tight uniform continuity
bound for the conditional Shannon entropy of discrete
finitely supported random variables in terms of total
variation distance.

Let X := {1, 2,..., |X |} and Y := {1, 2,..., |Y|}. Let
PX×Y denote the probability simplex with |X ||Y| atoms.
The Shannon entropy of a random variable X ∼ pX is
defined as [11]

H(X) := −
∑
i∈X

pX(i) log pX(i). (1)

Here, all logarithms are meant in base 2. Similarly, for
two jointly distributed random variables (X,Y ) ∼ pXY ,
the joint Shannon entropy is given by

H(XY ) := −
∑
i∈X

∑
j∈Y

pXY (i, j) log pXY (i, j), (2)

and the conditional Shannon entropy H(X|Y ), also
known as the equivocation in X given Y , is defined as

H(X|Y ) : = H(XY )−H(Y ) (3)

=
∑
j∈Y

pY (j)H(X|Y = j) (4)

= −
∑
i∈X

∑
j∈Y

pXY (i, j) log
pXY (i, j)

pY (j)
. (5)

Given two probability distributions pXY , qX′Y ′ ∈
PX×Y , the total variation distance between them is given
by

TV(pXY , qX′Y ′) =
1

2

∑
i∈X

∑
j∈Y
|pXY (i, j)− qX′Y ′(i, j)|.

(6)

A bona fide metric on the probability simplex, it captures
the distinguishability of any two probability distributions
[12].

There are at least two reasons to want the sharpest
bounds on the variation of entropic quantities in terms
of relevant distance measures. The first reason is that in
practice we only have access to estimates of distribu-
tions, never the true distribution, of any given random
variable. Second, in settings where communication rates
can be evaluated only for a special class of distributions,
it pays to have tight bounds on the error incurred by
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approximating the rates of arbitrary distributions by the
ones of the closest members of said special class [13],
[14], [15].

Main Result: Let ε ∈ (0, 1 − 1
|X | ] and pXY , qX′Y ′ ∈

PX×Y be such that TV(pXY , qX′Y ′) ≤ ε. The following
inequality holds

|H(X|Y )−H(X ′|Y ′)| ≤ ε log (|X | − 1) + h(ε), (7)

where h(·) is the binary entropy function. Moreover, the
inequality is tight. This means that for all ε ∈ (0, 1− 1

|X | ],
there exists a pair of probability distributions on X ×Y
such that the total variation distance between them is ε
and (7) is saturated.

The mechanics of the proof are based on G-
majorization, which refers to a group-induced preorder-
ing on a vector space [16], [17]. It is a generalization
of Schur majorization, where the group in question is
the symmetric group. That is, we say that the vector
qX′Y ′ majorizes the vector pXY whenever pXY is in
the convex hull of the orbit of qX′Y ′ under the action of
the symmetric group, where the action is thought of in
terms of the natural permutation representation. Since
the Shannon entropy is strictly concave and invariant
under the action of the symmetric group, this implies
H(XY ) ≥ H(X ′Y ′), i.e., the Shannon entropy is
strictly Schur-concave.

Equivocation is not Schur-concave. While it is con-
cave, it is not invariant under the action of the symmetric
group. It is, however, invariant under the action of a
proper subgroup of the symmetric group. We use this
invariance to prove the present result.

II. PROOF

Consider the set {pXY (i, j) | i ∈ X ; j ∈ Y}, where
pXY is a bivariate probability distribution. The condi-
tional entropy H(X|Y ) associated with pXY is invariant
under permutations of j indices, as can be seen from (4).
Furthermore, it is invariant under exchanges of the form
(i1, j) � (i2, j) ∀ i1, i2 ∈ X and j ∈ Y . These are the
symmetries of the equivocation in X given Y. Denote
this subgroup of the symmetric group by SX|Y .

We note that the bound is monotonic in ε for
ε ∈ (0, 1 − 1

|X | ], and so we are free to take
TV(pXY , qX′Y ′) = ε. Moreover, we assume without loss
of generality that H(X|Y ) ≥ H(X ′|Y ′). We proceed in
three steps.

A. Reordering

First, we order the components of the bivariate prob-
ability distributions in a suggestive way. We arrange the
components to be in blocks of |X | components that share
the same Y label. For definiteness, we order the |Y|
blocks such that qY ′(j) − pY (j) is in a non-increasing
order. For the block labeled by j, we define the two sets:

Ij = {i | qX′Y ′(i, j) ≥ pXY (i, j)}, (8)

Icj = {i | qX′Y ′(i, j) < pXY (i, j)}. (9)

Remark that either of the two sets could be empty, but
not both. Within the jth block, if both Ij and Icj are
nonempty, put the elements of Ij ahead of those in Icj .
That is, we relabel the components so that i < i′ for all
i ∈ Ij and i′ ∈ Icj . Next, we order the elements of Ij
such that qX′Y ′(i, j) is non-increasing in i. We do the
same for the elements of Icj .

B. Walking

The second step involves an optimized form of a proof
technique due to Pinelis (see the third answer here [7]).
We walk the two probability distributions across the
probability simplex until H(X ′|Y ′) = 0. In the process,
we take care that the difference of equivocations does
not decrease and that the total variation distance does
not increase.

We start by zooming into the jth block. If Ij is not
empty, then we make the following replacements:

qX′Y ′(1, j) 7→ qX′Y ′(1, j) + [qX′Y ′(i, j)− pXY (i, j)],

(10)

qX′Y ′(i, j) 7→ pXY (i, j), (11)

consecutively for each i ∈ Ij \ {1}. If Ij consists
of a single element, then such replacements need not
be done. By design, these replacements do not affect
total variation distance. To see that H(X ′|Y ′) did not
increase, we note that the old probability vector is in
the convex hull of the orbit of the new vector under
the action of SX|Y . Put another way, the probability
weights, conditional on j, are now more concentrated
than before. After these replacements are made, the
following inequalities will hold:

qX′Y ′(1, j)− pXY (1, j) ≥ 0, (12)

pXY (i, j)− qX′Y ′(i, j) ≥ 0, (13)
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for each i ∈ X \ {1}.
Next, we make H(X ′|Y ′ = j) zero by transferring

probability weights in the block from the bottom to the
top. Specifically, we make the following replacements:

qX′Y ′(1, j) 7→ qX′Y ′(1, j) + qX′Y ′(i, j), (14)

pXY (1, j) 7→ pXY (1, j) + qX′Y ′(i, j), (15)

qX′Y ′(i, j) 7→ qX′Y ′(i, j)− qX′Y ′(i, j), (16)

pXY (i, j) 7→ pXY (i, j)− qX′Y ′(i, j), (17)

consecutively for each i ∈ X\{1}. Note that the transfers
were made in both probability distributions to ensure that
the total variation distance remains the same. Observe
what happens when a probability weight s, suitably small
and non-negative, is taken from outcome (i, j) and given
to outcome (1, j) in both probability distributions. The
difference of entropies changes by the following amount:

{[η(qX′Y ′(1, j) + s)− η(pXY (1, j) + s)]

− [η(qX′Y ′(1, j))− η(pXY (1, j))]}
+ {[η(pXY (i, j))− η(qX′Y ′(i, j))]

− [η(pXY (i, j)− s)− η(qX′Y ′(i, j)− s)]},

where η(x) = x log x. Since it is convex and inequalities
(12) and (13) hold, the two differences in curly brackets
are not negative. Hence, we can set qX′Y ′(1, j) = qY ′(j)

and qX′Y ′(i, j) = 0 for i 6= 1. This implies that
H(X ′|Y ′ = j) vanishes.

Now, say Ij is empty. Then it holds that qX′Y ′(i, j)−
pXY (i, j) < 0, for all i ∈ X . It also holds that
qX′Y ′(1, j) ≥ qX′Y ′(2, j) ≥ ... ≥ qX′Y ′(|X |, j). Our
goal is still to take H(X ′|Y ′ = j) to zero. To do
this, we increase qX′Y ′(1, j) by transferring in prob-
ability weights from the rest of the outcomes in the
block. As explained before, such transfers can only de-
crease H(X ′|Y ′). Furthermore, as long as qX′Y ′(1, j)−
pXY (1, j) < 0, these transfers can be done without
affecting the total variation distance. If at any point
qX′Y ′(1, j) − pXY (1, j) = 0, we stop as (12) and (13)
now hold for this block. In such a case, we start the
process mentioned in the previous paragraph. Otherwise,
we keep going until qX′Y ′(1, j) = qY ′(j).

After all blocks have been processed, we can assume
without any loss of generality that qX′Y ′(i, j) = 0 for
all i 6= 1. With this in mind, we subject both probability

distributions to a stochastic process that averages over
all the blocks. Specifically,

E : νXY (i, j) 7→
1

|Y|
∑
j∈Y

νXY (i, j). (18)

The stochastic map E is a convex combination of el-
ements in SX|Y . This implies that H(X|Y ) will not
decrease. Of course this processing does not change
the fact that H(X ′|Y ′) = 0 since only qX′Y ′(1, j) are
nonzero. Recall that the total variation distance between
two distributions does not increase under stochastic
maps. Note that the outputs of E are always product
distributions with a uniform marginal on Y . As for X ,
we have the following marginals

qX′(1) = 1 ≥ pX(1) ≥ 1− ε (19)

qX′(i) = 0 ≤ pX(i), (20)

for i ∈ X \ {1}.

C. Estimating

Since the two distributions can be assumed to be
product distributions on X ×Y , then from here one can
invoke the bound for the unconditional case [1] to finish
the proof. For the sake of completeness, we include the
following rather standard estimates.

Given distributions as in (19) and (20), we can upper-
bound H(X) in the following way:

H(X) = −pX(1) log pX(1)−
∑
i6=1

pX(i) log pX(i)

≤ −pX(1) log pX(1)

−
∑
i6=1

(1− pX(1))

|X | − 1
log

(1− pX(1))

|X | − 1

= (1− pX(1)) log (|X | − 1) + h((1− pX(1)))

≤ ε log (|X | − 1) + h(ε)

where the first inequality follows because the vector
( 1−pX(1)
|X |−1 )

|X |
i=2 is (Schur) majorized by (pX(i))

|X |
i=2. The

second inequality comes from the monotonicity of the
bound. This completes the proof.
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To see that the bound is tight, let ε ∈ (0, 1 − 1
|X | ]

be given and consider the following probability distribu-
tions.

qX′Y ′(1, 1) = 1 (21)

pXY (1, 1) = 1− ε and pXY (i, 1) =
ε

|X | − 1
,

(22)

for i ∈ X \{1}. Evidently, the two are separated by ε in
total variation distance and the associated equivocations
saturate the bound.

III. CONCLUDING REMARKS

We have presented a proof of a tight uniform conti-
nuity bound for the conditional Shannon entropy. The
bound is independent of the alphabet size of the con-
ditioning system. However, we have assumed in the
proof that the conditioning system has finite support. It
would be interesting to prove the bound without such an
assumption, but we leave that as an open problem.

The proof depends crucially on the invariance of
H(X|Y ) under the action of SX|Y . Various forms of
conditional Rényi entropies share this invariance [18],
[19]. More generally, entropic quantities of interest are
invariant under the action of some subgroup of the
symmetric group. For example, the mutual information
I(X;Y ) = H(X)+H(Y )−H(XY ) is invariant under
”local” permutations of indices, i.e., tensor products of
permutations of X and Y labels. We believe such sym-
metries provide a path towards a better understanding of
the behaviors of the corresponding quantities in terms of
continuity and beyond.
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