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Abstract—Over the past few decades, there have been many
studies of human-human physical interaction to better under-
stand why humans physically interact so effectively and how
dyads outperform individuals in certain motor tasks. Because
of the different methodologies and experimental setups in these
studies, however, it is difficult to draw general conclusions as
to the reasons for this improved performance. In this study, we
propose an open-source experimental system for the systematic
study of the effect of human-human interaction, as mediated by
robots, at the ankle joint. We also propose a new framework
to study various interactive behaviors (i.e., collaborative, coop-
erative, and competitive tasks) that can be emulated using a
virtual spring connecting human pairs. To validate the proposed
experimental framework, we perform a transparency analysis,
which is closely related to haptic rendering performance. We
compare muscle EMG and ankle motion data while subjects
are barefoot, attached to the unpowered robot, and attached to
the powered robot implementing transparency control. We also
validate the performance in rendering virtual springs covering a
range of stiffness values (5-50 Nm/rad) while the subjects track
several desired trajectories (sine waves at frequencies between 0.1
and 1.1 Hz). Finally, we demonstrate the feasibility of the system
in studying human-human interaction under different interactive
behaviors.

Index Terms—Physical human-robot interaction, haptics and
haptic interfaces, human-robot teaming, human factors and
human-in-the-loop.
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I. INTRODUCTION

UMANS often physically interact with one another to
accomplish tasks that are difficult to do alone (e.g.,
moving a mattress) or to exchange information for learning
new tasks (e.g., athletic training, rehabilitation). Interestingly,
it has been shown in many studies that the physical inter-
action between human pairs leads to improvements in the
shared task performance and/or in individual motor learning
when compared to performing the same task alone [1]-[15].
The underlying mechanisms governing motor performance
improvement in human-human physical interaction have drawn
the interest of many researchers during the past few decades.
Early studies were conducted using simple passive me-
chanical devices such as a two-handled crank where physical
information was directly exchanged between pairs [8], [9] or
using sensors to quantify a pair’s ability to replicate forces they
have perceived with their index fingers [10]. Recently, more
complex dyadic behaviors have been explored using robotic
devices to control the interaction dynamics between two or
more humans [1]-[7], [11], [12]. Virtual connections between
humans are typically modeled as springs or dampers.

With the help of robotic devices, several studies have been
conducted to investigate the effect of physical interaction
on shared motor tasks [1]-[3], [6], [11]. Ganesh et al [1]
showed that when human pairs collaborate to track an identical
moving target on a monitor with separate manipulators that
are virtually connected, the interaction is mutually beneficial,
specifically, both interacting partners improve shared task per-
formance and individual motor learning. Similarly, in the study
of Takagi et al. [2], robotic devices were used to investigate
collaborative physical interaction when two participants track
a target using wrist flexion/extension for varying virtual stiff-
nesses. It has been shown that tracking performance increased
for the less skilled partner, who had higher tracking error, at
the cost of the skilled partner’s muscular effort. A follow-
up study by Takagi et al. [11] showed that when multiple
(i.e., triad, tetrad) individuals were connected during a 2D
horizontal planar tracking task where individuals were asked
to track targets on a computer screen with haptic devices,
the interaction benefits increased with the group size when
additional individuals were virtually connected.

Different results have been presented related to the effects of
physical interaction on task performance and motor learning
[3], [6]. Che et al. [3] reported that for a tracking task in
which the pairs were asked to track a target with linear move-
ment, while holding manipulators, the stiffness of the virtual
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connection influences the task performance and individual
motor learning. While stiffer connections led to improvements,
weaker connections did not lead to significant improvement in
terms of task performance or motor learning. Another study
by Beckers et al. [6] showed that for the tracking of stationary
targets with cursors controlled by hand-held manipulators,
task performance with physical collaboration was significantly
better, however, physical interaction did not improve individual
motor learning.

Discrepancies in experimental tasks and setups make it
difficult to generalize across published results, yielding few
clear conclusions as to how motor improvement are obtained
through physical interactions. There are also limited studies
that compare how different interactive behaviors (i.e., collab-
orative, cooperative, or competitive tasks) and the characteris-
tics of the virtual connection may affect task performance and
motor learning. Therefore, it is important to systematically
investigate the effect of each interaction variable.

To this end, we propose an open-source framework that
will be shared with the community to study different forms
of dyadic interaction (i.e., different interaction behaviors and
level of virtual connections). This will allow others to repro-
duce the results presented in this study and to build upon the
proposed framework. We also designed our study based on
lower extremity motor tasks to investigate if and how motor
improvements, presented in previous upper extremity studies,
can be generalized and translated to the lower extremity. We
first introduce the implementation of an interaction torque
controller. We then introduce the implementation of a haptic
rendering environment that is used to provide virtual connec-
tions between two ankle robots. With the haptic rendering
environment, we emulate three types of interactive tasks —
collaborative, cooperation, and competition tasks — using
different interaction spring parameters. Finally, we showcase
the framework with three different interactive conditions and
analyze how different interactive behaviors a may effect task
performance.

II. INFRASTRUCTURE DEVELOPMENT
A. Description of the M1 ankle rehabilitation robot

We used commercially-available ankle robots (M1, Fourier
Intelligence, China) that were developed to provide ankle joint
rehabilitation for patients with stroke or spinal cord injury
(SCI) as shown in Fig. 1A. The M1 device consists of an AC
servo motor (SMC60S, Kinco Motor, China) with a 69:1 gear
box (MF60XL2, VGM, Taiwan) that can apply motor torque
to the ankle joint; a torque sensor (JNNT-F, JN, China) that
can be used to measure the interaction torque between the
user’s ankle joint and the M1 device; and a magneto-electric
encoder that can be used to measure the angular position of
the ankle joint. An open-source robotic development software
stack called CORC [16] was developed and used for real-time
control and feedback signal visualization.

B. Implementation of an interaction torque controller

An interaction torque controller was developed to render
high-resolution virtual physical environments during dyadic
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Fig. 2. Scheme of multi-M1 interaction.

interaction and to allow transparent motion for individual use.
This controller has a feedforward term to compensate for mod-
eled frictional and gravitational terms, and a feedback term
that depends on the interaction torque error to compensate for
model discrepancies and unmodeled dynamics. The interaction
torque control loop is shown in Fig. 1B. The torque command
(Temd), used to control the AC servo motor of the M1 device,
is calculated by the sum of the feedforward (7) and feedback
(1) terms as follows,

Temd = T + Ttp (D

The feedforward term (7r) was estimated by modeling the
dynamic and static friction of the system using the following
equation,

it = Pi[msgsin(6) + milg cos(0) + cof + ¢ sgn(d)]  (2)
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Fig. 3. Framework of three interactive behaviors. Note that the rest length of all of the springs is zero. (A) During collaborative behaviors, the dyads attempt to
track identical desired trajectories and there is an attractive spring that connects the pair. (B) During cooperative (teacher-student) behaviors, the dyads attempt
to track identical desired trajectories and there is a unidirectional attractive spring so that only one participant can affect the other. (C) During competitive

mode, each participant attempts to track a different trajectory. There is an attractive spring between the two participants so that each participant impedes the
other participant. The red arrows represent force induced by the virtual springs.

where 6 is the angular position, 0 is the angular velocity, ¢ is
the dynamic friction coefficient, ¢; is the static friction, m is
the mass of the footplate, s and ! are the moment arms, g is
the gravitational acceleration, and Py is a constant gain. Note
that 0 is defined with respect to the axis defined in Fig. 1A.
To estimate cy, c1, s, and m, we measured the M1’s trajectory
in response to given torque profiles and used MATLAB’s
lsgcurvefit function to fit the parameters. We introduce a
constant gain, Py, to allow a percentage of the plant dynamics
to be compensated as part of controller tuning.

The feedback term (7y,) was calculated using the following
equation,

T = P + Iy / ATt + Dy AT 3)

where \*" is the interaction torque between the user’s ankle
joint and the M1 device, and Py, I, and Dy, are constant
gains.

After identifying the coefficients of 73, we first heuristically
tuned the proportional gain of the feedforward term P, then
the proportional P, derivative gain Dy, and integral gain
I, of the PID controller to minimize resistive torque and
oscillation felt by the user. The feedforward model parameters
and feedback PID gains are summarized in Table 1.

TABLE I
PARAMETERS OF THE FEEDFORWARD AND FEEDBACK MODEL.

Category Symbol Value [Unit]

Static friction co 0.27 [Nm]
Dynamic friction coefficient c1 0.28 [Nm/rad]

Foot plate mass m 1.08 [kg]
Constant feedforward term gain P 0.7

Proportional gain of the feedback loop P 0.26 [Nm/rad]
Integral gain of the feedback loop Ity 0.05 [Nm/rad/s]
Differential gain of the feedback loop Dpy 0.02 [Nm*s/rad]

C. Implementation of a haptic virtual environment

Two M1 devices were connected to the same PC where
all the computations for interaction torque control and virtual

rendering. This additional node subscribes to the states of the
robots, calculates the desired interaction torque for each robot
according to the virtual environment dynamics, and publishes
those values. Robot nodes subscribe to their corresponding
desired interaction torque messages and use them as the
references for their interaction torque controllers. This scheme
is presented in Fig. 2.

To obtain virtual connections between two M1 devices, we
calculated the desired interaction torque A% that depends on
spring stiffness (Kyiy) and angular position of each user (64,
fg). The taxonomy proposed by Jarrasse et al., was adopted to
design the framework of interactive behaviors: collaboration,
competition, and cooperation [17]. Each interactive behavior
is defined and implemented as follows (see Fig. 3):

o Collaboration: Both users jointly try to solve a common
problem. This is implemented with an attractive virtual
spring between the ankle angular position of the two
users. User A is pulled towards the angular position of
User B and User B is pulled towards User A:

A K0y~ 8) 1,7 € (AB, i £

Both users have identical desired trajectories.

Cooperation (teacher-student): Different roles are as-
signed to the users prior to the beginning of a task. The
teacher can correct the student. This is implemented with
a unidirectional virtual spring between the ankle angular
position of the two users. User B is pulled towards the

angular position of User A, but User B cannot affect User
A:

“4)

X =0, A" = Kyin(0a — 08) )

Both users have identical desired trajectories.

o Competition: Both users focus on their own action and
effort, and if necessary impede the other’s performance.
This is implemented by providing conflicting desired
trajectories to each user as shown in Fig. 3C. Similar to
collaboration, a virtual spring between the ankle angular
position of the two users is implemented.

environment rendering were done. M1 robots were run as local
ROS nodes under the application layer of CORC, and another
local node was created for the virtual physical environment

The development code to implement the interaction torque
controller and haptic virtual environment can be accessed at
https://github.com/ywen3/CANOpenRobotController.
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D. Validation of system transparency

The transparency (i.e., dynamic back-drivability) of the M1
device with the interactive torque controller was validated.
The electromyography (EMG) signals of the ankle flexor and
extensor muscles and the angular position of the ankle joint
of three healthy participants (mean * standard deviation; age
27.3 £ 3.5 years, height 176.3 £ 4.9 cm, body mass 73.3
+ 10.6 kg, 3 males) were analyzed during cyclical ankle
movements at 1 Hz through the full ankle range of motion
(ROM). Participants performed the cyclical movement based
on audio cue provided by a metronome. Three conditions were
compared: (1) barefoot (BF') with no robot, as a baseline; (2)
wearing the M1 with no power (M lopp); and (3) wearing
the M1 with transparency control (M 1on). For M1y, the
desired interaction torque (\%) was set equal to zero. Two
bipolar EMG electrodes (MA400 EMG Systems, Motion Lab
Systems, USA) were placed on the belly of the medial gastroc-
nemius (GAS) and tibialis anterior (TA) muscles after cleaning
the skin with alcohol. The angular position of the ankle joint
was measured using a motion capture camera system (6 Hawk
motion capture cameras, Motion Analysis, USA). The EMG
signals were sampled at 1500 Hz and the motion data was
sampled at 100 Hz. Raw EMG signals were bandpass filtered
to reduce the influence of motion artifacts and high-frequency
background noise (6th-order Butterworth filter with a cutoff
frequency of 10 and 500 Hz) and a notch filter to remove
power-line interference (2nd-order IIR filter at 60 Hz with
a bandwidth of 1 Hz) [18]. We calculated the mean absolute
value (MAV) of the rectified and low-pass-filtered signals (6th-
order Butterworth filter with a cutoff frequency of 10 Hz) to
compare the three conditions. The high-frequency noise of the
motion data was filtered using a 6th-order Butterworth filter
with a cutoff frequency of 6 Hz [19].

E. Validation of the haptic rendering environment

To validate the performance of rendering virtual connec-
tions, we conducted two experiments: (1) performance of
rendering a virtual spring on a single robot and (2) feasibility
of systematically investigating different interactive conditions.

1) Performance of rendering a virtual spring: To render a
virtual spring, the desired torque (A\*) is defined as

X = K (0 — 0c) (6)

where A\ is the desired torque and Ky and 6. are the
stiffness and equilibrium position of the virtual spring, respec-
tively.

To validate the haptic rendering performance, we tested the
rendering accuracy for different virtual stiffness levels and
different frequencies of the motion trajectory to be tracked.
We set the equilibrium position of the virtual spring, and asked
a participant to don the M1 device and stretch the virtual
spring away from the equilibrium position with his ankle.
Specifically, we set the equilibrium position, 6., to 0.55 rad
(see Fig. 1A), which is approximately the center position of
the ankle range of motion. We then verified the virtual spring
rendering performance with ten virtual stiffness levels (Kyir),
5 to 50 Nm/rad with 5 Nm/rad increments. For each condition,

Ty mERA e
Visual Feedback
(Split screen)

L

Fig. 4. Experimental setup for the feasibility test of dyadic studies.

we asked the participant to track a sine wave trajectory with
his ankle angular position given through visual feedback. The
amplitude of the sine wave was 0.4 rad to cover the range of
motion of the ankle during natural gait [20]. The frequency
of the sine wave was fixed at 0.3 Hz. We also tested the
haptic rendering performance for different desired trajectory
frequencies. We fixed the virtual stiffness level to 25 Nm/rad
and changed the sine wave frequency from 0.1 to 1.1 Hz with
0.2 Hz increments. During the experiment, we recorded the
joint angle (), desired interaction torque (\%*), and actual
interaction torque (A) for 10 tracking cycles.

We analyzed the rendering performance of a virtual
spring by calculating the normalized root-mean-square error
(NRMSE) between the desired interaction torque induced by
the virtual spring and the actual interaction torque induced to
the ankle by the virtual stiffness,

RMSE " @
NRMSEy = ————
Afax = A

where M9 is the desired interaction torque, A is the measured
interaction torque, and N is the number of samples in each
testing trials. The A% and A% are the maximum and mini-
mum value of desired interaction torque, respectively.

2) Feasibility of systematically investigating different in-
teractive conditions: To demonstrate the feasibility of the
proposed infrastructure in investigating the effect of different
interactive behaviors, we test collaborative, cooperative, and
competitive behaviors for a given virtual stiffness level (K
= 20 Nm/rad). Two healthy participants (mean + standard
deviation: age 27.5 + 4.9 years, height 173.0 £ 1.4 cm,
body mass 70.0 £ 8.5 kg, 2 males) were seated next to
each other and were each asked to don an M1 device. Both
participants familiarized themselves with the device while the
devices operated in transparency mode (A% = 0). Then the
participants were asked to perform a tracking task with their
ankle based on visual feedback provided via a monitor. The
visual feedback was provided in the form of a split screen
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where each user was provided with only the desired trajectory
and his/her own ankle angular position. The experimental
setup is shown in Fig. 4.

For the collaborative and cooperative conditions, both par-
ticipants were asked to track an identical sine waveform. We
changed the amplitude and frequency of the sine waveform
every two cycles to increase the difficulty of the tracking task
and to introduce learning effects. We selected the amplitude
and frequency based on uniform random number generators
with ranges of [0.3, 1.2] rad and [0.15, 0.45] Hz, respectively.
For the competitive condition, one participant was asked to
track a sine waveform, while the other participant tracked a
cosine waveform of the same frequency and amplitude. A new
amplitude and frequency were selected randomly for every two
cycles of the sine/cosine waveform. The seed of the random
number generator was changed for each interactive behavior.
A total of five trials was tested for each interactive behavior,
and during each trial participants were ask to track 10 cycles
of the waveform. Between each interactive condition, the pair
was provided five minutes of rest, and between each trial,
one minute of rest. In the cooperative condition, in order to
have a teacher-student relationship, the partner selected as
the “teacher” practiced the trajectory for five trials before
interacting with the “student,” who had not practiced. For
the collaborative condition, both participants were new to
the tracking trajectories. During experiments, we recorded the
target trajectory, actual trajectory, and interaction torque from
both participants. The tracking performance was quantified
by the root-mean-square error (RMSE) between the desired
tracking trajectory and actual tracking trajectory,

RMSE, - \/ U RTINS

where % is the desired trajectory, @ is the actual tracking
trajectory of the dyads (i.e., either 64 or 0g), and N is the
number of data samples in each trial (i.e., 10 tracking cycles).
The institutional review board (IRB) of the Northwestern
University approved this study (STU00212684) and all proce-
dures were in accordance with the Declaration of Helsinki.

III. RESULTS
A. System transparency

To validate system transparency, we compared the MAV
of the EMG data measured from the TA and GAS muscles
for three participants during ankle movement under (1) BF,
(2) M1opr and (3) M 1on conditions. We calculated the mean
EMG of each condition over 10 repetitions for each participant
and normalized the mean of M1lorr and M1gn conditions
by the BF' condition as shown in Fig. 5A and B. For the
M 1opr condition, approximately 3.90 + 1.06 and 1.55 4 0.43
times more muscle effort was required compared to the BF
condition for the TA and GAS muscle, respectively. For the
M1oN condition, the normalized mean EMG of the TA and
GAS muscles were 0.96 & 0.04 and 0.79 + 0.22, respectively,
which indicates that similar or less muscle effort is required
to move the ankle as compared to the BF' condition using
the proposed interaction torque controller. Fig. 5C shows the
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Fig. 5. System transparency result. The colored circles denote each partici-
pant. (A) Mean EMG data of the TA muscle for M 1orr and M 1pN condition
normalized by the BF' condition. (B) Mean EMG data of the GAS muscle
for M1opr and M 1N condition normalized by the BF condition. (C) The
range of motion of the ankle during each condition.

range of motion of the ankle that was used in each condition
for the three participants.

B. Haptic rendering performance

1) Performance of rendering a virtual spring: The rendered
interaction torque follows the desired interaction torque with
the interaction torque controller using both feedback and feed-
forward compensation (Fig. 6A). The NRMSE, between the
rendered interaction torque and desired interaction torque was
quantified across different stiffness levels and tracking tasks
with varying frequencies. The NRMSE) generally decreases as
the virtual stiffness increases (Fig. 6C). The mean and standard
deviation of NRMSE), from all testing stiffness levels are 5.55
4 1.83%. The rendered stiffness was slightly smaller than the
desired stiffness (Fig. 6B). The ratio between the rendered
stiffness and desired stiffness across all stiffness levels was
0.86 4 0.04. With a fixed stiffness level (i.e., at 25 Nm/rad),
the NRMSE), increased as the frequency of the tracking task
increased (Fig. 6D). The mean and standard deviation of the
NRMSE, from all testing frequencies were 7.03 £+ 3.01%.
Participants also reported that they felt that the M1 device was
acting like a spring and they were able to recognize different
stiffness values during the experiments.

2) Feasibility of systematically investigating different inter-
active behavior: The average position error between the two
dyads for each interactive behavior was calculated across the
five trials. Specifically, the averaged position error between the
two dyads were 0.030+£0.007 rad for the collaborative tasks,
0.037+£0.007 rad for the cooperative tasks, and 0.306+0.012
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rad for the competitive tasks. The average interaction torque
across the five trials and two participants were 0.57+0.05 Nm
and 5.5240.10 Nm for collaborative and competitive tasks,
respectively. The average interaction torque across the five
trials of the novice (student) in the cooperation tasks was
0.594+0.09 Nm. The higher position error between the two
dyads during the competitive tasks introduced higher interac-
tive torque compared to the other two interactive behaviors as
participants had different tracking goals.

The difference between the fifth trial and the first trial of the
averaged tracking RMSEy for each interactive behavior was
also calculated. Specifically, the average change across the two
participants in tracking RMSEy between the fifth trial and the
first trial was 0.024 £ 0.004 rad for collaborative tasks, 0.038
4 0.001 rad for cooperative tasks, and 0.015 £ 0.007 rad for
competitive tasks (Fig. 7A-C).

IV. DISCUSSION
A. Interaction torque controller

One drawback of the proposed interaction torque controller
is the need to tune four parameters (i.e., P, I, D, Pg). The
performance of these parameters across different test subjects
and different virtual spring stiffness may not be consistent. For
example, as shown in Fig. 5B, depending on the tuned param-
eters, overcompensation may occur. For two participants, the
transparency controller reduced the GAS muscle effort needed
to move the ankle beyond what was required to move the
bare foot. This may lead to motion instability or distortion
in the natural motion. To avoid such issues, a higher-level
feedback loop that depends on the rendered spring error or
some auto-tuning methods [21]-[23] can be implemented in
the future. Another possible improvement is to use an IMU
on the footplate to compensate for the inertial forces due to
acceleration [24] or to implement an admittance controller at
the acceleration level [25].

B. Haptic rendering environment

1) Performance of rendering a virtual spring: There are
several sources of error for rendering the virtual spring. We
observed that the rendered virtual stiffness is smaller than the
desired virtual stiffness, which might be due to the manual
tuning of the PID controller. We tuned the feedforward gain
and feedback gains specifically for K.y = 25 Nm/rad,
which led to larger NRMSE, for other virtual stiffnesses.
Also, relatively higher errors were observed for lower virtual
stiffnesses. When identical angle deviation was induced, the
desired interaction torque was smaller with a lower virtual
stiffness (e.g., 5 Nm/rad). This led to a larger sensor noise
to desired torque ratio, which resulted in larger NRMSEj.
The NRMSE), also increased with higher tracking trajectory
frequencies induced to the virtual spring. This was mainly
because the actuation system was not able to respond to higher
excitation frequencies, which also caused a higher NRMSE).

2) Feasibility of dyadic physical interaction studies: In this
study, we only performed the dyadic feasibility experiment
for a single dyad to demonstrate the capability in testing
different interactive behaviors with the proposed infrastructure.
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Fig. 6. Haptic rendering results. (A) The desired and actual rendered torque.
(B) The desired and actual rendered torque are proportional to the angular
deviation with a slope of the virtual stiffness. (C) Summary of the NRMSE
between the desired and actual rendered torque for ten stiffness levels under
tracking frequency of 0.3 Hz and amplitude of 0.4 rad. (D) The NRMSE
between the desired and actual torque for different excitation frequencies.
Note that the virtual stiffness used in (A), (B) and (D) is 25 Nm/rad.

Therefore, in order to generalize any results of motor learning
presented in Fig. 7A-C, additional experimental work and
further exploration are required.

There are several limitations of the current experimental
protocol. For each interactive behavior, we changed the seed
of the random number generator that was used to create a
new desired tracking trajectory (see Fig. 7D-F). The seed
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was changed for each behavior because based on pilot data,
participants were able to learn (memorize) the trajectory after
several trials, namely, the RMSEy saturated after 3 to 4 trials
as shown in Fig. 7A-C. Therefore, after 3 to 4 trials, there
were no clear learning effects despite additional trials or the
change in the interactive behavior. As a result of changing
the seed, however, the outcomes for each interactive behavior
cannot be compared. Depending on the randomization of
the amplitude and frequency, one trajectory can be more
challenging than the other. Therefore, the initial RMSE, values
for each interactive behaviors and the change in RMSEy across
the five trials are different. The order of testing each interactive
behavior was also not randomized. This may have allowed
participants to get more familiar with the system in one
interactive behavior than the other. In future studies, a more
challenging desired trajectory will be needed which then can
be used across interactive conditions in order to analyze the
effects of interactive conditions on individual motor learning
and shared task performance. The sequence of testing different
interactive conditions will also be randomized.

C. Future directions

In this study, we propose an open-source experimental
framework that can be used to systematically test different
interactive conditions (i.e., interactive behaviors and level of
virtual connections) and investigate the effects on shared task
performance and motor learning. To show the feasibility of
dyadic studies for different conditions, we have only presented
results on shared task performance. In our future studies, we
will investigate individual motor learning by comparing the
performance (e.g., tracking error, repeatability) of solo trials,

in which a participant performs identical tasks without any
virtual connections, before and after training with another
human via physical interaction.

There are also several studies that report that the skill
level of the dyads affected the change in motor performance
[11, [3], [7], [12]. It has been reported that improved shared
task performance was shown when a participant is paired
with a more skilled participant [7], [12]. On the other hand,
improved individual motor learning was shown when paired
with another novice participant [1], [3], [7], [12]. We plan
to investigate the effect of partner characteristics and further
study the dyadic interaction between therapists and patients
with neurological disorders (e.g., stroke, SCI) in rehabilitation
setups. We have also only investigated the effect of virtual
springs between human pairs. According to Tanaka et al. [11],
the interaction damping also introduced significant differences
in task performance. This shows that virtual damping might be
an important factor during human-human physical interaction,
supporting the need to further investigate this topic.

It has been shown that joint mechanical impedance, which
regulates the instantaneous torque response that accompanies
changes in joint position, governs the body’s response to
unexpected disturbances during natural gait [26], [27]. We
believe mechanical impedance may also explain human ankle-
ankle interaction, where the torque applied by the partner is
considered a disturbance. Therefore, in our future studies, we
plan to consider the stiffness of the ankle by estimating it from
the co-contraction of the agnonist and antagonist muscles. This
will allow us to investigate how humans strategically sacrifice
energy efficiency (i.e., change in metabolic cost from muscle
co-contraction) in order to achieve higher task performance.
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This will also allow us to investigate the full framework
proposed from Jarrasse et al. [17], in which dyads not only
consider their own and their partner’s task performance but
also the metabolic costs. Analyzing the EMG data will also
provide information on how active or passive the participants
are during the tracking tasks. This can provide information
on the engagement level which is key for enhancing neu-
roplasticity, and to facilitate recovery in patients [28], [29].
With the collective findings on the effect of various interactive
conditions, we will develop model-based synthetic controllers
to substitute one of the peers and see if similar improvements
in motor learning as shown in human-human interaction can
be achieved through human-robot interaction.

V. CONCLUSION

We presented an open-source experimental framework that
can be used to investigate the effect of varying virtual
stiffnesses and interactive behaviors between human dyads.
We have implemented an interaction torque controller and
haptic virtual environment based on an open-source robotic
development software stack called CORC [16] to render vir-
tual connections between human dyads. Different interactive
behaviors (i.e., collaborative, cooperative, competitive tasks)
were emulated by varying the properties of the virtual connec-
tion. To validate the infrastructure, we conducted system trans-
parency experiments, virtual spring rendering experiments, and
a simple dyadic physical interaction experiment. As future
directions, we plan to perform dyadic studies to systematically
investigate the effect of interactive conditions, the effects of
partner skill levels, and ankle stiffness modulation strategies
on shared task performance and individual motor learning.

REFERENCES

[1] G. Ganesh, A. Takagi, R. Osu, T. Yoshioka, M. Kawato, and E. Burdet,
“Two is better than one: Physical interactions improve motor perfor-
mance in humans,” Scientific Reports, vol. 4, pp. 1-7, 2014.

[2] A. Takagi, F. Usai, G. Ganesh, V. Sanguineti, and E. Burdet, “Haptic
communication between humans is tuned by the hard or soft mechanics
of interaction,” PLoS Computational Biology, vol. 14, no. 3, pp. 1-17,
2018.

[3] Y. Che, G. M. Haro, and A. M. Okamura, “Two is not always better than
one: Effects of teleoperation and haptic coupling,” Proceedings of the
IEEE RAS and EMBS International Conference on Biomedical Robotics
and Biomechatronics, vol. 2016-July, pp. 1290-1295, 2016.

[4] J. Wang, A. Chellali, and C. G. Cao, “Haptic Communication in
Collaborative Virtual Environments,” Human Factors, vol. 58, no. 3,
pp. 496-508, 2016.

[5] A. Takagi, G. Ganesh, T. Yoshioka, M. Kawato, and E. Burdet, ‘“Physi-
cally interacting individuals estimate the partner’s goal to enhance their
movements,” Nature Human Behaviour, vol. 1, no. 3, 2017.

[6] N. B. B, A. Keemink, and E. V. Asseldonk, Haptic Human-Human
Interaction Through a Compliant Connection Does Not Improve Motor
Learning in a Force Field. Springer International Publishing, 2018.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-93445-7_29

[7]1 S. Kager, A. Hussain, A. Cherpin, A. Melendez-Calderon, A. Takagi,
S. Endo, E. Burdet, S. Hirche, M. H. Ang, and D. Campolo, “The effect
of skill level matching in dyadic interaction on learning of a tracing
task,” IEEE International Conference on Rehabilitation Robotics, vol.
2019-June, pp. 824-829, 2019.

[8] K. Reed, M. Peshkin, M. J. Hartmann, M. Grabowecky, J. Patton, and
P. M. Yishton, “Haptically linked dyads are two motor-control systems
better than one?” Psychological Science, vol. 17, no. 5, pp. 365-366,
2006.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See ht
Authorized licensed use limited to: Johns Hopkins University. Downloaded on July

[9] K. B. Reed, M. Peshkin, M. J. Hartmann, J. Patton, P. M. Vishton,
and M. Grabowecky, “Haptic cooperation between people, and between
people and machines,” IEEE International Conference on Intelligent
Robots and Systems, pp. 2109-2114, 2006.

[10] A. Takagi, C. Bagnato, and E. Burdet, “Facing the partner influences
exchanges in force,” Scientific Reports, vol. 6, pp. 1-6, 2016.

[11] Y. Tanaka and R. Goto, “A robotic rehabilitation system for cooperative
motor training: A preliminary study in a balance seesaw task,” 2018
IEEE International Conference on Cyborg and Bionic Systems, CBS
2018, pp. 216-221, 2019.

[12] E. J. Avila Mireles, J. Zenzeri, V. Squeri, P. Morasso, and D. De
Santis, “Skill learning and skill transfer mediated by cooperative haptic
interaction,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 25, no. 7, pp. 832-843, 2017.

[13] A. Sawers and L. H. Ting, “Perspectives on human-human sensorimotor
interactions for the design of rehabilitation robots,” Journal of Neuro-
Engineering and Rehabilitation, vol. 11, no. 1, pp. 1-13, 2014.

[14] A. Melendez-Calderon, V. Komisar, and E. Burdet, “Interpersonal strate-
gies for disturbance attenuation during a rhythmic joint motor action,”
Physiology Behavior, vol. 147, pp. 348-358, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S003193841500253X

[15] R. Groten, D. Feth, R. L. Klatzky, and A. Peer, “The role of haptic
feedback for the integration of intentions in shared task execution,” IEEE
Transactions on Haptics, vol. 6, no. 1, pp. 94-105, 2013.

[16] J. Fong, E. B. Kiigiiktabak, V. Crocher, Y. Tan, K. Lynch, J. Pons, and
D. Oetomo, “CANopen Robot Controller (CORC): An open software
stack for human robot interaction development,” The International
Symposium on Wearable Robotics (WeRob2020), vol. 2020, pp. —ss,
2020.

[17] N. Jarrassé, T. Charalambous, and E. Burdet, “A Framework to Describe,
Analyze and Generate Interactive Motor Behaviors,” PLoS ONE, vol. 7,
no. 11, 2012.

[18] R. Merletti and P. Di Torino, “Standards for reporting emg data,” J
Electromyogr Kinesiol, vol. 9, no. 1, pp. 3-4, 1999.

[19] S. M. Kidder, E. S. Abuzzahab, G. F. Harris, and J. E. Johnson, “A
system for the analysis of foot and ankle kinematics during gait,” IEEE
Transactions on Rehabilitation Engineering, vol. 4, no. 1, pp. 25-32,
March 1996.

[20] A. Alamdari and V. Krovi, “Chapter two - a review of
computational musculoskeletal analysis of human lower extremities,”
in Human Modelling for Bio-Inspired Robotics, J. Ueda and
Y. Kurita, Eds. Academic Press, 2017, pp. 37-73. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128031377000033

[21] Y. Wen, J. Si, X. Gao, S. Huang, and H. Huang, “A New Powered
Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic
Programming,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 28, no. 9, pp. 2215-2220, sep 2017.

[22] J. Zhang, P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee,
C. G. Atkeson, and S. H. Collins, “Human-in-the-loop optimization of
exoskeleton assistance during walking,” Science, vol. 356, no. 6344, pp.
1280-1284, jun 2017.

[23] Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-
loop optimization of hip assistance with a soft exosuit during walking,”
Science Robotics, vol. 3, no. 15, p. eaar5438, feb 2018.

[24] T. Boaventura and J. Buchli, “Acceleration-based transparency control
framework for wearable robots,” IEEE International Conference on
Intelligent Robots and Systems, vol. 2016-Novem, pp. 5683-5688, 2016.

[25] Y. Zimmermann, E. B. Kucuktabak, F. Farshidian, R. Riener, and
M. Hutter, “Towards Dynamic Transparency : Robust Interaction
Force Tracking Using Multi-Sensory Control on an Arm Exoskeleton,”
IEEE/RSJ Intenational Conference on Intelligent Robots and Systems
(IROS), pp. 7417-7424, 2020.

[26] D. A. Winter, “Energy generation and absorption at the ankle and knee
during fast, natural, and slow cadences,” Clinical Orthopaedics and
Related Research, vol. No. 175, pp. 147-154, 1983.

[27] A.M. Wind and E. J. Rouse, “Neuromotor Regulation of Ankle Stiffness
is Comparable to Regulation of Joint Position and Torque at Moderate
Levels,” Scientific Reports, vol. 10, no. 1, pp. 1-9, 2020.

[28] M. M. Danzl, N. M. Etter, R. O. Andreatta, and P. H. Kitzman, “Facili-
tating neurorehabilitation through principles of engagement,” Journal of
Allied Health, vol. 41, no. 1, pp. 35-41, 2012.

[29] C. Phillips, “Lifestyle Modulators of Neuroplasticity: How Physical
Activity, Mental Engagement, and Diet Promote Cognitive Health during
Aging,” Neural Plasticity, vol. 2017, 2017.

9,2021 at 21:22:07 UTC from IEEE Xplore. Restrictions apply.

t{;)://www.ieeeorgé%ublicationsﬁstandards/ ublications/rights/index.html for more information.



