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Abstract—Over the past few decades, there have been many
studies of human-human physical interaction to better under-
stand why humans physically interact so effectively and how
dyads outperform individuals in certain motor tasks. Because
of the different methodologies and experimental setups in these
studies, however, it is difficult to draw general conclusions as
to the reasons for this improved performance. In this study, we
propose an open-source experimental system for the systematic
study of the effect of human-human interaction, as mediated by
robots, at the ankle joint. We also propose a new framework
to study various interactive behaviors (i.e., collaborative, coop-
erative, and competitive tasks) that can be emulated using a
virtual spring connecting human pairs. To validate the proposed
experimental framework, we perform a transparency analysis,
which is closely related to haptic rendering performance. We
compare muscle EMG and ankle motion data while subjects
are barefoot, attached to the unpowered robot, and attached to
the powered robot implementing transparency control. We also
validate the performance in rendering virtual springs covering a
range of stiffness values (5-50 Nm/rad) while the subjects track
several desired trajectories (sine waves at frequencies between 0.1
and 1.1 Hz). Finally, we demonstrate the feasibility of the system
in studying human-human interaction under different interactive
behaviors.

Index Terms—Physical human-robot interaction, haptics and
haptic interfaces, human-robot teaming, human factors and
human-in-the-loop.
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E. B. Küçüktabak and S. Zhan are with the Legs and Walking Lab of Shirley
Ryan AbilityLab and the Department of Mechanical Engineering, McCormick
School of Engineering, Northwestern University, Evanston, IL, USA.

K. Lynch is with the Center for Robotics and Biosystems and the De-
partment of Mechanical Engineering, McCormick School of Engineering,
Northwestern University, Evanston, IL, USA.

L. Hargrove is with the Center for Bionic Medicine (CBM) of Shirley Ryan
AbilityLab and Department of Physical Medicine and Rehabilitation, Feinberg
School of Medicine, Northwestern University, Chicago, IL,USA.

E. J. Perreault is with the Department of Physical Medicine and Rehabil-
itation, Feinberg School of Medicine, Northwestern University, Chicago, IL,
USA.

J. L. Pons (corresponding author) is with the Legs and Walking Lab
of Shirley Ryan AbilityLab, Department of Mechanical Engineering and
Department of Biomedical Engineering, McCormick School of Engineer-
ing, and Department of Physical Medicine and Rehabilitation, Feinberg
School of Medicine, Northwestern University, Chicago, IL, USA, e-mail:
jpons@sralab.org

Digital Object Identifier (DOI): see top of this page.

I. INTRODUCTION

HUMANS often physically interact with one another to

accomplish tasks that are difficult to do alone (e.g.,

moving a mattress) or to exchange information for learning

new tasks (e.g., athletic training, rehabilitation). Interestingly,

it has been shown in many studies that the physical inter-

action between human pairs leads to improvements in the

shared task performance and/or in individual motor learning

when compared to performing the same task alone [1]–[15].

The underlying mechanisms governing motor performance

improvement in human-human physical interaction have drawn

the interest of many researchers during the past few decades.

Early studies were conducted using simple passive me-

chanical devices such as a two-handled crank where physical

information was directly exchanged between pairs [8], [9] or

using sensors to quantify a pair’s ability to replicate forces they

have perceived with their index fingers [10]. Recently, more

complex dyadic behaviors have been explored using robotic

devices to control the interaction dynamics between two or

more humans [1]–[7], [11], [12]. Virtual connections between

humans are typically modeled as springs or dampers.

With the help of robotic devices, several studies have been

conducted to investigate the effect of physical interaction

on shared motor tasks [1]–[3], [6], [11]. Ganesh et al [1]

showed that when human pairs collaborate to track an identical

moving target on a monitor with separate manipulators that

are virtually connected, the interaction is mutually beneficial,

specifically, both interacting partners improve shared task per-

formance and individual motor learning. Similarly, in the study

of Takagi et al. [2], robotic devices were used to investigate

collaborative physical interaction when two participants track

a target using wrist flexion/extension for varying virtual stiff-

nesses. It has been shown that tracking performance increased

for the less skilled partner, who had higher tracking error, at

the cost of the skilled partner’s muscular effort. A follow-

up study by Takagi et al. [11] showed that when multiple

(i.e., triad, tetrad) individuals were connected during a 2D

horizontal planar tracking task where individuals were asked

to track targets on a computer screen with haptic devices,

the interaction benefits increased with the group size when

additional individuals were virtually connected.

Different results have been presented related to the effects of

physical interaction on task performance and motor learning

[3], [6]. Che et al. [3] reported that for a tracking task in

which the pairs were asked to track a target with linear move-

ment, while holding manipulators, the stiffness of the virtual
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connection influences the task performance and individual

motor learning. While stiffer connections led to improvements,

weaker connections did not lead to significant improvement in

terms of task performance or motor learning. Another study

by Beckers et al. [6] showed that for the tracking of stationary

targets with cursors controlled by hand-held manipulators,

task performance with physical collaboration was significantly

better, however, physical interaction did not improve individual

motor learning.

Discrepancies in experimental tasks and setups make it

difficult to generalize across published results, yielding few

clear conclusions as to how motor improvement are obtained

through physical interactions. There are also limited studies

that compare how different interactive behaviors (i.e., collab-

orative, cooperative, or competitive tasks) and the characteris-

tics of the virtual connection may affect task performance and

motor learning. Therefore, it is important to systematically

investigate the effect of each interaction variable.

To this end, we propose an open-source framework that

will be shared with the community to study different forms

of dyadic interaction (i.e., different interaction behaviors and

level of virtual connections). This will allow others to repro-

duce the results presented in this study and to build upon the

proposed framework. We also designed our study based on

lower extremity motor tasks to investigate if and how motor

improvements, presented in previous upper extremity studies,

can be generalized and translated to the lower extremity. We

first introduce the implementation of an interaction torque

controller. We then introduce the implementation of a haptic

rendering environment that is used to provide virtual connec-

tions between two ankle robots. With the haptic rendering

environment, we emulate three types of interactive tasks —

collaborative, cooperation, and competition tasks — using

different interaction spring parameters. Finally, we showcase

the framework with three different interactive conditions and

analyze how different interactive behaviors a may effect task

performance.

II. INFRASTRUCTURE DEVELOPMENT

A. Description of the M1 ankle rehabilitation robot

We used commercially-available ankle robots (M1, Fourier

Intelligence, China) that were developed to provide ankle joint

rehabilitation for patients with stroke or spinal cord injury

(SCI) as shown in Fig. 1A. The M1 device consists of an AC

servo motor (SMC60S, Kinco Motor, China) with a 69:1 gear

box (MF60XL2, VGM, Taiwan) that can apply motor torque

to the ankle joint; a torque sensor (JNNT-F, JN, China) that

can be used to measure the interaction torque between the

user’s ankle joint and the M1 device; and a magneto-electric

encoder that can be used to measure the angular position of

the ankle joint. An open-source robotic development software

stack called CORC [16] was developed and used for real-time

control and feedback signal visualization.

B. Implementation of an interaction torque controller

An interaction torque controller was developed to render

high-resolution virtual physical environments during dyadic

Fig. 1. (A) M1 device. Variables used for the feedforward model are
presented. (B) The interaction torque control loop. λdes: desired interaction
torque, λerr: interaction torque error, τfb: feedback torque, τff: feedforward
torque, τcmd: command torque

Fig. 2. Scheme of multi-M1 interaction.

interaction and to allow transparent motion for individual use.

This controller has a feedforward term to compensate for mod-

eled frictional and gravitational terms, and a feedback term

that depends on the interaction torque error to compensate for

model discrepancies and unmodeled dynamics. The interaction

torque control loop is shown in Fig. 1B. The torque command

(τcmd), used to control the AC servo motor of the M1 device,

is calculated by the sum of the feedforward (τff) and feedback

(τfb) terms as follows,

τcmd = τff + τfb (1)

The feedforward term (τff) was estimated by modeling the

dynamic and static friction of the system using the following

equation,

τff = Pff[msg sin(θ) +mlg cos(θ) + c0θ̇ + c1 sgn(θ̇)] (2)
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Fig. 3. Framework of three interactive behaviors. Note that the rest length of all of the springs is zero. (A) During collaborative behaviors, the dyads attempt to
track identical desired trajectories and there is an attractive spring that connects the pair. (B) During cooperative (teacher-student) behaviors, the dyads attempt
to track identical desired trajectories and there is a unidirectional attractive spring so that only one participant can affect the other. (C) During competitive
mode, each participant attempts to track a different trajectory. There is an attractive spring between the two participants so that each participant impedes the
other participant. The red arrows represent force induced by the virtual springs.

where θ is the angular position, θ̇ is the angular velocity, c0 is

the dynamic friction coefficient, c1 is the static friction, m is

the mass of the footplate, s and l are the moment arms, g is

the gravitational acceleration, and Pff is a constant gain. Note

that θ is defined with respect to the axis defined in Fig. 1A.

To estimate c0, c1, s, and m, we measured the M1’s trajectory

in response to given torque profiles and used MATLAB’s

lsqcurvefit function to fit the parameters. We introduce a

constant gain, Pff, to allow a percentage of the plant dynamics

to be compensated as part of controller tuning.

The feedback term (τfb) was calculated using the following

equation,

τfb = Pfbλ
err + Ifb

∫

λerrdt+Dfbλ̇
err (3)

where λerr is the interaction torque between the user’s ankle

joint and the M1 device, and Pfb, Ifb, and Dfb are constant

gains.

After identifying the coefficients of τff, we first heuristically

tuned the proportional gain of the feedforward term Pff, then

the proportional Pfb, derivative gain Dfb, and integral gain

Ifb of the PID controller to minimize resistive torque and

oscillation felt by the user. The feedforward model parameters

and feedback PID gains are summarized in Table I.

TABLE I
PARAMETERS OF THE FEEDFORWARD AND FEEDBACK MODEL.

Category Symbol Value [Unit]

Static friction c0 0.27 [Nm]

Dynamic friction coefficient c1 0.28 [Nm/rad]

Foot plate mass m 1.08 [kg]

Constant feedforward term gain Pff 0.7

Proportional gain of the feedback loop Pfb 0.26 [Nm/rad]

Integral gain of the feedback loop Ifb 0.05 [Nm/rad/s]

Differential gain of the feedback loop Dfb 0.02 [Nm*s/rad]

C. Implementation of a haptic virtual environment

Two M1 devices were connected to the same PC where

all the computations for interaction torque control and virtual

environment rendering were done. M1 robots were run as local

ROS nodes under the application layer of CORC, and another

local node was created for the virtual physical environment

rendering. This additional node subscribes to the states of the

robots, calculates the desired interaction torque for each robot

according to the virtual environment dynamics, and publishes

those values. Robot nodes subscribe to their corresponding

desired interaction torque messages and use them as the

references for their interaction torque controllers. This scheme

is presented in Fig. 2.

To obtain virtual connections between two M1 devices, we

calculated the desired interaction torque λdes that depends on

spring stiffness (Kvirt) and angular position of each user (θA,

θB). The taxonomy proposed by Jarrasse et al., was adopted to

design the framework of interactive behaviors: collaboration,

competition, and cooperation [17]. Each interactive behavior

is defined and implemented as follows (see Fig. 3):

• Collaboration: Both users jointly try to solve a common

problem. This is implemented with an attractive virtual

spring between the ankle angular position of the two

users. User A is pulled towards the angular position of

User B and User B is pulled towards User A:

λdes
i = Kvirt(θj − θi) i, j ∈ {A,B}, i 6= j (4)

Both users have identical desired trajectories.

• Cooperation (teacher-student): Different roles are as-

signed to the users prior to the beginning of a task. The

teacher can correct the student. This is implemented with

a unidirectional virtual spring between the ankle angular

position of the two users. User B is pulled towards the

angular position of User A, but User B cannot affect User

A:

λdes
A = 0, λdes

B = Kvirt(θA − θB) (5)

Both users have identical desired trajectories.

• Competition: Both users focus on their own action and

effort, and if necessary impede the other’s performance.

This is implemented by providing conflicting desired

trajectories to each user as shown in Fig. 3C. Similar to

collaboration, a virtual spring between the ankle angular

position of the two users is implemented.

The development code to implement the interaction torque

controller and haptic virtual environment can be accessed at

https://github.com/ywen3/CANOpenRobotController.
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D. Validation of system transparency

The transparency (i.e., dynamic back-drivability) of the M1

device with the interactive torque controller was validated.

The electromyography (EMG) signals of the ankle flexor and

extensor muscles and the angular position of the ankle joint

of three healthy participants (mean ± standard deviation; age

27.3 ± 3.5 years, height 176.3 ± 4.9 cm, body mass 73.3

± 10.6 kg, 3 males) were analyzed during cyclical ankle

movements at 1 Hz through the full ankle range of motion

(ROM). Participants performed the cyclical movement based

on audio cue provided by a metronome. Three conditions were

compared: (1) barefoot (BF ) with no robot, as a baseline; (2)

wearing the M1 with no power (M1OFF); and (3) wearing

the M1 with transparency control (M1ON). For M1ON, the

desired interaction torque (λdes) was set equal to zero. Two

bipolar EMG electrodes (MA400 EMG Systems, Motion Lab

Systems, USA) were placed on the belly of the medial gastroc-

nemius (GAS) and tibialis anterior (TA) muscles after cleaning

the skin with alcohol. The angular position of the ankle joint

was measured using a motion capture camera system (6 Hawk

motion capture cameras, Motion Analysis, USA). The EMG

signals were sampled at 1500 Hz and the motion data was

sampled at 100 Hz. Raw EMG signals were bandpass filtered

to reduce the influence of motion artifacts and high-frequency

background noise (6th-order Butterworth filter with a cutoff

frequency of 10 and 500 Hz) and a notch filter to remove

power-line interference (2nd-order IIR filter at 60 Hz with

a bandwidth of 1 Hz) [18]. We calculated the mean absolute

value (MAV) of the rectified and low-pass-filtered signals (6th-

order Butterworth filter with a cutoff frequency of 10 Hz) to

compare the three conditions. The high-frequency noise of the

motion data was filtered using a 6th-order Butterworth filter

with a cutoff frequency of 6 Hz [19].

E. Validation of the haptic rendering environment

To validate the performance of rendering virtual connec-

tions, we conducted two experiments: (1) performance of

rendering a virtual spring on a single robot and (2) feasibility

of systematically investigating different interactive conditions.

1) Performance of rendering a virtual spring: To render a

virtual spring, the desired torque (λdes) is defined as

λdes = Kvirt(θ − θe) (6)

where λdes is the desired torque and Kvirt and θe are the

stiffness and equilibrium position of the virtual spring, respec-

tively.

To validate the haptic rendering performance, we tested the

rendering accuracy for different virtual stiffness levels and

different frequencies of the motion trajectory to be tracked.

We set the equilibrium position of the virtual spring, and asked

a participant to don the M1 device and stretch the virtual

spring away from the equilibrium position with his ankle.

Specifically, we set the equilibrium position, θe, to 0.55 rad

(see Fig. 1A), which is approximately the center position of

the ankle range of motion. We then verified the virtual spring

rendering performance with ten virtual stiffness levels (Kvirt),

5 to 50 Nm/rad with 5 Nm/rad increments. For each condition,

Fig. 4. Experimental setup for the feasibility test of dyadic studies.

we asked the participant to track a sine wave trajectory with

his ankle angular position given through visual feedback. The

amplitude of the sine wave was 0.4 rad to cover the range of

motion of the ankle during natural gait [20]. The frequency

of the sine wave was fixed at 0.3 Hz. We also tested the

haptic rendering performance for different desired trajectory

frequencies. We fixed the virtual stiffness level to 25 Nm/rad

and changed the sine wave frequency from 0.1 to 1.1 Hz with

0.2 Hz increments. During the experiment, we recorded the

joint angle (θ), desired interaction torque (λdes), and actual

interaction torque (λ) for 10 tracking cycles.

We analyzed the rendering performance of a virtual

spring by calculating the normalized root-mean-square error

(NRMSE) between the desired interaction torque induced by

the virtual spring and the actual interaction torque induced to

the ankle by the virtual stiffness,

RMSEλ =

√

∑N

n=1
(λdes(n)− λ(n))2

N

NRMSEλ =
RMSEλ

λdes
max − λdes

min

(7)

where λdes is the desired interaction torque, λ is the measured

interaction torque, and N is the number of samples in each

testing trials. The λdes
max and λdes

min are the maximum and mini-

mum value of desired interaction torque, respectively.

2) Feasibility of systematically investigating different in-

teractive conditions: To demonstrate the feasibility of the

proposed infrastructure in investigating the effect of different

interactive behaviors, we test collaborative, cooperative, and

competitive behaviors for a given virtual stiffness level (Kvirt

= 20 Nm/rad). Two healthy participants (mean ± standard

deviation: age 27.5 ± 4.9 years, height 173.0 ± 1.4 cm,

body mass 70.0 ± 8.5 kg, 2 males) were seated next to

each other and were each asked to don an M1 device. Both

participants familiarized themselves with the device while the

devices operated in transparency mode (λdes = 0). Then the

participants were asked to perform a tracking task with their

ankle based on visual feedback provided via a monitor. The

visual feedback was provided in the form of a split screen
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where each user was provided with only the desired trajectory

and his/her own ankle angular position. The experimental

setup is shown in Fig. 4.

For the collaborative and cooperative conditions, both par-

ticipants were asked to track an identical sine waveform. We

changed the amplitude and frequency of the sine waveform

every two cycles to increase the difficulty of the tracking task

and to introduce learning effects. We selected the amplitude

and frequency based on uniform random number generators

with ranges of [0.3, 1.2] rad and [0.15, 0.45] Hz, respectively.

For the competitive condition, one participant was asked to

track a sine waveform, while the other participant tracked a

cosine waveform of the same frequency and amplitude. A new

amplitude and frequency were selected randomly for every two

cycles of the sine/cosine waveform. The seed of the random

number generator was changed for each interactive behavior.

A total of five trials was tested for each interactive behavior,

and during each trial participants were ask to track 10 cycles

of the waveform. Between each interactive condition, the pair

was provided five minutes of rest, and between each trial,

one minute of rest. In the cooperative condition, in order to

have a teacher-student relationship, the partner selected as

the “teacher” practiced the trajectory for five trials before

interacting with the “student,” who had not practiced. For

the collaborative condition, both participants were new to

the tracking trajectories. During experiments, we recorded the

target trajectory, actual trajectory, and interaction torque from

both participants. The tracking performance was quantified

by the root-mean-square error (RMSE) between the desired

tracking trajectory and actual tracking trajectory,

RMSEθ =

√

∑N

n=1
(θdes(n)− θ(n))2

N
(8)

where θdes is the desired trajectory, θ is the actual tracking

trajectory of the dyads (i.e., either θA or θB), and N is the

number of data samples in each trial (i.e., 10 tracking cycles).

The institutional review board (IRB) of the Northwestern

University approved this study (STU00212684) and all proce-

dures were in accordance with the Declaration of Helsinki.

III. RESULTS

A. System transparency

To validate system transparency, we compared the MAV

of the EMG data measured from the TA and GAS muscles

for three participants during ankle movement under (1) BF ,

(2) M1OFF and (3) M1ON conditions. We calculated the mean

EMG of each condition over 10 repetitions for each participant

and normalized the mean of M1OFF and M1ON conditions

by the BF condition as shown in Fig. 5A and B. For the

M1OFF condition, approximately 3.90 ± 1.06 and 1.55 ± 0.43

times more muscle effort was required compared to the BF

condition for the TA and GAS muscle, respectively. For the

M1ON condition, the normalized mean EMG of the TA and

GAS muscles were 0.96 ± 0.04 and 0.79 ± 0.22, respectively,

which indicates that similar or less muscle effort is required

to move the ankle as compared to the BF condition using

the proposed interaction torque controller. Fig. 5C shows the

Fig. 5. System transparency result. The colored circles denote each partici-
pant. (A) Mean EMG data of the TA muscle for M1OFF and M1ON condition
normalized by the BF condition. (B) Mean EMG data of the GAS muscle
for M1OFF and M1ON condition normalized by the BF condition. (C) The
range of motion of the ankle during each condition.

range of motion of the ankle that was used in each condition

for the three participants.

B. Haptic rendering performance

1) Performance of rendering a virtual spring: The rendered

interaction torque follows the desired interaction torque with

the interaction torque controller using both feedback and feed-

forward compensation (Fig. 6A). The NRMSEλ between the

rendered interaction torque and desired interaction torque was

quantified across different stiffness levels and tracking tasks

with varying frequencies. The NRMSEλ generally decreases as

the virtual stiffness increases (Fig. 6C). The mean and standard

deviation of NRMSEλ from all testing stiffness levels are 5.55

± 1.83%. The rendered stiffness was slightly smaller than the

desired stiffness (Fig. 6B). The ratio between the rendered

stiffness and desired stiffness across all stiffness levels was

0.86 ± 0.04. With a fixed stiffness level (i.e., at 25 Nm/rad),

the NRMSEλ increased as the frequency of the tracking task

increased (Fig. 6D). The mean and standard deviation of the

NRMSEλ from all testing frequencies were 7.03 ± 3.01%.

Participants also reported that they felt that the M1 device was

acting like a spring and they were able to recognize different

stiffness values during the experiments.

2) Feasibility of systematically investigating different inter-

active behavior: The average position error between the two

dyads for each interactive behavior was calculated across the

five trials. Specifically, the averaged position error between the

two dyads were 0.030±0.007 rad for the collaborative tasks,

0.037±0.007 rad for the cooperative tasks, and 0.306±0.012
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rad for the competitive tasks. The average interaction torque

across the five trials and two participants were 0.57±0.05 Nm

and 5.52±0.10 Nm for collaborative and competitive tasks,

respectively. The average interaction torque across the five

trials of the novice (student) in the cooperation tasks was

0.59±0.09 Nm. The higher position error between the two

dyads during the competitive tasks introduced higher interac-

tive torque compared to the other two interactive behaviors as

participants had different tracking goals.

The difference between the fifth trial and the first trial of the

averaged tracking RMSEθ for each interactive behavior was

also calculated. Specifically, the average change across the two

participants in tracking RMSEθ between the fifth trial and the

first trial was 0.024 ± 0.004 rad for collaborative tasks, 0.038

± 0.001 rad for cooperative tasks, and 0.015 ± 0.007 rad for

competitive tasks (Fig. 7A-C).

IV. DISCUSSION

A. Interaction torque controller

One drawback of the proposed interaction torque controller

is the need to tune four parameters (i.e., P , I , D, Pff). The

performance of these parameters across different test subjects

and different virtual spring stiffness may not be consistent. For

example, as shown in Fig. 5B, depending on the tuned param-

eters, overcompensation may occur. For two participants, the

transparency controller reduced the GAS muscle effort needed

to move the ankle beyond what was required to move the

bare foot. This may lead to motion instability or distortion

in the natural motion. To avoid such issues, a higher-level

feedback loop that depends on the rendered spring error or

some auto-tuning methods [21]–[23] can be implemented in

the future. Another possible improvement is to use an IMU

on the footplate to compensate for the inertial forces due to

acceleration [24] or to implement an admittance controller at

the acceleration level [25].

B. Haptic rendering environment

1) Performance of rendering a virtual spring: There are

several sources of error for rendering the virtual spring. We

observed that the rendered virtual stiffness is smaller than the

desired virtual stiffness, which might be due to the manual

tuning of the PID controller. We tuned the feedforward gain

and feedback gains specifically for Kvirt = 25 Nm/rad,

which led to larger NRMSEλ for other virtual stiffnesses.

Also, relatively higher errors were observed for lower virtual

stiffnesses. When identical angle deviation was induced, the

desired interaction torque was smaller with a lower virtual

stiffness (e.g., 5 Nm/rad). This led to a larger sensor noise

to desired torque ratio, which resulted in larger NRMSEλ.

The NRMSEλ also increased with higher tracking trajectory

frequencies induced to the virtual spring. This was mainly

because the actuation system was not able to respond to higher

excitation frequencies, which also caused a higher NRMSEλ.

2) Feasibility of dyadic physical interaction studies: In this

study, we only performed the dyadic feasibility experiment

for a single dyad to demonstrate the capability in testing

different interactive behaviors with the proposed infrastructure.

Fig. 6. Haptic rendering results. (A) The desired and actual rendered torque.
(B) The desired and actual rendered torque are proportional to the angular
deviation with a slope of the virtual stiffness. (C) Summary of the NRMSEλ

between the desired and actual rendered torque for ten stiffness levels under
tracking frequency of 0.3 Hz and amplitude of 0.4 rad. (D) The NRMSEλ

between the desired and actual torque for different excitation frequencies.
Note that the virtual stiffness used in (A), (B) and (D) is 25 Nm/rad.

Therefore, in order to generalize any results of motor learning

presented in Fig. 7A-C, additional experimental work and

further exploration are required.

There are several limitations of the current experimental

protocol. For each interactive behavior, we changed the seed

of the random number generator that was used to create a

new desired tracking trajectory (see Fig. 7D-F). The seed
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Fig. 7. The RMSEθ of the dyadic pair during different interactive behaviors for K = 20 Nm/rad: (A) collaboration, (B) cooperation, and (c) competition tasks.
For each interactive condition, there were five trials, each averaged across 10 tracking cycles. (D), (E), and (F) are one representative trials of the position
and interaction torque data.

was changed for each behavior because based on pilot data,

participants were able to learn (memorize) the trajectory after

several trials, namely, the RMSEθ saturated after 3 to 4 trials

as shown in Fig. 7A-C. Therefore, after 3 to 4 trials, there

were no clear learning effects despite additional trials or the

change in the interactive behavior. As a result of changing

the seed, however, the outcomes for each interactive behavior

cannot be compared. Depending on the randomization of

the amplitude and frequency, one trajectory can be more

challenging than the other. Therefore, the initial RMSEθ values

for each interactive behaviors and the change in RMSEθ across

the five trials are different. The order of testing each interactive

behavior was also not randomized. This may have allowed

participants to get more familiar with the system in one

interactive behavior than the other. In future studies, a more

challenging desired trajectory will be needed which then can

be used across interactive conditions in order to analyze the

effects of interactive conditions on individual motor learning

and shared task performance. The sequence of testing different

interactive conditions will also be randomized.

C. Future directions

In this study, we propose an open-source experimental

framework that can be used to systematically test different

interactive conditions (i.e., interactive behaviors and level of

virtual connections) and investigate the effects on shared task

performance and motor learning. To show the feasibility of

dyadic studies for different conditions, we have only presented

results on shared task performance. In our future studies, we

will investigate individual motor learning by comparing the

performance (e.g., tracking error, repeatability) of solo trials,

in which a participant performs identical tasks without any

virtual connections, before and after training with another

human via physical interaction.

There are also several studies that report that the skill

level of the dyads affected the change in motor performance

[1], [3], [7], [12]. It has been reported that improved shared

task performance was shown when a participant is paired

with a more skilled participant [7], [12]. On the other hand,

improved individual motor learning was shown when paired

with another novice participant [1], [3], [7], [12]. We plan

to investigate the effect of partner characteristics and further

study the dyadic interaction between therapists and patients

with neurological disorders (e.g., stroke, SCI) in rehabilitation

setups. We have also only investigated the effect of virtual

springs between human pairs. According to Tanaka et al. [11],

the interaction damping also introduced significant differences

in task performance. This shows that virtual damping might be

an important factor during human-human physical interaction,

supporting the need to further investigate this topic.

It has been shown that joint mechanical impedance, which

regulates the instantaneous torque response that accompanies

changes in joint position, governs the body’s response to

unexpected disturbances during natural gait [26], [27]. We

believe mechanical impedance may also explain human ankle-

ankle interaction, where the torque applied by the partner is

considered a disturbance. Therefore, in our future studies, we

plan to consider the stiffness of the ankle by estimating it from

the co-contraction of the agnonist and antagonist muscles. This

will allow us to investigate how humans strategically sacrifice

energy efficiency (i.e., change in metabolic cost from muscle

co-contraction) in order to achieve higher task performance.
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This will also allow us to investigate the full framework

proposed from Jarrasse et al. [17], in which dyads not only

consider their own and their partner’s task performance but

also the metabolic costs. Analyzing the EMG data will also

provide information on how active or passive the participants

are during the tracking tasks. This can provide information

on the engagement level which is key for enhancing neu-

roplasticity, and to facilitate recovery in patients [28], [29].

With the collective findings on the effect of various interactive

conditions, we will develop model-based synthetic controllers

to substitute one of the peers and see if similar improvements

in motor learning as shown in human-human interaction can

be achieved through human-robot interaction.

V. CONCLUSION

We presented an open-source experimental framework that

can be used to investigate the effect of varying virtual

stiffnesses and interactive behaviors between human dyads.

We have implemented an interaction torque controller and

haptic virtual environment based on an open-source robotic

development software stack called CORC [16] to render vir-

tual connections between human dyads. Different interactive

behaviors (i.e., collaborative, cooperative, competitive tasks)

were emulated by varying the properties of the virtual connec-

tion. To validate the infrastructure, we conducted system trans-

parency experiments, virtual spring rendering experiments, and

a simple dyadic physical interaction experiment. As future

directions, we plan to perform dyadic studies to systematically

investigate the effect of interactive conditions, the effects of

partner skill levels, and ankle stiffness modulation strategies

on shared task performance and individual motor learning.
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